JP4123023B2 - Differential support mechanism - Google Patents

Differential support mechanism Download PDF

Info

Publication number
JP4123023B2
JP4123023B2 JP2003076879A JP2003076879A JP4123023B2 JP 4123023 B2 JP4123023 B2 JP 4123023B2 JP 2003076879 A JP2003076879 A JP 2003076879A JP 2003076879 A JP2003076879 A JP 2003076879A JP 4123023 B2 JP4123023 B2 JP 4123023B2
Authority
JP
Japan
Prior art keywords
central axis
axis
differential
elastic support
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003076879A
Other languages
Japanese (ja)
Other versions
JP2004284437A (en
Inventor
裕司 山内
靖二 秋好
慶宣 鎌田
知企 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2003076879A priority Critical patent/JP4123023B2/en
Publication of JP2004284437A publication Critical patent/JP2004284437A/en
Application granted granted Critical
Publication of JP4123023B2 publication Critical patent/JP4123023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Motor Power Transmission Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両における左右車輪の差動機構、いわゆる、デフを支持するための機構に関する。
【0002】
【従来の技術】
従来のデフ支持機構は、デフキャリヤの重心が略中心となるように、通常はデフキャリヤの前後左右4個所でそれぞれ弾性支持するように構成されているが、エンジンから駆動力が伝達されるプロペラシャフト、及び、左右の車輪を駆動するドライブシャフトからの反力により、デフは上下変位すると共に、車両のロール方向及びピッチ方向にそれぞれ回転変位し、かつ、その回転中心がプロペラシャフトの中心軸及びドライブシャフトの中心軸から偏奇しており、これらの回転変位及び回転中心の偏奇が大きいと、プロペラシャフトの中心軸とドライブシャフトの中心軸との交角が大きくなって、車体の振動や異音を引き起こす原因となっていた。
【0003】
なお、車両のフロントデフ支持構造として、下記特許文献1に記載されたものが従来から知られている。
【0004】
【特許文献1】
特許第3011033号公報
【0005】
この場合には、フロントデフの本体をアクスル中心に対してアクスル中心からそれぞれ等距離の前側及び後側の2点で支持し、かつ、上記2支持点とは車幅中心の反対側でアクスル中心に対し上記前側の1点でデフチューブを支持することにより、フロントデフのピッチング共振を抑制するようにしている。
【0006】
【発明が解決しようとする課題】
本発明は、車両のデフに生じるローリング振動をデフの支持機構によって効果的に抑制しようとするものである。
【0007】
【課題を解決するための手段】
このため、本発明にかかるデフ支持機構は、デフを3点で上下方向に弾性支持し、その2支持点がプロペラシャフトに対して対称位置でばね定数が等しく、かつ、上記2支持点と他の1支持点との相対位置、デフの慣性モーメント、デフの慣性乗積、及び、上記各支持点のばね定数がそれぞれ適正に選定される。
【0008】
【発明の実施の形態】
以下、図面に示す本発明の実施形態例について、各実施形態例の同等部分にはそれぞれ同一符号を付けて説明する。
【0009】
図1において、車両1の左右後輪2に対するデフ3のキャリヤ4が、車両1の前方に対し左右の前方アーム5、6と左右の後方アーム7、8の各先端部においてそれぞれ略一水平面内に配置された支持点9、10、11、12でそれぞれ上下方向に弾性支持され、車両前後方向配置のプロペラシャフト13から伝達されたトルクTの駆動力が、プロペラシャフト13と略直角に配置された左右のドライブシャフト14へデフ比(減速比)ρで伝達されて、左右の後輪2が駆動されるとする。
【0010】
このとき、
xg :デフ3の重心Gを通る車両前後方向の軸
yg :デフ3の重心Gを通る車幅方向の軸
x:プロペラシャフト13の中心軸
y:ドライブシャフト14の中心軸
z:軸x及び軸yの交点(原点)Oを通る上下方向の軸
Z:軸z方向におけるキャリヤ4の変位
θx :軸xを中心としたキャリヤ4の角変位(軸xの矢印方向にみて時計方向への角変位)
θy :軸yを中心としたキャリヤ4の角変位(軸yの矢印方向にみて時計方向への角変位)
m:デフ3の質量
Ixx:軸xg を中心としたデフ3の慣性モーメント
Iyy:軸yg を中心としたデフ3の慣性モーメント
Ixy:軸xg と軸yg に関するデフ3の慣性乗積
LGx:重心Gから軸yまでの軸x方向の距離(軸xの矢印方向を正として正負を付したもの)
LGy:重心Gから軸xまでの軸y方向の距離(軸yの矢印方向を正として正負を付したもの)
kfr:右前の支持点10におけるばね定数
kfl:左前の支持点9におけるばね定数
krr:右後の支持点12におけるばね定数
krl:左後の支持点11におけるばね定数
Lfrx :軸yから右前の支持点10までの軸x方向の距離
Lflx :軸yから左前の支持点9までの軸x方向の距離
Lrrx :軸yから右後の支持点12までの軸x方向の距離
Lrlx :軸yから左後の支持点11までの軸x方向の距離
Lfry :軸xから右前の支持点10までの軸y方向の距離
Lfly :軸xから左前の支持点9までの軸y方向の距離
Lrry :軸xから右後の支持点12までの軸y方向の距離
Lrly :軸xから左後の支持点11までの軸y方向の距離
とすれば、デフキャリヤ4が上下方向に弾性支持されている場合の運動方程式は次式で表すことができる。
【0011】
【数1】

Figure 0004123023
【0012】
ただし、
m11=m
m12=mLGx
m13=−mLGy
m22=Iyy+mLGxLGx
m23=−Ixy−mLGxLGy
m33=Iyy+mLGyLGy
k11=kfr+kfl+krr+krl
k12=kflLflx +kfrLfrx −krlLrlx −krrLrrx
k13=−kflLfly +kfrLfry −krlLrly +krrLrry
k22=kflLflx Lflx +kfrLfrx Lfrx +krlLrlx Lrlx+krrLrrx Lrrx
k23=−kflLflx Lfly +kfrLfrx Lfry +krlLrlx Lrly−krrLrrx Lrry
k33=kflLfly Lfly +kfrLfry Lfry +krlLrly Lrly+krrLrry Lrry
であり、また、「・・」は2階時間微分を表す。
【0013】
(1)式を展開すると、次式が得られる。
【数2】
Figure 0004123023
【0014】
ここで、時間をt、デフキャリヤ4の振動周波数ω、軸z方向におけるデフキャリヤ4の変位振幅をAz 、軸yを中心としたデフキャリヤ4の回転振動の角変位振幅をAy 、軸xを中心としたデフキャリヤ4の回転振動の角変位振幅をAxとして、軸z、角変位θy 及び角変位θx をそれぞれ周期関数で表せば、
Z=Az sin ωt、θy =Ay sin ωt、θx =Ax sin ωt
となるので、これらを(2)式に代入すると、次式が得られる。
【0015】
【数3】
Figure 0004123023
【0016】
周知の周波数応答関数θx /Tは(3)式を解くことにより次式が得られる。θx /T=〔ωωωω{ρ(m11m23−m12m13)+(m12m12−m11m22)}+ωω{ρ(k12m13+k13m12−k11m23−k23m11)
+(k11m22+k22m11−2k12m12)}+{ρ(k11k23−k12k13)
+(k12k12−k11k22)}〕/
〔(−ωωm11+k11){(−ωωm23+k23)(−ωωm23+k23)
−(−ωωm22+k22)(−ωωm33+k33)}
+(−ωωm12+k12){(−ωωm12+k12)(−ωωm33+k33)
−(−ωωm23+k23)(−ωωm13+k13)}
+(−ωωm13+k13){(−ωωm22+k22)(−ωωm13+k13)
−(−ωωm12+k12)(−ωωm23+k23)}〕 (4)
【0017】
ωの値に関係なく常にθx /T=0が成立するためには、(4)式における4次のω及び2次のωの各係数と定数項とが0でなければならない。
すなわち、
ρ(m11m23−m12m13)+(m12m12−m11m22)=0 (5)
ρ(k12m13+k13m12−k11m23−k23m11)
+(k11m22+k22m11−2k12m12)=0 (6)
ρ(k11k23−k12k13)+(k12k12−k11k22)=0 (7)
【0018】
(5)式、(6)式、(7)式にそれぞれ上記定義を当てはめると、それぞれ次式が成立する。
ρIxy+Iyy=0 (8)
ρ〔kfl{(Lflx −LGx)(Lfly −LGy)m+Ixy}
+kfr{−(Lfrx −LGx)(Lfry +LGy)m+Ixy}
+krl{−(Lrlx +LGx)(Lrly −LGy)m+Ixy}
+krr{(Lrrx +LGx)(Lrry +LGy)m+Ixy}〕
+kfl{(Lflx −LGx)(Lflx −LGx)m+Iyy}
+kfr{(Lfrx −LGx)(Lfrx −LGx)m+Iyy}
+krl{(Lrlx +LGx)(Lrlx +LGx)m+Iyy}
+krr{(Lrrx +LGx)(Lrrx +LGx)m+Iyy}=0 (9)
ρ〔kflkfr(Lfrx −Lflx )(Lfry +Lfly )
+kflkrl(Lrlx +Lflx )(Lrly −Lfly )
−kflkrr(Lflx +Lrrx )(Lfly +Lrry )
+kfrkrl(Lfrx +Lrlx )(Lfry +Lrly )
+kfrkrr(Lfrx +Lrrx )(Lfry −Lrry )
+krlkrr(Lrlx −Lrrx )(Lrly +Lrry )〕
−{kflkfr(Lflx −Lfrx )(Lflx −Lfrx )
+kflkrl(Lflx +Lrlx )(Lflx +Lrlx )
+kflkrr(Lflx +Lrrx )(Lflx +Lrrx )
+kfrkrl(Lfrx +Lrlx )(Lfrx +Lrlx )
+kfrkrr(Lfrx +Lrrx )(Lfrx +Lrrx )
+krlkrr(Lrlx −Lrrx )(Lrlx −Lrrx )}=0 (10)
【0019】
従って、
条件(イ):Lflx =Lfrx =Lfx、
Lfly =Lfry =Lfy
条件(ロ):kfl=kfr=kf
条件(ハ):krr=0
を(10)式に代入すれば、
2kf krl(Lfx+Lrlx ){ρLrly −(Lfx+Lrlx )}=0
となるので、条件(イ)〜(ハ)と、
条件(ニ):ρLrly =Lfx+Lrlx
とが満たされれば、(10)式が成立する。
【0020】
また、
条件(ホ):ρIxy=−Iyy
が満たされれば、(8)式が成立する。
【0021】
さらに、条件(イ)〜(ホ)と
条件(ヘ):Lfx=ρLGy+LGx
とが満たされれば、(9)式が成立する。
【0022】
すなわち、
条件(イ):ドライブシャフト14の中心軸より車両前方(プロペラシャフト13の側)でプロペラシャフト13の中心軸の左右2個所にそれぞれ配置されたキャリヤ4の弾性支持点が、上記各中心軸との距離をそれぞれ等しくされている(2個所の弾性支持点がプロペラシャフト13の中心軸を挟んで対称的に配置されている)。
条件(ロ):上記左右2個所における弾性支持点のばね定数が等しい。
条件(ハ):ドライブシャフト14の中心軸より車両後方(プロペラシャフト13の反対側)で車両前方に対しプロペラシャフト13の中心軸の左方1個所にのみキャリヤ4の弾性支持点が配置される(プロペラシャフト13の中心軸の右方にはキャリヤ4の弾性支持点が配置されていない)。
条件(ニ):ρLrly =Lfx+Lrlx
条件(ホ):ρIxy=−Iyy
条件(ヘ):Lfx=ρLGy+LGx
を成立させれば(デフ3の支持機構が図2に示されているように形成されれば)、軸xを中心としたデフキャリヤ4の回転変位がωの値に関係なく常に0となって、デフキャリヤ4にローリング共振現象が発生することを確実に防止することができることとなる。
【0023】
また、上記した符号の定義において、
k12=kflLflx +kfrLfrx −krlLrlx −krrLrrx
に条件(イ)〜(ハ)と、
条件(ト):2kf /krl=Lrlx /Lfx
とを代入すれば、k12=0となって、デフキャリヤ4のピッチング回転軸と軸yとが一致することとなるため、プロペラシャフト13とドライブシャフト14とのジョイント交点が大きくならないので、デフキャリヤ4の振動悪化を防止することができる。
すなわち、この実施形態例では、適正に選定された支持点9、10、11に、それぞれ適正に設定されたばね定数を有する、例えばゴム状弾性体を配置して、キャリヤ4が車体に対し上下方向に弾性支持(下方から支承、または、上方から懸架)されている。
【0024】
上記実施形態例では、ドライブシャフト14の中心軸より車両前方においてプロペラシャフト13の中心軸の左右2個所でそれぞれキャリヤ4を弾性支持すると共に、ドライブシャフト14の中心軸より車両後方において車両前方に対しプロペラシャフト13の中心軸の左方1個所でキャリヤ4を弾性支持しているが、この支持機構を図3に示されているように、ドライブシャフト14の中心軸より車両後方においてプロペラシャフト13の中心軸の左右2個所でそれぞれキャリヤ4を弾性支持すると共に、ドライブシャフト14の中心軸より車両前方において車両前方に対しプロペラシャフト13の中心軸の右方1個所でキャリヤ4を弾性支持するようにし、
条件(チ):Lrlx =Lrrx =Lrx、
Lrly =Lrry =Lry
条件(リ):krl=krr=kr
条件(ヌ):kfl=0
を(10)式に代入すれば、
2kfrkr (Lfrx +Lrx){ρLfry −(Lfrx +Lrx)}=0
となるので、条件(チ)〜(ヌ)と、
条件(ル):ρLfry =Lfrx +Lrx
とが満たされれば、(10)式が成立する。
【0025】
また、
条件(ホ):ρIxy=−Iyy
が満たされれば、(8)式が成立する。
【0026】
さらに、条件(ホ)、(チ)〜(ル)と
条件(ヲ):Lrx=−(ρLGy+LGx)
とが満たされれば、(9)式が成立する。
【0027】
すなわち、
条件(チ):ドライブシャフト14の中心軸より車両後方(プロペラシャフト13の反対側)でプロペラシャフト13の中心軸の左右2個所にそれぞれ配置されたキャリヤ4の弾性支持点が、上記各中心軸との距離をそれぞれ等しくされている(2個所の弾性支持点がプロペラシャフト13の中心軸を挟んで対称的に配置されている)。
条件(リ):上記左右2個所における弾性支持点のばね定数が等しい。
条件(ヌ):ドライブシャフト14の中心軸より車両前方(プロペラシャフト13の側)で車両前方に対しプロペラシャフト13の中心軸の右方1個所にのみキャリヤ4の弾性支持点が配置される(プロペラシャフト13の中心軸の左方にはキャリヤ4の弾性支持点が配置されていない)。
条件(ホ):ρIxy=−Iyy
条件(ル):ρLfry =Lfrx +Lrx
条件(ヲ):Lrx=−(ρLGy+LGx)
を成立させれば(デフ3の支持機構が図3に示されているように形成されれば)、軸xを中心としたデフキャリヤ4の回転変位がωの値に関係なく常に0となって、デフキャリヤ4にローリング共振現象が発生することを確実に防止することができることとなる。
【0028】
また、上記した符号の定義において、
k12=kflLflx +kfrLfrx −krlLrlx −krrLrrx
に条件(チ)〜(ヌ)と、
条件(ワ):kfr/2kr =Lrx/Lfrx
とを代入すれば、k12=0となって、デフキャリヤ4のピッチング回転軸と軸yとが一致することとなるため、プロペラシャフト13とドライブシャフト14とのジョイント交点が大きくならないので、デフキャリヤ4の振動悪化を防止することができる。
すなわち、この実施形態例では、適正に選定された支持点10、11、12に、それぞれ適正に設定されたばね定数を有する、例えばゴム状弾性体を配置して、キャリヤ4が車体に対し上下方向に弾性支持(下方から支承、または、上方から懸架)されている。
【0029】
なお、上記各実施形態例において、図4に例示されているように、プロペラシャフト13の一方の側のみに配置された弾性支持点Pを、支持点Pに対して車幅方向に対称的な位置の弾性支持点P1 、P2 に分割し、各支持点P1 、P2 のばね定数を支持点Pのばね定数の1/2とすれば、上記各実施形態例とそれぞれ同等の作用効果を奏することはいうまでもない。
【0030】
また、上記各実施形態例は車両のリヤデフに関するものであるが、これらをそれぞれ車両の前後に逆配置してフロントデフに適用しても、上記各実施形態例とそれぞれ同等の作用効果を奏することができるものである。
【0031】
【発明の効果】
本発明にかかるデフ支持機構においては、デフの弾性支持位置、各支持点のばね定数、デフの慣性モーメント及びデフの慣性乗積をそれぞれ適正に選定することにより、デフの振動を抑制して、車体の振動や異音の発生を防止することができるようになる。
【図面の簡単な説明】
【図1】デフ支持機構の概念的平面図。
【図2】本発明の実施形態例における概念的平面図。
【図3】本発明の他の実施形態例における概念的平面図。
【図4】本発明の他の実施形態例における概念的平面図。
【符号の説明】
1 車両
3 デフ
4 キャリヤ
9、10、11、12 支持点
13 プロペラシャフト
14 ドライブシャフト
G 重心
O 原点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential mechanism for left and right wheels in a vehicle, a so-called mechanism for supporting a differential.
[0002]
[Prior art]
The conventional differential support mechanism is generally configured to elastically support the differential carrier at four positions on the front, rear, left and right sides of the differential carrier so that the center of gravity of the differential carrier is substantially the center, but a propeller shaft to which driving force is transmitted from the engine, The differential is displaced up and down by the reaction force from the drive shafts that drive the left and right wheels, and is rotated and displaced in the roll direction and the pitch direction of the vehicle, respectively, and the center of rotation is the center axis of the propeller shaft and the drive shaft. If the rotation displacement and the rotation center deviation are large, the crossing angle between the center axis of the propeller shaft and the center axis of the drive shaft increases, causing vibrations and noise in the vehicle body. It was.
[0003]
In addition, what was described in the following patent document 1 is conventionally known as a front differential support structure of a vehicle.
[0004]
[Patent Document 1]
Japanese Patent No. 3011033
In this case, the front differential body is supported at two points on the front and rear sides that are equidistant from the axle center with respect to the axle center, and the axle center is on the opposite side of the vehicle width center. On the other hand, by supporting the differential tube at one point on the front side, the pitching resonance of the front differential is suppressed.
[0006]
[Problems to be solved by the invention]
The present invention is intended to effectively suppress rolling vibration generated in a vehicle differential by a differential support mechanism.
[0007]
[Means for Solving the Problems]
For this reason, the differential support mechanism according to the present invention elastically supports the differential in the vertical direction at three points, the two support points are symmetrical with respect to the propeller shaft, the spring constant is equal, and the other two support points The relative position with respect to one support point, the differential moment of inertia, the product of the differential inertia, and the spring constant of each support point are appropriately selected.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention shown in the drawings will be described with the same reference numerals given to the equivalent parts of the embodiments.
[0009]
In FIG. 1, the carrier 4 of the differential 3 for the left and right rear wheels 2 of the vehicle 1 is substantially in a horizontal plane at the front ends of the left and right front arms 5 and 6 and the left and right rear arms 7 and 8 with respect to the front of the vehicle 1. The driving force of the torque T transmitted from the propeller shaft 13 arranged in the vehicle longitudinal direction is arranged substantially perpendicular to the propeller shaft 13. It is assumed that the left and right rear wheels 2 are driven by being transmitted to the left and right drive shafts 14 with a differential ratio (reduction ratio) ρ.
[0010]
At this time,
xg: axis in the vehicle longitudinal direction passing through the center of gravity G of the differential 3 yg: axis in the vehicle width direction passing through the center of gravity G of the differential 3 x: center axis of the propeller shaft 13: center axis z of the drive shaft 14: axis x and axis The vertical axis Z passing through the intersection (origin) O of y: the displacement of the carrier 4 in the axis z direction θx: the angular displacement of the carrier 4 about the axis x (the angular displacement in the clockwise direction as viewed in the arrow direction of the axis x) )
θy: angular displacement of the carrier 4 about the axis y (angular displacement in the clockwise direction when viewed in the direction of the arrow on the axis y)
m: Mass of differential 3 Ixx: Moment of inertia of differential 3 about axis xg Iyy: Moment of inertia of differential 3 about axis yg Ixy: Product of inertia of differential 3 with respect to axis xg and axis yg LGx: Center of gravity G The distance in the direction of the axis x from the axis y to the axis y (the direction of the arrow of the axis x is positive and the sign is added)
LGy: Distance in the direction of the axis y from the center of gravity G to the axis x (the direction of the arrow of the axis y is positive and attached with a positive or negative sign)
kfr: spring constant at the right front support point kfl: spring constant at the left front support point krr: spring constant at the right rear support point krl: spring constant Lfrx at the left rear support point 11: support right front from the axis y Distance Lflx in the axis x direction to the point 10: Distance Lrrx in the axis x direction from the axis y to the left front support point 9: Distance Lrlx in the axis x direction from the axis y to the right rear support point 12: Left from the axis y Distance Lfry in the axis x direction to the subsequent support point 11: Distance Lfly in the axis y direction from the axis x to the right front support point 10: Distance Lrry in the axis y direction from the axis x to the left front support point 9: Axis x A distance Lrly in the axis y direction from the right rear support point 12 to the right rear support point 12: If the distance in the axis y direction from the axis x to the left rear support point 11 is the motion when the differential carrier 4 is elastically supported in the vertical direction The equation can be expressed as:
[0011]
[Expression 1]
Figure 0004123023
[0012]
However,
m11 = m
m12 = mLGx
m13 = -mLGy
m22 = Iyy + mLGxLGx
m23 = -Ixy-mLGxLGy
m33 = Iyy + mLGyLGy
k11 = kfr + kfl + krr + kr
k12 = kflLflx + kfrLfrx−krLrlx−krrLrrx
k13 = -kflLfly + kfrLfry-krLrly + krrLrry
k22 = kflLflx Lflx + kfrLfrx Lfrx + krlLrlx Lrlx + krrLrrx Lrrx
k23 = -kflLflx Lfly + kfrLfrx Lfry + krLrlx Lrly-krrLrrx Lrry
k33 = kfl Lfly Lfly + kfr Lfry Lfry + krLrly Lrly + krLrry Lrry
And “··” represents a second-order time derivative.
[0013]
When the expression (1) is expanded, the following expression is obtained.
[Expression 2]
Figure 0004123023
[0014]
Here, the time is t, the vibration frequency ω of the differential carrier 4, the displacement amplitude of the differential carrier 4 in the axis z direction is Az, the angular displacement amplitude of the rotational vibration of the differential carrier 4 about the axis y is Ay, and the axis x is the center. If the angular displacement amplitude of the rotational vibration of the differential carrier 4 is Ax, the axis z, the angular displacement θy, and the angular displacement θx are each expressed by a periodic function,
Z = Az sin ωt, θy = Ay sin ωt, θx = Ax sin ωt
Therefore, when these are substituted into the equation (2), the following equation is obtained.
[0015]
[Equation 3]
Figure 0004123023
[0016]
The well-known frequency response function θx / T can be obtained by solving the following equation (3). θx / T = [ωωωω {ρ (m11m23−m12m13) + (m12m12−m11m22)} + ωω {ρ (k12m13 + k13m12−k11m23−k23m11)
+ (K11m22 + k22m11-2k12m12)} + {ρ (k11k23-k12k13)
+ (K12k12-k11k22)}] /
[(−ωωm11 + k11) {(− ωωm23 + k23) (− ωωm23 + k23)
− (− Ωωm22 + k22) (− ωωm33 + k33)}
+ (− Ωωm12 + k12) {(− ωωm12 + k12) (− ωωm33 + k33)
− (− Ωωm23 + k23) (− ωωm13 + k13)}
+ (− Ωωm13 + k13) {(− ωωm22 + k22) (− ωωm13 + k13)
− (− Ωωm12 + k12) (− ωωm23 + k23)}] (4)
[0017]
In order for θx / T = 0 to always hold regardless of the value of ω, the coefficients of the fourth-order ω and second-order ω and the constant term in equation (4) must be zero.
That is,
ρ (m11m23−m12m13) + (m12m12−m11m22) = 0 (5)
ρ (k12m13 + k13m12−k11m23−k23m11)
+ (K11m22 + k22m11-2k12m12) = 0 (6)
ρ (k11k23−k12k13) + (k12k12−k11k22) = 0 (7)
[0018]
When the above definitions are applied to the equations (5), (6), and (7), the following equations are established.
ρIxy + Iyy = 0 (8)
ρ [kfl {(Lflx−LGx) (Lfly−LGy) m + Ixy}
+ Kfr {-(Lfrx-LGx) (Lfry + LGy) m + Ixy}
+ Krl {-(Lrlx + LGx) (Lrly-LGy) m + Ixy}
+ Kr ({Lrrx + LGx) (Lrry + LGy) m + Ixy}]
+ Kfl {(Lflx-LGx) (Lflx-LGx) m + Iyy}
+ Kfr {(Lfrx-LGx) (Lfrx-LGx) m + Iyy}
+ Krl {(Lrlx + LGx) (Lrlx + LGx) m + Iyy}
+ Kr ({Lrrx + LGx) (Lrrx + LGx) m + Iyy} = 0 (9)
ρ [kflkfr (Lfrx−Lflx) (Lfry + Lfly)
+ Kflkrl (Lrlx + Lflx) (Lrly-Lfly)
-Kflkr (Lflx + Lrrx) (Lfly + Lrry)
+ Kfrkrl (Lfrx + Lrlx) (Lfry + Lrly)
+ Kfrkr (Lfrx + Lrrx) (Lfry-Lrry)
+ Krlkrr (Lrlx-Lrrx) (Lrly + Lrry)]
-{Kflkfr (Lflx-Lfrx) (Lflx-Lfrx)
+ Kflkrl (Lflx + Lrlx) (Lflx + Lrlx)
+ Kflkrr (Lflx + Lrrx) (Lflx + Lrrx)
+ Kfrkrl (Lfrx + Lrlx) (Lfrx + Lrlx)
+ Kfrkrr (Lfrx + Lrrx) (Lfrx + Lrrx)
+ Krlkrr (Lrlx-Lrrx) (Lrlx-Lrrx)} = 0 (10)
[0019]
Therefore,
Condition (A): Lflx = Lfrx = Lfx,
Lfly = Lfry = Lfy
Condition (b): kfl = kfr = kf
Condition (C): krr = 0
Is substituted into equation (10),
2kf kr (Lfx + Lrlx) {ρLrly− (Lfx + Lrlx)} = 0
Therefore, the conditions (I) to (C)
Condition (d): ρLrly = Lfx + Lrlx
If these are satisfied, Expression (10) is established.
[0020]
Also,
Condition (e): ρIxy = −Iyy
If is satisfied, equation (8) is established.
[0021]
Furthermore, conditions (A) to (E) and condition (F): Lfx = ρLGy + LGx
If these are satisfied, equation (9) is established.
[0022]
That is,
Condition (a): The elastic support points of the carrier 4 respectively disposed at two positions on the left and right of the central axis of the propeller shaft 13 on the front side of the vehicle (the propeller shaft 13 side) from the central axis of the drive shaft 14 Are made equal to each other (two elastic support points are arranged symmetrically across the central axis of the propeller shaft 13).
Condition (b): The spring constants of the elastic support points at the two left and right positions are equal.
Condition (c): The elastic support point of the carrier 4 is disposed only at one position on the left side of the central axis of the propeller shaft 13 with respect to the front of the vehicle behind the vehicle from the central axis of the drive shaft 14 (opposite the propeller shaft 13). (The elastic support point of the carrier 4 is not arranged to the right of the central axis of the propeller shaft 13).
Condition (d): ρLrly = Lfx + Lrlx
Condition (e): ρIxy = −Iyy
Condition (f): Lfx = ρLGy + LGx
(If the support mechanism of the differential 3 is formed as shown in FIG. 2), the rotational displacement of the differential carrier 4 about the axis x is always 0 regardless of the value of ω. Thus, the occurrence of the rolling resonance phenomenon in the differential carrier 4 can be surely prevented.
[0023]
In addition, in the definition of the above sign,
k12 = kflLflx + kfrLfrx−krLrlx−krrLrrx
And conditions (b) to (c)
Condition (g): 2 kf / krl = Lrlx / Lfx
Is substituted, k12 = 0, and the pitching rotation axis of the differential carrier 4 and the axis y coincide with each other. Therefore, the joint intersection of the propeller shaft 13 and the drive shaft 14 does not increase. Vibration deterioration can be prevented.
That is, in this embodiment, for example, a rubber-like elastic body having a spring constant appropriately set is disposed at each of the support points 9, 10, and 11 that are appropriately selected, and the carrier 4 moves in the vertical direction with respect to the vehicle body. It is elastically supported (supported from below or suspended from above).
[0024]
In the above embodiment, the carrier 4 is elastically supported at the two left and right sides of the central axis of the propeller shaft 13 in front of the vehicle from the central axis of the drive shaft 14, and from the central axis of the drive shaft 14 to the front of the vehicle in the rear of the vehicle. The carrier 4 is elastically supported at one place on the left side of the central axis of the propeller shaft 13, and this support mechanism is shown in FIG. The carrier 4 is elastically supported at two locations on the left and right sides of the central axis, and the carrier 4 is elastically supported at one location on the right side of the central axis of the propeller shaft 13 with respect to the front of the vehicle from the central axis of the drive shaft 14. ,
Condition (h): Lrlx = Lrrx = Lrx,
Lrly = Lrry = Lry
Condition (li): kr = krr = kr
Condition (nu): kfl = 0
Is substituted into equation (10),
2kfrkr (Lfrx + Lrx) {ρLfry- (Lfrx + Lrx)} = 0
So, conditions (Chi) ~ (nu),
Condition (Le): ρLfry = Lfrx + Lrx
If these are satisfied, Expression (10) is established.
[0025]
Also,
Condition (e): ρIxy = −Iyy
If is satisfied, equation (8) is established.
[0026]
Furthermore, conditions (e), (h) to (le) and conditions (e): Lrx = − (ρLGy + LGx)
If these are satisfied, equation (9) is established.
[0027]
That is,
Condition (h): The elastic support points of the carrier 4 respectively disposed at the two left and right sides of the central axis of the propeller shaft 13 at the vehicle rear side (opposite side of the propeller shaft 13) from the central axis of the drive shaft 14 (The two elastic support points are symmetrically arranged across the central axis of the propeller shaft 13).
Condition (I): The spring constants of the elastic support points at the two left and right positions are equal.
Condition (nu): The elastic support point of the carrier 4 is disposed only at one position on the right side of the central axis of the propeller shaft 13 with respect to the front of the vehicle from the central axis of the drive shaft 14 (propeller shaft 13 side) ( The elastic support point of the carrier 4 is not arranged on the left side of the central axis of the propeller shaft 13).
Condition (e): ρIxy = −Iyy
Condition (Le): ρLfry = Lfrx + Lrx
Condition (W): Lrx =-(ρLGy + LGx)
(If the support mechanism of the differential 3 is formed as shown in FIG. 3), the rotational displacement of the differential carrier 4 about the axis x is always 0 regardless of the value of ω. Thus, the occurrence of the rolling resonance phenomenon in the differential carrier 4 can be surely prevented.
[0028]
In addition, in the definition of the above sign,
k12 = kflLflx + kfrLfrx−krLrlx−krrLrrx
And conditions (Chi)-(nu),
Condition (W): kfr / 2kr = Lrx / Lfrx
Is substituted, k12 = 0, and the pitching rotation axis of the differential carrier 4 and the axis y coincide with each other. Therefore, the joint intersection of the propeller shaft 13 and the drive shaft 14 does not increase. Vibration deterioration can be prevented.
That is, in this embodiment, for example, a rubber-like elastic body having a spring constant set appropriately is disposed at each of the support points 10, 11, and 12 that are properly selected, and the carrier 4 moves in the vertical direction with respect to the vehicle body. It is elastically supported (supported from below or suspended from above).
[0029]
In each of the above embodiments, as illustrated in FIG. 4, the elastic support point P disposed only on one side of the propeller shaft 13 is symmetrical with respect to the support point P in the vehicle width direction. By dividing the elastic support points P1 and P2 at positions and setting the spring constants of the support points P1 and P2 to ½ of the spring constants of the support points P, the same effects as the above embodiments can be obtained. Needless to say.
[0030]
In addition, each of the above embodiments relates to a rear differential of the vehicle. However, even if these are arranged reversely in the front and rear of the vehicle and applied to the front differential, the same effects as the above embodiments can be obtained. Is something that can be done.
[0031]
【The invention's effect】
In the differential support mechanism according to the present invention, by appropriately selecting the elastic support position of the differential, the spring constant of each support point, the inertia moment of the differential, and the inertial product of the differential, the vibration of the differential is suppressed, It is possible to prevent the vibration of the vehicle body and the generation of abnormal noise.
[Brief description of the drawings]
FIG. 1 is a conceptual plan view of a differential support mechanism.
FIG. 2 is a conceptual plan view of an exemplary embodiment of the present invention.
FIG. 3 is a conceptual plan view of another embodiment of the present invention.
FIG. 4 is a conceptual plan view of another embodiment of the present invention.
[Explanation of symbols]
1 Vehicle 3 Differential 4 Carrier 9, 10, 11, 12 Support point 13 Propeller shaft 14 Drive shaft G Center of gravity O Origin

Claims (4)

デフに駆動力を伝達するプロペラシャフトの中心軸と上記デフから車輪に駆動力を伝達するドライブシャフトの中心軸とが略直交し、上記ドライブシャフトの中心軸より上記プロペラシャフト側で上記プロペラシャフトの中心軸を挟んで車幅方向に対称的に配置されてばね定数kf がそれぞれ等しい2個所の第1弾性支持点と、上記ドライブシャフトの中心軸より上記プロペラシャフトの反対側で車両前方に対し上記プロペラシャフトの中心軸の左方1個所にのみ配置された第2弾性支持点とにより上記デフが上下方向に弾性支持され、かつ、次の条件をそなえたデフ支持機構。
ρLrly =Lfx+Lrlx
ρIxy=−Iyy
Lfx=ρLG1+LG2
2kf /krl=Lrlx /Lfx
ただし、
ρ:上記デフの減速比
Lrly :上記プロペラシャフトの中心軸から上記第2弾性支持点までの距離
Lfx:上記ドライブシャフトの中心軸から上記第1弾性支持点までの距離
Lrlx :上記ドライブシャフトの中心軸から上記第2弾性支持点までの距離
Iyy:上記ドライブシャフトの中心軸と平行で上記デフの重心Gを通る第1軸を中心とした上記デフの慣性モーメント
Ixy:上記第1軸と、上記プロペラシャフトの中心軸と平行で上記重心Gを通る第2軸と、に関する上記デフの慣性乗積
LG1:上記プロペラシャフトの中心軸から上記重心Gまでの距離
LG2:上記ドライブシャフトの中心軸から上記重心Gまでの距離
krl:上記第2弾性支持点のばね定数
The central axis of the propeller shaft that transmits the driving force to the differential and the central axis of the drive shaft that transmits the driving force from the differential to the wheel are substantially orthogonal, and the propeller shaft is closer to the propeller shaft than the central axis of the drive shaft. Two first elastic support points arranged symmetrically in the vehicle width direction across the central axis and having the same spring constant kf, and the front of the vehicle on the opposite side of the propeller shaft from the central axis of the drive shaft A differential support mechanism in which the differential is elastically supported in the vertical direction by a second elastic support point disposed only at one place on the left side of the central axis of the propeller shaft, and the following conditions are satisfied.
ρLrly = Lfx + Lrlx
ρIxy = −Iyy
Lfx = ρLG1 + LG2
2kf / krl = Lrlx / Lfx
However,
ρ: Reduction ratio Lrly of the differential Lrly: Distance from the central axis of the propeller shaft to the second elastic support point Lfx: Distance from the central axis of the drive shaft to the first elastic support point Lrlx: Center of the drive shaft The distance Iyy from the axis to the second elastic support point: the differential moment of inertia Ixy around the first axis parallel to the central axis of the drive shaft and passing through the center of gravity G of the differential: the first axis and the above The inertial product of the differential LG1 with respect to the second axis passing through the center of gravity G parallel to the center axis of the propeller shaft LG1: Distance from the center axis of the propeller shaft to the center of gravity G LG2: From the center axis of the drive shaft to the above Distance krl to the center of gravity G: Spring constant of the second elastic support point
デフに駆動力を伝達するプロペラシャフトの中心軸と上記デフから車輪に駆動力を伝達するドライブシャフトの中心軸とが略直交し、上記ドライブシャフトの中心軸より上記プロペラシャフト側で上記プロペラシャフトの中心軸を挟んで車幅方向に対称的に配置されてばね定数kf がそれぞれ等しい2個所の第1弾性支持点と、上記ドライブシャフトの中心軸より上記プロペラシャフトの反対側で車両前方に対し上記プロペラシャフトの中心軸の左方に配置された第3弾性支持点とにより上記デフが上下方向に弾性支持され、上記第3弾性支持点が上記第3弾性支持点から車幅方向に対称的に配置された2個所の第4弾性支持点に分割されて、上記各第4弾性支持点のばね定数がそれぞれ上記第3弾性支持点のばね定数の1/2であり、かつ、次の条件をそなえたデフ支持機構。
ρLrly =Lfx+Lrlx
ρIxy=−Iyy
Lfx=ρLG1+LG2
2kf /krl=Lrlx /Lfx
ただし、
ρ:上記デフの減速比
Lrly :上記プロペラシャフトの中心軸から上記第2弾性支持点までの距離
Lfx:上記ドライブシャフトの中心軸から上記第1弾性支持点までの距離
Lrlx :上記ドライブシャフトの中心軸から上記第2弾性支持点までの距離
Iyy:上記ドライブシャフトの中心軸と平行で上記デフの重心Gを通る第1軸を中心とした上記デフの慣性モーメント
Ixy:上記第1軸と、上記プロペラシャフトの中心軸と平行で上記重心Gを通る第2軸と、に関する上記デフの慣性乗積
LG1:上記プロペラシャフトの中心軸から上記重心Gまでの距離
LG2:上記ドライブシャフトの中心軸から上記重心Gまでの距離
krl:上記第3弾性支持点のばね定数
The central axis of the propeller shaft that transmits the driving force to the differential and the central axis of the drive shaft that transmits the driving force from the differential to the wheel are substantially orthogonal, and the propeller shaft is closer to the propeller shaft than the central axis of the drive shaft. Two first elastic support points arranged symmetrically in the vehicle width direction across the central axis and having the same spring constant kf, and the front of the vehicle on the opposite side of the propeller shaft from the central axis of the drive shaft The differential is elastically supported in the vertical direction by a third elastic support point arranged on the left side of the central axis of the propeller shaft, and the third elastic support point is symmetrical from the third elastic support point in the vehicle width direction. Divided into two arranged fourth elastic support points, and the spring constant of each of the fourth elastic support points is 1/2 of the spring constant of the third elastic support point, and Def support mechanism equipped with the following conditions.
ρLrly = Lfx + Lrlx
ρIxy = −Iyy
Lfx = ρLG1 + LG2
2kf / krl = Lrlx / Lfx
However,
ρ: Reduction ratio Lrly of the differential Lrly: Distance from the central axis of the propeller shaft to the second elastic support point Lfx: Distance from the central axis of the drive shaft to the first elastic support point Lrlx: Center of the drive shaft The distance Iyy from the axis to the second elastic support point: the differential moment of inertia Ixy around the first axis parallel to the central axis of the drive shaft and passing through the center of gravity G of the differential: the first axis and the above The inertial product of the differential LG1 with respect to the second axis passing through the center of gravity G parallel to the center axis of the propeller shaft LG1: Distance from the center axis of the propeller shaft to the center of gravity G LG2: From the center axis of the drive shaft to the above Distance krl to the center of gravity G: Spring constant of the third elastic support point
デフに駆動力を伝達するプロペラシャフトの中心軸と上記デフから車輪に駆動力を伝達するドライブシャフトの中心軸とが略直交し、上記ドライブシャフトの中心軸より上記プロペラシャフトの反対側で上記プロペラシャフトの中心軸を挟んで車幅方向に対称的に配置されてばね定数kr がそれぞれ等しい2個所の第5弾性支持点と、上記ドライブシャフトの中心軸より上記プロペラシャフト側で車両前方に対し上記プロペラシャフトの中心軸の右方1個所にのみ配置された第6弾性支持点とにより上記デフが上下方向に弾性支持され、かつ、次の条件をそなえたデフ支持機構。
ρIxy=−Iyy
ρLfry =Lfrx +Lrx
Lrx=ρLG1+LG2
kfr/2kr =Lrx/Lfrx
ただし、
ρ:上記デフの減速比
Iyy:上記ドライブシャフトの中心軸と平行で上記デフの重心Gを通る第1軸を中心とした上記デフの慣性モーメント
Ixy:上記第1軸と、上記プロペラシャフトの中心軸と平行で上記重心Gを通る第2軸と、に関する上記デフの慣性乗積
Lfry :上記プロペラシャフトの中心軸から上記第6弾性支持点までの距離
Lfrx :上記ドライブシャフトの中心軸から上記第6弾性支持点までの距離
Lrx:上記ドライブシャフトの中心軸から上記第5弾性支持点までの距離
LG1:上記プロペラシャフトの中心軸から上記重心Gまでの距離
LG2:上記ドライブシャフトの中心軸から上記重心Gまでの距離
kfr:上記第6弾性支持点のばね定数
The central axis of the propeller shaft that transmits the driving force to the differential and the central axis of the drive shaft that transmits the driving force from the differential to the wheels are substantially orthogonal, and the propeller is on the opposite side of the propeller shaft from the central axis of the drive shaft. Two fifth elastic support points which are symmetrically arranged in the vehicle width direction across the central axis of the shaft and have the same spring constant kr, and the front side of the vehicle on the propeller shaft side from the central axis of the drive shaft. A differential support mechanism in which the differential is elastically supported in the vertical direction by a sixth elastic support point disposed only at one right side of the central axis of the propeller shaft, and the following conditions are satisfied.
ρIxy = −Iyy
ρLfry = Lfrx + Lrx
Lrx = ρLG1 + LG2
kfr / 2kr = Lrx / Lfrx
However,
ρ: Reduction ratio of the differential Iyy: Inertia moment of inertia Ixy centered on the first axis parallel to the center axis of the drive shaft and passing through the center of gravity G of the differential: Center of the first axis and the propeller shaft The differential product Lfry of the differential with respect to a second axis passing through the center of gravity G in parallel with the axis: distance Lfrx from the central axis of the propeller shaft to the sixth elastic support point: from the central axis of the drive shaft to the first axis 6 Distance to the elastic support point Lrx: Distance from the central axis of the drive shaft to the fifth elastic support point LG1: Distance from the central axis of the propeller shaft to the center of gravity G LG2: From the central axis of the drive shaft to the above Distance kfr to the center of gravity G: Spring constant of the sixth elastic support point
デフに駆動力を伝達するプロペラシャフトの中心軸と上記デフから車輪に駆動力を伝達するドライブシャフトの中心軸とが略直交し、上記ドライブシャフトの中心軸より上記プロペラシャフトの反対側で上記プロペラシャフトの中心軸を挟んで車幅方向に対称的に配置されてばね定数kr がそれぞれ等しい2個所の第5弾性支持点と、上記ドライブシャフトの中心軸より上記プロペラシャフト側で車両前方に対し上記プロペラシャフトの中心軸の右方に配置された第7弾性支持点とにより上記デフが上下方向に弾性支持され、上記第7弾性支持点が上記第7弾性支持点から車幅方向に対称的に配置された2個所の第8弾性支持点に分割され、上記各第8弾性支持点のばね定数がそれぞれ上記第7弾性支持点のばね定数の1/2であり、かつ、次の条件をそなえたデフ支持機構。
ρIxy=−Iyy
ρLfry =Lfrx +Lrx
Lrx=ρLG1+LG2
kfr/2kr =Lrx/Lfrx
ただし、
ρ:上記デフの減速比
Iyy:上記ドライブシャフトの中心軸と平行で上記デフの重心Gを通る第1軸を中心とした上記デフの慣性モーメント
Ixy:上記第1軸と、上記プロペラシャフトの中心軸と平行で上記重心Gを通る第2軸と、に関する上記デフの慣性乗積
Lfry :上記プロペラシャフトの中心軸から上記第7弾性支持点までの距離
Lfrx :上記ドライブシャフトの中心軸から上記第7弾性支持点までの距離
Lrx:上記ドライブシャフトの中心軸から上記第5弾性支持点までの距離
LG1:上記プロペラシャフトの中心軸から上記重心Gまでの距離
LG2:上記ドライブシャフトの中心軸から上記重心Gまでの距離
kfr:上記第7弾性支持点のばね定数
The central axis of the propeller shaft that transmits the driving force to the differential and the central axis of the drive shaft that transmits the driving force from the differential to the wheels are substantially orthogonal, and the propeller is on the opposite side of the propeller shaft from the central axis of the drive shaft. Two fifth elastic support points which are symmetrically arranged in the vehicle width direction across the central axis of the shaft and have the same spring constant kr, and the front side of the vehicle on the propeller shaft side from the central axis of the drive shaft. The differential is elastically supported in the vertical direction by a seventh elastic support point disposed on the right side of the central axis of the propeller shaft, and the seventh elastic support point is symmetrical from the seventh elastic support point in the vehicle width direction. Divided into two arranged eighth elastic support points, and the spring constant of each of the eighth elastic support points is ½ of the spring constant of each of the seventh elastic support points, and Def support mechanism equipped with conditions.
ρIxy = −Iyy
ρLfry = Lfrx + Lrx
Lrx = ρLG1 + LG2
kfr / 2kr = Lrx / Lfrx
However,
ρ: Reduction ratio of the differential Iyy: Inertia moment of inertia Ixy centered on the first axis parallel to the center axis of the drive shaft and passing through the center of gravity G of the differential: Center of the first axis and the propeller shaft The differential product Lfry of the differential with respect to the second axis passing through the center of gravity G parallel to the axis: the distance Lfrx from the central axis of the propeller shaft to the seventh elastic support point: from the central axis of the drive shaft to the second axis 7 Distance to the elastic support point Lrx: Distance from the central axis of the drive shaft to the fifth elastic support point LG1: Distance from the central axis of the propeller shaft to the center of gravity G LG2: From the central axis of the drive shaft to the above Distance kfr to the center of gravity G: Spring constant of the seventh elastic support point
JP2003076879A 2003-03-20 2003-03-20 Differential support mechanism Expired - Lifetime JP4123023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076879A JP4123023B2 (en) 2003-03-20 2003-03-20 Differential support mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076879A JP4123023B2 (en) 2003-03-20 2003-03-20 Differential support mechanism

Publications (2)

Publication Number Publication Date
JP2004284437A JP2004284437A (en) 2004-10-14
JP4123023B2 true JP4123023B2 (en) 2008-07-23

Family

ID=33291788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076879A Expired - Lifetime JP4123023B2 (en) 2003-03-20 2003-03-20 Differential support mechanism

Country Status (1)

Country Link
JP (1) JP4123023B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784256B2 (en) * 2005-10-25 2011-10-05 トヨタ自動車株式会社 Differential mounting structure
JP2007303647A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Vibrator mounting method

Also Published As

Publication number Publication date
JP2004284437A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4333767B2 (en) Vehicle control device
EP2738027B1 (en) Anti-vibration device for vehicle
JP6573082B2 (en) Roll control device for vehicle
JP4177327B2 (en) Vehicle power unit support device
US20060201248A1 (en) Vibrating gyro element
JP6245217B2 (en) Vehicle state quantity estimation device
JP4123023B2 (en) Differential support mechanism
JP2007331742A (en) Shackle structure for suspension leaf spring
US4966384A (en) Suspension member mounting structure
JP2744531B2 (en) How to correct weight imbalance of rim-mounted tires
US10655965B2 (en) Rotational speed sensor with minimized interference movements in the driving mode
JP6821295B2 (en) Fixed constant velocity universal joint
US20230347984A1 (en) Vibration damping device for vehicle
WO2012160701A1 (en) Vibration damping control device
US10295044B2 (en) Brace for powerplant
KR102506768B1 (en) Sub-frame having different stiffness by direction
KR100552751B1 (en) Structure for inhibiting vibration of propeller shaft in automobile
JP7099375B2 (en) Balance weight of rotating shaft for vehicles
JP2007030577A (en) Engine mount structure
JP2010095042A (en) Suspension member fixing structure
US20230228569A1 (en) MEMS Gyroscope
US20050275172A1 (en) Apparatus for controlling stiffness of anti-roll bar for vehicle
CN112595305B (en) Shaking mechanism for driving triaxial orthogonal laser gyro
JP3334939B2 (en) Vehicle differential mount structure
Terakawa et al. Experimental Verification of Stabilizing Effect of Double-Row Active Omni Wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Ref document number: 4123023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term