JP4122726B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP4122726B2
JP4122726B2 JP2001136030A JP2001136030A JP4122726B2 JP 4122726 B2 JP4122726 B2 JP 4122726B2 JP 2001136030 A JP2001136030 A JP 2001136030A JP 2001136030 A JP2001136030 A JP 2001136030A JP 4122726 B2 JP4122726 B2 JP 4122726B2
Authority
JP
Japan
Prior art keywords
adsorbent
air
heat exchanger
circulating air
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001136030A
Other languages
Japanese (ja)
Other versions
JP2002326012A (en
JP2002326012A5 (en
Inventor
泰樹 藤井
佳正 勝見
幹雄 倉島
真也 竹花
孝昭 中曽根
篤範 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001136030A priority Critical patent/JP4122726B2/en
Publication of JP2002326012A publication Critical patent/JP2002326012A/en
Publication of JP2002326012A5 publication Critical patent/JP2002326012A5/ja
Application granted granted Critical
Publication of JP4122726B2 publication Critical patent/JP4122726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1012Details of the casing or cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に一般家庭における室内の除湿や衣類の乾燥等に使用される吸着剤を用いた除湿装置に関する。
【0002】
【従来の技術】
従来、この種の除湿装置は、特開2000−126498号公報に記載されたものが知られている。
【0003】
以下、その除湿装置について図16を参照しながら説明する。
【0004】
図に示すように、除湿装置の本体101に、乾燥用空気の吹き出し口102、室内空気の吸い込み口103が設けられており、本体101内には室温では空気中の湿気を吸着し高温では吸着した湿気を脱湿する吸着剤104、熱交換器105、加熱手段106、第1の送風ファン107、第1の送風ファンを駆動するモータ108、第2の送風ファン109、第2の送風ファンを駆動するモータ110および吸着剤104を回転する駆動手段111が設けられている。また、吸着剤104を熱交換器105の冷却フィンのある吸着側と加熱手段106のある再生側とに分割する隔壁112と、室内空気の吸いこみ口103と第1の送風ファン107と熱交換器105の冷却側をつないだ後、前記の分割をした吸着剤104の吸着側を経て乾燥用空気の吹き出し口102につなぐ第1風洞113と、第2の送風ファン109の吹き出し口と加熱手段106と前記の分割をした吸着剤104の再生側と熱交換器105の循環パイプ側と第2送風ファン109の吸い込み口とをつなぎ水抜き穴114を有する第2風洞115とを具備している。
【0005】
以上のように構成された除湿装置の動作について説明すると、室内空気は第1の送風ファン107によって第1風洞113を通して室内空気の吸い込み口103から吸い込まれ、熱交換器105の冷却側を通り、熱交換器105の循環パイプ側を流れる高温高湿の循環空気を冷却し熱交換されて高温となる。さらに吸着剤104の吸着側に流れ、湿気を奪われると同時に蒸発潜熱が発生し、乾いた高温の空気となり乾燥用空気の吹き出し口102から吐出する。一方、第2送風ファン109によって循環する循環空気は第2送風ファン109の吹き出し口から加熱手段106に流れ、ここで高温に加熱され吸着剤104の再生側で吸着剤104の湿気を脱着させる。比較的高温高湿となった循環空気は熱交換器105の循環パイプ内に導かれ、ここで室内空気によって露点温度以下に冷却され、再び第2送風ファン109の吸い込み口に吸い込まれ循環する。露点温度以下に冷却された循環空気から回収した水は水抜き穴114から外部に放出される。
【0006】
また、吸着剤104の湿気吸着量には限界があるため、除湿運転は駆動手段111で吸着剤104の吸着側と再生側を連続的もしくは間欠的に切り替えることにより成される。
【0007】
【発明が解決しようとする課題】
このような従来の除湿装置では、循環空気を加熱するための加熱手段に相当量のエネルギーを与える必要があり、電気エネルギーを用いた場合には消費電力が高くなるという課題があり、消費電力、即ち加熱手段への投入エネルギーを低減することが要求されている。
【0008】
また、循環経路における空気の出入りや循環空気が吸着剤の周囲をショートカットしてしまうことにより除湿量が低下してしまうという課題があり、循環経路における空気の出入りを抑制し除湿効率を高めることが要求されている。
【0009】
また、本体内に吸着剤、熱交換器、加熱手段、複数の送風ファンおよびそれらを順序だてて連結するための風洞を形成する必要があるので、本体が大型化してしまうという課題があり、装置を小型化することが要求されている。
【0010】
また、熱交換器を樹脂にて成形した場合、熱交換器の熱交換能力が悪くなることにより除湿量が低下してしまうという課題があり、熱交換器の熱交換能力を高めることが要求されている。
【0011】
また、加熱手段が効率良く除湿剤を再生出来ないことにより除湿量が低下してしまうという課題があり、除湿剤を効率良く再生し除湿効率を高めることが要求されている。
【0012】
また、加熱手段の湿気搬送領域における循環空気の圧力損失が大きくなり循環空気風量が低下することにより除湿量が低下してしまうという課題があり、加熱手段の湿気搬送領域における循環空気の圧力損失を低下させ除湿量の低下を抑制することが要求されている。
【0013】
また、加熱手段の吸着材加熱領域が高温になりすぎ破損してしまうという課題があり、吸着材熱加熱領域を保護することが要求されている。
【0014】
本発明は、このような従来の課題を解決するものであり、消費電力を低減することができ、また、循環空気の出入りを抑制し除湿効率を高めることができ、また、本体サイズを小型化することができ、また、熱交換器の熱交換能力を高めることができ、また、除湿剤を効率良く再生し除湿効率を高めることができ、また、加熱手段の湿気搬送領域における循環空気の圧力損失を低下させ除湿量の低下を抑制することができ、また、吸着材熱加熱領域を保護することができる除湿装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明の除湿装置は上記目的を達成するために、熱交換器の循環空気通過風路において、前記循環空気通過風路の内部に付着した水滴の落下を促進させるように循環空気が該下方向に流れる循環空気の通過風速を速め、循環空気が該上方向に流れる循環空気の通過風速を相対的に落とすようにした構成としたものである。
【0016】
本発明によれば、熱交換性能の向上が図れる除湿装置が得られる。
【0019】
また、他の手段は吸着剤を収める円筒状のケースを備え、前記ケースと前記ケースに設けられたフレームと前記フレームに設けられたリブにより、前記吸着剤を保護、保持し、前記フレームを錆びの発生が無い鋼板としたことを特徴とする構成としたものである。
【0020】
そして本発明によれば、フレームを錆びの発生が無い鋼板とすることにより、フレームに錆びの発生が無い除湿装置が得られる。
【0021】
また、他の手段はフレームを、板厚0.4〜1.0mmの鋼板とした構成としたものである。
【0022】
そして本発明によれば、フレームが薄い板厚で高い強度の、除湿装置が得られる。
【0023】
また、他の手段はフレームを、ステンレス鋼板とした構成としたものである。
【0024】
そして本発明によれば、フレームが高い強度でフレームに錆びの発生が無い除湿装置が得られる。
【0033】
【発明の実施の形態】
本発明は、吸着側で室内空気中の湿気を吸着するとともに再生側では加熱され脱湿再生する吸着剤と、前記吸着剤の再生側で高温高湿となった循環空気と室内空気とを熱交換する熱交換器と、前記吸着剤の再生側を加熱する加熱手段と、室内空気を前記吸着剤の吸着側に供給するための第1の送風ファンと、循環空気を循環させるための第2の送風ファンとを備え、第1の送風ファンにより供給された室内空気を前記吸着剤の吸着側に通過させ乾燥空気とする経路と、第2の送風ファンによる循環空気を前記加熱手段および前記吸着剤の再生側を通過させ、高温高湿となった空気を前記熱交換器を通して循環させ室内空気と熱交換させる循環経路とを有し、前記吸着剤はその吸着側と再生側とを入れ替え、再生時に発生する水分を前記熱交換器によって室内空気により冷却して結露水として回収する除湿装置であって、熱交換器の循環空気通過風路において、前記循環空気通過風路の内部に付着した水滴の落下を促進させるように循環空気が該下方向に流れる循環空気の通過風速を速め、循環空気が該上方向に流れる循環空気の通過風速を相対的に落とすようにした構成としたものであり、内部に付着した水滴の落下を促進させることで熱交換性能の向上が図れることができるという作用を有する。
【0035】
た、吸着剤を収める円筒状のケースを備え、前記ケースと前記ケースに設けられたフレームと前記フレームに設けられたリブにより、前記吸着剤を保護、保持し、前記フレームを錆びの発生が無い鋼板としたものであり、フレームを錆びの発生が無い鋼板とすることにより、フレームに錆びの発生が無い除湿装置が得られる。また、他の手段は、フレームを、板厚0.4〜1.0mmの鋼板としたものであり、フレームが薄い板厚で高い強度の、除湿装置が得られる。また、他の手段は、フレームを、ステンレス鋼板としたものであり、フレームが高い強度でフレームに錆びの発生が無い除湿装置が得られる。
【0036】
以下、本発明の実施例について図面を参照しながら説明する。
【0037】
【実施例】
本実施例において、特に断りがない限り前出の記号と同じ部分には同一の記号を付記して説明は省略し、異なる部分のみ説明する。
【0038】
(実施例1)
図1は本発明の第1の実施例における吸着剤104の概略図である。吸着剤104はシリカゲル、ゼオライト、塩化リチウム等の吸着材料をセラミック繊維、ガラス繊維等の無機繊維、もしくはそれら無機繊維とパルプとを混合して抄造した平面紙1とコルゲート加工を施した波型紙2とを積層して巻き上げて円盤状に形成し、図中の矢印の方向に多数の小透孔を有していて通風が可能な形状となっている。吸着剤104が比較的湿分を多く含むときに相対的に湿度の低い空気、例えば加熱された空気が通過すると通過空気中に湿分を放出し、吸着剤が比較的乾燥しているときに相対的に湿度の高い空気、例えば室内空気が通過すると通過空気中の湿分を吸着する性質を持っている。
【0039】
図2は本発明の第1の実施例における除湿装置の原理説明図である。第1の送風ファン107により本体101に吸いこまれた室内空気は熱交換器105を循環空気と熱交換しながら通過し、吸着剤104の吸着側となる吸着領域4を通る。この時、吸着剤104は室内空気に含まれる水分を吸着しそれと同時に吸着熱を室内空気に与える。室内空気は水分を減少され、温度も上昇されるので相対湿度の低い状態となって室内に送風される。一方、第2の送風ファン109により循環する循環空気は加熱手段106で加熱され高温となって除湿剤104の再生側となる再生領域3を通り熱交換器105に流れ込む。その際、吸着剤104が吸着領域4にて吸着した水分を再生領域3にて放出するため、循環空気は高温高湿状態となる。循環空気は熱交換器105にて室内空気と熱交換されることによりその露点温度以下に冷却され、含まれている水分を凝縮する。凝縮した水分は凝縮水として取り出される。冷却され水分を凝縮した循環空気は吸着剤104の吸着側の一部である熱回収領域5を通過するが、この際、吸着剤104は再生領域3で加熱されている間に吸着剤104自身に蓄熱しているので、熱回収領域5では循環空気に熱を与える。熱を与えられた循環空気は第2の送風ファン109により再び加熱手段106へと送風されることになる。
【0040】
上記構成により熱交換器105を通過した後の循環空気が吸着剤104の熱回収領域5を通過する際に吸着剤104に蓄えられた熱を奪うことにより温度が上昇し、その後加熱手段106を通過するので、温度上昇分に相当する加熱手段106への投入エネルギー、即ち消費電力を低減できることになる。
【0041】
図3は吸着剤104の保護と回転を可能にさせるためのロータ組6の概略組立図である。吸着剤104は円筒状のケース7に収まり、ケース7の片端面に設けたストッパー8により吸着剤104の脱落が抑えられる。ケース7の逆端側には外周に沿ってフレーム9が嵌り込み、複数箇所を螺子止めすることでケース7に固定される。フレーム9の中心部にはボス受け部10が配され、ボス受け部10より放射状にリブ11が架橋しており、フレーム9の逆側から吸着剤104の中心軸孔に嵌るボス12をボス受け部10において螺子止めにより固定することでケース7とボス12の相対位置が規定され吸着剤104の保護および保持が成される。ケース7の外周にはロータ組6を回転可能にするためのギア13をケース7、ストッパー8との一体成型により容易に形成し、また、フレーム9は錆の発生が無く、且つ薄い板厚で高い強度が要求されるので板厚0.4〜1.0mm、好ましくは0.6mmのステンレス鋼鈑をプレス、曲げ加工により製作している。
【0042】
図4はロータ組6を収納、保持するとともに本体101に吸い込まれ吸着剤104の吸着領域4を通過する空気を吸着剤104の前後で仕切るための仕切り板14の概略図である。仕切り板14は樹脂成型品であり吸着剤104への通風を可能とする円筒状の通風開口15と、通風開口15の中心に位置しロータ組6のボス12に嵌りこんでロータ組6が回転する際の軸となる回転軸16と、回転軸16から外輪17へ架橋して仕切り板14の反りを防止するリブ18a、18b、18c、18dを有している。リブ18aとリブ18dは鉛直方向に配され、リブ18aは本体上面方向に向け架橋し、リブ18dは本体下面方向に向け架橋する。また、リブ18bはリブ18aより角度Aだけ傾斜して配し、リブ18cはリブ18bとは逆回転方向に角度B傾斜させている。角度Aは吸着剤104のうちの再生領域3の再生領域3の割合を決定する数値であり、好ましくは30°〜90°より好ましくは45°〜60°である。また、角度Bは吸着剤104のうちの熱回収領域5の割合を決定する数値であり、好ましくは10°〜60°より好ましくは15°〜45°である。また、リブ18aとリブ18bの間の扇形状部分をロータ組6の挿入側と反対方向に突出させて、吸着剤104の再生側を通過した循環空気が流入する第1のチャンバー19を形成し、この第1のチャンバー19に熱交換器105への循環空気の流入口となる円筒状の第1の接続パイプ20を設けるとともに、リブ18aとリブ18cの間の扇形状部分も同様にロータ組6の挿入側反対面に突き出し、熱交換器105で冷却された循環空気を流入させる第2のチャンバー21を形成し、この第2のチャンバー21に円筒状の第2の接続パイプ22を設けている。上記構成の仕切り板14にロータ組6をフレーム9側が仕切り板14に向くように収納し、仕切り板14に取りつけられた駆動手段としての駆動モータ111の歯車23にロータ組6のギア13を噛合せ駆動モータ111を作動させることでロータ組6の回転駆動が成されることになる。
【0043】
図5は仕切り板14にロータ組6を収納した際の互いの位置関係を模式的に示した断面図である。外輪17とリブ18a、18b、18cはロータ組6のフレーム9と僅かな隙間Cを保って位置しておりロータ組6のスムーズな回転駆動を補うとともに、外輪17、リブ18a、18b、18cがロータ組6に面する方向に各々所定幅DおよびEを保有した構造となっている。
【0044】
上記構造により、第1のチャンバー19、第2のチャンバー21、その他の通風開口15に圧力差が生じていても隙間Cを通る相互の流通量を極めて小さく抑えることができる。すなわち第1のチャンバーに流入する吸着剤104の再生側を通過した高温高湿状態の循環空気と第2のチャンバーに流入する熱交換器105で冷却された後の低温状態の循環空気とのショートサーキットが抑制されるので熱交換器105において効率良く結露水を回収でき除湿効率を高めることができる。以上の効果を発揮する具体的数値は、外輪17、リブ18b、18c、18dとフレーム9との僅かな隙間Cが0.6mm以下が望ましく、より好ましくは0.3mm以下であり、外輪17のロータ組6に面する所定幅Dが0.5mm以上でより好ましくは2.0mm以上であり、リブ14b、14c、14dのロータ組6に面する所定幅Eが5.0mm以上でより好ましくは10.0mm以上である。また、仮に仕切り板14に反りが生じたとしてもリブ14a、14b、14c、14dはフレーム9に当って直接吸着剤104に接触することはないので吸着剤104が削れて粉が出ることはない。
【0045】
図6は仕切り板14の第1のチャンバー19と第2のチャンバー21との逆面側に取り付けられ、ロータ組6を保持する導入部および還流部としての保持板24の概略図である。保持板24は逆面にあるリブ18bからリブ18cまでを投影した範囲を蔽う扇形状を成し、頂点部分を回転軸16に螺子止めするとともに外周部の数カ所を仕切り板14に螺子止めすることで仕切り板14に取り付けられ、ロータ枠の抜けの防止と保持を果している。保持板24には第1のチャンバー19をロータ組6上に投影した面積Fに相当し、加熱手段106を通過した循環空気を吸着剤104に流入させる導入部としての第1の開口部25と、同じく第2のチャンバー21の投影面積Gに相当し、吸着剤104の吸着側の一部を通った循環空気を還流させるための還流部としての第2の開口部26を設けており、第1の開口部25と第2の開口部26の間隙と第1の開口部25の外側と第2の開口部26の外側にはロータ組6に向けて凸形状を成す絞り部27a、27b、27cを絞り加工により形成している。絞り部27a、27b、27cの中心線は、ロータ組6を挟んだ背面側のリブ18a、18b、18cの中心線と各々ロータ組6の通風方向から見て重なっており、絞り部27aの中心線と絞り部27bの中心線のなす角度Aは、リブ18aとリブ18bのなす角度Aに等しく、絞り部27aと絞り部27cのなす角度Bは、リブ18aとリブ18cのなす角度Bに等しい。
【0046】
図7は仕切り板14にロータ組6を収納し保持板24を取りつけた際の互いの位置関係を模式的に示した断面図である。保持板24はロータ組6のストッパー8およびボス12との間に僅かな隙間Hを保つとともに絞り部27a、27b、27cが吸着剤104と僅かな隙間Iを保って位置しておりロータ組6のスムーズな回転駆動を促している。また、ストッパー8およびボス12を保持板24と面する方向に各々所定幅JおよびKを保有させるとともに絞り部27a、27b、27cが吸着剤104と面する方向に所定幅Lを確保した構造となっている。
【0047】
上記構造により、第1の開口部25を流通する空気と第2の開口部26を流通する空気およびそれ以外の吸着剤104の開口部分を流通する空気が互いに圧力差を生じていてもロータ組6と保持板24の摺動面における相互の流通量を極めて小さく抑えている。すなわち第1の開口部25に流入する加熱手段106を通過した循環空気と第2の開口部26に流入する吸着剤104の吸着側の一部を還流してきた循環空気とのショートサーキットが抑制されるので加熱手段106に投入するエネルギーが効率良く吸着剤104の再生に使用することができ除湿小売を高めることができる。
【0048】
また導入部としての第1の開口部25と還流部としての第2の開口部26を一体にて製作するので、導入部と吸着剤の隙間および還流部と吸着剤の隙間を精度良く形成することができるとともに、部品点数をおさえ、コストを削減できる。以上の効果を発揮する具体的数値は、ストッパー8と保持板24の僅かな隙間Hおよび絞り部27a、27b、27cと吸着剤104の僅かな隙間Iが0.6mm以下でより好ましくは0.3mm以下であり、ストッパー8の保持板24に面する所定幅Jが1.5mm以上でより好ましくは5.0mm以上である。また、ボス12の保持板24に面する所定幅、即ちボス12の外径Kは30.0mm以上でより好ましくは60.0mm以上であり、絞り部27a、27b、27cが各々吸着剤104に面する所定幅Lは5.0mm以上でより好ましくは10.0mm以上である。また、保持板24は絞り部27a、27b、27cの寸法精度が要求されるとともに反りを生じない強度が必要であり、更に防錆性、耐熱性も要求されるので、材料としてステンレス鋼鈑を用いて穴あけ絞り加工での製作が望ましく、その板厚は0.5mm以上が望ましい。
【0049】
図8は保持板24に取り付けられるヒータ28を内蔵した再生チャンバー29からなる加熱手段106と、再生チャンバー29に送風する第2の送風ファン109と、第2の送風ファン109の吸い込み口と保持板24の第2の開口部26とを接続し保持板24に取り付けられる接続ダクト30の概略構成を示した図であり、図9は加熱手段106と第2の送風ファン109を保持板24に取付ける取付け状態を示した概略図である。図10は仕切り板14にロータ組6、保持板24、加熱手段106、第2の送風ファン109および接続ダクト30を取付けた状態での図8におけるM−M断面を示した概略断面図である。再生チャンバー29はヒータ28を内在固定し、保持板24の第1の開口部25に面する部分に再生用空気吹き出し口31を開口させている。また、絞り部27a側の側面には再生用空気吸い込み口32を開口させ、この再生用空気吸い込み口32に第2の送風ファンの吹き出し口33が嵌りこむ。また、再生チャンバー29内のヒータ28の背面には反射板37を設置し、ヒータ28から放射された輻射熱を反射し、ロータ組6の方向に向けることによりヒータの熱の有効利用を図っている。反射板37はヒータ28を再生チャンバー29に固定するヒータフレーム38と固定、もしくは一体成形されている。なお、反射板37は表面の反射率の高い金属、好ましくはアルミニウムの薄板にて形成されている。また加熱手段106を吸着剤加熱領域39と湿気搬送領域40とに分割する分割板42を板金、マイカ板、ベークライト板などの熱に強い部材を用いて形成しヒータフレームに固定、もしくは一体成形にて設置する。上記構成により再生用空気吸い込み口32から流入した循環空気はそのほとんどが湿気搬送領域40に流れ込み吸着剤104を通過する循環空気の通過風速は速くなる。なおヒータフレーム38に加熱手段106を吸着剤加熱領域39と湿気搬送領域40とに分割する役目を持たせても効果作用に差異はない。再生用空気吹き出し口31の湿気搬送領域40を投影した部分には整流格子としてのパンチング部材41をヒータフレーム38と固定して設置、もしくは一体成形して設置、もしくは保持板24と一体成形して設置してあり、吸着剤104の再生領域3に向かう循環空気を整流している。第2の送風ファンの吸い込み口34は保持板24に面する方向に開口しており、その第2の送風ファンの吸い込み口34と保持板24の間に接続ダクト30を介在している。接続ダクト30の第2の送風ファン109に接する面には第2の送風ファンの吸い込み口34に相当する第3の開口部35を開け、保持板24に面する方向には第2の開口部26に相当する第4の開口部36を開設しているので第2の開口部26から流出した空気は第2の送風ファンの吸い込み口34へスムーズに導かれる。実際の組立工程は、第2の送風ファン109と接続ダクト30を螺子止めにより固定し第2の送風ファンの吸い込み口34と接続ダクト30の第3の開口部35を合わせ込んで隙間の無い独立風路とした後、第2の送風ファンの吹き出し口33を再生チャンバー29の再生用空気吸い込み口32に嵌め込み隙間の無い独立風路とし、その後再生チャンバー29および接続ダクト30を保持板24あるいは仕切り板14もしくはその双方に螺子止めにより固定する。その際、再生用空気吹き出し口31と保持板24の第1の開口部25を合わせ込んで隙間の無い独立風路とするとともに接続ダクト30の第4の開口部36と保持板24の第2の開口部26を合わせ込んで隙間の無い独立風路とすることで、第2の開口部26より接続ダクト30を介して第2の送風ファン109で吸い込み、再生チャンバー29に吹き出して第1の開口部25を通す独立風路が完成する。なお、第2の送風ファン109と接続ダクト30は一体成形し、1つの構成部品としても良く、その作用効果に差異は生じない。ロータ組6は図10における矢印の方向に回転しており、吸着領域4にて吸着剤104が室内空気の水分を吸着した後、再生領域3に回転してくる。再生領域3では、まず、加熱手段106の吸着剤加熱領域39と面する位置において吸着剤104はヒータ28の熱および輻射熱により加熱される。この時吸着剤104に吸着していた水分は吸着剤104表面より離脱する。次に、湿気搬送領域40において、吸着剤加熱領域39から回転してきた吸着剤104にパンチング部材41により整流された循環空気が通過することにより、吸着剤加熱領域39で吸着剤104から離脱した水分を仕切り板14の第1のチャンバー19の方向に搬送する。
【0050】
上記構成のように、加熱手段106を吸着剤加熱領域39と湿気搬送領域40とに分割し、吸着剤加熱領域39では流れ込む循環空気を抑制しヒータ28の温度および輻射熱を上昇させることにより吸着剤104からの水分の離脱を促進させ、湿気搬送領域40では吸着剤104を通過する循環空気の通過風速を高めることにより、吸着剤104から離脱した水分を一気に搬送することにより吸着剤104の再生効率を向上することができる。
【0051】
また図10に示すように、前述の仕切り板14の第1の接続パイプ20は吸着剤104を介して加熱手段104の湿気搬送領域40内に対向して配されており、湿気搬送領域40から吸着剤104を通りストレートに第1の接続パイプに流れ込む構造となる。
【0052】
上記構成により循環空気風路内の圧力損失を増大することなく循環空気を送風でき、吸着剤104から離脱した水分をスムーズに搬送することができると共に、吸着剤加熱領域39を通る循環風路は圧力損失が増大するので吸着剤加熱領域39に余分な循環空気が流入するのを防止でき、前述の加熱手段106を吸着剤加熱領域39と湿気搬送領域40とに分割した効果を一層高めることができる。
【0053】
また図10に示すように、分割板42にはヒータ28保護用の空気流通口43が1つもしくは複数設けた構成となっている。
【0054】
上記構成により、湿気搬送領域40に流れる循環空気の一部を吸着剤加熱領域39に流れるようにできるので加熱手段106が異常高温になり破損するのを防止でき、加熱手段106を保護することができる。
【0055】
また図10に示すように、湿気搬送領域40にて水分を脱着した吸着剤104は加熱手段106により与えられた熱の一部を蓄熱した状態にあり、この状態では水分を吸着することはできない。上記状態の吸着剤104が熱回収領域5に回転してくる。熱回収領域5では、熱交換器105にて室内空気と熱交換し低温となった循環空気が吸着剤104を通過する。この時、循環空気は吸着剤104が蓄えた熱を与えられ高温となる。一方循環空気内の水分は、吸着剤104が水分を吸着できない状態にあるのでそのまま通過する。熱回収領域5を通過した循環空気は第2の送風ファン109により加熱手段106に送風される。よって加熱手段106に流入する循環空気の温度を上昇することができるので、温度上昇分に相当する加熱手段106への投入エネルギー、即ち消費電力を低減できる。本構成の除湿装置においては、従来の除湿装置の75〜80%の投入熱量で従来同等の除湿量を得ることが出来た。
【0056】
また、ヒータ28に輻射利用ヒータ、たとえばハロゲンヒータを用いれば、輻射熱をより有効に利用して吸着剤を効率良く再生し、更に除湿効率を高めることができる。
【0057】
図11は吸着剤104の再生領域3で高温高湿となった循環空気と室内空気とを熱交換する熱交換器105の概略構成図である。第1、第2、第3の熱交換器44、45,46は樹脂材料(好ましくはポリプロピレン)をブロー成形(もしくはツインシート真空成形)により成形したものであり、略鉛直方向に循環空気が流れる循環空気通過風路47を形成し、略水平方向に室内空気が流れる室内空気通過風路48を形成している。第1の熱交換器44の片方の端面には循環空気通過風路47に通じる熱交換器入口ダクト49が配され、他方の端面には第1の熱交接続ダクト50aが熱交換器入口ダクト49より鉛直上方向に配され、第2の熱交接続ダクト50bが可能な限り鉛直下方向に配されている。また、第2の熱交換器45の第1の熱交換器と面する端面には第3の熱交接続ダクト50cが第1の熱交接続ダクト50aと対向する位置に配され、第4の熱交接続ダクト50dが第2の熱交接続ダクトと対向する位置に配されており、他方の端面には第5の熱交接続ダクト50eが第4の熱交接続ダクト50dと対向するように配されている。また、第3の熱交換器46の第2の熱交換器45と対向する端面には熱交換器出口ダクト51が熱交換器入口ダクト49と鉛直上下方向において近接された高さに配され、第6の熱交接続ダクト50fが第5の熱交接続ダクト50eと対向する位置に配されている。さらにすべての熱交換器には鉛直方向の最下部に凝縮水取り出し口52が形成されている。第1の熱交接続ダクト50aと第3の熱交接続ダクト50cが接続され、第2の熱交接続ダクト50bが第4の熱交接続ダクト50dと接続されることにより、第1の熱交換器44と第2の熱交換器45は結合され、さらに第5の熱交接続ダクト50eが第6の熱交接続ダクト50fと接続されることにより、これら第1、第2、第3の熱交換器44、45、46は結合される。さらにこれら第1、第2、第3の熱交換器44、45、46は四隅、もしくは対角状に二隅、を螺子止めすることにより、より確実に固定される。循環空気は熱交換器入口ダクト49から第1の熱交換器44に流入し、その一部は第1の熱交換器44の循環空気通過風路47を室内空気通過風路48を流れる室内空気と熱交換しながら下方向に流れ、第2の接続ダクト50bから第2の熱交換器45へ流入する。その他の循環空気は第1の接続ダクト50aおよび第3の接続ダクト50cを通り第2の熱交換器45に流入し、第2の熱交換器45の循環空気通過風路47を、室内空気通過風路48を流れる室内空気と熱交換しながら下方向に流れる。第5の接続ダクト50eにて第1の熱交換器44および第2の熱交換器45を流れてきた循環空気は合流し、第3の熱交換器46に流入する。さらに循環空気は第3の熱交換器の循環空気通過風路47を、室内空気通過風路48を流れる室内空気と熱交換しながら上方向に流れ、熱交換器出口ダクト51から流出する。この熱交換の仮定において循環空気は室内空気により冷却され循環空気中の水分が凝縮し循環空気通過風路47内に水滴となり付着する。付着した水滴は循環空気通過風路47内を伝って流下し、凝縮水取出し口41から取り出される。また、仕切り板14から熱交換器出口ダクト51に伸びる第2の接続パイプ22を、第1の熱交換器44および第2の熱交換器45と干渉しないようにするため、第1の熱交換器44および第2の熱交換器45には切り欠き53が設けてある。
【0058】
上記構成とすることにより、熱交換器入口ダクト49と熱交換器出口ダクト51の位置が略上下方向に近接した風路を構成することができ、コンパクトでしかも熱交換器105の伝熱面積を損なうことなく、熱交換効率のよい熱交換器105とすることができる。また、第1の熱交換器44および第2の熱交換器45の循環空気通過風路47では循環空気が該下方向に流れるので循環空気の通過風速を速め内部に付着した水滴の落下を促進させることで熱交換性能の向上が図れ、第3の熱交換器46の循環空気通過風路47では循環空気が該上方向に流れるので通過風速を緩めたほうが好ましい。本実施例では第1、第2、第3の熱交換器の各々の幅N、O、Pを変化させることにより、前述した通過風速のコントロールを実現している。即ち、循環空気が該下方向に流れる第1、第2の熱交換器の幅N、Oは15mm、循環空気が該上方向に流れる第3の熱交換器の幅PはN、Oよりも大きい20mmとし第1、第2の熱交換器44、45では循環空気の通過風速を速め、第3の熱交換器46では相対的に通過風速を落としている。なお、熱交換器105は樹脂材料以外の熱伝導特性が良く耐食性のある材料を用いて成形されていても良く、その効果作用に大きな差異は生じない。また、熱交換器において循環空気の進行方向を室内空気との熱交換途上で反転させ、循環空気の前記熱交換器への流入口と前記熱交換器からの流出口を略上下方向において接近させるように循環経路を配した構成としたものであり、熱交換途上において循環空気の進行方向を反転させることで循環空気の熱交換器導入路および導出路が接近するため熱交換器と吸着剤とを接続する風洞を短い距離で且つ直線的に構成することができるとともに熱交換器における循環空気の通過距離を長くとることで熱交換効率を高め熱交換器の小型化が図れるので本体サイズを小型化できるという作用を有し、熱交換器を循環空気の進行方向を室内空気との熱交換途上で反転させ、循環空気の前記熱交換器への流入口と前記熱交換器からの流出口を略上下方向において接近させるように循環経路を配した構成としたものであるから、熱交換器と吸着剤とを接続する風洞を短い距離で且つ直線的に配して循環空気の通過距離を確保できるので、熱交換効率を高めて熱交換器を小型化しコンパクトな本体サイズにできる効果のある除湿装置を提供できる。
【0059】
また、樹脂材料に熱伝達促進物質、例えばアルミ顔料や麦飯石を含有させることにより熱交換器105の熱交換効率を更に向上させることができる。
【0060】
図12に一般樹脂材料であるポリプロピレンで成形した熱交換器、ポリプロピレンにアルミ顔料を含有し成形した熱交換器、ポリプロピレンに麦飯石を含有し成形した熱交換器の各々を用いた場合の熱交換効率の実験データを示しており、ポリプロピレン単一材料に比し、アルミ顔料および麦飯石を含有させた場合は除湿性能が向上しており、特に麦飯石を含有させたものは最も性能が向上した結果となっており、更に小型化が図れることになる。また、図13にはポリプロピレンに含有する麦飯石の含有率を変更した場合の熱交換器の熱交換効率の実験データを示している。実験結果から麦飯石の含有率は1.2%程度が良好な値を示した。
【0061】
図14はロータ組6を収納、保持した仕切り板14に接続する第1、第2、第3の熱交換器44、45、46と凝縮水受け54の概略構成を示した図である。仕切り板14の第1のチャンバー19から伸びた第1の接続パイプ20に第1の熱交換器44の熱交換器入口ダクト49が嵌り込むように接続され、第2のチャンバー21から伸びた第2の接続パイプ22は第1および第2の熱交換器44、45の切り欠き53に嵌り込むように設置され、第3の熱交換器46の熱交換器出口ダクト51に接続される。さらにこれら第1、第2、第3の熱交換器44、45、46は四隅を仕切り板14に螺子止めすることにより仕切り板14に固定される。また、凝縮水受け54は第1、第2、第3の熱交換器44、45、46の凝縮水取り出し口52を嵌め込んだ後、仕切り板14に螺子止めされる。上記構成により仕切り板14の第1のチャンバー19から第1、第2、第3の熱交換器44、45、46を通り、第2のチャンバー21に至るまでの循環経路を形成することができる。
【0062】
図15は仕切り板14に取付けられる第1の送風ファン107とリアパネル55とフロントパネル56と凝縮水タンク57の概略構成を示した図である。第1の送付ファン107を回転自在に取付けた図示しないモータ107はオリフィス板58に螺子止めされ、オリフィス板58は仕切り板14に螺子止めされる。さらに第1の送風ファン107のファンケーシング59および処理空気吹き出し口60を一体成形したリアパネル55を第1の送風ファン107の側から取付ける。さらに第3の熱交換器46の側からフロントパネル56を嵌め込み螺子止めする。上記構成により第1、第2、第3の熱交換器44、45、46の室内空気通過風路48を通り、吸着剤104を通る室内空気風路を形成する。また凝縮水タンク57はフロントパネル56の前面から引き出し可能に嵌め込まれ、凝縮水受け54から排出される凝縮水を受け止める構造となっている。なお第1の送風ファン107およびリアパネル55およびフロントパネル56および凝縮水タンク57は樹脂材料にて成形されている。
【0063】
以上の構成により、消費電力の低減が図れるとともに低コストでコンパクトな除湿装置を提供することができる。
【0064】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、熱交換器の循環空気通過風路において、前記循環空気通過風路の内部に付着した水滴の落下を促進させるように循環空気が該下方向に流れる循環空気の通過風速を速め、循環空気が該上方向に流れる循環空気の通過風速を相対的に落とすようにした構成としたものであり、内部に付着した水滴の落下を促進させることで熱交換性能の向上が図れることができるという効果のある除湿装置を提供できる。
【0072】
た、フレームを錆びの発生が無い鋼板とすることにより、フレームに錆びの発生が無い除湿装置を提供できる。また、フレームを、板厚0.4〜1.0mmの鋼板とすることにより、フレームが薄い板厚で高い強度の、除湿装置を提供できる。また、フレームを、ステンレス鋼板とすることにより、フレームが高い強度でフレームに錆びの発生が無い除湿装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例における吸着剤の概略図
【図2】同除湿装置の原理説明図
【図3】同除湿装置のロータ組の概略組立図
【図4】同除湿装置のロータ組・仕切り板の概略組立図
【図5】同除湿装置の仕切り板にロータ組を収納した際の互いの位置関係を模式的に示した断面図
【図6】同除湿装置の仕切り板・ロータ組・保持板の概略組立図
【図7】同除湿装置の仕切り板にロータ組を収納し保持板を取りつけた際の互いの位置関係を模式的に示した断面図
【図8】同除湿装置の仕切り板・ロータ組・保持板・加熱手段・第2の送風ファンの概略組立図
【図9】同除湿装置の加熱手段と第2の送風ファンを保持板に取付ける取付け状態を示した概略図
【図10】同除湿装置の仕切り板にロータ組、保持板、加熱手段、第2の送風ファンおよび接続ダクトを取付けた状態での図8におけるM−M断面を示した概略断面図
【図11】同除湿装置の熱交換器の概略図
【図12】同熱交換器の熱交換効率を示したグラフ
【図13】同熱交換器の含有率を変化させた場合の同熱交換器の熱交換効率を示したグラフ
【図14】同除湿装置の仕切り板と熱交換器の概略組立図
【図15】同除湿装置の概略構成図
【図16】従来の除湿装置の構成を説明する説明図
【符号の説明】
3 再生領域
4 吸着領域
5 熱回収領域
24 保持板
25 第1の開口部
26 第2の開口部
27a、27b、27c 絞り部
28 ヒータ
29 再生チャンバー
39 吸着材加熱領域
40 湿気搬送領域
42 分割板
43 空気流通口
44 第1の熱交換器
45 第2の熱交換器
46 第3の熱交換器
47 循環空気通過風路
48 室内空気通過風路
49 熱交換器入口ダクト
51 熱交換器出口ダクト
104 吸着剤
105 熱交換器
106 加熱手段
107 第1の送風ファン
109 第2の送風ファン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying apparatus using an adsorbent mainly used for dehumidifying indoors and drying clothes in general households.
[0002]
[Prior art]
Conventionally, this type of dehumidifying apparatus is known from Japanese Unexamined Patent Publication No. 2000-126498.
[0003]
Hereinafter, the dehumidifier will be described with reference to FIG.
[0004]
As shown in the figure, the main body 101 of the dehumidifying device is provided with a drying air blow-out port 102 and a room air suction port 103. The main body 101 adsorbs moisture in the air at room temperature and adsorbs at a high temperature. The adsorbent 104, the heat exchanger 105, the heating means 106, the first blowing fan 107, the motor 108 for driving the first blowing fan, the second blowing fan 109, and the second blowing fan are dehumidified. A motor 110 for driving and a driving means 111 for rotating the adsorbent 104 are provided. Further, heat exchange is performed between the partition wall 112 that divides the adsorbent 104 into the adsorption side with the cooling fins of the heat exchanger 105 and the regeneration side with the heating means 106, the indoor air suction port 103, and the first blower fan 107. After connecting the cooling side of the vessel 105, the first wind tunnel 113 connected to the drying air blowing port 102 through the adsorption side of the divided adsorbent 104, the blowing port of the second blower fan 109 and the heating means 106, a second wind tunnel 115 having a drain hole 114 for connecting the regeneration side of the divided adsorbent 104, the circulation pipe side of the heat exchanger 105, and the suction port of the second blower fan 109. .
[0005]
The operation of the dehumidifier configured as described above will be described. Indoor air is sucked from the indoor air suction port 103 through the first wind tunnel 113 by the first blower fan 107, passes through the cooling side of the heat exchanger 105, The high-temperature and high-humidity circulating air that flows on the circulation pipe side of the heat exchanger 105 is cooled and heat-exchanged to become high temperature. Furthermore, it flows to the adsorption side of the adsorbent 104, and moisture is taken away, and at the same time, latent heat of vaporization is generated, which becomes dry high-temperature air and is discharged from the blowing air outlet 102 for drying air. On the other hand, the circulating air circulated by the second blower fan 109 flows from the outlet of the second blower fan 109 to the heating means 106, where it is heated to a high temperature and desorbs the moisture of the adsorbent 104 on the regeneration side of the adsorbent 104. The circulating air having a relatively high temperature and high humidity is guided into the circulation pipe of the heat exchanger 105, where it is cooled to the dew point temperature or less by the room air, and is again sucked into the suction port of the second blower fan 109 and circulated. The water recovered from the circulating air cooled below the dew point temperature is discharged to the outside from the drain hole 114.
[0006]
In addition, since the moisture adsorption amount of the adsorbent 104 is limited, the dehumidifying operation is performed by switching the adsorption side and the regeneration side of the adsorbent 104 continuously or intermittently by the driving unit 111.
[0007]
[Problems to be solved by the invention]
In such a conventional dehumidifier, it is necessary to give a considerable amount of energy to the heating means for heating the circulating air, and there is a problem that the power consumption becomes high when electric energy is used. That is, it is required to reduce the input energy to the heating means.
[0008]
In addition, there is a problem that the amount of dehumidification decreases due to the air entering and exiting the circulation path and the circulation air short-circuiting around the adsorbent, thereby suppressing the air entering and exiting the circulation path and increasing the dehumidification efficiency. It is requested.
[0009]
Moreover, since it is necessary to form an adsorbent, a heat exchanger, a heating means, a plurality of blower fans and a wind tunnel for connecting them in order in the main body, there is a problem that the main body is enlarged, There is a demand for downsizing the apparatus.
[0010]
In addition, when the heat exchanger is molded of resin, there is a problem that the dehumidification amount decreases due to the deterioration of the heat exchange capacity of the heat exchanger, and it is required to increase the heat exchange capacity of the heat exchanger. ing.
[0011]
In addition, there is a problem that the amount of dehumidification decreases because the heating means cannot efficiently regenerate the dehumidifying agent, and it is required to efficiently regenerate the dehumidifying agent and increase the dehumidifying efficiency.
[0012]
In addition, there is a problem that the pressure loss of the circulating air in the humidity transport region of the heating means increases and the dehumidification amount decreases due to the decrease of the circulating air flow rate. It is required to reduce the dehumidification amount by reducing the amount.
[0013]
Further, there is a problem that the adsorbent heating area of the heating means becomes too hot and is damaged, and it is required to protect the adsorbent heat heating area.
[0014]
The present invention solves such a conventional problem, can reduce power consumption, can suppress the ingress and egress of circulating air, increase the dehumidification efficiency, and reduce the body size. The heat exchange capacity of the heat exchanger can be increased, the dehumidifying agent can be efficiently regenerated and the dehumidification efficiency can be improved, and the pressure of the circulating air in the humidity transport area of the heating means An object of the present invention is to provide a dehumidifying device that can reduce loss and suppress a decrease in dehumidification amount, and can protect an adsorbent heat heating region.
[0015]
[Means for Solving the Problems]
  In order to achieve the above object, the dehumidifier of the present invention provides a heat exchanger.In the circulating air passage air passage, the circulating air flows in the downward direction so as to accelerate the fall of water droplets adhering to the inside of the circulating air passage air passage. To relatively reduce the passing wind speed of the circulating air flowingThe configuration is as follows.
[0016]
  According to the present invention,Improve heat exchange performanceA dehumidifying device is obtained.
[0019]
  The other means includes a cylindrical case for containing the adsorbent, and the adsorbent is protected and held by the case, the frame provided in the case, and the rib provided in the frame, and the frame is rusted. It is set as the structure characterized by setting it as the steel plate which does not generate | occur | produce.
[0020]
  And according to the invention,By making the frame a steel plate that does not rust, the frame does not rust.A dehumidifying device is obtained.
[0021]
  Other means areThe frame was a steel plate having a thickness of 0.4 to 1.0 mm.It is a configuration.
[0022]
  And according to the invention,The frame is thin and has high strength.A dehumidifying device is obtained.
[0023]
  Other means areFrame with stainless steel plateThe configuration is as follows.
[0024]
  And according to the invention,The frame is strong and does not rust on the frameA dehumidifying device is obtained.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention heats adsorbent that adsorbs moisture in room air on the adsorption side and is heated and dehumidified and regenerated on the regeneration side, and circulating air and room air that have become hot and humid on the regeneration side of the adsorbent. A heat exchanger for exchanging; heating means for heating the regeneration side of the adsorbent; a first blower fan for supplying room air to the adsorbent side of the adsorbent; and a second for circulating the circulating air And a path through which indoor air supplied by the first blower fan passes to the adsorption side of the adsorbent to make dry air, and circulating air by the second blower fan is used for the heating means and the adsorption. Passing through the regeneration side of the agent, and having a circulation path for circulating the air that has become high temperature and high humidity through the heat exchanger and exchanging heat with the indoor air, the adsorbent exchanges the adsorption side and the regeneration side, Moisture generated during regeneration exchanges heat A dehumidifying device for collecting the condensed water is cooled by the indoor air by,In the circulating air passage air passage of the heat exchanger, the circulating air flow speed of the circulating air flowing downward is increased so as to promote the fall of water droplets adhering to the inside of the circulating air passage air passage, To relatively reduce the passing wind speed of circulating air flowing upwardWith the configurationThe heat exchange performance can be improved by facilitating the drop of water droplets adhering to the inside.Has the effect of being able to.
[0035]
MaIn addition, a cylindrical case for containing the adsorbent is provided, and the adsorbent is protected and held by the case, a frame provided in the case, and a rib provided in the frame, and the frame does not rust. By using a steel plate and the frame is a steel plate that does not generate rust, a dehumidifying device that does not generate rust on the frame can be obtained. Another means is that the frame is a steel plate having a plate thickness of 0.4 to 1.0 mm, and a dehumidifying device having a thin frame and high strength is obtained. Another means is that the frame is made of a stainless steel plate, and a dehumidifying device is obtained in which the frame has high strength and the frame does not rust.
[0036]
Embodiments of the present invention will be described below with reference to the drawings.
[0037]
【Example】
In the present embodiment, unless otherwise noted, the same parts as those described above are denoted by the same reference numerals, description thereof is omitted, and only different parts will be described.
[0038]
Example 1
FIG. 1 is a schematic view of the adsorbent 104 in the first embodiment of the present invention. The adsorbent 104 is a flat paper 1 made by mixing an adsorbent material such as silica gel, zeolite, lithium chloride or the like with inorganic fibers such as ceramic fibers or glass fibers, or a mixture of these inorganic fibers and pulp, and corrugated paper 2 with corrugated processing. Are stacked and rolled up to form a disk shape, and have a number of small through holes in the direction of the arrows in the figure, so that ventilation is possible. When the adsorbent 104 contains a relatively high amount of moisture, when relatively low humidity air, for example, heated air, passes the moisture into the passing air and the adsorbent is relatively dry It has the property of adsorbing moisture in the passing air when relatively humid air, for example, indoor air, passes through.
[0039]
FIG. 2 is a diagram illustrating the principle of the dehumidifying device according to the first embodiment of the present invention. The room air sucked into the main body 101 by the first blower fan 107 passes through the heat exchanger 105 while exchanging heat with the circulating air, and passes through the adsorption region 4 on the adsorption side of the adsorbent 104. At this time, the adsorbent 104 adsorbs moisture contained in the room air and simultaneously gives heat of adsorption to the room air. The room air is dehydrated and the temperature is raised, so that the relative humidity is low and the room air is blown into the room. On the other hand, the circulating air circulated by the second blower fan 109 is heated by the heating means 106 and becomes a high temperature and flows into the heat exchanger 105 through the regeneration region 3 on the regeneration side of the dehumidifying agent 104. At that time, since the adsorbent 104 releases the moisture adsorbed in the adsorption region 4 in the regeneration region 3, the circulating air becomes a high temperature and high humidity state. The circulating air is cooled to the dew point temperature or less by heat exchange with the room air in the heat exchanger 105, and the contained moisture is condensed. The condensed water is taken out as condensed water. The circulating air that has been cooled and condensed moisture passes through the heat recovery area 5 that is a part of the adsorption side of the adsorbent 104. At this time, the adsorbent 104 itself is heated while being heated in the regeneration area 3. In the heat recovery area 5, heat is supplied to the circulating air. The circulating air to which heat is applied is blown again to the heating means 106 by the second blower fan 109.
[0040]
With the above configuration, the circulating air after passing through the heat exchanger 105 takes away the heat stored in the adsorbent 104 when passing through the heat recovery area 5 of the adsorbent 104, and then the temperature rises. Since it passes, the energy input to the heating means 106 corresponding to the temperature rise, that is, the power consumption can be reduced.
[0041]
FIG. 3 is a schematic assembly view of the rotor set 6 for allowing the adsorbent 104 to be protected and rotated. The adsorbent 104 is accommodated in the cylindrical case 7, and the adsorbent 104 is prevented from dropping by a stopper 8 provided on one end surface of the case 7. A frame 9 is fitted along the outer periphery on the opposite end side of the case 7 and is fixed to the case 7 by screwing a plurality of locations. A boss receiving portion 10 is arranged at the center of the frame 9, and ribs 11 are radially bridged from the boss receiving portion 10, and the boss 12 that fits into the central shaft hole of the adsorbent 104 from the opposite side of the frame 9 is received by the boss receiving. By fixing the portion 10 by screwing, the relative positions of the case 7 and the boss 12 are defined, and the adsorbent 104 is protected and held. A gear 13 for enabling rotation of the rotor assembly 6 is easily formed on the outer periphery of the case 7 by integral molding with the case 7 and the stopper 8, and the frame 9 is free from rust and has a thin plate thickness. Since high strength is required, a stainless steel plate having a thickness of 0.4 to 1.0 mm, preferably 0.6 mm, is manufactured by pressing and bending.
[0042]
FIG. 4 is a schematic view of a partition plate 14 for storing and holding the rotor assembly 6 and for partitioning air that is sucked into the main body 101 and passes through the adsorption region 4 of the adsorbent 104 before and after the adsorbent 104. The partition plate 14 is a resin-molded product, and has a cylindrical ventilation opening 15 that allows ventilation to the adsorbent 104. The partition board 14 is positioned at the center of the ventilation opening 15, and is fitted into the boss 12 of the rotor assembly 6 so that the rotor assembly 6 rotates. And a rib 18a, 18b, 18c, 18d that bridges the rotating shaft 16 from the rotating shaft 16 to the outer ring 17 to prevent the partition plate 14 from warping. The rib 18a and the rib 18d are arranged in the vertical direction, the rib 18a is bridged toward the upper surface of the main body, and the rib 18d is bridged toward the lower surface of the main body. Further, the rib 18b is inclined at an angle A from the rib 18a, and the rib 18c is inclined at an angle B in the reverse rotation direction with respect to the rib 18b. The angle A is a numerical value that determines the ratio of the regeneration region 3 to the regeneration region 3 in the adsorbent 104, and is preferably 30 ° to 90 °, more preferably 45 ° to 60 °. The angle B is a numerical value that determines the ratio of the heat recovery region 5 in the adsorbent 104, and is preferably 10 ° to 60 °, more preferably 15 ° to 45 °. Further, the fan-shaped portion between the ribs 18a and 18b protrudes in the direction opposite to the insertion side of the rotor set 6 to form a first chamber 19 into which the circulating air that has passed through the regeneration side of the adsorbent 104 flows. The first chamber 19 is provided with a cylindrical first connection pipe 20 serving as an inlet for circulating air to the heat exchanger 105, and the fan-shaped portion between the rib 18a and the rib 18c is similarly provided with a rotor assembly. 6 is formed on the opposite side of the insertion side, and the second chamber 21 into which the circulating air cooled by the heat exchanger 105 flows is formed. The second chamber 21 is provided with a cylindrical second connection pipe 22. Yes. The rotor assembly 6 is accommodated in the partition plate 14 having the above-described structure so that the frame 9 side faces the partition plate 14, and the gear 13 of the rotor assembly 6 is meshed with the gear 23 of the drive motor 111 as drive means attached to the partition plate 14. The rotary drive of the rotor set 6 is performed by operating the drive motor 111.
[0043]
FIG. 5 is a cross-sectional view schematically showing the mutual positional relationship when the rotor set 6 is housed in the partition plate 14. The outer ring 17 and the ribs 18a, 18b, 18c are positioned so as to maintain a slight gap C with the frame 9 of the rotor set 6 to compensate for the smooth rotational drive of the rotor set 6, and the outer ring 17, ribs 18a, 18b, 18c The structure has predetermined widths D and E in the direction facing the rotor set 6.
[0044]
With the above structure, even if a pressure difference is generated in the first chamber 19, the second chamber 21, and other ventilation openings 15, the mutual flow amount through the gap C can be suppressed to be extremely small. That is, a short circuit between the high-temperature and high-humidity circulating air that has passed through the regeneration side of the adsorbent 104 flowing into the first chamber and the low-temperature circulating air that has been cooled by the heat exchanger 105 that flows into the second chamber. Since the circuit is suppressed, the condensed water can be efficiently collected in the heat exchanger 105, and the dehumidification efficiency can be improved. The specific numerical value that exhibits the above effect is that the slight gap C between the outer ring 17 and the ribs 18b, 18c, 18d and the frame 9 is desirably 0.6 mm or less, more preferably 0.3 mm or less. The predetermined width D facing the rotor set 6 is 0.5 mm or more, more preferably 2.0 mm or more, and the predetermined width E facing the rotor set 6 of the ribs 14b, 14c, 14d is more preferably 5.0 mm or more. It is 10.0 mm or more. Even if the partition plate 14 is warped, the ribs 14a, 14b, 14c, and 14d do not come into contact with the adsorbent 104 directly against the frame 9, so that the adsorbent 104 is not scraped and powder does not come out. .
[0045]
FIG. 6 is a schematic view of a holding plate 24 that is attached to the opposite side of the partition plate 14 between the first chamber 19 and the second chamber 21 and holds the rotor set 6 and a return portion. The holding plate 24 has a fan shape that covers the projected area from the rib 18b to the rib 18c on the opposite surface, and the apex portion is screwed to the rotating shaft 16 and the outer peripheral portion is screwed to the partition plate 14. Is attached to the partition plate 14 to prevent and retain the rotor frame. The holding plate 24 corresponds to an area F of the first chamber 19 projected onto the rotor set 6, and includes a first opening 25 serving as an introduction section for introducing the circulating air that has passed through the heating means 106 into the adsorbent 104. Similarly, it corresponds to the projected area G of the second chamber 21 and is provided with a second opening 26 as a reflux part for refluxing the circulating air that has passed through a part of the adsorbent 104 on the adsorption side. The gaps between the first opening 25 and the second opening 26, the outsides of the first opening 25 and the outside of the second opening 26 are throttle parts 27a, 27b that are convex toward the rotor set 6. 27c is formed by drawing. The center lines of the throttle portions 27a, 27b, and 27c overlap the center lines of the ribs 18a, 18b, and 18c on the back side across the rotor assembly 6 when viewed from the direction of ventilation of the rotor assembly 6, and the center of the throttle assembly 27a. The angle A formed by the line and the center line of the throttle portion 27b is equal to the angle A formed by the rib 18a and the rib 18b, and the angle B formed by the throttle portion 27a and the throttle portion 27c is equal to the angle B formed by the rib 18a and the rib 18c. .
[0046]
FIG. 7 is a sectional view schematically showing the mutual positional relationship when the rotor set 6 is housed in the partition plate 14 and the holding plate 24 is attached. The holding plate 24 maintains a slight gap H between the stopper 8 and the boss 12 of the rotor set 6 and the throttle portions 27a, 27b, and 27c are positioned so as to maintain a slight gap I with the adsorbent 104. It encourages smooth rotation drive. The stopper 8 and the boss 12 have a predetermined width J and K in the direction facing the holding plate 24, respectively, and the predetermined width L is secured in the direction in which the throttle portions 27a, 27b, and 27c face the adsorbent 104. It has become.
[0047]
With the above structure, even if the air flowing through the first opening 25, the air flowing through the second opening 26, and the air flowing through the other opening of the adsorbent 104 have a pressure difference between them, the rotor assembly 6 and the sliding surface of the holding plate 24 are kept extremely small. That is, a short circuit between the circulating air that has passed through the heating means 106 that flows into the first opening 25 and the circulating air that has recirculated part of the adsorption side of the adsorbent 104 that flows into the second opening 26 is suppressed. Therefore, the energy input to the heating means 106 can be efficiently used for the regeneration of the adsorbent 104, and the dehumidification retail can be enhanced.
[0048]
In addition, since the first opening 25 as the introduction part and the second opening 26 as the reflux part are manufactured integrally, the gap between the introduction part and the adsorbent and the gap between the reflux part and the adsorbent are formed with high accuracy. In addition, the number of parts can be reduced and the cost can be reduced. Specific numerical values that exhibit the above effects are such that the slight gap H between the stopper 8 and the holding plate 24 and the slight gap I between the throttle portions 27a, 27b, 27c and the adsorbent 104 are 0.6 mm or less, more preferably 0.8. It is 3 mm or less, and the predetermined width J facing the holding plate 24 of the stopper 8 is 1.5 mm or more, more preferably 5.0 mm or more. Further, the predetermined width facing the holding plate 24 of the boss 12, that is, the outer diameter K of the boss 12 is 30.0 mm or more, more preferably 60.0 mm or more, and the throttle portions 27 a, 27 b, 27 c are respectively attached to the adsorbent 104. The facing predetermined width L is 5.0 mm or more, more preferably 10.0 mm or more. In addition, the holding plate 24 is required to have dimensional accuracy of the narrowed portions 27a, 27b, and 27c, and to be strong enough not to warp, and is also required to have rust prevention and heat resistance. It is desirable to produce by drilling and drawing, and the thickness is preferably 0.5 mm or more.
[0049]
FIG. 8 shows a heating means 106 composed of a regeneration chamber 29 with a built-in heater 28 attached to the holding plate 24, a second blower fan 109 that blows air into the regeneration chamber 29, a suction port and a holding plate of the second blower fan 109. FIG. 9 is a view showing a schematic configuration of a connection duct 30 that is connected to the second opening 26 of 24 and attached to the holding plate 24, and FIG. 9 attaches the heating means 106 and the second blower fan 109 to the holding plate 24. It is the schematic which showed the attachment state. FIG. 10 is a schematic cross-sectional view showing the MM cross section in FIG. 8 in a state where the rotor set 6, the holding plate 24, the heating means 106, the second blower fan 109 and the connection duct 30 are attached to the partition plate 14. . The regeneration chamber 29 has the heater 28 internally fixed, and a regeneration air outlet 31 is opened at a portion facing the first opening 25 of the holding plate 24. Further, a regeneration air suction port 32 is opened on the side surface on the throttle portion 27a side, and the blowout port 33 of the second blower fan is fitted into the regeneration air suction port 32. In addition, a reflection plate 37 is installed on the back surface of the heater 28 in the regeneration chamber 29 to reflect the radiant heat radiated from the heater 28 and direct it toward the rotor assembly 6 to effectively use the heat of the heater. . The reflection plate 37 is fixed or integrally formed with a heater frame 38 that fixes the heater 28 to the reproduction chamber 29. The reflecting plate 37 is made of a metal having a high surface reflectance, preferably an aluminum thin plate. In addition, the dividing plate 42 that divides the heating means 106 into the adsorbent heating region 39 and the moisture conveyance region 40 is formed using a heat-resistant member such as a sheet metal, a mica plate, a bakelite plate, and is fixed to the heater frame or integrally formed. Install. With the above configuration, most of the circulating air flowing from the regeneration air suction port 32 flows into the moisture transport region 40 and the passing air speed of the circulating air passing through the adsorbent 104 is increased. Even if the heater frame 38 has a function of dividing the heating means 106 into the adsorbent heating area 39 and the moisture transport area 40, there is no difference in effect. A punching member 41 as a rectifying grid is fixed to the heater frame 38, or is integrally formed, or is integrally formed with the holding plate 24 at a portion where the moisture conveyance region 40 of the regeneration air outlet 31 is projected. It is installed and rectifies the circulating air toward the regeneration area 3 of the adsorbent 104. The suction port 34 of the second blower fan opens in a direction facing the holding plate 24, and the connection duct 30 is interposed between the suction port 34 of the second blower fan and the holding plate 24. A third opening 35 corresponding to the suction port 34 of the second blower fan is opened on the surface of the connection duct 30 in contact with the second blower fan 109, and the second opening is formed in the direction facing the holding plate 24. Since the fourth opening 36 corresponding to 26 is opened, the air flowing out from the second opening 26 is smoothly guided to the suction port 34 of the second blower fan. In the actual assembly process, the second blower fan 109 and the connection duct 30 are fixed by screwing, and the suction port 34 of the second blower fan and the third opening 35 of the connection duct 30 are combined to be independent without a gap. After the air passage is formed, the blowout port 33 of the second blower fan is fitted into the regeneration air suction port 32 of the regeneration chamber 29 to form an independent air passage without a gap, and then the regeneration chamber 29 and the connection duct 30 are separated from the holding plate 24 or the partition. It is fixed to the plate 14 or both by screwing. At this time, the regeneration air outlet 31 and the first opening 25 of the holding plate 24 are combined to form an independent air path without a gap, and the fourth opening 36 of the connection duct 30 and the second opening of the holding plate 24 are provided. The independent air passage without gaps is combined to suck the air from the second opening 26 through the connection duct 30 with the second blower fan 109 and blow out into the regeneration chamber 29 to be discharged into the first chamber. An independent air passage through the opening 25 is completed. In addition, the 2nd ventilation fan 109 and the connection duct 30 are integrally molded, and it is good also as one component, and a difference does not arise in the effect. The rotor set 6 rotates in the direction of the arrow in FIG. 10, and after the adsorbent 104 adsorbs moisture in the room air in the adsorption region 4, the rotor set 6 rotates in the regeneration region 3. In the regeneration area 3, first, the adsorbent 104 is heated by the heat and radiant heat of the heater 28 at a position facing the adsorbent heating area 39 of the heating means 106. At this time, moisture adsorbed on the adsorbent 104 is detached from the surface of the adsorbent 104. Next, in the moisture transport area 40, the circulating air rectified by the punching member 41 passes through the adsorbent 104 rotated from the adsorbent heating area 39, so that the moisture separated from the adsorbent 104 in the adsorbent heating area 39. Is conveyed in the direction of the first chamber 19 of the partition plate 14.
[0050]
As described above, the heating means 106 is divided into the adsorbent heating area 39 and the moisture transport area 40, and the adsorbent is heated by suppressing the circulating air flowing in the adsorbent heating area 39 and increasing the temperature and radiant heat of the heater 28. The moisture removal from the adsorbent 104 is promoted, and the moisture transport area 40 increases the passing air velocity of the circulating air passing through the adsorbent 104, thereby transporting the moisture separated from the adsorbent 104 at a stretch. Can be improved.
[0051]
Further, as shown in FIG. 10, the first connection pipe 20 of the partition plate 14 described above is disposed facing the moisture transport region 40 of the heating means 104 through the adsorbent 104, and the moisture transport region 40 The adsorbent 104 passes through the first connection pipe straightly.
[0052]
With the above configuration, the circulating air can be blown without increasing the pressure loss in the circulating air flow path, the moisture released from the adsorbent 104 can be smoothly conveyed, and the circulating air path passing through the adsorbent heating area 39 is Since the pressure loss increases, it is possible to prevent excess circulating air from flowing into the adsorbent heating area 39 and to further enhance the effect of dividing the heating means 106 into the adsorbent heating area 39 and the moisture transport area 40. it can.
[0053]
Further, as shown in FIG. 10, the dividing plate 42 has one or a plurality of air circulation ports 43 for protecting the heater 28.
[0054]
With the above configuration, a part of the circulating air flowing in the moisture conveyance region 40 can flow to the adsorbent heating region 39, so that the heating unit 106 can be prevented from being damaged due to an abnormally high temperature, and the heating unit 106 can be protected. it can.
[0055]
Further, as shown in FIG. 10, the adsorbent 104 from which moisture has been desorbed in the moisture transport region 40 is in a state where a part of heat given by the heating means 106 is stored, and in this state, moisture cannot be adsorbed. . The adsorbent 104 in the above state rotates to the heat recovery area 5. In the heat recovery area 5, the circulating air that has been subjected to heat exchange with room air in the heat exchanger 105 and has become low temperature passes through the adsorbent 104. At this time, the circulating air is heated by the heat stored in the adsorbent 104. On the other hand, the moisture in the circulating air passes as it is because the adsorbent 104 cannot absorb moisture. The circulating air that has passed through the heat recovery area 5 is blown to the heating means 106 by the second blower fan 109. Therefore, since the temperature of the circulating air flowing into the heating means 106 can be raised, the input energy to the heating means 106 corresponding to the temperature rise, that is, the power consumption can be reduced. In the dehumidifying device of this configuration, a dehumidifying amount equivalent to that of the conventional dehumidifying device can be obtained with an input heat amount of 75 to 80%.
[0056]
If a heater using radiation, such as a halogen heater, is used as the heater 28, the adsorbent can be efficiently regenerated by using radiation heat more effectively, and the dehumidification efficiency can be further increased.
[0057]
FIG. 11 is a schematic configuration diagram of the heat exchanger 105 that exchanges heat between the circulating air that has become hot and humid in the regeneration region 3 of the adsorbent 104 and the room air. The first, second, and third heat exchangers 44, 45, and 46 are made by blow molding (or twin sheet vacuum molding) of a resin material (preferably polypropylene), and circulating air flows in a substantially vertical direction. A circulating air passage air passage 47 is formed, and an indoor air passage air passage 48 through which room air flows in a substantially horizontal direction is formed. One end face of the first heat exchanger 44 is provided with a heat exchanger inlet duct 49 leading to the circulating air passage air passage 47, and the first heat exchange connection duct 50a is provided on the other end face with the heat exchanger inlet duct. 49, the second heat exchange connection duct 50b is arranged vertically downward as much as possible. In addition, a third heat exchange connection duct 50c is arranged at a position facing the first heat exchange connection duct 50a on the end face of the second heat exchanger 45 facing the first heat exchanger, The heat exchange connection duct 50d is arranged at a position facing the second heat exchange connection duct, and the fifth heat exchange connection duct 50e is opposed to the fourth heat exchange connection duct 50d on the other end face. It is arranged. Further, the end face of the third heat exchanger 46 facing the second heat exchanger 45 is arranged with a heat exchanger outlet duct 51 at a height close to the heat exchanger inlet duct 49 in the vertical vertical direction, The sixth heat exchange connection duct 50f is arranged at a position facing the fifth heat exchange connection duct 50e. Further, all the heat exchangers are provided with a condensed water outlet 52 at the bottom in the vertical direction. The first heat exchange connection duct 50a and the third heat exchange connection duct 50c are connected, and the second heat exchange connection duct 50b is connected to the fourth heat exchange connection duct 50d, whereby the first heat exchange is performed. The first heat exchanger 45 and the second heat exchanger 45 are coupled, and the fifth heat exchange connection duct 50e is connected to the sixth heat exchange connection duct 50f. The exchangers 44, 45, 46 are combined. Further, the first, second, and third heat exchangers 44, 45, and 46 are fixed more securely by screwing four corners or diagonally two corners. The circulating air flows into the first heat exchanger 44 from the heat exchanger inlet duct 49, and a part of the circulating air passes through the circulating air passage air passage 47 of the first heat exchanger 44 through the indoor air passage air passage 48. It flows downward while exchanging heat with and flows into the second heat exchanger 45 from the second connection duct 50b. Other circulating air passes through the first connection duct 50a and the third connection duct 50c and flows into the second heat exchanger 45, and passes through the circulating air passage air passage 47 of the second heat exchanger 45 through the room air. It flows downward while exchanging heat with indoor air flowing through the air passage 48. The circulating air that has flowed through the first heat exchanger 44 and the second heat exchanger 45 in the fifth connection duct 50e merges and flows into the third heat exchanger 46. Further, the circulating air flows upward through the circulating air passage air passage 47 of the third heat exchanger while exchanging heat with the indoor air flowing through the indoor air passage air passage 48, and flows out from the heat exchanger outlet duct 51. Under the assumption of this heat exchange, the circulating air is cooled by room air, moisture in the circulating air is condensed, and water droplets adhere to the circulating air passage air passage 47. The adhering water droplets flow down through the circulating air passage air passage 47 and are taken out from the condensed water outlet 41. In order to prevent the second connection pipe 22 extending from the partition plate 14 to the heat exchanger outlet duct 51 from interfering with the first heat exchanger 44 and the second heat exchanger 45, the first heat exchange is performed. A cutout 53 is provided in the heat exchanger 44 and the second heat exchanger 45.
[0058]
  By adopting the above configuration, it is possible to configure an air passage in which the positions of the heat exchanger inlet duct 49 and the heat exchanger outlet duct 51 are close to each other in the vertical direction, and the heat transfer area of the heat exchanger 105 is small. The heat exchanger 105 with good heat exchange efficiency can be obtained without loss. Further, since the circulating air flows downward in the circulating air passage air passage 47 of the first heat exchanger 44 and the second heat exchanger 45, the passing air speed of the circulating air is increased and the fall of water droplets adhering to the inside is promoted. Thus, the heat exchange performance can be improved, and the circulating air flows in the upward direction in the circulating air passage air passage 47 of the third heat exchanger 46. Therefore, it is preferable to slow the passing air speed. In this embodiment, the above-described control of the passing wind speed is realized by changing the widths N, O, and P of the first, second, and third heat exchangers. That is, the widths N and O of the first and second heat exchangers in which the circulating air flows downward are 15 mm, and the width P of the third heat exchanger in which the circulating air flows upwards are N and O The first and second heat exchangers 44 and 45 increase the passing air speed of the circulating air, and the third heat exchanger 46 relatively decreases the passing air speed. In addition, the heat exchanger 105 may be molded using a material having good heat conduction characteristics and corrosion resistance other than the resin material, and there is no significant difference in its effect and action.Further, in the heat exchanger, the traveling direction of the circulating air is reversed during the heat exchange with the room air, and the inlet of the circulating air to the heat exchanger and the outlet of the heat exchanger are brought close to each other in a substantially vertical direction. The circulation path is arranged in this way, and the heat exchanger introduction path and the discharge path of the circulation air are approached by reversing the traveling direction of the circulation air in the course of heat exchange. The wind tunnel connecting the two can be configured in a short distance and in a straight line, and the length of the circulating air in the heat exchanger can be increased to increase the heat exchange efficiency and reduce the size of the heat exchanger. The direction of the circulating air is reversed in the course of heat exchange with the room air, and the inlet of the circulating air to the heat exchanger and the outlet from the heat exchanger are provided. Approximately vertical direction Since the circulation path is arranged so as to be close to each other, the air tunnel connecting the heat exchanger and the adsorbent can be arranged in a short distance and in a straight line so that the passage distance of the circulating air can be secured. In addition, it is possible to provide a dehumidifying device that has the effect of improving the heat exchange efficiency and reducing the size of the heat exchanger to a compact body size.
[0059]
Further, the heat exchange efficiency of the heat exchanger 105 can be further improved by incorporating a heat transfer promoting substance such as an aluminum pigment or barley stone into the resin material.
[0060]
Fig. 12 shows the heat exchange when using a heat exchanger molded with polypropylene as a general resin material, a heat exchanger molded with polypropylene containing an aluminum pigment, and a heat exchanger molded with polypropylene and barley stone. Experimental data on efficiency is shown. Dehumidifying performance is improved when aluminum pigment and barley stone are included, compared to a single polypropylene material, especially when barley stone is included. As a result, the size can be further reduced. FIG. 13 shows experimental data on the heat exchange efficiency of the heat exchanger when the content of barleystone contained in polypropylene is changed. From the experimental results, the content of barleystone was about 1.2%, which was a good value.
[0061]
FIG. 14 is a diagram showing a schematic configuration of the first, second, and third heat exchangers 44, 45, and 46 and the condensed water receiver 54 that are connected to the partition plate 14 that houses and holds the rotor set 6. The heat exchanger inlet duct 49 of the first heat exchanger 44 is connected to the first connection pipe 20 extending from the first chamber 19 of the partition plate 14 so as to fit into the first connection pipe 20, and extends from the second chamber 21. The second connection pipe 22 is installed so as to fit into the notches 53 of the first and second heat exchangers 44 and 45, and is connected to the heat exchanger outlet duct 51 of the third heat exchanger 46. Further, the first, second, and third heat exchangers 44, 45, and 46 are fixed to the partition plate 14 by screwing the four corners to the partition plate 14. The condensed water receiver 54 is screwed to the partition plate 14 after fitting the condensed water outlet 52 of the first, second, and third heat exchangers 44, 45, 46. With the above configuration, a circulation path from the first chamber 19 of the partition plate 14 through the first, second, and third heat exchangers 44, 45, 46 to the second chamber 21 can be formed. .
[0062]
FIG. 15 is a view showing a schematic configuration of the first blower fan 107, the rear panel 55, the front panel 56, and the condensed water tank 57 attached to the partition plate 14. A motor 107 (not shown) on which the first sending fan 107 is rotatably attached is screwed to the orifice plate 58, and the orifice plate 58 is screwed to the partition plate 14. Further, a rear panel 55 in which the fan casing 59 of the first blower fan 107 and the processing air outlet 60 are integrally formed is attached from the first blower fan 107 side. Further, the front panel 56 is fitted and screwed from the third heat exchanger 46 side. With the above configuration, an indoor air air passage passing through the adsorbent 104 through the indoor air passage air passage 48 of the first, second, and third heat exchangers 44, 45, 46 is formed. The condensed water tank 57 is fitted in such a manner that it can be pulled out from the front surface of the front panel 56, and receives the condensed water discharged from the condensed water receiver 54. The first blower fan 107, the rear panel 55, the front panel 56, and the condensed water tank 57 are formed of a resin material.
[0063]
With the above configuration, power consumption can be reduced and a low-cost and compact dehumidifier can be provided.
[0064]
【The invention's effect】
  As is clear from the above embodiments, according to the present invention.In the circulating air passage air passage of the heat exchanger, the circulating air speed is increased so that the circulating air flows downward so as to promote the drop of water droplets adhering to the inside of the circulating air passage air passage. The passing air speed of the circulating air flowing in the upward direction is relatively lowered, and the heat exchange performance can be improved by promoting the fall of water droplets adhering to the inside.It is possible to provide a dehumidifying device that is effective.
[0072]
MaFurther, by making the frame a steel plate that does not generate rust, a dehumidifying device that does not generate rust on the frame can be provided. In addition, by using a steel plate having a thickness of 0.4 to 1.0 mm as the frame, a dehumidifying device having a thin frame and high strength can be provided. Further, by using a stainless steel plate as the frame, it is possible to provide a dehumidifying device in which the frame has high strength and the frame does not rust.
[Brief description of the drawings]
FIG. 1 is a schematic view of an adsorbent in an embodiment of the present invention.
FIG. 2 is a diagram illustrating the principle of the dehumidifying device.
FIG. 3 is a schematic assembly diagram of a rotor set of the dehumidifying device.
FIG. 4 is a schematic assembly diagram of a rotor assembly and a partition plate of the dehumidifying device.
FIG. 5 is a cross-sectional view schematically showing the mutual positional relationship when the rotor set is housed in the partition plate of the dehumidifier
FIG. 6 is a schematic assembly drawing of a partition plate, a rotor assembly and a holding plate of the dehumidifying device.
FIG. 7 is a cross-sectional view schematically showing the positional relationship between the rotor set and the holding plate attached to the partition plate of the dehumidifier
FIG. 8 is a schematic assembly diagram of a partition plate, a rotor set, a holding plate, a heating unit, and a second blower fan of the dehumidifier
FIG. 9 is a schematic view showing a mounting state in which the heating means and the second blower fan of the dehumidifier are attached to a holding plate.
10 is a schematic cross-sectional view showing the MM cross section in FIG. 8 in a state where the rotor set, the holding plate, the heating means, the second blower fan, and the connection duct are attached to the partition plate of the dehumidifier.
FIG. 11 is a schematic view of a heat exchanger of the dehumidifying device.
FIG. 12 is a graph showing the heat exchange efficiency of the heat exchanger
FIG. 13 is a graph showing the heat exchange efficiency of the heat exchanger when the content rate of the heat exchanger is changed.
FIG. 14 is a schematic assembly diagram of a partition plate and a heat exchanger of the dehumidifier.
FIG. 15 is a schematic configuration diagram of the dehumidifying device.
FIG. 16 is an explanatory diagram for explaining the configuration of a conventional dehumidifier
[Explanation of symbols]
3 Playback area
4 adsorption area
5 Heat recovery area
24 Retaining plate
25 First opening
26 Second opening
27a, 27b, 27c
28 Heater
29 Regeneration chamber
39 Adsorbent heating area
40 Moisture transfer area
42 division board
43 Air distribution port
44 1st heat exchanger
45 Second heat exchanger
46 3rd heat exchanger
47 Circulating air passage
48 Indoor air passage
49 Heat exchanger inlet duct
51 Heat exchanger outlet duct
104 Adsorbent
105 heat exchanger
106 Heating means
107 1st ventilation fan
109 Second blower fan

Claims (4)

吸着側で室内空気中の湿気を吸着するとともに再生側では加熱され脱湿再生する吸着剤と、前記吸着剤の再生側で高温高湿となった循環空気と室内空気とを熱交換する熱交換器と、前記吸着剤の再生側を加熱する加熱手段と、室内空気を前記吸着剤の吸着側に供給するための第1の送風ファンと、循環空気を循環させるための第2の送風ファンとを備え、第1の送風ファンにより供給された室内空気を前記吸着剤の吸着側に通過させ乾燥空気とする経路と、第2の送風ファンによる循環空気を前記加熱手段および前記吸着剤の再生側を通過させ、高温高湿となった空気を前記熱交換器を通して循環させ室内空気と熱交換させる循環経路とを有し、前記吸着剤はその吸着側と再生側とを入れ替え、再生時に発生する水分を前記熱交換器によって室内空気により冷却して結露水として回収する除湿装置であって、前記熱交換器の循環空気通過風路において、前記循環空気通過風路の内部に付着した水滴の落下を促進させるように循環空気が該下方向に流れる循環空気の通過風速を速め、循環空気が該上方向に流れる循環空気の通過風速を相対的に落とすようにしたことを特徴とする除湿装置。Heat exchange that adsorbs moisture in the indoor air on the adsorption side and heats the adsorbent that is heated and dehumidified and regenerated on the regeneration side, and the circulating air that becomes high temperature and high humidity on the regeneration side of the adsorbent and room air A heating unit for heating the regeneration side of the adsorbent, a first blower fan for supplying room air to the adsorbent side of the adsorbent, and a second blower fan for circulating the circulating air A path for passing the indoor air supplied by the first blower fan to the adsorption side of the adsorbent and making it dry air, and circulating air by the second blower fan to the regeneration side of the heating means and the adsorbent And a circulation path for circulating high-temperature and high-humidity air through the heat exchanger and exchanging heat with room air. The adsorbent is exchanged between the adsorption side and the regeneration side, and is generated during regeneration. Moisture through the heat exchanger A dehumidifying device for collecting the condensed water is cooled by the inner air, the circulating air passes air passage of the heat exchanger, the circulating air so as to facilitate the dropping of the water droplets attached to the inside of the circulating air passes through air passage The dehumidifier is characterized in that the passing air speed of the circulating air flowing in the downward direction is increased, and the passing air speed of the circulating air flowing in the upward direction is relatively decreased . 着剤を収める円筒状のケースを備え、前記ケースと前記ケースに設けられたフレームと前記フレームに設けられたリブにより、前記吸着剤を保護、保持し、前記フレームを錆びの発生が無い鋼板としたことを特徴とする請求項1に記載の除湿装置。A cylindrical casing accommodating the adsorbents, the rib provided on the frame and the frame provided in the said casing casing, protecting the adsorbent, and held, the steel sheet occurs where there is no rust the frame The dehumidifying device according to claim 1, wherein フレームを、板厚0.4〜1.0mmの鋼板としたことを特徴とする請求項記載の除湿装置。The dehumidifying device according to claim 2 , wherein the frame is a steel plate having a thickness of 0.4 to 1.0 mm. レームを、ステンレス鋼板としたことを特徴とする請求項または記載の除湿装置。The frame, dehumidifier according to claim 2 or 3, wherein it has a stainless steel plate.
JP2001136030A 2001-05-07 2001-05-07 Dehumidifier Expired - Lifetime JP4122726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136030A JP4122726B2 (en) 2001-05-07 2001-05-07 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136030A JP4122726B2 (en) 2001-05-07 2001-05-07 Dehumidifier

Publications (3)

Publication Number Publication Date
JP2002326012A JP2002326012A (en) 2002-11-12
JP2002326012A5 JP2002326012A5 (en) 2005-09-29
JP4122726B2 true JP4122726B2 (en) 2008-07-23

Family

ID=18983397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136030A Expired - Lifetime JP4122726B2 (en) 2001-05-07 2001-05-07 Dehumidifier

Country Status (1)

Country Link
JP (1) JP4122726B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271031A (en) * 2003-03-07 2004-09-30 Zojirushi Corp Method of manufacturing heat exchanger and dehumidifier using the same
JP2004278993A (en) * 2003-03-18 2004-10-07 Zojirushi Corp Dehumidifier
JP4880192B2 (en) * 2003-08-27 2012-02-22 ナノミストテクノロジーズ株式会社 Ultrasonic separation method of solution and ultrasonic separation apparatus used in this method
JP2005095807A (en) * 2003-09-26 2005-04-14 Hitachi Home & Life Solutions Inc Dehumidifier
JP4595334B2 (en) * 2004-01-30 2010-12-08 パナソニック株式会社 Dehumidifier
JP4329584B2 (en) * 2004-03-19 2009-09-09 パナソニック株式会社 Dehumidifier
JP4398877B2 (en) * 2005-01-25 2010-01-13 象印マホービン株式会社 Dehumidifier
KR100707442B1 (en) * 2005-03-09 2007-04-13 엘지전자 주식회사 Humidifier
JP4706303B2 (en) * 2005-03-30 2011-06-22 ダイキン工業株式会社 Humidity control device
EP1891379A2 (en) * 2005-06-13 2008-02-27 LG Electronics Inc. Dehumidifier
JP2007098262A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007098263A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Dehumidifier
JP2007098261A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Dehumidifier
WO2007040213A1 (en) * 2005-10-04 2007-04-12 Matsushita Electric Industrial Co., Ltd. Dehumidifier
KR100682269B1 (en) * 2005-10-05 2007-02-15 엘지전자 주식회사 Heat exchanger unit for improving heat exchange efficiency and air conditioning apparatus having the same
KR101231321B1 (en) 2006-04-27 2013-02-07 엘지전자 주식회사 A dehumidifier
KR20070107281A (en) * 2006-05-02 2007-11-07 엘지전자 주식회사 A dehumidifier
KR101231278B1 (en) 2006-05-02 2013-02-07 엘지전자 주식회사 A dehumidifier
JP2008000702A (en) * 2006-06-23 2008-01-10 Zojirushi Corp Dehumidifier
EP1912033A1 (en) * 2006-10-12 2008-04-16 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Process for controlling the moisture content of a supply gas for use in drying a product
JP4908167B2 (en) * 2006-11-24 2012-04-04 象印マホービン株式会社 Dehumidifier
JP2008246438A (en) 2007-03-30 2008-10-16 Nichias Corp Dehumidifier and dehumidification method
WO2019181864A1 (en) * 2018-03-20 2019-09-26 五和工業株式会社 Dehumidifying device
JP2020201303A (en) 2019-06-06 2020-12-17 セイコーエプソン株式会社 projector
JP2020201426A (en) 2019-06-12 2020-12-17 セイコーエプソン株式会社 projector
JP6888648B2 (en) 2019-07-10 2021-06-16 セイコーエプソン株式会社 projector
JP6874792B2 (en) 2019-07-19 2021-05-19 セイコーエプソン株式会社 projector
JP6919689B2 (en) 2019-09-20 2021-08-18 セイコーエプソン株式会社 projector
JP7223281B2 (en) 2019-09-24 2023-02-16 セイコーエプソン株式会社 projector
JP6962354B2 (en) 2019-10-11 2021-11-05 セイコーエプソン株式会社 projector
JP7358978B2 (en) 2019-12-25 2023-10-11 セイコーエプソン株式会社 projector
CN113278455B (en) * 2021-06-04 2023-09-08 邓燕龙 Natural gas dewatering device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116506Y2 (en) * 1980-09-19 1989-05-16
JPH01127322A (en) * 1987-11-12 1989-05-19 Asahi Chem Ind Co Ltd Molded product for heat exchanger containing carbon fiber
JP2695563B2 (en) * 1992-02-20 1997-12-24 北川工業株式会社 Heat transfer material
JP3892600B2 (en) * 1998-11-13 2007-03-14 シャープ株式会社 Regenerative air heating device and dehumidifier equipped with the same
JP3916343B2 (en) * 1999-04-21 2007-05-16 大阪瓦斯株式会社 Dehumidifier
JP2000317250A (en) * 1999-05-07 2000-11-21 Sharp Corp Dehumidifier
JP2000337661A (en) * 1999-05-25 2000-12-08 Sharp Corp Air-conditioning instrument

Also Published As

Publication number Publication date
JP2002326012A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
JP4122726B2 (en) Dehumidifier
JP4337402B2 (en) Air conditioner, operation method of air conditioner
EP1707888B1 (en) Humidifier
KR20090116301A (en) Dehumidifier
JP3786090B2 (en) Air conditioner and control method of air conditioner
JP6307701B2 (en) Dehumidifier
JP5135673B2 (en) Dehumidifier
JP3581137B2 (en) Dehumidifier
JP2005262068A (en) Dehumidifier
JP4810954B2 (en) Dehumidification system
JP6311110B2 (en) Dehumidifier
KR101515530B1 (en) Dehumidifing unit and Air conditioner having the same
JP2005211743A (en) Dehumidifier
JP4329584B2 (en) Dehumidifier
JP6311113B2 (en) Dehumidifier
JPH09108496A (en) Clothing drying machine with dehumidifying device
JP5407118B2 (en) Dehumidifier
JP2007098262A (en) Dehumidifier
JP2005103365A (en) Dehumidification apparatus
JP2006223918A (en) Dehumidifying drier
CN102309908B (en) Dehumidifier
JP4804698B2 (en) Dehumidifier
JP2819497B2 (en) Dehumidifier
JP3407735B2 (en) Humidity control device
CN101822934A (en) Air channel structure and air conditioning equipment with same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R151 Written notification of patent or utility model registration

Ref document number: 4122726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

EXPY Cancellation because of completion of term