JP4122607B2 - Aviation sign lights - Google Patents

Aviation sign lights Download PDF

Info

Publication number
JP4122607B2
JP4122607B2 JP34068098A JP34068098A JP4122607B2 JP 4122607 B2 JP4122607 B2 JP 4122607B2 JP 34068098 A JP34068098 A JP 34068098A JP 34068098 A JP34068098 A JP 34068098A JP 4122607 B2 JP4122607 B2 JP 4122607B2
Authority
JP
Japan
Prior art keywords
light
gradation
emitting diode
light emitting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34068098A
Other languages
Japanese (ja)
Other versions
JP2000173304A (en
Inventor
勝幸 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP34068098A priority Critical patent/JP4122607B2/en
Publication of JP2000173304A publication Critical patent/JP2000173304A/en
Application granted granted Critical
Publication of JP4122607B2 publication Critical patent/JP4122607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2203/00Aircraft or airfield lights using LEDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/18Visual or acoustic landing aids
    • B64F1/20Arrangement of optical beacons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2111/00Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00
    • F21W2111/06Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00 for aircraft runways or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空港の滑走路や誘導路等に用いられる航空標識灯に関し、特に光源の長寿命化及び発光効率の向上化を図ることができるとともに、その発光状態を最適に制御することの可能な航空標識灯に関する。
【0002】
【従来の技術】
一般に、空港の滑走路や誘導路等に用いられる航空標識灯では、滑走路への誘導や離着時の誘導、あるいは侵入経路への誘導等を、厳しい気象条件でもその明かりによって明確且つ確実に飛行機の操縦者に認識させるために、発光効率の向上が望まれている。また、航空標識灯では、過酷な使用条件でも耐えうる耐久性はもとより、その光源の長寿命化も望まれている。
【0003】
通常、このような航空標識灯は、その目的に応じて様々な形態のものが製造されており、また、これらの標識灯の光源としては、従来より調光制御が容易な白熱電球が用いられている。このような従来における白熱電球を用いた光源で構成された航空標識灯の一例を図13に示す。
【0004】
図13は従来の白熱電球を用いた光源で構成された地上型の航空標識灯の一例を示す構成図であり、図13(a)は光を全方向に照射可能な全方向タイプのもの、図13(b)は光を1方向または2個併設することで2方向に光を照射可能な2方向タイプのもの、図13(c)は誘導時に警戒を促すことを主に目的とした点滅タイプのものをそれぞれ示している。
【0005】
順に説明すると、図13(a)に示すように全方向タイプの航空標識灯50は、滑走路等の誘導灯として用いられており、例えば青い色を全方向に照射することにより、誘導路灯としての役割を果たすようになっている。
【0006】
該航空標識灯50は、例えば地上に設置される灯体51と、この灯体51の上面に装着される光源としての白熱電球52と、該白熱電球52の光を水平方向に対して指向性良好に照射するとともに垂直方向にも照射するためのレンズ53と、これらのレンズ53及び白熱電球52を収容する青色に着色されたグローブ54とで主に構成されている。グローブ54が青色に着色されることで、全方向に青色の光を照射することができる。また、水平方向については、レンズ53が白熱電球52の周囲を囲んでいるので、指向性が良好な青色の光を照射することが可能となる。
【0007】
ところが、上記航空標識灯51では、光源として白熱電球が使用されているため、素子寿命が短く、また、上記のように例えば青色光を得るために白熱電球の白色光を、青色に着色したグローブを介して照射するようにしているため、発光効率が非常に悪いという不都合がある。そこで、周知のように素子寿命の短い白熱電球に代えて、長寿命でありしかも青色の発光ダイオード(以下、LEDと記載)を用いたLED式標識灯も提案されている。
【0008】
しかし、このような提案によるLED式標識灯では、LEDは、高発光効率化のため素子そのものは透明樹脂レンズで構成したものを使用し、また、複数のLED素子を配設した基板と配光を制御する反射板と透明のグローブとで構成しているが、高効率化のための透明レンズLED及び透明グローブを使用しているため、消灯時には発色しない。このため、消灯時には従来のように青色グローブ54による色別灯火の識別ができないという欠点があり、また、単純に青色グローブを用いると、LED発光色も青色なので発光効率に悪影響を及ぼすこともあるという欠点もあった。
【0009】
一方、図13(B)に示すような一方向あるいは2方向タイプの航空標識灯60は、例えば色フィルタ65の色に対応した光を水平方向に照射することにより、滑走路等の誘導灯としての役割を果たすようになっている。
【0010】
該航空標識灯60は、例えば地上に設置される灯体61と、この灯体61の上面に装着される光源としての白熱電球62と、該白熱電球62の光を集光して照射する反射鏡63と、該反射鏡63の反射光を透過して対応する色の光を照射する色フィルタ65と、該色フィルタ65の表面部を防護する防護ガラス66と、これらの光学系部材を収容するためのユニット64とで主に構成されている。反射鏡63,色フィルタ65を用いることで、水平方向における照射色光の指向性が良好となる。例えば滑走路の進入灯とする赤光色の航空標識灯においては、赤色フィルタを介して赤色発光するようにして構成されており、赤色の照射光の指向性も良好である。また、このような航空標識灯64を背後に対向配置して構成することにより、2方向のタイプの航空標識灯と成す。
【0011】
ところが、上述したように光源の素子寿命の長寿化を考慮すると、やはりこの種のタイプの航空標識灯60においても、LEDの採用が望ましい。また、例えば赤色LEDの複数を用いて標識灯を構成することで、光源の長寿命化は勿論、赤色フィルター不要等の利点も得られることになる。
【0012】
通常、航空標識灯では、夜間や薄暮又は雨天、霧天時などの視認外部条件によって灯火の明るさを加減(階調)制御する必要がある。この明るさの階調信号は、従来の白熱電球の負荷に対応した位相制御の段階状の定電流ラインパワーとして与えられようになっている。したがって、単に光源を白熱電球からLED表示素子に代えたとしても、LED式の標識灯では、図14の階調電流に応じた発光出力の特性図に示すように、光源素子の階調特性が異なるため、この信号をそのままLED式標識灯60に適用することは不可能である。つまり、図14に示すようにLEDを用いた場合には、同じ階調電流にも関わらず、白熱電球よりも明るくなり、必要以上の発光強度となるため、操縦者にまぶしく煩わしくなり、標識灯としては不適であるという不都合もある。
【0013】
また、LEDは、温度変化により発光出力も変化する特性をもっており、例えば赤色LEDは、図15に示すような温度特性を有している。つまり、温度が上昇すれば発光出力が低下するような特性である。また、このような航空標識灯は、上述したように明るさを加減(階調)制御する必要があるが、一定の規定された明るさを維持する必要もある。さらに、航空標識灯では屋外で用いるため、灯器内の電気回路は密閉構造内に構成されることと、またメンテナンスの時間が夜間の空港閉鎖時間などに限定されることから使用部品は信頼性の高いものが要求され、灯火の発熱による冷却のファン等は用いられず、自然冷却構造である必要がある。
【0014】
以上のような理由から、単純にLEDを用いた標識灯においては点灯時の発熱によって温度が上昇し、また強制冷却も困難なことから発光出力の一定規定値に維持することが困難となる欠点もあった。
【0015】
また、従来例としての点滅タイプの航空標識灯では、図13(c)に示すように、例えば地上に設置される灯体71と、この灯体71の上面に装着された例えば2つの白熱電球73a,73bと、これらの光源73a,73bからの光を集光してそれぞれ照射する反射鏡74a,74bと、これらの反射鏡74a,74bの反射光を透過して対応する色の光をそれぞれ照射する色フィルタ75a,75bとで主に構成されている。これらの反射鏡74a,74b,色フィルタ75a,75bを用いることで、水平方向における照射色光の指向性が良好となり、また図示しない調光制御部からの点滅信号が供給されることで、これら2つの光源部72A,72bは、点滅発光するようになっている。
【0016】
ところが、上述したように光源の素子寿命の長寿化を考慮して、この種のタイプの滑走路警戒灯70(RGL灯火ともいう)においても、LEDの採用が望まれており、また、上述したように1対の灯火を交互に点滅させることが必要であり、さらに夜間や薄暮又は雨天・霧天時などの視認外部条件によって灯火の明るさを加減(階調)制御させる必要がある。しかしながら、、LEDの明るさを加減するにはLED電流の波高値を変えてやる制御方法が考えられるが、この制御方法では、定電流回路を用いることになり、LEDの限流回路としての抵抗回路に比べて高価となり、特に灯火光源としてLED素子を複数用いて構成した場合には、高コストとなってしまうという問題点もあった。
【0017】
【発明が解決しようとする課題】
上記の如く、従来の航空標識灯では、光源の長寿命化に鑑み従来の白熱電球に代えて長寿命のLEDの使用が考えられるが、このLEDを使用すると、例えば青色グローブを用いて青色光を照射する全方向タイプでは、発光効率に悪影響を及ぼしてしまい、また、一方向又は2方向タイプでは、階調電流に応じて最適な発光出力が得られず、またLEDの温度変化に応じて発光効率が変化してしまい、さらに点滅灯火可能なタイプのものでは、最適な点滅灯火とするには高価な発光回路が必要なり高コストとなってしまうといった様々な問題点があった。
【0018】
そこで、本発明は上記問題点に鑑みてなされたもので、LEDを用いて構成することにより、光源の長寿命化及び発光効率を向上させることができるとともに、低コストで最適な発光制御を行うことのできる航空標識灯の提供を目的とする。
【0019】
【課題を解決するための手段】
請求項1記載の発明の航空標識灯は、灯体と;この灯体に配置され、発光ダイオード素子からなる光源と;前記発光ダイオードの明るさを外部より操作される位相制御によって階調毎に変化させる階調制御が可能なもので、接続された定電流電源ラインに流れる階調電流を取り込み、該階調電流から定電圧源を発生させて得た電流によって前記発光ダイオードを発光させるとともに、外部の操作により位相制御で可変される電流を検出し、検出結果に基づき前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記発光ダイオードによる発光を階調毎に駆動制御する駆動回路部と;を具備したことを特徴とする。
【0023】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記駆動回路部は、前記定電流電源ラインに流れる階調電流を元に前記発光ダイオードに付勢する定電圧を生成する定電圧回路と;該定電圧回路により生成された定電圧に基づき得られた発光ダイオード電流によって前記発光ダイオードを発光させるLED駆動回路と;前記定電流電源ラインに流れる階調電流を取り込み、外部の操作により位相制御で可変される前記階調電流を検出し、検出結果を出力する電流検出回路と;前記電流検出回路からの検出結果に基づき、前記位相制御による階調に応じた前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記LED駆動回路による発光ダイオードの発光を駆動制御する階調変換回路と;を具備して構成されたことを特徴とする。
【0024】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記階調変換回路は、発光ダイオード電流の波高値に対応した前記発光階調信号を出力するもので、前記LED駆動回路は、可変抵抗を備え、該発光階調信号に基づき可変抵抗による抵抗値を変化させることにより、前記発光ダイオードの発光を階調制御することを特徴とする。
【0025】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記階調変換回路は、前記発光階調信号として前記発光ダイオードの点滅の比率変調とするパルス幅制御信号を出力するもので、前記LED駆動回路は、前記発光ダイオード電流の供給を時間的にオン・オフするスイッチング素子を備え、前記パルス幅信号に基づき該スイッチング手段によるオン・オフ時間を制御することにより、前記発光ダイオードの発光を階調制御することを特徴とする。
【0026】
請求項乃至請求項の発明によれば、パルス幅発光制御と発光ダイオード電流波高値制御とのどちらか一方の制御が可能な駆動回路部を設けたことによって、従来通りの標識灯用定電流電源に接続し、且つ灯火の階調制御を行うことが可能となり、長寿命で且つ発光効率の高いLED式航空標識灯を提供することが可能となる。また、LED式標識灯の設置に伴い、新たに配線工事等もする必要がないので、全体的なコストを低減することも可能となる。
【0027】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記駆動回路部は、前記定電流電源ラインに流れる階調電流を元に前記発光ダイオードに付勢する定電圧を生成する定電圧回路と;該定電圧回路により生成された定電圧に基づき得られた発光ダイオード電流によって前記発光ダイオードを発光させるLED駆動回路と;前記定電流電源ラインに流れる階調電流を取り込み、外部の操作により位相制御で可変される前記階調電流を検出し、検出結果を出力する電流検出回路と;前記電流検出回路からの検出結果に基づき、前記位相制御による階調に応じた前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記LED駆動回路による発光ダイオードの発光を駆動制御する階調変換回路と;前記発光ダイオードの温度または周囲温度を検出する温度検出回路と;前記該温度検出手段からの検出結果に基づき所定の発光出力を得るための補正信号を作成し、該補正信号に応じて前記LED駆動回路による発光ダイオード電流を変化させる補正回路と;を具備して構成されたことを特徴とする。
【0028】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記階調変換回路は、前記発光階調信号として前記発光ダイオードの点滅の比率変調とするパルス幅制御信号を出力するもので、前記LED駆動回路は、前記発光ダイオード電流の供給を時間的にオン・オフするスイッチング素子及び可変抵抗を備え、前記パルス幅信号に基づき該スイッチング手段によるオン・オフ時間を制御すると同時に、前記補正回路からの補正信号に応じて前記可変抵抗の抵抗値を変化させることにより、前記発光ダイオードの発光の階調制御及び温度の変化に伴う発光補正制御することを特徴とする。
【0029】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記温度検出回路は、前記複数の発光ダイオードを整列させるための整列板が設けられた場合には、該整列板の温度を検出し、検出結果を出力することを特徴とする。
【0030】
請求項乃至請求項請求項の発明によれば、前記発光ダイオードの温度または周囲温度を検出する温度検出回路、前記該温度検出手段からの検出結果に基づき所定の発光出力を得るための補正信号を作成し、該補正信号に応じて前記LED駆動回路による発光ダイオード電流を変化させる補正回路とを設けることによって、発光ダイオードの温度変化に伴い変化する発光効率を一定に発光制御することが可能となり、また、その発光を階調に応じて階調制御することも可能となる。その他の動作及び効果は、上記請求項3乃至請求項6の発明と同様である。
【0031】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記光源が少なくとも2つの点滅制御可能な光源で構成された場合には、前記駆動回路部は、前記発光階調信号としての前記発光ダイオードの点滅の比率変調とするパルス幅制御信号と、前記少なくとも2つの光源を点滅制御するための点滅信号との論理積をとり、該論理積に基づき、各光源毎に発光ダイオード群が抵抗を介して直列に接続して成る直列回路の電流供給をオン・オフするスイッチング素子のオン・オフ時間を制御することにより、前記発光ダイオードによる発光の階調制御及び点滅発光制御することを特徴とする。
【0032】
請求項記載の発明の航空標識灯は、請求項に記載の航空標識灯において、前記少なくとも2つの光源は、黄色の光を発光する黄色発光ダイオードを用いてそれぞれ構成されたものであることを特徴とする。
【0033】
請求項及び請求項の発明によれば、発光ダイオード群で構成された光源を少なくとも2つ設けて点滅タイプ航空標識灯を構成した場合でも、上記発明と同様に従来通りの標識灯用定電流電源に接続し、且つ灯火の階調制御及び点滅発光制御を行うことが可能となり、長寿命で且つ発光効率の高いLED式航空標識灯を提供することが可能となる。さらに、駆動回路部は簡単な直列回路構成となっていることから、高価な定電流回路を設けずとも上記の如く階調制御及び点滅制御が可能であり、よってコスト低減にも大きく寄与する。
【0034】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明する。
図1乃至図3は本発明に係る航空標識灯の第1の実施の形態を示し、図1は光源としてLED表示素子を用いて構成された地上型の航空標識灯の一例を示す構成図、図2は図1の航空標識灯の上面図、図3は図2の航空標識灯のAーA´線断面図である。
【0035】
本実施の形態では、光源として長寿命の複数のLEDを用いるとともに、これらのLEDの発した光を反射する、例えば青色に着色された反射鏡を所定の位置に介在させるように設けて構成することにより、仮に消灯時でも、発色作用が得られることで、従来、消灯時における航空標識灯の色の識別が不可能であった課題を解決するようにしている。
【0036】
図1に示すように、本実施の形態の全方向タイプの航空標識灯1は、滑走路等の誘導灯として用いられており、例えば青い色を全方向に照射することにより、誘導路灯としての役割を果たすようになっている。
【0037】
具体的な構成としては、上記航空標識灯1は、例えば地上に設置される灯体2と、この灯体2の上面に装着され、複数のLED3a,基板3b,及び着色反射板3cを含んで構成された光源部3と、この光源部3を収容するとともに、前記灯体2に上面に取り付けられる外周カバーとしてのグローブ4とで主に構成されている。
【0038】
光源部3において、複数のLED3aは、例えば青色の光を発光するもので、図2に示すように基板3b上に中心(基板との中心)を介して複数並設され、基板上のパターン、接続コード及び主の配線コード(パワーラインともいう)を介して図示しない管制塔や調光制御室等に接続されるようになっている。これにより、図示しない管制塔や調光制御室等から階調信号が供給されることにより、複数のLED3aの青色発光が制御される。なお、これらのLED3aのそのものは、高発光効率可能な透明樹脂レンズで構成されたものである。
【0039】
一方、前記着色反射板3cは、例えば図3に示すように円筒形状の両面反射部材が扇状に広って形成されたもので、下部の開口部が小さく、上部の開口部が広くなるように形成されたものである。また、該着色反射板3cは、図3に示すように上面(内面)Aが、例えば青色の着色されるように構成している。また、この場合、着色反射板3cの下面Bについては、図3に示すように水平方向における光の反射性能及び指向性を向上させるために、着色はなされていない。必要であれば、下面Bを所定の色に着色するように構成しても良い。
【0040】
このような構成の着色反射板3cは、図3に示すように、基板3b上の所定数のLED3aを包囲するように該基板上3bに装着されるようになっている。
【0041】
また、前記グローブ4は、従来とは異なり、例えば着色されていない透明ガラス部材で形成されたもので、LED3aの発色光や上記着色反射板3cによる反射光を全方向に透過して照射する。また、該航空標識灯1を外部からの損傷を防止する役割も有している。
【0042】
このような構成により、包囲された所定数のLED3aからの発色光が直接光、及び該着色反射板3cの上面Aによって反射され、扇状に上方向へと照射するとともに、同時に、該着色反射板3cによって包囲されない他の複数のLED3aからの発色光は、該着色反射板3cの下面Bによって反射されることで、水平方向にしかも指向性が良好に照射することが可能となる。
【0043】
本実施の形態においては、上記着色反射板3cの上面A全体が例えば青色に着色されているので、該航空標識灯1が消灯時の場合でも、外光(例えば太陽光)が当たれば発色することになるので、灯火の識別が可能である。
【0044】
したがって、従来の航空標識灯(図13(a)参照)と比較すると、光源として指向性が高いLEDを用いているので、発光効率も高く、また指向性等の発光性能も向上させることができ、しかも光源の長寿命化も図ることが可能となる。さらに、消灯時でも、外光がその着色反射板3cに反射することによって発色できるので、航空標識灯自体の認識も可能となり、また、従来技術のように白熱電球からの所定の青色を得るための濃色に着色したグローブを用い、発光効率が低いものから透明又は淡青色のガラス部材のグローブに代えて構成しているので発光効率の高いものを実施、提供することもできる。
【0045】
尚、本実施の形態では、前記着色反射板3cの下面Bは、主要反射面のため、仮に着色しようとする場合には、青の着色反射面としてダイクロイック蒸着面となるように構成しても良い。また、基板3bについては、なにも言及してはいないが、その上面に同様の色を着色するように構成しても良い。また、該基板上にLEDを整列させるための整列板を重ねて載設する場合には、該整列板の上面に同様の色を着色するように構成すれば良い。
【0046】
ところで、本発明の航空標識灯は、光源を白熱電球からLEDに代えて構成した場合でも、予め白熱電球用として決められた階調電流値に基づき最適な発光状態となるように補正し、制御することも可能である。このような実施の形態を図4乃至図7に示す。
【0047】
図4乃至図7は本発明に係る航空標識灯の第2の実施の形態を示し、図4は光源としてLEDを用いて構成された一方向又は2方向タイプの航空標識灯の構成例を示す側面図、図5は図4の航空標識灯に搭載された駆動回路部の具体例を示すブロック図、図6は図4の駆動回路部内のLED駆動回路部部の回路構成例を示す回路図、図7は図5の駆動回路部によるパルス幅制御動作を説明するためのタイミングチャートである。尚、図4に示す装置は、図1と同様の構成要素については同一の符号を付して説明を省略し、異なる部分のみを説明する。
【0048】
本実施の形態では、従来の白熱電球の負荷に対応した位相制御の段階状の階調信号が供給された場合でも、白熱電球のとき同様な発光特性が得られるようにLEDの駆動(発光)を補正し制御する駆動回路部を設けたことが特徴である。
【0049】
全体的な構成としては、一方向あるいは2方向タイプの航空標識灯1Aは、例えば地上に設置される灯体2と、この灯体2の上面に配置され、固定台2a、駆動回路部5を介して基板3b上の照射方向側に複数並設された光源としてのLED3aと、これらの構成部品収容するためのカバーユニット6と、複数のLED3aによる発光を透過するとともに、透過光の照射方向側に設けられ、これらの内装部材を防護する防護ガラス7とで主に構成されている。
【0050】
したがって、発光時には、取り付けられたLED3aに応じて青色光あるいは赤色光が前記防護ガラス7を介して水平方向に照射されることになり、誘導灯としての役割を果たすことができるようになっている。また、このような航空標識灯1Aを背後に対向配置して構成することにより、2方向のタイプの航空式標識灯と成す。
【0051】
本実施の形態における航空標識灯1Aでは、光源が白熱電球である航空標識灯用に階調信号(階調電流)が流れるパワーライン(配線ライン)に、上記構成のLED式航空標識灯1Aを接続した場合でも、搭載された駆動回路部5によって、白熱電球のとき同様な発光特性が得られるようにLEDの駆動(発光)が補正制御するようにしている。このような駆動回路部5を図5を参照しながら詳細に説明する。
【0052】
本実施の形態の航空標識灯1Aは、図5に示すように従来より使用されている定電流電源11(CCRともいう)のパワーラインLCに接続される。該定電流電源11は、管制塔や調光制御室からの遠隔操作信号(階調切換信号)を取り込む入力端子10を介して取り込んだ階調切換信号に基づき灯火の明るさを変えるところの階調タップ切替を行い、これにより得られた階調タップに応じた階調電流をパワーラインLCに供給する。つまり、この階調タップに応じた階調電流は、予め白熱電球用として設定されたものである。このような階調例を下記の表1に示す。
【0053】
【表1】

Figure 0004122607
このような階調電流(階調タップ電流ともいう)が流れるパワーラインLCに接続された航空標識灯1Aには、駆動回路部5が備えられている。したがって、前記パワーラインLC12からの階調電流は、駆動回路部5内に設けられた定電圧回路部12及び定電流検出回路部14に供給される。
【0054】
定電圧回路部12は、供給された階調電流から一定した定電圧を作成し、LED駆動回路部13に供給する。LED駆動回路部13は、供給された定電圧に基づきLED3aを発光させる。
【0055】
一方、電流検出回路部13は、取り込んだ階調電流からパワーラインLCに流れる階調電流値を検出し、検出結果を階調変換回路部15に与える。階調変換回路部15は、検出結果に基づき、例えば上述した図14に示す白熱電球の発光出力曲線、つまり、上記表1に示す階調電流に応じた明るさが得られるような階調電流値を補正するための階調信号を生成し、生成した階調信号を上記LED駆動回路部13に与える。
【0056】
LED駆動回路部13は、その階調信号を取り込み、LED駆動回路部5内の可変抵抗値を変化させることにより、LED3aに流れる階調電流値自体を制御して白熱電球と同様の発光出力(表1参照)が得られるようにLED3aの発光制御を行う。
【0057】
例えば、単に階調信号に基づきLED電流を変えて発光制御する方法では、LED駆動回路部13は、単純には限流抵抗で一定電流を流す回路で構成されるが、前述の灯火の明るさを変化させるために可変型定電流回路で構成されたものである。このLED駆動回路部をさらに詳細に説明すると、図6に示すように、図中の定電流回路であるLED駆動回路部13は、基本的な回路構成であるが、トランジスタQ1はそのベース回路に基準電圧源V1と抵抗R1を有し、またエミッタ回路に抵抗R2を有して構成されている。ベース回路の入力信号が“OFF”時、すなわちLED3aを点灯する信号時には、
V1=I1×R2+VBEで示されるLED電流I1が一定電流として流れることになる。このとき、VBEはトランジスタQ1のベース・エミッタ間の順電圧である。また、抵抗R2は可変式のものであり、この抵抗R2による抵抗値は、上述したように前記階調変換回路部15からの変調された階調信号に基づき決定されることにより、結果的にLED電流I1を、図14で示す白熱電球とLEDの階調特性の違いを補正する所定の値に可変する。
【0058】
これにより、LED3aを設けて航空標識灯1Aを構成し、白熱電球用の階調電流が流れるパワーラインLCに接続した場合でも、白熱電球使用時と同様の階調電流に応じた発光特性を得ることが可能となる。
【0059】
また、本誌実施の形態では、上述したようにLED駆動回路部13を、前記可変型定電流回路の代りにLEDをパルス幅制御方式で駆動するように構成しても良い。この場合には、例えばLED駆動回路13をパルス幅制御回路(PWM)として構成する。具体的には、図6に示すトランジスタQ1のベースにスイッチ手段としての他のトランジスタのコレクタ(図示せず)を接続し、該トランジスタのエミッタを接地するとともに、ベースには、パルス幅制御回路(図示せず)からのパルス信号を与えるように構成する。つまり、このパルス幅制御回路は、階調変換回路部15からの階調信号に基づきパルス幅を制御し、このパルス信号を用いて前記スイッチング素子としてのトランジスタのオン時間を調整制御する。これによりLED電流I1は時間的に点滅制御されることにより、その結果LED3aの明るさを可変することになり、白熱電球使用時と同様の階調電流に応じた発光特性を得ることが可能となる。
【0060】
次に、上記パルス幅制御方法による発光補正動作を図7を参照しながら詳細に説明する。
【0061】
いま、図4に示すLED3aを用いて構成された航空標識灯1Aを点灯させるものとする。この場合、LED3aの発光特性は、上述した図14に示すように通常は白熱電球の発光特性と比べて、直線的なものとなり、つまり、階調電流の階調(表1参照)に応じて常に高いものとなり、つまりその発光出力の差を補正する必要がある。
【0062】
そこで、LED駆動回路部内のパルス幅制御回路(図示せず)は、階調変換回路部15(図5参照)による階調信号から、LED3aの発光出力がその階調電流値に応じた高い発光出力を得る必要が有る場合(高階調時)には、図7(a)に示すようなパルス幅が広いパルス信号を生成し、図示しないスイッチング素子のオン時間を調整する。これにより、時間的に長くLED電流I1が点滅制御されることで、LED3aは、階調電流値に応じて最適な発光出力となる。
【0063】
一方、前記パルス幅制御回路(図示せず)は、階調変換回路部15(図5参照)による階調信号から、LED3aの発光出力がその階調電流値に応じた低い発光出力を得る必要が有る場合(低階調時)には、図7(b)に示すようなパルス幅が狭いパルス信号を生成し、図示しないスイッチング素子のオン時間を調整する。これにより、時間的に短くLED電流I1が点滅制御されることで、LED3aは、階調電流値に応じて最適な発光出力となる。
【0064】
したがって、本実施の形態によれば、上述した駆動回路部による発光制御により、従来通りの標識灯用定電流電源に接続し、且つ灯火の階調制御を行うことが可能となり、長寿命で且つ発光効率の高いLED式航空標識灯を提供することが可能となる。また、LED式標識灯の設置に伴い、新たに配線工事等もする必要がないので、全体的なコストを低減することも可能である。
【0065】
ところで、前記第2の実施の形態のようなLED式航空標識灯では、LEDの温度が変化した場合には、この温度変化に応じて発光出力が変化してしまい、一定した発光出力が得られないことは、従来技術でも説明した通りである。
【0066】
そこで、本発明では、LEDの温度が変化した場合でも、この温度変化に応じて発光出力を補正し、常に安定した一定発光出力を得ることも可能である。このような実施の形態を図8及び図9に示す。
【0067】
図8及び図9は本発明に係る航空標識灯の第3の実施の形態を示し、図8は一方向又は2方向タイプのLED式航空標識灯に搭載された駆動回路部の具体例を示す回路構成図、図9は図8の駆動回路部によるLED電流の波高値制御動作及びパルス幅制御動作を説明するためのタイミングチャートである。尚、図8に示す回路は、図5あるいは図6に示す回路と同様の構成要素については同一の符号を付して説明を省略し、異なる部分のみを説明する。
【0068】
本実施の形態では、LEDの温度による発光出力の補償制御を行うもので、前記実施の形態にて説明した本質的な視覚条件に対応する標識灯の明るさ制御の階調制御(例えばパルス幅制御)と、温度補償制御としてLED電流の波高値制御とをそれぞれ実施することにより、LEDの温度が変化した場合でも、安定した発光出力が得られるように構成したことが前記実施の形態と異なる点である。
【0069】
LED式航空標識灯の全体の概略構成としては、前記第2の実施の形態における航空標識灯1A(図4参照)と同様である。
【0070】
また、本実施の形態のLED式航空標識灯には、図示はしないが図5に示す駆動回路部5(図5参照)が設けられており、また図8に示すように該駆動回路部5内のLED駆動回路部13内には、前記第2の実施の形態と同様にLEDを駆動するための定電流回路及び標識灯の灯火の明るさを外部からの階調制御信号を受け、パルス幅制御に変換するパルス幅制御部20(PWM)が設けられている。定電流回路及びパルス幅制御部20の動作については、前記第2の実施の形態と略同様である。
【0071】
本実施の形態における特徴となる点は、図8に示すように上記定電流回路、パルス幅制御部20及びスイッチング素子(トランジスタQ2)を設けた他に、LEDに生じた温度を検出する温度検出回路部21と補償回路部22を設けてLED駆動回路部を構成したことが特徴である。
【0072】
つまり、温度検出回路部21は、LEDに生じた温度を検出し、検出結果を補償回路部22に与える。補償回路部22は、供給された検出結果に基づき、LEDの発光出力が、例えば図15に示す特性とは異なりある一定した所定レベルの発光出力となるように補正するための補正信号(抵抗値)を決定し、これを図8に示す可変抵抗R2に与える。これにより、可変抵抗R2の抵抗値を変化させることにより、LEDに流れるLED電流I1を変化させ、最適なLEDの発光出力が得られるように制御する。
【0073】
さらに詳細に構成を説明すると、例えば、図8に示すパルス幅制御部20に接続された入力端子10には、図5中に示す階調変換回路部15からの階調信号が供給されるようになっているが、このときの階調制御信号は、前記第2の実施の形態にて説明したように具体的には電源のタップ(切替)信号として上記表1に示すように規定されているものである。
【0074】
また、このような階調信号に基づきパルス幅制御するための回路構成としては、図8に示すように、定電流回路のトランジスタQ1のベースにスイッチ手段としてのトランジスタQ2のコレクタ(図示せず)を接続し、該トランジスタQ2のエミッタを可変抵抗R2の他端に接続するとともに、ベースには、パルス幅制御回路(図示せず)からのパルス信号を与えるように構成する。
【0075】
一方、定電流回路においては、トランジスタQ1はそのベース回路に基準電圧源V1と抵抗R1とが接続され、またエミッタ回路には抵抗R2が接続される。
したがって、動作時には、前述のパルス幅制御信号によって駆動されるトランジスタQ2を介して点滅制御され、点灯時にはV1=I1×R2+VBEで規定されるLED電流I1が一定電流として流れる。尚、VBEはトランジスタQ1のベース・エミッタ順電圧値である。
【0076】
このとき、抵抗R2は上述したように可変式のもので、LEDの温度を温度検出回路部21によって検出され、その後補償回路部22によってLEDの温度(検出温度)に対応してLED電流I1を増減する補正量分としての抵抗値が供給されることで、抵抗値を変化させる。
【0077】
次に、本実施の特徴となる動作を図9を参照しながら詳細に説明する。
【0078】
いま、図4に示すLED3aを用いて構成された航空標識灯1Aを点灯させるものとする。この場合、LED3aの発光特性は、上述した図15に示すように温度が高くなるにつれてその発光出力が劣化してしまう。したがって、温度の高低に関わらず、常に安定した一定の発光出力を得るための発光補正する必要がある。
【0079】
この場合、駆動回路部5は、白熱電球用の標識灯用定電流電源の接続に伴い、階調電流に応じた最適な発光出力が得られるように、前記第2の実施の形態と同様にパルス幅制御する。詳細については、前記第2の実施の形態に説明したので省略する。
【0080】
同時に、駆動回路部5は温度補償制御としてLED電流の波高値制御を行う。この場合、駆動回路部5内のLED駆動回路部では、温度検出回路部21によってLEDの温度が検出され、この検出結果を取り込む補償回路部22は、例えば該検出結果からLED3aの温度が低く発光出力をさほど補正する必要がない場合(低温度時:図15参照)には、LED電流をさほど変化させないような補正信号(抵抗値)を決定し、可変抵抗R2の抵抗値を制御して、LED電流の波高値を決定する。つまり、図9(a)に示すようなパルスの高さとなるパルス信号に基づき、スイッチング素子のオン時間及びLED電流を調整する。これにより、LEDの点滅制御とともにLEDの流れる電流値を調整することが可能となり、最適な発光出力を得ることが可能となる。勿論、LED電流の波高値制御は、高階調時及び低階調時にも、図9(a)に示すように実施される。
【0081】
一方、補償回路部22は、例えば温度検出回路部21の検出結果からLED3aの温度が高く発光出力が高くなるように補正する必要がある場合(高温度時:図15参照)には、LED電流を大きく変化させるような補正信号(抵抗値)を決定し、可変抵抗R2の抵抗値を制御して、LED電流の波高値を決定する。つまり、図9(b)に示すようなパルスの高さとなるパルス信号に基づき、スイッチング素子のオン時間及びLED電流を調整する。これにより、LEDの点滅制御とともにLEDの流れる電流値を調整することが可能となり、高温温度の場合でも、最適な発光出力を得ることが可能となる。勿論、高温度時の場合でもLED電流の波高値制御は、高階調時及び低階調時にも、図9(b)に示すように実施される。
【0082】
したがって、本実施の形態によれば、前記第2の実施の形態と同様の動作、効果する他に、上述した駆動回路部によるLED電流の波高値制御を併用して実施することにより、LEDの温度変化に伴い変化する発光出力を常に安定した規定の所定レベルの発光出力となるように補正制御することが可能となる。よって、様々な気象条件下においても、発光出力が変化しない優れた発光特性を有する航
空標識等を提供することができる。
【0083】
尚、本実施の形態においては、LEDの温度を検出する方法として、標識灯内に密閉的にLED基板が収納されることから、例えばその灯器内の空間温度を検出するように構成しても良く、また温度検出精度をより向上させるために、複数のLED素子を整列させるために設ける整列板をアルミ材等の熱伝導の良い材質で構成し、放熱効果をもたせるとともに、LEDの温度を検出する方法として、例えばこの整列板自体の温度や放熱効果作用により得られた灯器内温度を検出するようにしても良い。
【0084】
ところで、本発明では、航空標識灯が点滅タイプで有る場合にも前記第2及び第3の実施の形態のようにLEDの発光制御を行うことが可能である。しかしながら、前記第2及び第3の実施の形態のように灯火の明るさを階調制御する波高値制御では、上述したように定電流回路が必須の構成要素であるため、通常使用されるLEDの限流回路としての抵抗回路に比べて高価となってしまう。このような不都合を改善した実施形態を図10乃至図12に示す。
【0085】
図10乃至図12は本発明に係る航空標識灯の第4の実施の形態を示し、図10は光源としてLEDを用いて構成された点滅タイプの航空標識灯の構成例を示す正面図、図11は図10の航空標識灯に搭載された駆動回路部の具体例を示す回路構成図、図12は図11の駆動回路部によるパルス幅制御動作及び点滅発光制御動作を説明するためのタイミングチャートである。尚、図10に示す装置及び図11に示す回路群は、図4及び図8と同様の構成要素については同一の符号を付して説明を省略し、異なる部分のみを説明する。
【0086】
本実施の形態では、高価となる定電流回路(図8参照)に代えて安価の抵抗で構成される限流回路を設けるとともに、入力される点滅信号とパルス幅制御部(図8参照)からの階調信号との論理積を出力するAND回路と、該AND回路の出力信号に基づき限流回路内に接続されたLEDに与えるLED電流を時間的にスイッチングするスイッチング素子Qとを設けることにより、パルス幅制御及び点滅発光制御を行い、階調制御を可能にすることで、コストの低減化を図るように構成したことが前記実施の形態と異なる点である。
【0087】
全体的な構成としては、点滅タイプの航空標識灯1B(滑走路警戒灯:RGL灯火)は、図10に示すように、例えば地上に設置される灯体2と、この灯体2の上部に装着された例えば2つのLED群3a,3bと、これらのLED群3a,3bが装着されLED群3a,3bからの光を集光してそれぞれ照射する反射鏡を含んで構成されたLED基板3A,3Bとで主に構成されている。尚、発光色を代える場合には、前記LED基板3A,3B上に反射鏡の反射光を透過して対応する色の光をそれぞれ照射する色フィルタを設けて構成しても良い。
【0088】
したがって、これらの反射鏡74a,74b等を用いることで、水平方向における照射色光の指向性が良好となり、また図示しない調光制御部からの点滅信号が供給されることで、これら2つの光源としてのLED群3a,3bは、点滅発光するようになっている。尚、上記LED群3a,3bとしては、黄色の光を発光する黄色LEDを用いることにより、滑走路警戒灯としての役割を果たす。
【0089】
本実施の形態では、図10に示す灯体2内にこれらのLED群3a,3bの発光の階調制御及び点滅発光制御を行うための駆動回路部5Aが設けられている。この駆動回路部5Aは、前記実施の形態と同様にRGL灯火を視認外部条件によって明るさを上記表1に示す階調パターンで発光制御する。
【0090】
具体的には、駆動回路部5Aにおいては、例えば図11に示すように入力端子10を介して階調信号が取り込まれ、また入力端子30を介して点滅信号が取り込まれるようになっており、階調信号については、前記第2の実施の形態と同様にパルス幅制御を行うパルス幅制御部20に供給、点滅信号については、AND回路に供給する。パルス幅制御部20からの出力もAND回路に供給する。
【0091】
AND回路は、これらの入力信号の論理積をとり、つまり、点滅信号のタイミングに基づく階調パルス信号をスイッチング素子Qのベースに供給する。
【0092】
一方、どちらか一方のLED群3a,3bを接続した限流回路では、LED素子の複数LED1〜LEDnを1つの直列回路とし、一端は限流素子の抵抗Rを介して電源Vpに接続される。またこの直列回路の他端は他のLED直列回路群と共通接続され、さらにスイッチ素子のトランジスタQのコレクタに接続される。
【0093】
このような構成より、簡単な回路構成でパルス幅制御及び点滅発光制御が可能となる。
【0094】
次に、本実施の特徴となる動作を図12を参照しながら詳細に説明する。
【0095】
いま、図10に示す航空標識灯1B(RGL灯火)を点灯させるものとする。すると、図11に示す駆動回路部5Aは、前記第2の実施の形態と同様に階調パターンに基づくパルス幅制御を行う。つまり、パルス幅制御部20は、高階調時とする必要が有る場合にはパルス幅の広いパルス信号を、低階調時とする必要が有る場合にはパルス幅の狭いパルス信号をAND回路に与える。
【0096】
その後AND回路によってこの出力パルスと点滅信号との論理積が出力されることで、スイッチング素子のトランジスタQには、図12(a)または図12(b)に示すような点滅信号のON時に階調信号に応じたパルス幅制御信号が供給されることになる。
【0097】
すると、該トランジスタQは、供給されたパルス幅制御信号で高速点滅駆動し、結果として点滅する際の点灯時についても灯火の明るさが階調に応じて制御されるとともに、他方のLED群についても同様に階調制御される。
【0098】
また、点滅信号のオンオフに基づき上記2つのLED群は点滅発光制御されることになる。
【0099】
したがって、本実施の形態によれば、上述のように灯火の明るさを制御するものとして階調信号に応じたパルス幅制御信号を用いて階調制御及び点滅発光制御することにより、点滅のスイッチ素子の兼用化ができ、またLED電流の限流を抵抗素子で構成することができることで、より安価な標識灯を提供できる。
【0100】
尚、本発明は上記第1乃至第4の実施の形態に限定されるものもではなく、例えば各実施の形態における特徴的な構造や発光制御方法を組み合わせて構成しても良く、効果が得られることは明らかである。
【0101】
【発明の効果】
以上、述べたように本発明によれば、LEDを光源として用いることにより、光源の長寿命化及び発光効率を向上させることができるとともに、低コストで最適な発光制御を行うことのできる航空標識灯を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の航空標識灯の第1の実施の形態を示し、全方向タイプの標識灯の構成例を示す一部破断した構成図。
【図2】図1の航空標識灯の平面図。
【図3】図2の航空標識灯のAーA´線断面図。
【図4】本発明の航空標識灯の第2の実施の形態を示し、一方向又は2方向タイプの標識灯の構成例を示す側面図。
【図5】図4の標識灯に搭載された駆動回路部の具体例を示すブロック図。
【図6】図4の駆動回路部内の定電流回路であるLED駆動回路部の回路構成例を示す回路図。
【図7】図5の駆動回路部によるパルス幅制御動作を説明するためのタイミングチャート。
【図8】本発明の航空標識灯の第3の実施の形態を示し、該標識灯に搭載された駆動回路部の具体例を示すブロック図。
【図9】図8の駆動回路部による温度変化に応じたパルス幅制御動作を説明するためのタイミングチャート。
【図10】本発明の航空標識灯の第4の実施の形態を示し、点滅タイプの標識灯の構成例を示す正面図。
【図11】図10の標識灯に搭載された駆動回路部の具体例を示すブロック図。
【図12】図8の駆動回路部による点滅調光制御及びパルス幅制御動作を説明するためのタイミングチャート。
【図13】従来の光源に白熱電球を用いて構成された航空標識灯の一例を示す構成図。
【図14】白熱電球とLED表示素子との階調電流に応じた発光特性の違いを示す特性図。
【図15】LED表示素子の温度高低に応じた発光特性を示す特性図。
【符号の説明】
1…航空標識灯、
2…灯体、
3…光源部、
3a…発光ダイオード(LED)、
3b…基板、
3c…着色反射板。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aerial beacon used for an airport runway, taxiway, etc., and in particular, it is possible to extend the life of the light source and improve the light emission efficiency, and to optimally control the light emission state. Related to aviation beacon lights.
[0002]
[Prior art]
In general, for air traffic lights used for airport runways and taxiways, guidance to the runway, guidance at the time of takeoff and landing, or guidance to the intrusion route, etc. is clear and reliable even under severe weather conditions. In order to make an airplane operator recognize it, an improvement in luminous efficiency is desired. In addition, air traffic sign lights are desired not only to have durability that can withstand harsh use conditions, but also to extend the life of the light source.
[0003]
Usually, various types of such aviation beacon lights are manufactured according to the purpose, and incandescent light bulbs that are easier to control dimming than conventional light sources are used as the light sources of these beacon lights. ing. FIG. 13 shows an example of an air traffic sign lamp composed of a light source using such a conventional incandescent bulb.
[0004]
FIG. 13 is a block diagram showing an example of a ground-type aerial beacon lamp composed of a light source using a conventional incandescent bulb, and FIG. 13 (a) is an omnidirectional type capable of irradiating light in all directions, Fig. 13 (b) is a two-way type that can irradiate light in two directions by providing one or two lights, and Fig. 13 (c) is a blinking mainly for the purpose of encouraging caution during guidance. Each type is shown.
[0005]
To explain in order, as shown in FIG. 13A, the omnidirectional type air traffic sign light 50 is used as a guide light for a runway or the like. For example, by illuminating a blue color in all directions, Has come to play a role.
[0006]
The aviation beacon lamp 50 includes, for example, a lamp 51 installed on the ground, an incandescent bulb 52 as a light source mounted on the upper surface of the lamp 51, and directivity of the light from the incandescent bulb 52 in the horizontal direction. It is mainly composed of a lens 53 for irradiating well and vertically, and a globe 54 colored in blue that accommodates these lens 53 and the incandescent bulb 52. Since the globe 54 is colored blue, it is possible to irradiate blue light in all directions. In the horizontal direction, since the lens 53 surrounds the incandescent bulb 52, it is possible to emit blue light with good directivity.
[0007]
However, since the incandescent lamp 51 uses an incandescent bulb as a light source, the lifetime of the element is short, and a globe in which white light from an incandescent bulb is colored in blue to obtain, for example, blue light as described above. Therefore, the luminous efficiency is very poor. Therefore, as is well known, instead of an incandescent bulb having a short element lifetime, an LED-type indicator lamp using a long-life and blue light-emitting diode (hereinafter referred to as LED) has also been proposed.
[0008]
However, in the LED-type indicator lamp based on such a proposal, for the LED, the element itself is composed of a transparent resin lens in order to increase the light emission efficiency, and the light distribution with the substrate on which a plurality of LED elements are disposed. However, since it uses a transparent lens LED and a transparent globe for high efficiency, no color is produced when the light is turned off. For this reason, there is a drawback that when the lights are turned off, it is not possible to distinguish the color lights by the blue globe 54 as in the prior art. If the blue globe is simply used, the LED emission color is also blue, which may adversely affect the light emission efficiency. There was also a drawback.
[0009]
On the other hand, the one-way or two-way type air traffic sign lamp 60 as shown in FIG. 13B is used as a guide light for a runway or the like by irradiating light corresponding to the color of the color filter 65 in the horizontal direction. Has come to play a role.
[0010]
The air traffic light 60 includes, for example, a lamp 61 installed on the ground, an incandescent bulb 62 as a light source mounted on the upper surface of the lamp 61, and a reflection that collects and irradiates the light of the incandescent bulb 62. A mirror 63, a color filter 65 that transmits light reflected by the reflecting mirror 63 and emits light of a corresponding color, a protective glass 66 that protects the surface of the color filter 65, and these optical system members are accommodated. The unit 64 is mainly configured. By using the reflecting mirror 63 and the color filter 65, the directivity of the irradiation color light in the horizontal direction is improved. For example, a red-light aerial beacon lamp used as a runway approach light is configured to emit red light through a red filter, and the directivity of red irradiation light is also good. Further, by configuring such an air traffic sign light 64 so as to be opposed to the back, a bi-directional type air traffic light is formed.
[0011]
However, in consideration of prolonging the lifetime of the element of the light source as described above, it is desirable to use an LED even in this type of aircraft sign lamp 60. Further, for example, by configuring a marker lamp using a plurality of red LEDs, not only the life of the light source can be extended, but also advantages such as no need for a red filter can be obtained.
[0012]
In general, in the case of an air traffic sign light, it is necessary to control the brightness of the light according to external visual conditions such as nighttime, twilight, rainy weather, and foggy weather (gradation). This brightness gradation signal is given as a constant current line power in a stepwise phase control corresponding to the load of a conventional incandescent bulb. Therefore, even if the light source is simply changed from an incandescent lamp to an LED display element, the LED-type marker lamp has a gradation characteristic of the light source element as shown in the characteristic diagram of the light emission output corresponding to the gradation current of FIG. Because of the difference, it is impossible to apply this signal to the LED-type marker lamp 60 as it is. That is, when an LED is used as shown in FIG. 14, it becomes brighter than an incandescent light bulb and emits light more than necessary in spite of the same gradation current. As such, there is a disadvantage that it is unsuitable.
[0013]
Further, the LED has a characteristic that the light emission output also changes with a temperature change. For example, the red LED has a temperature characteristic as shown in FIG. That is, the light emission output decreases as the temperature increases. In addition, as described above, it is necessary to control brightness (gradation) of such an aerial beacon lamp, but it is also necessary to maintain a certain prescribed brightness. In addition, since air traffic lights are used outdoors, the electrical circuit inside the lamp is configured in a sealed structure and the maintenance time is limited to the airport closing time at night. It is necessary to have a natural cooling structure without using a cooling fan or the like due to the heat generated by the lamp.
[0014]
For the above reasons, in a simple lamp using an LED, the temperature rises due to heat generated when it is turned on, and forced cooling is difficult, so that it is difficult to maintain the light emission output at a constant specified value. There was also.
[0015]
Further, in the blinking type air traffic sign lamp as a conventional example, as shown in FIG. 13C, for example, a lamp 71 installed on the ground and, for example, two incandescent bulbs mounted on the upper surface of the lamp 71 73a, 73b, reflecting mirrors 74a, 74b that collect and irradiate the light from these light sources 73a, 73b, respectively, and the corresponding color light transmitted through the reflected light of these reflecting mirrors 74a, 74b, respectively. It is mainly composed of the color filters 75a and 75b to be irradiated. By using the reflecting mirrors 74a and 74b and the color filters 75a and 75b, the directivity of the irradiation color light in the horizontal direction is improved, and a blinking signal is supplied from a dimming control unit (not shown). The two light source units 72A and 72b are configured to flash and emit light.
[0016]
However, in consideration of prolonging the lifetime of the light source element as described above, the use of LEDs is also desired in this type of runway warning light 70 (also referred to as RGL lighting). Thus, it is necessary to alternately flash a pair of lights, and it is necessary to control the brightness of the lights according to external visual conditions such as nighttime, twilight, rainy weather, and foggy weather (gradation). However, in order to adjust the brightness of the LED, a control method in which the peak value of the LED current is changed can be considered. However, in this control method, a constant current circuit is used, and the resistance as a current limiting circuit of the LED is considered. There is also a problem that the cost is higher than that of a circuit, and in particular, when a plurality of LED elements are used as a lighting light source, the cost is increased.
[0017]
[Problems to be solved by the invention]
As described above, in the conventional aerial beacon lamp, it is conceivable to use a long-life LED instead of the conventional incandescent bulb in view of the long life of the light source. When this LED is used, for example, blue light is emitted using a blue globe. In the omnidirectional type that irradiates the light, the luminous efficiency is adversely affected. In the one-way or two-way type, the optimum light emission output cannot be obtained according to the gradation current, and the LED temperature changes according to the temperature change of the LED. In the type in which the luminous efficiency is changed and the flashing lamp is capable of flashing, there are various problems that an expensive flashing circuit is required to achieve an optimal flashing lamp and the cost becomes high.
[0018]
Therefore, the present invention has been made in view of the above problems, and by using an LED, it is possible to extend the life of the light source and improve the light emission efficiency, and to perform optimal light emission control at a low cost. The purpose is to provide an aerial beacon light.
[0019]
[Means for Solving the Problems]
The air traffic sign lamp of the invention according to claim 1 A lamp body; a light source comprising a light-emitting diode element disposed on the lamp body; and a gradation control capable of changing the brightness of the light-emitting diode for each gradation by phase control operated from the outside. The gradation current flowing through the constant current power line is taken in, and the light emitting diode is caused to emit light by the current obtained by generating a constant voltage source from the gradation current, and the current variable by phase control by an external operation A drive circuit unit that detects, converts the light emission gradation signal of the light emitting diode into a light emission gradation signal based on the detection result, and drives and controls light emission by the light emitting diode for each gradation based on the light emission gradation signal; It is characterized by comprising.
[0023]
Claim 2 The aviation beacon of the invention described in the claims 1 In the aviation beacon lamp according to claim 1, the drive circuit unit generates a constant voltage for energizing the light emitting diode based on a gray-scale current flowing in the constant current power line; and generated by the constant voltage circuit An LED driving circuit for causing the light-emitting diode to emit light by a light-emitting diode current obtained based on the constant voltage; the gray-scale current flowing in the constant-current power line is taken in, and the gray-scale variable by phase control by an external operation A current detection circuit that detects current and outputs a detection result; based on the detection result from the current detection circuit; converts the light emission gradation signal of the light emitting diode according to the gradation by the phase control; And a gradation conversion circuit that drives and controls light emission of the light emitting diode by the LED drive circuit based on a tone signal.
[0024]
Claim 3 The aviation beacon of the invention described in the claims 2 In the aviation beacon described in the above, the gradation conversion circuit outputs the light emission gradation signal corresponding to the peak value of the light emitting diode current, and the LED driving circuit includes a variable resistor, and the light emission gradation The gradation of light emission of the light emitting diode is controlled by changing a resistance value by a variable resistor based on a signal.
[0025]
Claim 4 The aviation beacon of the invention described in the claims 2 In the aviation beacon described in the above, the gradation conversion circuit outputs a pulse width control signal for modulating the blinking ratio of the light emitting diode as the light emission gradation signal, and the LED driving circuit includes the light emitting diode. A switching element for temporally turning on and off the supply of current, and controlling the on / off time by the switching means based on the pulse width signal, thereby controlling gradation of light emission of the light emitting diode. To do.
[0026]
Claim 1 To claims 4 According to the invention, by providing the drive circuit unit capable of either the pulse width light emission control or the light emitting diode current peak value control, it is connected to the conventional constant current power source for the marker lamp, and It becomes possible to perform gradation control of the lamp, and it is possible to provide an LED type air traffic sign lamp having a long life and high luminous efficiency. Moreover, since it is not necessary to newly perform wiring work or the like with the installation of the LED type marker lamp, the overall cost can be reduced.
[0027]
Claim 5 The aviation beacon of the invention described in the claims 1 In the aviation beacon lamp according to claim 1, the drive circuit unit generates a constant voltage for energizing the light emitting diode based on a gray-scale current flowing in the constant current power line; and generated by the constant voltage circuit An LED driving circuit for causing the light-emitting diode to emit light by a light-emitting diode current obtained based on the constant voltage; the gray-scale current flowing in the constant-current power line is taken in, and the gray-scale variable by phase control by an external operation A current detection circuit that detects current and outputs a detection result; based on the detection result from the current detection circuit; converts the light emission gradation signal of the light emitting diode according to the gradation by the phase control; A gradation conversion circuit for driving and controlling light emission of the light emitting diode by the LED driving circuit based on a modulation signal; and detecting a temperature or an ambient temperature of the light emitting diode A correction circuit for generating a correction signal for obtaining a predetermined light emission output based on a detection result from the temperature detection means, and changing a light emitting diode current by the LED driving circuit in accordance with the correction signal; It is characterized by comprising;
[0028]
Claim 6 The aviation beacon of the invention described in the claims 5 In the aviation beacon described in the above, the gradation conversion circuit outputs a pulse width control signal for modulating the blinking ratio of the light emitting diode as the light emission gradation signal, and the LED driving circuit includes the light emitting diode. A switching element and a variable resistor for temporally turning on and off the current supply are provided, and an on / off time by the switching means is controlled based on the pulse width signal, and at the same time, the variable according to a correction signal from the correction circuit By changing the resistance value of the resistor, light emission gradation control of the light emitting diode and light emission correction control associated with temperature change are performed.
[0029]
Claim 7 The aviation beacon of the invention described in the claims 5 In the aviation beacon lamp according to claim 1, when the alignment plate for aligning the plurality of light emitting diodes is provided, the temperature detection circuit detects the temperature of the alignment plate and outputs a detection result. Features.
[0030]
Claim 5 Or claims 7 According to the invention, the temperature detection circuit for detecting the temperature or the ambient temperature of the light emitting diode, the correction signal for obtaining a predetermined light emission output based on the detection result from the temperature detection means, and the correction signal Accordingly, by providing a correction circuit that changes the light-emitting diode current by the LED driving circuit, it becomes possible to control the light emission efficiency that changes with the temperature change of the light-emitting diode to constant light emission, and the light emission to the gradation It is also possible to perform gradation control according to the above. Other operations and effects are the same as those of the third to sixth aspects of the invention.
[0031]
Claim 8 The aviation beacon of the invention described in the claims 1 If the light source is composed of at least two light sources capable of blinking control, the drive circuit unit uses the light emitting diode blink ratio modulation as the light emission gradation signal. The logical product of the pulse width control signal and the flashing signal for controlling the flashing of the at least two light sources is obtained, and based on the logical product, a group of light emitting diodes is connected in series via a resistor for each light source. By controlling the on / off time of the switching element for turning on / off the current supply of the series circuit, gradation control of light emission by the light emitting diode and blinking light emission control are performed.
[0032]
Claim 9 The aviation beacon of the invention described in the claims 8 The air traffic sign lamp according to claim 1, wherein the at least two light sources are each configured by using a yellow light emitting diode that emits yellow light.
[0033]
Claim 8 And claims 9 According to the invention, even when a blinking type air traffic sign lamp is configured by providing at least two light sources composed of light emitting diode groups, it is connected to a conventional constant current power source for a marker lamp as in the above invention, and It becomes possible to perform gradation control and flashing light emission control of a light, and it is possible to provide an LED type air traffic sign lamp having a long life and high luminous efficiency. Further, since the drive circuit section has a simple series circuit configuration, gradation control and blinking control can be performed as described above without providing an expensive constant current circuit, thus greatly contributing to cost reduction.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the invention will be described with reference to the drawings.
FIG. 1 to FIG. 3 show a first embodiment of an air traffic sign lamp according to the present invention, and FIG. 1 is a configuration diagram showing an example of a ground type air traffic sign lamp configured using an LED display element as a light source. 2 is a top view of the air traffic sign light of FIG. 1, and FIG. 3 is a cross-sectional view of the air traffic light of FIG.
[0035]
In the present embodiment, a plurality of long-life LEDs are used as a light source, and a reflecting mirror that reflects light emitted from these LEDs, for example, colored blue, is provided so as to be interposed at a predetermined position. As a result, a color developing action can be obtained even when the lights are turned off, thereby solving the problem that conventionally it was impossible to identify the color of the air traffic light when the lights were turned off.
[0036]
As shown in FIG. 1, the omnidirectional type air traffic sign lamp 1 of this embodiment is used as a guide light for a runway or the like. For example, by irradiating a blue color in all directions, It comes to play a role.
[0037]
As a specific configuration, the aerial sign lamp 1 includes, for example, a lamp body 2 installed on the ground, and a plurality of LEDs 3a, a substrate 3b, and a colored reflector 3c mounted on the upper surface of the lamp body 2. The light source unit 3 configured and the globe 4 serving as an outer peripheral cover that accommodates the light source unit 3 and is attached to the upper surface of the lamp body 2 are mainly configured.
[0038]
In the light source unit 3, the plurality of LEDs 3 a emit blue light, for example, and are arranged in parallel on the substrate 3 b via the center (center with the substrate) as shown in FIG. It is connected to a control tower, a dimming control room, etc. (not shown) via a connection cord and a main wiring cord (also called a power line). As a result, a gradation signal is supplied from a control tower, a dimming control room, or the like (not shown), whereby blue light emission of the plurality of LEDs 3a is controlled. In addition, these LED3a itself is comprised with the transparent resin lens in which high luminous efficiency is possible.
[0039]
On the other hand, the colored reflecting plate 3c is formed, for example, as shown in FIG. 3 in which a cylindrical double-sided reflecting member is formed in a fan shape so that the lower opening is small and the upper opening is wide. It is formed. Further, as shown in FIG. 3, the colored reflector 3c is configured such that the upper surface (inner surface) A is colored, for example, blue. In this case, the lower surface B of the colored reflector 3c is not colored in order to improve the light reflection performance and directivity in the horizontal direction as shown in FIG. If necessary, the lower surface B may be colored in a predetermined color.
[0040]
As shown in FIG. 3, the colored reflector 3c having such a configuration is mounted on the substrate 3b so as to surround a predetermined number of LEDs 3a on the substrate 3b.
[0041]
Further, unlike the conventional case, the globe 4 is formed of, for example, an uncolored transparent glass member, and irradiates the colored light of the LED 3a and the reflected light of the colored reflecting plate 3c through all directions. Moreover, it also has a role which prevents damage from the outside to the air-marking lamp 1.
[0042]
With such a configuration, the colored light from the predetermined number of LEDs 3a surrounded is reflected directly by the light and the upper surface A of the colored reflector 3c and irradiated upward in a fan shape, and at the same time, the colored reflector The colored light from the other LEDs 3a not surrounded by 3c is reflected by the lower surface B of the colored reflecting plate 3c, so that it can be irradiated in the horizontal direction with good directivity.
[0043]
In the present embodiment, since the entire upper surface A of the colored reflector 3c is colored, for example, in blue, even when the aviation beacon lamp 1 is extinguished, it is colored when exposed to external light (for example, sunlight). Therefore, it is possible to identify the lights.
[0044]
Therefore, compared with the conventional air traffic light (see FIG. 13 (a)), since the LED having a high directivity is used as the light source, the light emission efficiency is high and the light emission performance such as directivity can be improved. In addition, the life of the light source can be extended. Furthermore, even when the light is extinguished, color can be generated by reflecting external light to the colored reflecting plate 3c, so that the air traffic light itself can be recognized, and in order to obtain a predetermined blue color from the incandescent light bulb as in the prior art. Since a glove colored in a dark color is used instead of a glove with a transparent or light blue glass member instead of one with a low luminous efficiency, a high luminous efficiency can be implemented and provided.
[0045]
In the present embodiment, the lower surface B of the colored reflecting plate 3c is a main reflecting surface. Therefore, if it is intended to be colored, it may be configured to be a dichroic vapor deposition surface as a blue colored reflecting surface. good. Moreover, although nothing is mentioned about the board | substrate 3b, you may comprise so that the same color may be colored on the upper surface. In addition, when an alignment plate for aligning LEDs is placed on the substrate in an overlapping manner, the same color may be colored on the upper surface of the alignment plate.
[0046]
By the way, the air traffic sign light of the present invention is corrected and controlled so as to be in the optimum light emission state based on the gradation current value determined in advance for the incandescent light bulb, even when the light source is changed from the incandescent light bulb to the LED. It is also possible to do. Such an embodiment is shown in FIGS.
[0047]
4 to 7 show a second embodiment of an air traffic sign lamp according to the present invention, and FIG. 4 shows an example of a configuration of a one-way or two-way type air traffic sign light configured using an LED as a light source. FIG. 5 is a block diagram showing a specific example of a drive circuit unit mounted on the air traffic sign light of FIG. 4, and FIG. 6 is a circuit diagram showing a circuit configuration example of an LED drive circuit unit in the drive circuit unit of FIG. FIG. 7 is a timing chart for explaining the pulse width control operation by the drive circuit unit of FIG. In the apparatus shown in FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.
[0048]
In the present embodiment, even when a phase-controlled gradation signal corresponding to the load of a conventional incandescent bulb is supplied, the LED is driven (light emission) so that the same emission characteristics can be obtained with the incandescent bulb. It is characterized in that a drive circuit unit for correcting and controlling the above is provided.
[0049]
As an overall configuration, a one-way or two-way type air traffic sign lamp 1A is disposed on, for example, a lamp body 2 that is installed on the ground, and an upper surface of the lamp body 2, and includes a fixed base 2a and a drive circuit unit 5. A plurality of LEDs 3a as a light source arranged in parallel on the irradiation direction side on the substrate 3b, a cover unit 6 for accommodating these components, and a light emission direction side of the transmitted light while transmitting light emitted by the plurality of LEDs 3a And is mainly composed of a protective glass 7 that protects these interior members.
[0050]
Therefore, at the time of light emission, blue light or red light is irradiated in the horizontal direction through the protective glass 7 in accordance with the attached LED 3a, and can serve as a guide light. . Further, by constructing such an air traffic sign light 1A so as to be opposed to the back, a two-way type air traffic light is formed.
[0051]
In the aviation beacon lamp 1A in the present embodiment, the LED aviation beacon lamp 1A having the above configuration is connected to a power line (wiring line) through which a gradation signal (gradation current) flows for an aviation beacon lamp whose light source is an incandescent bulb. Even when they are connected, the drive (light emission) of the LED is corrected and controlled by the mounted drive circuit unit 5 so that similar light emission characteristics can be obtained when the light bulb is incandescent. The drive circuit unit 5 will be described in detail with reference to FIG.
[0052]
As shown in FIG. 5, the air traffic light 1 </ b> A of the present embodiment is connected to a power line LC of a constant current power source 11 (also referred to as CCR) that has been conventionally used. The constant current power supply 11 changes the brightness of the lamp based on the gradation switching signal acquired via the input terminal 10 for receiving the remote operation signal (gradation switching signal) from the control tower or the dimming control room. The adjustment tap is switched, and the gradation current corresponding to the gradation tap obtained thereby is supplied to the power line LC. That is, the gradation current corresponding to the gradation tap is set in advance for an incandescent lamp. Examples of such gradations are shown in Table 1 below.
[0053]
[Table 1]
Figure 0004122607
The air traffic sign lamp 1A connected to the power line LC in which such a gradation current (also referred to as a gradation tap current) flows is provided with a drive circuit unit 5. Therefore, the gradation current from the power line LC12 is supplied to the constant voltage circuit unit 12 and the constant current detection circuit unit 14 provided in the drive circuit unit 5.
[0054]
The constant voltage circuit unit 12 creates a constant voltage from the supplied gradation current and supplies it to the LED drive circuit unit 13. The LED drive circuit unit 13 causes the LED 3a to emit light based on the supplied constant voltage.
[0055]
On the other hand, the current detection circuit unit 13 detects a gradation current value flowing in the power line LC from the acquired gradation current, and gives the detection result to the gradation conversion circuit unit 15. Based on the detection result, the gradation conversion circuit unit 15, for example, a light emission output curve of the incandescent lamp shown in FIG. 14 described above, that is, a gradation current that provides brightness according to the gradation current shown in Table 1 above. A gradation signal for correcting the value is generated, and the generated gradation signal is supplied to the LED drive circuit unit 13.
[0056]
The LED drive circuit unit 13 takes in the gradation signal and changes the variable resistance value in the LED drive circuit unit 5 to control the gradation current value itself flowing through the LED 3a, thereby generating a light emission output similar to that of an incandescent bulb ( The light emission control of the LED 3a is performed so as to obtain Table 1).
[0057]
For example, in the method of controlling light emission by simply changing the LED current based on the grayscale signal, the LED drive circuit unit 13 is simply composed of a circuit that allows a constant current to flow with a current limiting resistor. Is configured with a variable constant current circuit. The LED drive circuit unit will be described in more detail. As shown in FIG. 6, the LED drive circuit unit 13 which is a constant current circuit in the figure has a basic circuit configuration, but the transistor Q1 is included in its base circuit. It has a reference voltage source V1 and a resistor R1, and an emitter circuit having a resistor R2. When the input signal of the base circuit is “OFF”, that is, when the LED 3a is lit,
The LED current I1 indicated by V1 = I1 × R2 + VBE flows as a constant current. At this time, VBE is a forward voltage between the base and emitter of the transistor Q1. The resistor R2 is a variable type, and the resistance value of the resistor R2 is determined based on the modulated gradation signal from the gradation conversion circuit unit 15 as described above, and as a result, as a result. The LED current I1 is changed to a predetermined value for correcting the difference in gradation characteristics between the incandescent lamp and the LED shown in FIG.
[0058]
As a result, the LED 3a is provided to constitute the air traffic sign lamp 1A, and even when connected to the power line LC through which the gradation current for the incandescent bulb flows, the light emission characteristics corresponding to the gradation current similar to that when using the incandescent bulb are obtained. It becomes possible.
[0059]
In this embodiment, as described above, the LED drive circuit unit 13 may be configured to drive the LEDs by a pulse width control method instead of the variable constant current circuit. In this case, for example, the LED drive circuit 13 is configured as a pulse width control circuit (PWM). Specifically, the collector (not shown) of another transistor as a switch means is connected to the base of the transistor Q1 shown in FIG. 6, the emitter of the transistor is grounded, and a pulse width control circuit ( A pulse signal from (not shown) is provided. That is, the pulse width control circuit controls the pulse width based on the grayscale signal from the grayscale conversion circuit unit 15, and uses this pulse signal to adjust and control the on-time of the transistor as the switching element. As a result, the LED current I1 is controlled to blink in time, and as a result, the brightness of the LED 3a can be varied, and it is possible to obtain the light emission characteristics corresponding to the gradation current similar to when using an incandescent bulb. Become.
[0060]
Next, the light emission correction operation by the pulse width control method will be described in detail with reference to FIG.
[0061]
Now, it is assumed that the air traffic light 1A configured using the LED 3a shown in FIG. 4 is turned on. In this case, the light emission characteristics of the LED 3a are usually linear as compared with the light emission characteristics of the incandescent bulb as shown in FIG. 14 described above, that is, according to the gradation of the gradation current (see Table 1). It is always high, that is, it is necessary to correct the difference in light emission output.
[0062]
Therefore, a pulse width control circuit (not shown) in the LED drive circuit unit emits light with a high light emission output corresponding to the gradation current value from the gradation signal from the gradation conversion circuit unit 15 (see FIG. 5). When it is necessary to obtain an output (during high gradation), a pulse signal having a wide pulse width as shown in FIG. 7A is generated, and the ON time of a switching element (not shown) is adjusted. Thereby, the LED current I1 is controlled to blink for a long time, so that the LED 3a has an optimum light emission output according to the gradation current value.
[0063]
On the other hand, the pulse width control circuit (not shown) needs to obtain a low light emission output corresponding to the gradation current value of the light emission output of the LED 3a from the gradation signal by the gradation conversion circuit unit 15 (see FIG. 5). When there is (when the gradation is low), a pulse signal with a narrow pulse width as shown in FIG. 7B is generated, and the ON time of a switching element (not shown) is adjusted. Thereby, the LED current I1 is controlled to blink in a short time, so that the LED 3a has an optimum light emission output according to the gradation current value.
[0064]
Therefore, according to the present embodiment, it is possible to connect to the conventional constant current power source for a marker lamp and perform the gradation control of the lamp by the light emission control by the drive circuit unit described above, and the long life and It is possible to provide an LED type air traffic sign lamp with high luminous efficiency. Moreover, since it is not necessary to newly perform wiring work etc. with the installation of the LED type marker lamp, it is possible to reduce the overall cost.
[0065]
By the way, in the LED type air traffic light as in the second embodiment, when the temperature of the LED changes, the light emission output changes according to the temperature change, and a constant light emission output is obtained. The absence is as described in the prior art.
[0066]
Therefore, in the present invention, even when the temperature of the LED changes, it is also possible to correct the light emission output in accordance with this temperature change and always obtain a stable and constant light output. Such an embodiment is shown in FIGS.
[0067]
8 and 9 show a third embodiment of an air traffic sign light according to the present invention, and FIG. 8 shows a specific example of a drive circuit unit mounted on a one-way or two-way type LED air traffic light. FIG. 9 is a timing diagram for explaining the peak value control operation and the pulse width control operation of the LED current by the drive circuit unit of FIG. In the circuit shown in FIG. 8, the same components as those in the circuit shown in FIG. 5 or FIG. 6 are denoted by the same reference numerals, description thereof is omitted, and only different portions are described.
[0068]
In this embodiment, compensation control of the light emission output according to the temperature of the LED is performed, and gradation control (for example, pulse width) of the brightness control of the marker lamp corresponding to the essential visual condition described in the above embodiment is performed. Control) and the peak value control of the LED current as temperature compensation control, respectively, so that a stable light emission output can be obtained even when the temperature of the LED changes. Is a point.
[0069]
The overall schematic configuration of the LED type air traffic sign lamp is the same as that of the air traffic sign lamp 1A (see FIG. 4) in the second embodiment.
[0070]
Further, although not shown, the LED type air traffic sign lamp of the present embodiment is provided with a drive circuit section 5 (see FIG. 5) shown in FIG. 5, and as shown in FIG. 8, the drive circuit section 5 In the LED drive circuit unit 13 in the same manner as in the second embodiment, the constant current circuit for driving the LED and the brightness of the indicator lamp light are received from the external gradation control signal, and the pulse A pulse width control unit 20 (PWM) for converting to width control is provided. The operations of the constant current circuit and the pulse width control unit 20 are substantially the same as those in the second embodiment.
[0071]
The characteristic feature of this embodiment is that, as shown in FIG. 8, in addition to providing the constant current circuit, pulse width control unit 20 and switching element (transistor Q2), temperature detection for detecting the temperature generated in the LED. The LED drive circuit unit is configured by providing the circuit unit 21 and the compensation circuit unit 22.
[0072]
That is, the temperature detection circuit unit 21 detects the temperature generated in the LED and gives the detection result to the compensation circuit unit 22. The compensation circuit unit 22 corrects the light emission output of the LED based on the supplied detection result so that the light emission output of the LED becomes a constant predetermined level of light emission output different from the characteristics shown in FIG. 15, for example. ) Is determined and given to the variable resistor R2 shown in FIG. Thus, by changing the resistance value of the variable resistor R2, the LED current I1 flowing through the LED is changed, and control is performed so as to obtain an optimum LED light emission output.
[0073]
The configuration will be described in more detail. For example, the gradation signal from the gradation conversion circuit unit 15 shown in FIG. 5 is supplied to the input terminal 10 connected to the pulse width control unit 20 shown in FIG. However, as described in the second embodiment, the gradation control signal at this time is specifically defined as a power tap (switching) signal as shown in Table 1 above. It is what.
[0074]
Further, as a circuit configuration for controlling the pulse width based on such a gradation signal, as shown in FIG. 8, a collector (not shown) of a transistor Q2 as a switch means is provided at the base of the transistor Q1 of the constant current circuit. And the emitter of the transistor Q2 is connected to the other end of the variable resistor R2, and the base is configured to receive a pulse signal from a pulse width control circuit (not shown).
[0075]
On the other hand, in the constant current circuit, the reference voltage source V1 and the resistor R1 are connected to the base circuit of the transistor Q1, and the resistor R2 is connected to the emitter circuit.
Accordingly, during operation, blinking control is performed via the transistor Q2 driven by the above-described pulse width control signal, and during lighting, the LED current I1 defined by V1 = I1 × R2 + VBE flows as a constant current. VBE is the base-emitter forward voltage value of the transistor Q1.
[0076]
At this time, the resistance R2 is variable as described above, and the temperature of the LED is detected by the temperature detection circuit unit 21, and thereafter, the LED current I1 corresponding to the LED temperature (detection temperature) is detected by the compensation circuit unit 22. The resistance value is changed by supplying the resistance value as the correction amount to be increased or decreased.
[0077]
Next, the operation that characterizes this embodiment will be described in detail with reference to FIG.
[0078]
Now, it is assumed that the air traffic light 1A configured using the LED 3a shown in FIG. 4 is turned on. In this case, the light emission characteristics of the LED 3a deteriorate as the temperature increases, as shown in FIG. Therefore, it is necessary to perform light emission correction to obtain a stable and constant light output regardless of the temperature.
[0079]
In this case, the drive circuit unit 5 is similar to the second embodiment so that an optimum light emission output corresponding to the gradation current can be obtained with the connection of the constant current power source for the incandescent lamp. Control the pulse width. Details have been described in the second embodiment, and will be omitted.
[0080]
At the same time, the drive circuit unit 5 performs peak value control of the LED current as temperature compensation control. In this case, in the LED drive circuit unit in the drive circuit unit 5, the temperature of the LED is detected by the temperature detection circuit unit 21, and the compensation circuit unit 22 that captures the detection result emits light with a low temperature of the LED 3a based on the detection result, for example. When the output need not be corrected so much (low temperature: see FIG. 15), a correction signal (resistance value) that does not change the LED current so much is determined, and the resistance value of the variable resistor R2 is controlled, The peak value of the LED current is determined. That is, the on-time of the switching element and the LED current are adjusted based on a pulse signal having a pulse height as shown in FIG. This makes it possible to adjust the value of the current flowing through the LED together with the blinking control of the LED, and obtain an optimal light emission output. Of course, the peak value control of the LED current is performed as shown in FIG.
[0081]
On the other hand, the compensation circuit unit 22, for example, needs to correct the LED 3 a so that the temperature of the LED 3 a is high and the light emission output is high from the detection result of the temperature detection circuit unit 21 (at high temperature: see FIG. 15). A correction signal (resistance value) that greatly changes the current value is determined, the resistance value of the variable resistor R2 is controlled, and the peak value of the LED current is determined. That is, the on-time of the switching element and the LED current are adjusted based on a pulse signal having a pulse height as shown in FIG. As a result, it is possible to adjust the current value flowing through the LED together with the blinking control of the LED, and it is possible to obtain an optimum light emission output even at a high temperature. Of course, even when the temperature is high, the peak value control of the LED current is performed as shown in FIG. 9B even at the high gradation and the low gradation.
[0082]
Therefore, according to the present embodiment, in addition to the operation and effect similar to those of the second embodiment, the LED current peak value control by the drive circuit unit described above is performed in combination, thereby realizing the LED. It is possible to perform correction control so that the light emission output that changes with the temperature change is always a stable predetermined light emission output. Therefore, even in various weather conditions, it has excellent light emission characteristics that do not change its light output.
Blank signs and the like can be provided.
[0083]
In this embodiment, as a method for detecting the temperature of the LED, the LED board is hermetically housed in the marker lamp. For example, the temperature of the space in the lamp is detected. In addition, in order to further improve the temperature detection accuracy, the alignment plate provided for aligning the plurality of LED elements is made of a material having good thermal conductivity such as an aluminum material to provide a heat dissipation effect and to control the LED temperature. As a detection method, for example, the temperature of the alignment plate itself or the temperature in the lamp obtained by the heat radiation effect may be detected.
[0084]
By the way, in the present invention, it is possible to perform the light emission control of the LED as in the second and third embodiments even when the air traffic sign light is a blinking type. However, in the crest value control for gradation control of the brightness of the lamp as in the second and third embodiments, the constant current circuit is an indispensable component as described above. It becomes expensive compared with the resistance circuit as a current limiting circuit. An embodiment in which such an inconvenience is improved is shown in FIGS.
[0085]
10 to 12 show a fourth embodiment of an air traffic sign lamp according to the present invention, and FIG. 10 is a front view showing a configuration example of a flashing type air traffic sign lamp configured using an LED as a light source. 11 is a circuit configuration diagram showing a specific example of the drive circuit unit mounted on the air traffic sign light of FIG. 10, and FIG. 12 is a timing chart for explaining the pulse width control operation and the flashing light emission control operation by the drive circuit unit of FIG. It is. In the device shown in FIG. 10 and the circuit group shown in FIG. 11, the same components as those in FIGS. 4 and 8 are denoted by the same reference numerals, description thereof is omitted, and only different portions are described.
[0086]
In the present embodiment, a current limiting circuit composed of an inexpensive resistor is provided in place of the expensive constant current circuit (see FIG. 8), and an input blinking signal and a pulse width control unit (see FIG. 8) are provided. By providing an AND circuit that outputs a logical product with the grayscale signal of and a switching element Q that temporally switches the LED current applied to the LED connected in the current limiting circuit based on the output signal of the AND circuit Further, the present embodiment is different from the above embodiment in that it is configured to reduce the cost by performing the pulse width control and the blinking light emission control to enable the gradation control.
[0087]
As an overall configuration, a flashing type air traffic light 1B (runway warning light: RGL lamp) is, for example, a lamp 2 installed on the ground and an upper part of the lamp 2 as shown in FIG. For example, two LED groups 3a and 3b that are mounted, and an LED substrate 3A that includes these LED groups 3a and 3b and includes a reflecting mirror that collects and irradiates light from the LED groups 3a and 3b. , 3B. When the emission color is changed, a color filter that transmits the reflected light of the reflecting mirror and irradiates the corresponding color light may be provided on the LED substrates 3A and 3B.
[0088]
Therefore, by using these reflecting mirrors 74a, 74b, etc., the directivity of the irradiation color light in the horizontal direction is improved, and a blinking signal is supplied from a dimming control unit (not shown). The LED groups 3a and 3b emit light in a blinking manner. The LED groups 3a and 3b serve as runway warning lights by using yellow LEDs that emit yellow light.
[0089]
In the present embodiment, a driving circuit unit 5A is provided in the lamp body 2 shown in FIG. 10 for performing gradation control of light emission and flashing light emission control of these LED groups 3a and 3b. This drive circuit unit 5A controls the light emission of the RGL lamp in accordance with the visual external conditions in the same manner as in the above-described embodiment, using the gradation pattern shown in Table 1 above.
[0090]
Specifically, in the drive circuit unit 5A, for example, as shown in FIG. 11, a gradation signal is taken in via the input terminal 10 and a blinking signal is taken in via the input terminal 30. The gradation signal is supplied to the pulse width control unit 20 that performs the pulse width control as in the second embodiment, and the blinking signal is supplied to the AND circuit. The output from the pulse width controller 20 is also supplied to the AND circuit.
[0091]
The AND circuit calculates the logical product of these input signals, that is, supplies a gradation pulse signal based on the timing of the blinking signal to the base of the switching element Q.
[0092]
On the other hand, in the current limiting circuit in which either one of the LED groups 3a and 3b is connected, a plurality of LED elements LED1 to LEDn are formed as one series circuit, and one end is connected to the power source Vp via the resistance R of the current limiting element. . The other end of this series circuit is connected in common with other LED series circuit groups, and is further connected to the collector of the transistor Q of the switch element.
[0093]
With this configuration, pulse width control and blinking light emission control can be performed with a simple circuit configuration.
[0094]
Next, the operation that characterizes this embodiment will be described in detail with reference to FIG.
[0095]
Now, it is assumed that the air traffic sign lamp 1B (RGL lamp) shown in FIG. 10 is turned on. Then, the drive circuit unit 5A shown in FIG. 11 performs the pulse width control based on the gradation pattern as in the second embodiment. In other words, the pulse width control unit 20 applies a pulse signal having a wide pulse width to the AND circuit when it is necessary to perform high gradation, and a pulse signal having a narrow pulse width to the AND circuit when it is necessary to perform low gradation. give.
[0096]
Thereafter, the AND circuit outputs the logical product of this output pulse and the blinking signal, so that the transistor Q of the switching element has a level when the blinking signal as shown in FIG. 12 (a) or FIG. A pulse width control signal corresponding to the adjustment signal is supplied.
[0097]
Then, the transistor Q is driven to blink at high speed with the supplied pulse width control signal. As a result, the brightness of the lamp is controlled according to the gradation even when the light is blinked, and the other LED group is also controlled. Is also controlled in gradation.
[0098]
In addition, the two LED groups are controlled to flash and emit light based on the on / off state of the flashing signal.
[0099]
Therefore, according to the present embodiment, as described above, the flashing switch is controlled by performing gradation control and flashing light emission control using the pulse width control signal corresponding to the gradation signal as the lamp brightness control. Since the element can be shared, and the current limit of the LED current can be configured by the resistance element, a cheaper marker lamp can be provided.
[0100]
Note that the present invention is not limited to the first to fourth embodiments described above, and may be configured by combining, for example, the characteristic structure and the light emission control method in each embodiment. It is clear that
[0101]
【The invention's effect】
As described above, according to the present invention, by using an LED as a light source, it is possible to prolong the life of the light source and improve the light emission efficiency, and to perform optimum light emission control at a low cost. A light can be provided.
[Brief description of the drawings]
FIG. 1 is a partially broken configuration diagram showing a configuration example of an omnidirectional type marker lamp according to a first embodiment of an aircraft marker lamp of the present invention.
2 is a plan view of the air traffic sign lamp of FIG. 1. FIG.
3 is a cross-sectional view taken along the line AA ′ of the air traffic sign lamp of FIG. 2. FIG.
FIG. 4 is a side view showing a configuration example of a one-way or two-way type marker lamp according to a second embodiment of the aircraft marker lamp of the present invention.
FIG. 5 is a block diagram showing a specific example of a drive circuit unit mounted on the marker lamp of FIG. 4;
6 is a circuit diagram showing a circuit configuration example of an LED drive circuit unit which is a constant current circuit in the drive circuit unit of FIG. 4;
7 is a timing chart for explaining a pulse width control operation by the drive circuit unit of FIG. 5;
FIG. 8 is a block diagram showing a third embodiment of an aerial beacon lamp according to the present invention and showing a specific example of a drive circuit unit mounted on the beacon lamp.
9 is a timing chart for explaining a pulse width control operation according to a temperature change by the drive circuit unit of FIG. 8;
FIG. 10 is a front view showing a fourth embodiment of an aerial beacon lamp according to the present invention and showing a configuration example of a blinking type beacon lamp.
11 is a block diagram showing a specific example of a drive circuit unit mounted on the marker lamp of FIG.
12 is a timing chart for explaining blinking dimming control and pulse width control operations by the drive circuit unit of FIG. 8;
FIG. 13 is a configuration diagram showing an example of an air traffic sign lamp configured using an incandescent bulb as a conventional light source.
FIG. 14 is a characteristic diagram showing a difference in light emission characteristics according to gradation current between an incandescent bulb and an LED display element.
FIG. 15 is a characteristic diagram showing light emission characteristics according to the temperature level of an LED display element.
[Explanation of symbols]
1 ... Air traffic light
2 ...
3 ... light source part,
3a ... Light emitting diode (LED),
3b ... substrate
3c: Colored reflector.

Claims (9)

灯体と;With lamps;
この灯体に配置され、発光ダイオード素子からなる光源と;  A light source disposed on the lamp body and made of a light emitting diode element;
前記発光ダイオードの明るさを外部より操作される位相制御によって階調毎に変化させる階調制御が可能なもので、接続された定電流電源ラインに流れる階調電流を取り込み、該階調電流から定電圧源を発生させて得た電流によって前記発光ダイオードを発光させるとともに、外部の操作により位相制御で可変される電流を検出し、検出結果に基づき前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記発光ダイオードによる発光を階調毎に駆動制御する駆動回路部と;  It is possible to perform gradation control in which the brightness of the light emitting diode is changed for each gradation by phase control operated from the outside. The gradation current flowing in the connected constant current power supply line is taken in, and from the gradation current The light emitting diode is caused to emit light by a current obtained by generating a constant voltage source, and a current variable by phase control by an external operation is detected, and converted into a light emission gradation signal of the light emitting diode based on a detection result, A drive circuit unit that drives and controls light emission by the light emitting diode for each gradation based on the light emission gradation signal;
を具備したことを特徴とする航空標識灯。  An air traffic sign light characterized by comprising:
前記駆動回路部は、The drive circuit unit is
前記定電流電源ラインに流れる階調電流を元に前記発光ダイオードに付勢する定電圧を生成する定電圧回路と;  A constant voltage circuit for generating a constant voltage for energizing the light emitting diode based on a gradation current flowing in the constant current power line;
該定電圧回路により生成された定電圧に基づき得られた発光ダイオード電流によって前記発光ダイオードを発光させるLED駆動回路と;  An LED driving circuit for causing the light emitting diode to emit light by a light emitting diode current obtained based on the constant voltage generated by the constant voltage circuit;
前記定電流電源ラインに流れる階調電流を取り込み、外部の操作により位相制御で可変される前記階調電流を検出し、検出結果を出力する電流検出回路と;  A current detection circuit that takes in the gradation current flowing in the constant current power supply line, detects the gradation current that is varied by phase control by an external operation, and outputs a detection result;
前記電流検出回路からの検出結果に基づき、前記位相制御による階調に応じた前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記LED駆動回路による発光ダイオードの発光を駆動制御する階調変換回路と;を具備して構成されたことを特徴とする請求項1に記載の航空標識灯。  Based on the detection result from the current detection circuit, the light emission diode signal is converted into a light emission gradation signal corresponding to the gradation by the phase control, and light emission of the light emitting diode by the LED drive circuit is driven based on the light emission gradation signal. The aviation sign lamp according to claim 1, comprising: a gradation conversion circuit to be controlled.
前記階調変換回路は、発光ダイオード電流の波高値に対応した前記発光階調信号を出力するもので、前記LED駆動回路は、可変抵抗を備え、該発光階調信号に基づき可変抵抗による抵抗値を変化させることにより、前記発光ダイオードの発光を階調制御することを特徴とする請求項2に記載の航空標識灯。The gradation conversion circuit outputs the light emission gradation signal corresponding to the peak value of the light emitting diode current, and the LED driving circuit includes a variable resistor, and a resistance value by the variable resistor based on the light emission gradation signal. The aviation beacon lamp according to claim 2, wherein gradation of light emission of the light emitting diode is controlled by changing the light intensity. 前記階調変換回路は、前記発光階調信号として前記発光ダイオードの点滅の比率変調とするパルス幅制御信号を出力するもので、前記LED駆動回路は、前記発光ダイオード電流の供給を時間的にオン・オフするスイッチング素子を備え、前記パルス幅信号に基づき該スイッチング手段によるオン・オフ時間を制御することにより、前記発光ダイオードの発光を階調制御することを特徴とする請求項2に記載の航空標識灯。The gradation converting circuit outputs a pulse width control signal for modulating the blinking ratio of the light emitting diode as the light emitting gradation signal, and the LED driving circuit temporally turns on the supply of the light emitting diode current. 3. The aircraft according to claim 2, further comprising: a switching element that is turned off, wherein gradation of light emission of the light emitting diode is controlled by controlling an on / off time by the switching unit based on the pulse width signal. Beacon light. 前記駆動回路部は、The drive circuit unit is
前記定電流電源ラインに流れる階調電流を元に前記発光ダイオードに付勢する定電圧を生成する定電圧回路と;  A constant voltage circuit for generating a constant voltage for energizing the light emitting diode based on a gradation current flowing in the constant current power line;
該定電圧回路により生成された定電圧に基づき得られた発光ダイオード電流によって前記発光ダイオードを発光させるLED駆動回路と;  An LED driving circuit for causing the light emitting diode to emit light by a light emitting diode current obtained based on the constant voltage generated by the constant voltage circuit;
前記定電流電源ラインに流れる階調電流を取り込み、外部の操作により位相制御で可変される前記階調電流を検出し、検出結果を出力する電流検出回路と;  A current detection circuit that takes in the gradation current flowing in the constant current power supply line, detects the gradation current that is varied by phase control by an external operation, and outputs a detection result;
前記電流検出回路からの検出結果に基づき、前記位相制御による階調に応じた前記発光ダイオードの発光階調信号に変換し、該発光階調信号に基づき前記LED駆動回路による発光ダイオードの発光を駆動制御する階調変換回路と;  Based on the detection result from the current detection circuit, the light emission diode signal is converted into a light emission gradation signal corresponding to the gradation by the phase control, and light emission of the light emitting diode by the LED drive circuit is driven based on the light emission gradation signal. A gradation conversion circuit to be controlled;
前記発光ダイオードの温度または周囲温度を検出する温度検出回路と;  A temperature detection circuit for detecting a temperature or an ambient temperature of the light emitting diode;
前記該温度検出手段からの検出結果に基づき所定の発光出力を得るための補正信号を作成し、該補正信号に応じて前記LED駆動回路による発光ダイオード電流を変化させる補正回路と;を具備して構成されたことを特徴とする請求項1に記載の航空標識灯。  A correction circuit for generating a correction signal for obtaining a predetermined light emission output based on a detection result from the temperature detection means, and for changing a light emitting diode current by the LED driving circuit according to the correction signal; The aerial beacon according to claim 1, wherein the aerial beacon is constructed.
前記階調変換回路は、前記発光階調信号として前記発光ダイオードの点滅の比率変調とするパルス幅制御信号を出力するもので、前記LED駆動回路は、前記発光ダイオード電流の供給を時間的にオン・オフするスイッチング素子及び可変抵抗を備え、前記パルス幅信号に基づき該スイッチング手段によるオン・オフ時間を制御すると同時に、前記補正回路からの補正信号に応じて前記可変抵抗の抵抗値を変化させることにより、前記発光ダイオードの発光の階調制御及び温度の変化に伴う発光補正制御することを特徴とする請求項5に記載の航空標識灯。  The gradation converting circuit outputs a pulse width control signal for modulating the blinking ratio of the light emitting diode as the light emitting gradation signal, and the LED driving circuit temporally turns on the supply of the light emitting diode current. A switching element and a variable resistor that are turned off are provided, and an on / off time by the switching means is controlled based on the pulse width signal, and at the same time, a resistance value of the variable resistor is changed according to a correction signal from the correction circuit. The air traffic sign lamp according to claim 5, wherein the light emission gradation control of the light emitting diode and the light emission correction control according to the temperature change are performed. 前記温度検出回路は、前記複数の発光ダイオードを整列させるための整列板が設けられた場合には、該整列板の温度を検出し、検出結果を出力することを特徴とする請求項5に記載の航空標識灯。6. The temperature detection circuit according to claim 5, wherein when an alignment plate for aligning the plurality of light emitting diodes is provided, the temperature detection circuit detects a temperature of the alignment plate and outputs a detection result. Aviation sign lights. 前記光源が少なくとも2つの点滅制御可能な光源で構成された場合には、前記駆動回路部は、前記発光階調信号としての前記発光ダイオードの点滅の比率変調とするパルス幅制御信号と、前記少なくとも2つの光源を点滅制御するための点滅信号との論理積をとり、該論理積に基づき、各光源毎に発光ダイオード群が抵抗を介して直列に接続して成る直列回路の電流供給をオン・オフするスイッチング素子のオン・オフ時間を制御することにより、前記発光ダイオードによる発光の階調制御及び点滅発光制御することを特徴とする請求項1に記載の航空標識灯。When the light source is composed of at least two light sources capable of blinking control, the drive circuit unit includes a pulse width control signal for performing a ratio modulation of the light emitting diode blinking as the light emission gradation signal, and the at least Takes the logical product of the blinking signal for controlling the blinking of the two light sources, and based on the logical product, turns on the current supply of the series circuit in which the light-emitting diode groups are connected in series via resistors for each light source. The air traffic sign light according to claim 1, wherein gradation control and flashing light emission control of the light emitting diode are performed by controlling an on / off time of a switching element to be turned off. 前記少なくとも2つの光源は、黄色の光を発光する黄色発光ダイオードを用いてそれぞれ構成されたものであることを特徴とする請求項8に記載の航空標識灯 9. The air traffic light according to claim 8, wherein each of the at least two light sources is configured using a yellow light emitting diode that emits yellow light .
JP34068098A 1998-11-30 1998-11-30 Aviation sign lights Expired - Fee Related JP4122607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34068098A JP4122607B2 (en) 1998-11-30 1998-11-30 Aviation sign lights

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34068098A JP4122607B2 (en) 1998-11-30 1998-11-30 Aviation sign lights

Publications (2)

Publication Number Publication Date
JP2000173304A JP2000173304A (en) 2000-06-23
JP4122607B2 true JP4122607B2 (en) 2008-07-23

Family

ID=18339292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34068098A Expired - Fee Related JP4122607B2 (en) 1998-11-30 1998-11-30 Aviation sign lights

Country Status (1)

Country Link
JP (1) JP4122607B2 (en)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957150B2 (en) * 2001-02-08 2007-08-15 セイコーインスツル株式会社 LED drive circuit
WO2004100213A2 (en) 2003-05-05 2004-11-18 Gelcore Llc Led-based light bulb
CN1604711A (en) * 2003-09-30 2005-04-06 东芝照明技术株式会社 LED lighting device and lighting system
JP4569245B2 (en) * 2003-09-30 2010-10-27 東芝ライテック株式会社 LED lighting device and lighting system
CN100441939C (en) * 2004-04-27 2008-12-10 傅则吾 LED bulb for common lighting
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
JP4708971B2 (en) * 2005-11-16 2011-06-22 Necライティング株式会社 Air lighting system
JP2007294169A (en) * 2006-04-24 2007-11-08 Toshiba Lighting & Technology Corp Led lighting system
DE102007021042A1 (en) * 2006-07-24 2008-01-31 Samsung Electro-Mechanics Co., Ltd., Suwon Light-emitting diode module for light source series
JP4943402B2 (en) 2008-10-09 2012-05-30 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
JP4864994B2 (en) 2009-03-06 2012-02-01 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
JP4943487B2 (en) 2009-10-26 2012-05-30 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
JP2011165394A (en) 2010-02-05 2011-08-25 Sharp Corp Led drive circuit, dimming device, led illumination fixture, led illumination device, and led illumination system
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9052067B2 (en) 2010-12-22 2015-06-09 Cree, Inc. LED lamp with high color rendering index
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9157602B2 (en) 2010-05-10 2015-10-13 Cree, Inc. Optical element for a light source and lighting system using same
US8596821B2 (en) 2010-06-08 2013-12-03 Cree, Inc. LED light bulbs
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
US9279543B2 (en) 2010-10-08 2016-03-08 Cree, Inc. LED package mount
US8587185B2 (en) 2010-12-08 2013-11-19 Cree, Inc. Linear LED lamp
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
JP2012164594A (en) 2011-02-09 2012-08-30 Panasonic Corp Lighting device for semiconductor light-emitting element, and illuminating fixture using the same
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US9470882B2 (en) 2011-04-25 2016-10-18 Cree, Inc. Optical arrangement for a solid-state lamp
US10094548B2 (en) 2011-05-09 2018-10-09 Cree, Inc. High efficiency LED lamp
US9797589B2 (en) 2011-05-09 2017-10-24 Cree, Inc. High efficiency LED lamp
JP2013026074A (en) * 2011-07-22 2013-02-04 Tyntek Corp Lighting device
US9482421B2 (en) 2011-12-30 2016-11-01 Cree, Inc. Lamp with LED array and thermal coupling medium
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
US9022601B2 (en) 2012-04-09 2015-05-05 Cree, Inc. Optical element including texturing to control beam width and color mixing
US9951909B2 (en) 2012-04-13 2018-04-24 Cree, Inc. LED lamp
US9310028B2 (en) 2012-04-13 2016-04-12 Cree, Inc. LED lamp with LEDs having a longitudinally directed emission profile
US9395051B2 (en) 2012-04-13 2016-07-19 Cree, Inc. Gas cooled LED lamp
US9651240B2 (en) 2013-11-14 2017-05-16 Cree, Inc. LED lamp
US9234638B2 (en) 2012-04-13 2016-01-12 Cree, Inc. LED lamp with thermally conductive enclosure
US9395074B2 (en) 2012-04-13 2016-07-19 Cree, Inc. LED lamp with LED assembly on a heat sink tower
US9322543B2 (en) 2012-04-13 2016-04-26 Cree, Inc. Gas cooled LED lamp with heat conductive submount
US9410687B2 (en) 2012-04-13 2016-08-09 Cree, Inc. LED lamp with filament style LED assembly
US9310065B2 (en) 2012-04-13 2016-04-12 Cree, Inc. Gas cooled LED lamp
US8757839B2 (en) 2012-04-13 2014-06-24 Cree, Inc. Gas cooled LED lamp
US9097393B2 (en) 2012-08-31 2015-08-04 Cree, Inc. LED based lamp assembly
US9097396B2 (en) 2012-09-04 2015-08-04 Cree, Inc. LED based lighting system
US9134006B2 (en) 2012-10-22 2015-09-15 Cree, Inc. Beam shaping lens and LED lighting system using same
US9062867B2 (en) 2012-12-12 2015-06-23 Cree, Inc. LED lamp
JP5506900B2 (en) * 2012-12-27 2014-05-28 三菱電機株式会社 Lighting device and emergency lighting device
US9570661B2 (en) 2013-01-10 2017-02-14 Cree, Inc. Protective coating for LED lamp
JP2014146446A (en) * 2013-01-28 2014-08-14 Pioneer Electronic Corp Light-emitting device and controller
US9303857B2 (en) 2013-02-04 2016-04-05 Cree, Inc. LED lamp with omnidirectional light distribution
US9664369B2 (en) 2013-03-13 2017-05-30 Cree, Inc. LED lamp
US9052093B2 (en) 2013-03-14 2015-06-09 Cree, Inc. LED lamp and heat sink
US9115870B2 (en) 2013-03-14 2015-08-25 Cree, Inc. LED lamp and hybrid reflector
USD748296S1 (en) 2013-03-14 2016-01-26 Cree, Inc. LED lamp
US9435492B2 (en) 2013-03-15 2016-09-06 Cree, Inc. LED luminaire with improved thermal management and novel LED interconnecting architecture
US9657922B2 (en) 2013-03-15 2017-05-23 Cree, Inc. Electrically insulative coatings for LED lamp and elements
US9243777B2 (en) 2013-03-15 2016-01-26 Cree, Inc. Rare earth optical elements for LED lamp
US9285082B2 (en) 2013-03-28 2016-03-15 Cree, Inc. LED lamp with LED board heat sink
US10094523B2 (en) 2013-04-19 2018-10-09 Cree, Inc. LED assembly
US9541241B2 (en) 2013-10-03 2017-01-10 Cree, Inc. LED lamp
US9423116B2 (en) 2013-12-11 2016-08-23 Cree, Inc. LED lamp and modular lighting system
US9726330B2 (en) 2013-12-20 2017-08-08 Cree, Inc. LED lamp
US10030819B2 (en) 2014-01-30 2018-07-24 Cree, Inc. LED lamp and heat sink
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
US9518704B2 (en) 2014-02-25 2016-12-13 Cree, Inc. LED lamp with an interior electrical connection
US9759387B2 (en) 2014-03-04 2017-09-12 Cree, Inc. Dual optical interface LED lamp
US9462651B2 (en) 2014-03-24 2016-10-04 Cree, Inc. Three-way solid-state light bulb
US9562677B2 (en) 2014-04-09 2017-02-07 Cree, Inc. LED lamp having at least two sectors
US9435528B2 (en) 2014-04-16 2016-09-06 Cree, Inc. LED lamp with LED assembly retention member
US9488322B2 (en) 2014-04-23 2016-11-08 Cree, Inc. LED lamp with LED board heat sink
US9618162B2 (en) 2014-04-25 2017-04-11 Cree, Inc. LED lamp
US9951910B2 (en) 2014-05-19 2018-04-24 Cree, Inc. LED lamp with base having a biased electrical interconnect
US9618163B2 (en) 2014-06-17 2017-04-11 Cree, Inc. LED lamp with electronics board to submount connection
US9488767B2 (en) 2014-08-05 2016-11-08 Cree, Inc. LED based lighting system
JP2016072061A (en) * 2014-09-30 2016-05-09 東芝ライテック株式会社 Lighting device and marker lamp
US10172215B2 (en) 2015-03-13 2019-01-01 Cree, Inc. LED lamp with refracting optic element
US9702512B2 (en) 2015-03-13 2017-07-11 Cree, Inc. Solid-state lamp with angular distribution optic
US9909723B2 (en) 2015-07-30 2018-03-06 Cree, Inc. Small form-factor LED lamp with color-controlled dimming
US10302278B2 (en) 2015-04-09 2019-05-28 Cree, Inc. LED bulb with back-reflecting optic
USD777354S1 (en) 2015-05-26 2017-01-24 Cree, Inc. LED light bulb
US9890940B2 (en) 2015-05-29 2018-02-13 Cree, Inc. LED board with peripheral thermal contact
WO2018142731A1 (en) * 2017-01-31 2018-08-09 Necライティング株式会社 Lamp
US10260683B2 (en) 2017-05-10 2019-04-16 Cree, Inc. Solid-state lamp with LED filaments having different CCT's
CN108016631A (en) * 2017-11-22 2018-05-11 杭州迅蚁网络科技有限公司 A kind of Intelligent unattended machine target

Also Published As

Publication number Publication date
JP2000173304A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP4122607B2 (en) Aviation sign lights
CA2648636C (en) Visual navigational aids based on high intensity leds
US5685637A (en) Dual spectrum illumination system
US5608290A (en) LED flashing lantern
US7663506B2 (en) Dual mode pilot director light utilizing visible and infrared light emitting diodes (LEDS)
US20080291664A1 (en) Carriageway-Marking Device and System
US9192021B2 (en) Luminous device comprising multiple spaced-apart emission regions
US20130128603A1 (en) Vehicle headlamp system
JP2000511332A (en) Light emitting device for signal, identification or sign
EP2408265A2 (en) Vehicle headlamp system
JP2007012075A (en) System, display apparatus and method for controlling illumination by using internal reflection
US10876702B2 (en) Dual light sources having similar solor temperatures and different spectral characteristics
US11262029B2 (en) Lighting device having semiconductor light source and at least one incandescent filament
JP5286098B2 (en) Lighting
KR20180124797A (en) BoT pedestrian concentration lamp
US7385481B2 (en) Method and apparatus for tri-color rail signal system with control
JP2005259466A (en) Led type runway light
CN219828581U (en) Remote indication lighting lamp
CN215892222U (en) LED fluorescent ceramic light source color-changing searchlight
Young et al. Efficient electric vehicle lighting using LEDs
CN216346025U (en) Front shining lamp
CN220935361U (en) Intelligent dimming LED system
KR20240023813A (en) Hybrid traffic signal
ES2265747B1 (en) SEMAPHORE TO REGULATE THE CIRCULATION.
CN113701114A (en) LED fluorescent ceramic light source color-changing searchlight

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees