JP4122382B2 - Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth - Google Patents

Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth Download PDF

Info

Publication number
JP4122382B2
JP4122382B2 JP2003355443A JP2003355443A JP4122382B2 JP 4122382 B2 JP4122382 B2 JP 4122382B2 JP 2003355443 A JP2003355443 A JP 2003355443A JP 2003355443 A JP2003355443 A JP 2003355443A JP 4122382 B2 JP4122382 B2 JP 4122382B2
Authority
JP
Japan
Prior art keywords
crystal
bulk
seed
growth
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003355443A
Other languages
Japanese (ja)
Other versions
JP2005119900A (en
Inventor
一雄 中嶋
幸長 我妻
徳隆 宇佐美
航三 藤原
徹 宇治原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2003355443A priority Critical patent/JP4122382B2/en
Publication of JP2005119900A publication Critical patent/JP2005119900A/en
Application granted granted Critical
Publication of JP4122382B2 publication Critical patent/JP4122382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶成長方法、バルク単結晶成長用バルク予備結晶、及びバルク単結晶成長用バルク予備結晶の作製方法に関する。   The present invention relates to a crystal growth method, a bulk preliminary crystal for bulk single crystal growth, and a method for producing a bulk preliminary crystal for bulk single crystal growth.

従来、バルク単結晶の成長に用いる種結晶の結晶面は、デバイス・プロセス的な有用性という観点から選択されてきた。しかしながら、デバイス・プロセス的に有用な結晶面は必ずしも多結晶化の抑制という観点では、最適な成長面ではなく、多結晶化の問題はすべてのバルク単結晶の成長、生産にとって無視できない重要課題である。   Conventionally, the crystal plane of a seed crystal used for the growth of a bulk single crystal has been selected from the viewpoint of device process utility. However, crystal planes useful for devices and processes are not necessarily optimal growth planes in terms of suppression of polycrystallization, and the problem of polycrystallization is an important issue that cannot be ignored for the growth and production of all bulk single crystals. is there.

これまでバルク結晶の多結晶化を抑制する為に行われてきた対策は、ルツボ材の選択や、成長速度の制御などによる、マクロ的要因の制御による成長中の、結晶核発生の抑制にあった。そのため、一旦結晶核が発生すると、“その拡大”を抑制できなかった。   The countermeasures that have been taken so far to suppress polycrystallization of bulk crystals are to suppress the generation of crystal nuclei during growth by controlling macro factors, such as by selecting a crucible material and controlling the growth rate. It was. For this reason, once crystal nuclei are generated, the “expansion” cannot be suppressed.

融液や溶液などを用いて単結晶を成長する際に起こる多結晶化、即ち成長中にルソボ壁や融液あるいは溶液中から発生する結晶核から成長した結晶粒が、元の種結晶から成長した結晶を次第に侵食してしまう現象は、結晶成長において大きな問題であり、結晶成長学的観点から根本的な解決策が必要である。   Polycrystallization that occurs when a single crystal is grown using a melt or solution, that is, the crystal grains grown from the crystal walls generated from the wall of the Rusovo or from the melt or solution during growth grow from the original seed crystal. The phenomenon of gradually eroding the crystal is a major problem in crystal growth, and a fundamental solution is necessary from the viewpoint of crystal growth.

一方で、バルク単結晶は電気的あるいは光学的性質が一般に多結晶よりも優れており、太陽電池用結晶などの特殊な例をのぞいては、単結晶が産業上は利用されることが多い。そのため、常に高品質の単結晶の作製が要請されている。多結晶化の抑制については、これまでは、マクロ的な経験や試行錯誤に頼らざるを得ない状態で、抜本的な解決法はなかった。この様な解決策は、全率固溶型の状態図を有する多元系の半導体バルク結晶の基板としての新規応用などの実用的観点からも、新たな産業分野の開拓のために長く渇望されていた。   On the other hand, bulk single crystals generally have better electrical or optical properties than polycrystals, and single crystals are often used industrially except for special examples such as solar cell crystals. Therefore, it is always required to produce a high quality single crystal. Until now, there has been no drastic solution to the suppression of polycrystallization, with no choice but to rely on macro experience and trial and error. Such a solution has long been eagerly sought for the development of new industrial fields from a practical point of view, such as a new application as a substrate of a multi-element semiconductor bulk crystal having a solid solution type phase diagram. It was.

本発明は、上述した結晶成長学的観点及び実用的観点に基づき、種結晶以外からの結晶核の発生及び拡大を抑制し、高品質のバルク単結晶を作製することを目的とする。   An object of the present invention is to produce a high-quality bulk single crystal by suppressing the generation and expansion of crystal nuclei from other than the seed crystal based on the above-mentioned crystal growth viewpoint and practical viewpoint.

上記目的を達成すべく、本発明は、
多数の結晶片を第1の種結晶として結晶成長を行い、異なる面方位の複数の結晶面を有するバルク予備結晶を成長させる工程と、
前記バルク予備結晶において、最も面積増加率の高い結晶面を優先面として決定し選択する工程と、
前記優先面を成長面に有する単結晶を準備する工程と、
前記単結晶を第2の種結晶として結晶成長を行い、バルク単結晶を得る工程と、
を具えることを特徴とする、結晶成長方法に関する。
In order to achieve the above object, the present invention provides:
Performing a crystal growth using a large number of crystal pieces as a first seed crystal and growing a bulk preliminary crystal having a plurality of crystal planes of different plane orientations;
In the bulk preliminary crystal, a step of determining and selecting a crystal plane having the highest area increase rate as a priority plane;
Preparing a single crystal having the preferred surface as a growth surface;
Performing a crystal growth using the single crystal as a second seed crystal to obtain a bulk single crystal;
It is related with the crystal growth method characterized by comprising.

本発明では、目的とするバルク単結晶を作製するに当り、結晶成長を2段階で行う。最初の結晶成長工程では、板状または球状などの多数の結晶片を第1の種結晶として用い、これを結晶核として、例えば一方向成長により結晶成長を行う。前記第1の種結晶は種々の面方位を有するため、前記結晶成長を通じて、異なる面方位の複数の結晶面を有するバルク予備結晶が得られるようになる。   In the present invention, crystal growth is carried out in two stages for producing the target bulk single crystal. In the first crystal growth step, a large number of crystal pieces such as a plate shape or a spherical shape are used as the first seed crystal, and this is used as a crystal nucleus to perform crystal growth, for example, by unidirectional growth. Since the first seed crystal has various plane orientations, a bulk preliminary crystal having a plurality of crystal planes with different plane orientations can be obtained through the crystal growth.

このとき、面方位の異なる各結晶粒の成長速度は微妙な差を有するため、結晶成長に伴い成長速度の速い結晶面の面積は増加し、成長速度の遅い結晶面の面積は減少するという現象、即ち面方位の競合関係が起きる。この様子は、成長した結晶を成長方向と垂直にスライスし、電子後方分散パターン法(Electron Back Scattering pattern法:EBSP法)のような方位顕微鏡などを用いて各結晶における面積の割合の連続的な変化を追うことにより観察できる。そして、最も面積増加率の高い結晶面を、優先方位の面方位(優先面)として決定する。   At this time, because the growth rate of each crystal grain with different plane orientations has a subtle difference, the area of the crystal plane with a high growth rate increases and the area of the crystal plane with a low growth rate decreases with crystal growth. That is, a competing relationship between plane orientations occurs. This is done by slicing the grown crystal perpendicularly to the growth direction, and using an orientation microscope such as the electron back scattering pattern method (EBSP method) to continuously measure the area ratio of each crystal. It can be observed by following changes. Then, the crystal plane with the highest area increase rate is determined as the plane orientation (priority plane) of the preferred orientation.

次いで、2段目の結晶成長工程では、前記優先面を成長面とする単結晶を準備し、これを第2の種結晶としてさらに結晶成長を行う。この結果、結晶成長中に発生した結晶核は、前記優先面から成長した優先方位を持つ結晶粒内に取り込まれるようになるため、前記結晶核は結晶粒として拡大しない。従って、多結晶化を抑制でき、高品質の単結晶を常に得ることができる。なお、前述した取り込み効果は、前記優先面の優先度合い、すなわち面積増大率が大きいほど顕著になる。   Next, in the second-stage crystal growth step, a single crystal having the priority surface as a growth surface is prepared, and this is further used as a second seed crystal for further crystal growth. As a result, crystal nuclei generated during crystal growth are taken into crystal grains having a preferred orientation grown from the preferred plane, so that the crystal nuclei do not expand as crystal grains. Therefore, polycrystallization can be suppressed and a high-quality single crystal can always be obtained. The above-described capturing effect becomes more prominent as the priority level of the priority surface, that is, the area increase rate is larger.

前記優先面は結晶系、成長速度、多元系の組成などに依存して決定される。   The priority plane is determined depending on the crystal system, growth rate, multi-component composition, and the like.

前記2段目の結晶成長工程における前記単結晶は、上述した1段目の結晶成長とは別個の工程で得たものを用いることもできるし、前記バルク予備結晶から前記優先面を成長面に有する単結晶部分を切り出して用いることもできる。   The single crystal in the second-stage crystal growth step can be a single crystal obtained in a step separate from the first-stage crystal growth described above, or the preferential surface can be used as a growth surface from the bulk preliminary crystal. It is also possible to cut out and use the single crystal portion it has.

なお、本発明の目的をより効果的に実現するためには、前記バルク予備結晶を作製するために使用する前記第1の種結晶は、前記バルク予備結晶を構成する元素の少なくとも一つを含むことが好ましい。同様に、前記バルク予備結晶を切り出して得た前記第2の種結晶は、前記バルク単結晶を構成する元素の少なくとも一つを含むことが好ましい。さらに、前記バルク予備結晶と前記バルク単結晶の成長条件は同一とすることが好ましい。   In order to more effectively realize the object of the present invention, the first seed crystal used for producing the bulk preliminary crystal includes at least one element constituting the bulk preliminary crystal. It is preferable. Similarly, the second seed crystal obtained by cutting out the bulk preliminary crystal preferably contains at least one element constituting the bulk single crystal. Furthermore, it is preferable that the growth conditions of the bulk preliminary crystal and the bulk single crystal are the same.

以上説明したように、本発明によれば、種結晶以外からの結晶核の発生を抑制し、高品質のバルク単結晶を作製することが可能となる。   As described above, according to the present invention, generation of crystal nuclei from other than the seed crystal can be suppressed, and a high-quality bulk single crystal can be produced.

以下、本発明の詳細、並びにその他の特徴及び利点について詳述する。
上述したように、本発明では2段階の結晶成長を経て目的とするバルク単結晶を得る。最初の工程では、多数の結晶片を第1の種結晶として結晶成長を行い、得られたバルク予備結晶から本結晶成長過程における優先面を決定する。前記第1の種結晶は、板状又は球状などいずれの形態の結晶片からも構成することができる。
Details of the present invention, as well as other features and advantages, are described in detail below.
As described above, in the present invention, a target bulk single crystal is obtained through two stages of crystal growth. In the first step, crystal growth is performed using a large number of crystal pieces as a first seed crystal, and a priority plane in the crystal growth process is determined from the obtained bulk preliminary crystal. The first seed crystal can be composed of any form of crystal pieces such as a plate shape or a spherical shape.

また、前記第1の種結晶の大きさは特に限定されるものではないが、好ましくは50mm以下とする。さらに、前記第1の種結晶は前記バルク予備結晶を構成する元素の少なくとも一つを含むことが好ましい。これらの要件を満足する場合は、前記第1の種結晶からの前記バルク予備結晶の成長を容易ならしめ、目的とするバルク単結晶を簡易に得ることができる。   The size of the first seed crystal is not particularly limited, but is preferably 50 mm or less. Furthermore, it is preferable that the first seed crystal contains at least one element constituting the bulk preliminary crystal. When these requirements are satisfied, the growth of the bulk preliminary crystal from the first seed crystal can be facilitated, and the intended bulk single crystal can be easily obtained.

前記バルク予備結晶の作製は、例えば前記第1の種結晶を所定の容器の底部に配置し、前記第1の種結晶の上方に原材料を充填し、加熱溶融させることによって、前記第1の種結晶と接触するように融液を形成し、次いで、前記融液中に所定の温度勾配を形成し、前記融液の過飽和を駆動力とすることにより前記第1の種結晶を結晶核として結晶成長を行うことによって実施する。   The bulk preliminary crystal is manufactured by, for example, placing the first seed crystal at the bottom of a predetermined container, filling the raw material above the first seed crystal, and heating and melting the first seed crystal. A melt is formed so as to come into contact with the crystal, then a predetermined temperature gradient is formed in the melt, and the first seed crystal is used as a crystal nucleus by using supersaturation of the melt as a driving force. Implement by growing.

上述のようにして前記バルク予備結晶を作製した後、前記バルク予備結晶を成長方向と垂直な面でスライスし、EBSP法などによってその結晶面の分布を観察し、各結晶面の面積の割合を測定する。これによって、前記バルク予備結晶の、面積増加率の最も高い結晶面を優先面として決定する。なお、EBSP法は公知の結晶観察方法であって、例えば日本金属学会誌、2001年7月号、Vol.4D, pp611-654などに記載されている。   After the bulk preliminary crystal is manufactured as described above, the bulk preliminary crystal is sliced in a plane perpendicular to the growth direction, the distribution of the crystal plane is observed by an EBSP method or the like, and the ratio of the area of each crystal plane is determined. taking measurement. Thus, the crystal plane having the highest area increase rate of the bulk preliminary crystal is determined as the priority plane. The EBSP method is a known crystal observation method. For example, the Journal of the Japan Institute of Metals, July 2001, Vol. 4D, pp611-654, etc.

次いで、前記優先面を成長面に有する単結晶を準備し、これを第2の種結晶としてさらに結晶成長を行う。前記単結晶は上述した第1の結晶成長とは別個の工程で得たものを用いることもできるし、前記バルク予備結晶の前記優先面を含む単結晶部分を選択して切り出して用いることもできる。   Next, a single crystal having the priority surface as a growth surface is prepared, and this is further used as a second seed crystal for further crystal growth. As the single crystal, one obtained in a step separate from the first crystal growth described above can be used, or a single crystal portion including the priority surface of the bulk preliminary crystal can be selected and cut out. .

なお、前記第2の種結晶の大きさは特に限定されるものではないが、好ましくは300mm以下とする。さらに、前記第2の種結晶は前記バルク単結晶を構成する元素の少なくとも一つを含むことが好ましい。これらの要件を満足する場合は、前記第2の種結晶からの前記バルク単結晶の成長を容易ならしめ、目的とするバルク単結晶を簡易に得ることができる。   The size of the second seed crystal is not particularly limited, but is preferably 300 mm or less. Furthermore, it is preferable that the second seed crystal contains at least one element constituting the bulk single crystal. When these requirements are satisfied, the bulk single crystal can be easily grown from the second seed crystal, and the intended bulk single crystal can be easily obtained.

前記バルク予備結晶の作製は、例えば前記第2の種結晶を所定の容器の底部に配置し、前記第2の種結晶の上方に原材料を充填し、加熱溶融させることによって、前記第2の種結晶と接触するように融液を形成し、次いで、前記融液中に所定の温度勾配を形成し、前記融液の過飽和を駆動力とすることにより前記第2の種結晶を結晶核として結晶成長を行うことによって実施する。   The bulk preliminary crystal is produced, for example, by placing the second seed crystal at the bottom of a predetermined container, filling the raw material above the second seed crystal, and heating and melting the second seed crystal. A melt is formed so as to come into contact with the crystal, then a predetermined temperature gradient is formed in the melt, and the second seed crystal is used as a crystal nucleus by using supersaturation of the melt as a driving force. Implement by growing.

なお、前記第2の種結晶からの前記バルク単結晶の成長と、前記第1の種結晶からの前記バルク予備結晶の成長とは同一の成長条件で行うことが好ましい。すなわち、上述したバルク予備結晶の作製方法及びバルク単結晶の作製方法において、使用する原材料の種類及び組成などを同一にして同一組成の融液を作製し、前記融液中に同一の温度勾配などを形成する。これによって、前記第2の種結晶を構成する、前記バルク単結晶から選択した前記優先面の作用効果が増大し、前記優先面を種結晶面とした結晶成長が促進され、高品質のバルク単結晶をより簡易に作製することができるようになる。   It is preferable that the growth of the bulk single crystal from the second seed crystal and the growth of the bulk preliminary crystal from the first seed crystal are performed under the same growth conditions. That is, in the above-described bulk preliminary crystal production method and bulk single crystal production method, melts having the same composition are produced by using the same kind and composition of raw materials to be used, and the same temperature gradient or the like in the melt. Form. This increases the effect of the priority plane selected from the bulk single crystal constituting the second seed crystal, promotes crystal growth using the priority plane as a seed crystal plane, and produces a high-quality bulk single crystal. Crystals can be produced more easily.

以下、本発明を具体例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on specific examples.

(実施例1)
本実施例では、SiGeバルク単結晶の作製を試みた。
最初に、直径15mmの石英管中に直径約2mm以下の多数のGe結晶の破片を第1の種結晶として配置し、その上方に直径15mm、長さ40mmのGe多結晶を配置した。さらにその上に、元素補給用Si単結晶を配置し、真空封入した。次いで、前記Si単結晶側が高温、前記種結晶側が低温となり、約30℃/cmの温度勾配を有するように前記石英管中の前記Si単結晶及びGe多結晶を加熱し、溶解させた。これによって、前記石英管中には、Si‐Ge二元系融液が形成された。
(Example 1)
In this example, an attempt was made to produce a SiGe bulk single crystal.
First, a large number of Ge crystal fragments having a diameter of about 2 mm or less were arranged as a first seed crystal in a quartz tube having a diameter of 15 mm, and a Ge polycrystal having a diameter of 15 mm and a length of 40 mm was arranged thereon. Further thereon, an element replenishment Si single crystal was placed and sealed in a vacuum. Next, the Si single crystal and the Ge polycrystal in the quartz tube were heated and dissolved so that the Si single crystal side had a high temperature and the seed crystal side had a low temperature and had a temperature gradient of about 30 ° C./cm. As a result, a Si—Ge binary melt was formed in the quartz tube.

このとき、前記第1の種結晶上には過飽和を駆動力としてSiGeバルク予備結晶が成長した。得られた前記SiGeバルク予備結晶を、その成長方向に垂直な面内でスライスし、結晶面の分布をEBSP法により測定した。その結果、最も面積増加率の高い結晶面(優先面)は、(110)面であり、最も面積増加率の低い面は(111)面であった。   At this time, a SiGe bulk preliminary crystal was grown on the first seed crystal using supersaturation as a driving force. The obtained SiGe bulk preliminary crystal was sliced in a plane perpendicular to the growth direction, and the distribution of the crystal plane was measured by the EBSP method. As a result, the crystal plane (priority plane) with the highest area increase rate was the (110) plane, and the plane with the lowest area increase rate was the (111) plane.

次いで、直径15mm、長さ20mmの、(110)面及び(111)面を有するGe単結晶を準備し、これらを第2の種結晶として、前記バルク予備結晶の作製と同一の成長条件で結晶成長を行った。   Next, a Ge single crystal having a (110) plane and a (111) plane having a diameter of 15 mm and a length of 20 mm is prepared, and these are used as a second seed crystal under the same growth conditions as in the production of the bulk preliminary crystal. Made growth.

その後、得られた結晶を結晶方向に垂直な面内でスライスし、EBSP法により結晶面の分布を測定した。その結果、(111)面を有する単結晶部分を種結晶として用いた場合は、成長開始後間もなくルツボ壁から結晶粒が発生し、次第に(111)結晶面を持つ結晶粒を侵食するようにして、SiGeバルク多結晶が生成されたのに対して、(110)面を有する単結晶部分を種結晶として用いた場合は、新たな結晶核の生成はなく、前記種結晶を結晶核とした結晶成長が行われ、SiGeバルク結晶が生成された。 Thereafter, the obtained crystal was sliced in a plane perpendicular to the crystal direction, and the distribution of the crystal plane was measured by the EBSP method. As a result, when a single crystal portion having a (111) plane is used as a seed crystal, crystal grains are generated from the crucible wall shortly after the start of growth, and the crystal grains having the (111) plane are gradually eroded. When a single crystal portion having a (110) plane is used as a seed crystal while a SiGe bulk polycrystal is generated, there is no generation of a new crystal nucleus, and a crystal using the seed crystal as a crystal nucleus. Growth took place and a SiGe bulk single crystal was produced.

(実施例2)
本実施例ではInGaAsバルク単結晶の作製を試みた。
最初に、直径15mmの石英管中に直径約2mm以下の多数のInGaAs結晶片を第1の種結晶として配置し、その上方に直径15mm、長さ40mmのInAs単結晶を配置した。さらにその上に、元素補給用GaAs単結晶を配置し、真空封入した。前記GaAs単結晶側が高温、前記種結晶側が低温となり、約30℃/cmの温度勾配を有するように前記InAs単結晶及び前記GaAs単結晶を加熱し、溶解させた。これによって、前記石英管中には、InAs‐GaAs擬二元系融液が形成された。
(Example 2)
In this example, an attempt was made to produce an InGaAs bulk single crystal.
First, a large number of InGaAs crystal pieces having a diameter of about 2 mm or less were disposed as first seed crystals in a quartz tube having a diameter of 15 mm, and an InAs single crystal having a diameter of 15 mm and a length of 40 mm was disposed thereon. Furthermore, a GaAs single crystal for element supplementation was placed thereon and sealed in a vacuum. The InAs single crystal and the GaAs single crystal were heated and dissolved so that the GaAs single crystal side had a high temperature and the seed crystal side had a low temperature and had a temperature gradient of about 30 ° C./cm. As a result, an InAs-GaAs pseudo binary melt was formed in the quartz tube.

このとき、前記第1の種結晶上には過飽和を駆動力としてInGaAsバルク予備結晶が成長した。得られたInGaAsバルク予備結晶を、その成長方向に垂直な面内でスライスし、結晶面の分布をEBSP法により測定した。その結果、最も面積増加率の高い結晶面(優先面)は、(110)面であることが判明した。   At this time, an InGaAs bulk preliminary crystal was grown on the first seed crystal using supersaturation as a driving force. The obtained InGaAs bulk preliminary crystal was sliced in a plane perpendicular to the growth direction, and the distribution of the crystal plane was measured by the EBSP method. As a result, it was found that the crystal plane (priority plane) having the highest area increase rate was the (110) plane.

次いで、直径15mm、長さ20mmの(110)GaAs単結晶を準備し、これを第2の種結晶として、前記InGaAsバルク予備結晶の作製と同一の成長条件で結晶成長を行った。   Next, a (110) GaAs single crystal having a diameter of 15 mm and a length of 20 mm was prepared, and this was used as a second seed crystal, and crystal growth was performed under the same growth conditions as the production of the InGaAs bulk preliminary crystal.

その後、得られた結晶を結晶方向に垂直な面内でスライスし、EBSP法により結晶面の分布を測定した。その結果、新たな結晶核の生成はなく、前記種結晶を結晶核とした結晶成長が行われ、高品質なInGaAsバルク結晶が生成された。 Thereafter, the obtained crystal was sliced in a plane perpendicular to the crystal direction, and the distribution of the crystal plane was measured by the EBSP method. As a result, no new crystal nucleus was generated, and crystal growth was performed using the seed crystal as a crystal nucleus, and a high-quality InGaAs bulk single crystal was generated.

なお、InGaAsバルク単結晶は、光通信用の高効率、高温度特性を有する半導体レーザー用基板結晶として極めて有望である。   Note that the InGaAs bulk single crystal is extremely promising as a semiconductor laser substrate crystal having high efficiency and high temperature characteristics for optical communication.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

例えば、実施例1では、Ge結晶片を第1の種結晶として用いているが、Si結晶片を用いることもできる。また、実施例2ではInGaAs結晶片を第1の種結晶として用いているが、GaAs結晶片を用いることもできる。さらに、GaAs単結晶の代わりに、InAs単結晶を第2の種結晶として用いることもできる。   For example, in Example 1, a Ge crystal piece is used as the first seed crystal, but a Si crystal piece can also be used. In Embodiment 2, an InGaAs crystal piece is used as the first seed crystal, but a GaAs crystal piece can also be used. Further, an InAs single crystal can be used as the second seed crystal instead of the GaAs single crystal.

本発明によれば、従来単結晶化が困難であった全率固溶型の状態図を有する多元系のバルク単結晶を簡易に作製することができる。したがって、このようなバルク単結晶を利用する種々の工業分野に適用することができる。特にInGaAsなどのGaAs系半導体バルク単結晶を簡易に作製することができ、光通信用の高効率及び高温度特性を有する基板材料の提供が可能となる。また、Si系バルク単結晶を簡易に作製することができ、高性能化された新規な電子デバイスの提供が可能となる。   According to the present invention, it is possible to easily produce a multi-element bulk single crystal having a complete solid solution type phase diagram that has been difficult to convert into a single crystal. Therefore, it can be applied to various industrial fields using such bulk single crystals. In particular, a GaAs-based semiconductor bulk single crystal such as InGaAs can be easily produced, and a substrate material having high efficiency and high temperature characteristics for optical communication can be provided. In addition, a Si-based bulk single crystal can be easily manufactured, and a new electronic device with high performance can be provided.

Claims (25)

多数の結晶片を第1の種結晶として結晶成長を行い、異なる面方位の複数の結晶面を有するバルク予備結晶を成長させる工程と、
前記バルク予備結晶において、最も面積増加率の高い結晶面を優先面として決定し選択する工程と、
前記優先面を成長面に有する単結晶を準備する工程と、
前記単結晶を第2の種結晶として結晶成長を行い、バルク単結晶を得る工程と、
を具えることを特徴とする、結晶成長方法。
Performing a crystal growth using a large number of crystal pieces as a first seed crystal and growing a bulk preliminary crystal having a plurality of crystal planes of different plane orientations;
In the bulk preliminary crystal, a step of determining and selecting a crystal plane having the highest area increase rate as a priority plane;
Preparing a single crystal having the preferred surface as a growth surface;
Performing a crystal growth using the single crystal as a second seed crystal to obtain a bulk single crystal;
A crystal growth method comprising the steps of:
前記単結晶は、前記バルク予備結晶から前記優先面を成長面に有する単結晶部分を切り出して得ることを特徴とする、請求項1に記載の結晶成長方法。   2. The crystal growth method according to claim 1, wherein the single crystal is obtained by cutting out a single crystal portion having the priority surface as a growth surface from the bulk preliminary crystal. 前記第1の種結晶の大きさが50mm以下であることを特徴とする、請求項1又は2に記載の結晶成長方法。   The crystal growth method according to claim 1 or 2, wherein a size of the first seed crystal is 50 mm or less. 前記第1の種結晶は前記バルク予備結晶を構成する元素の少なくとも一つを含むことを特徴とする、請求項1〜3のいずれか一に記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the first seed crystal includes at least one element constituting the bulk preliminary crystal. 前記第2の種結晶の大きさが300mm以下であることを特徴とする、請求項1〜4のいずれか一に記載の結晶成長方法。   The crystal growth method according to any one of claims 1 to 4, wherein a size of the second seed crystal is 300 mm or less. 前記第2の種結晶は前記バルク単結晶を構成する元素の少なくとも一つを含むことを特徴とする、請求項1〜5のいずれか一に記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the second seed crystal includes at least one element constituting the bulk single crystal. 前記優先面の決定は、前記バルク予備結晶に電子後方分散パターン法(Electron Back Scattering pattern法:EBSP法)により実施したことを特徴とする、請求項1〜6のいずれか一に記載の結晶成長方法。   The crystal growth according to any one of claims 1 to 6, wherein the priority plane is determined on the bulk preliminary crystal by an electron back scattering pattern method (EBSP method). Method. 前記バルク予備結晶の成長は、前記第1の種結晶を所定の容器の底部に配置するとともに、前記第1の種結晶の上方において前記第1の種結晶と接触するようにして所定の融液を形成し、前記第1の種結晶を結晶核として行うことを特徴とする、請求項1〜7のいずれか一に記載の結晶成長方法。   The bulk preliminary crystal is grown by placing the first seed crystal at the bottom of a predetermined container and contacting the first seed crystal above the first seed crystal with a predetermined melt. The crystal growth method according to claim 1, wherein the first seed crystal is used as a crystal nucleus. 前記バルク予備結晶の成長は、前記融液中に所定の温度勾配を形成し、前記融液の過飽和を駆動力として前記第1の種結晶上に行うことを特徴とする、請求項8に記載の結晶成長方法。   The growth of the bulk preliminary crystal is performed on the first seed crystal by forming a predetermined temperature gradient in the melt and using supersaturation of the melt as a driving force. Crystal growth method. 前記バルク単結晶の成長は、前記第2の種結晶を所定の容器の底部に配置するとともに、前記第2の種結晶の上方において前記第2の種結晶と接触するようにして所定の融液を形成し、前記第2の種結晶を結晶核として行うことを特徴とする、請求項1〜9のいずれか一に記載の結晶成長方法。   The bulk single crystal is grown by placing the second seed crystal at the bottom of a predetermined container and contacting the second seed crystal above the second seed crystal with a predetermined melt. The crystal growth method according to claim 1, wherein the second seed crystal is used as a crystal nucleus. 前記バルク単結晶の成長は、前記融液中に所定の温度勾配を形成し、前記融液の過飽和を駆動力として前記第2の種結晶上に行うことを特徴とする、請求項10に記載の結晶成長方法。   The growth of the bulk single crystal is performed on the second seed crystal by forming a predetermined temperature gradient in the melt and using supersaturation of the melt as a driving force. Crystal growth method. 前記第1の種結晶からの前記バルク予備結晶の成長と、前記第2の種結晶からの前記バルク単結晶の成長とは同一の成長条件で行うことを特徴とする、請求項1〜11のいずれか一に記載の結晶成長方法。   The growth of the bulk preliminary crystal from the first seed crystal and the growth of the bulk single crystal from the second seed crystal are performed under the same growth conditions. The crystal growth method according to any one of the above. 前記バルク予備結晶及び前記バルク単結晶はSi系半導体であることを特徴とする、請求項1〜12のいずれか一に記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the bulk preliminary crystal and the bulk single crystal are Si-based semiconductors. 前記バルク予備結晶及び前記バルク単結晶はSiGeであることを特徴とする、請求項13に記載の結晶成長方法。   The crystal growth method according to claim 13, wherein the bulk preliminary crystal and the bulk single crystal are SiGe. 前記第1の種結晶はGe又はSiからなることを特徴とする、請求項14に記載の結晶成長方法。   The crystal growth method according to claim 14, wherein the first seed crystal is made of Ge or Si. 前記第2の種結晶はSiGeからなることを特徴とする、請求項15に記載の結晶成長方法。   The crystal growth method according to claim 15, wherein the second seed crystal is made of SiGe. 前記バルク予備結晶の前記優先面が(110)面±10度であることを特徴とする、請求項16に記載の結晶成長方法。   The crystal growth method according to claim 16, wherein the priority plane of the bulk preliminary crystal is (110) plane ± 10 degrees. 前記バルク予備結晶及び前記バルク単結晶はGaAs系化合物半導体であることを特徴とする、請求項1〜12のいずれか一に記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the bulk preliminary crystal and the bulk single crystal are GaAs compound semiconductors. 前記バルク予備結晶及び前記バルク単結晶はInGaAsであることを特徴とする、請求項18に記載の結晶成長方法。   The crystal growth method according to claim 18, wherein the bulk preliminary crystal and the bulk single crystal are InGaAs. 前記第1の種結晶はGaAs又はInGaAsからなることを特徴とする、請求項19に記載の結晶成長方法。   The crystal growth method according to claim 19, wherein the first seed crystal is made of GaAs or InGaAs. 前記第2の種結晶はGaAs又はInAsからなることを特徴とする、請求項20に記載の結晶成長方法。   21. The crystal growth method according to claim 20, wherein the second seed crystal is made of GaAs or InAs. 前記バルク予備結晶の前記優先面が(110)面±10度であることを特徴とする、請求項21に記載の結晶成長方法。   The crystal growth method according to claim 21, wherein the priority plane of the bulk preliminary crystal is (110) plane ± 10 degrees. 多数の結晶片を種結晶として結晶成長を行い、異なる面方位の複数の結晶面を有するとともに、最も面積増加率の高い結晶面を優先面として有するバルク単結晶成長用バルク予備結晶の作製方法。   A method for producing a bulk pre-crystal for bulk single crystal growth, in which a plurality of crystal pieces are used as seed crystals to grow a crystal and have a plurality of crystal planes with different plane orientations and a crystal plane with the highest area increase rate as a priority plane. 前記種結晶の大きさが50mm以下であることを特徴とする、請求項23に記載のバルク単結晶成長用バルク予備結晶の作製方法。 The method for producing a bulk preliminary crystal for bulk single crystal growth according to claim 23 , wherein the size of the seed crystal is 50 mm or less. 前記種結晶は前記バルク予備結晶を構成する元素の少なくとも一つを含むことを特徴とする、請求項23又は24に記載のバルク単結晶成長用バルク予備結晶の作製方法。 25. The method for producing a bulk preliminary crystal for bulk single crystal growth according to claim 23 or 24 , wherein the seed crystal includes at least one element constituting the bulk preliminary crystal.
JP2003355443A 2003-10-15 2003-10-15 Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth Expired - Lifetime JP4122382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355443A JP4122382B2 (en) 2003-10-15 2003-10-15 Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355443A JP4122382B2 (en) 2003-10-15 2003-10-15 Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth

Publications (2)

Publication Number Publication Date
JP2005119900A JP2005119900A (en) 2005-05-12
JP4122382B2 true JP4122382B2 (en) 2008-07-23

Family

ID=34613036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355443A Expired - Lifetime JP4122382B2 (en) 2003-10-15 2003-10-15 Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth

Country Status (1)

Country Link
JP (1) JP4122382B2 (en)

Also Published As

Publication number Publication date
JP2005119900A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US7097707B2 (en) GaN boule grown from liquid melt using GaN seed wafers
JP4528995B2 (en) Method for producing Si bulk polycrystalline ingot
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
JP4054873B2 (en) Method for producing Si-based crystal
KR20130059272A (en) Crystalline silicon ingot and method of fabricating the same
Lu et al. Effect of vibrational stirring on the quality of Bridgman-grown CdTe
JP2009013055A (en) Method for producing semi-conducting material wafer by molding and directional crystallization
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
Takahashi et al. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer
JP6645409B2 (en) Silicon single crystal manufacturing method
JP4122382B2 (en) Crystal growth method, bulk pre-crystal for bulk single crystal growth, and method for producing bulk pre-crystal for bulk single crystal growth
JP2004067425A (en) Si CLATHRATE SINGLE CRYSTAL AND ITS PREPARATION PROCESS
JP6798637B1 (en) Gallium arsenide single crystal substrate
JP4923253B2 (en) Method for producing Si bulk polycrystal
JP3674736B2 (en) Method for producing plate-like single crystal
JP3253005B2 (en) Method for producing solid solution single crystal
JP4576571B2 (en) Method for producing solid solution
JP3855059B2 (en) Method for producing Ge-based crystal
JP2018080063A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2001072500A (en) Growth of high melting point silicide crystal by using molten liquid of intermetallic compound
CN108977885A (en) A kind of technique based on LPE method production SiC
JP2001322890A (en) Method for producing solid solution single crystal
Boyer et al. Bridgman Growth and Characterization of Bulk Single Crystals of Ga1− xInxSb for Thermophotovoltaic Applications
JP2000026191A (en) Production of high quality crystal thin sheet material
JP2000256093A (en) Silicon material having clathrate crystal structure and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

R150 Certificate of patent or registration of utility model

Ref document number: 4122382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term