JP4119759B2 - Method for remediating soil contaminated with persistent substances - Google Patents
Method for remediating soil contaminated with persistent substances Download PDFInfo
- Publication number
- JP4119759B2 JP4119759B2 JP2003010004A JP2003010004A JP4119759B2 JP 4119759 B2 JP4119759 B2 JP 4119759B2 JP 2003010004 A JP2003010004 A JP 2003010004A JP 2003010004 A JP2003010004 A JP 2003010004A JP 4119759 B2 JP4119759 B2 JP 4119759B2
- Authority
- JP
- Japan
- Prior art keywords
- lignin
- leaves
- white rot
- wood
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/78—Recycling of wood or furniture waste
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、白色腐朽菌を用いた難分解性物質汚染土壌の浄化方法に関し、詳細には、白色腐朽菌によるリグニン分解能を高めることにより、ビスフェノールAやダイオキシン類等に代表される芳香族化合物等の難分解性物質に汚染された土壌を効率よく浄化する方法に関するものである。
【0002】
【従来の技術】
近年、様々な有害化学物質による環境汚染や、人体に及ぼす悪影響等が大きくクローズアップされている。
【0003】
なかでもビスフェノールA等の芳香族化合物や、ダイオキシン類を始めとする有機塩素系化合物は、有害且つ難分解性で、しかも環境中や人体等への蓄積性も極めて高く、深刻な社会問題を招いている。その為、これらの有害化合物で汚染された土壌を浄化する方法に関し、多くの研究がなされている。
【0004】
現在、最も脚光を浴びているのが、微生物を用いる方法[バイオレメディエーション(生物学的修復)]である。分解能に優れた微生物を用いれば、従来の物理化学的方法(高温溶融法、加熱分解法、アルカリ処理法、超臨界水分解法、触媒酸化法、オゾン分解法等)に比べ、短期間で高度の分解作用が得られ、エネルギー消費量も小さく、環境汚染の心配もない等のメリットが得られるからである。
【0005】
とりわけ、木材腐朽菌は、様々な環境汚染物質に対する分解能を有する微生物として注目されており、木材腐朽菌の一種である白色腐朽菌は、菌体外に産生されるフェノール酸化酵素により、天然の難分解性物質であるリグニンの分解能に優れることが知られている。
【0006】
白色腐朽菌の中で最も研究されているのはファネロケーテ属(Phanerochaete)に属するファネロケーテ・クリソスポリウム(Phanerochaete chrysosporium)であり、上記微生物により、塩素置換数が4個以上のダイオキシン類を分解できることが報告されている(非特許文献1)。しかしながら、上記微生物による分解作用は通常の空気条件下では得られず、分解処理時に酸素濃度を高めたりする等の処理を別途実施して初めて発揮されるものであるが、それでもなお、分解能は低く、実用化するには未だ不充分であった。また、上記微生物は輸入検疫有害菌に指定されている菌株であり、開放系で、日本国内の土壌浄化処理に使用することはできない等の問題もある。
【0007】
また、ファネロケーテ・ソルディダ(Phanerochaete sordida)YK−624株は、2週間の処理で約50〜70%の分解能を発揮する等、非常に優れたダイオキシン分解作用を有することが報告されている(非特許文献2)。しかしながら、これまでに報告されているのは、上記微生物を用いた水中のダイオキシン類分解能を調べた実験に止まっており、水中に比べて分解がより困難な土壌中のダイオキシン類を対象とした実験は未だ報告されていない。また、上記微生物による水中のダイオキシン分解能は、前述したファネロケーテ・クリソスポリウムの場合と同様、酸素濃度が高いときにのみ発揮されること;しかも水中ダイオキシン分解法では、分解活性能を高める為にグルコースを添加しているが、土壌処理するに当たり、グルコースを添加すると雑菌が繁殖してしまい、添加した微生物の生育及び分解能が阻害される恐れがある。
【0008】
その他、上記以外の白色腐朽菌として、本願出願人が新規に見出したFERMBP−1859(FERM P−9384より移管されたもので、NK−1148株と呼ぶ場合がある)、及びFERM P−17514(LSB−69株と呼ぶ場合がある)がある。これらの微生物は、ファネロケーテ・クリソスポリウムに比べて水中のダイオキシン類分解能に優れている(特許文献1及び特許文献2)が、土壌中ダイオキシン類分解能については未だ検討していなかった。
【0009】
一方、上記白色腐朽菌を用いた汚染土壌浄化方法として、樹木の木質材料(木材チッブ、おがくず、木粉等)に白色腐朽菌を接種して培養し、汚染土壌を浄化する方法が提案されている。
【0010】
例えば特許文献3には、白色腐朽菌等の微生物による有機化合物分解活性を高める目的で、木質物質を添加した基質の使用が提案されている。使用する木質物質としては、木材(木粉、木材チッブ等)や、木質性廃棄物(藁、木くず等)が例示されており、具体的には、ブナ木粉を添加した実施例が開示されている。
【0011】
また、特許文献4には、担子菌によってコンポスト化(堆肥化)された木材を用いたダイオキシン汚染土壌の浄化方法が提案されており、コンポスト化に用いられる木材として、スギ、ヒノキ、マツ、カシ、シイ等のほか、雑木、剪定枝葉、刈り草などが挙げられている。
【0012】
しかしながら、上記特許文献4の方法は、あくまでも、これらの木材を堆肥化させて使用することを前提としている為、堆肥化に必要な飼料(消石灰、尿素等)を添加して長期間発酵させなければならない等、作業性等の点で問題がある。
【0013】
【非特許文献1】
バンパス(Bumpus)ら,白色腐朽菌ファネロケーテ・クリソスポリウムによる難分解性環境汚染物質の酸化(Oxidation of Persistent Environmental Pollutants by a White Rot Fungus Phanerochaete chrysosporium,サイエンス(Science),米国,1985年,第228号,p.1434
【非特許文献2】
高田(Takada)ら,白色腐朽菌ファネロケーテ・ソルディダによるポリ塩素化ジベンゾp−ダイオキシン類及びポリ塩素化ジベンゾフランの分解(Degradation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by the White Rot Fungus Phanerochaete sordida YK-624,米国,応用環境微生物(Appl. Environ. Microbiol),1996年,第62号,p.4323
【特許文献1】
特公平3−32996号公報(特許請求の範囲、実施例)
【特許文献2】
特開2001−86980号公報(特許請求の範囲、実施例)
【特許文献3】
特開2000−186272号公報(特許請求の範囲、第3〜4頁)
【特許文献4】
特開2000−107742号公報(特許請求の範囲、第2〜3頁)
【0014】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、白色腐朽菌によるリグニン分解能を高めることにより、難分解性物質汚染土壌を効率よく浄化することが可能な方法を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る難分解性物質汚染土壌の浄化方法は、白色腐朽菌による難分解性物質汚染土壌の浄化方法において、培養基材として、葉を含有する木質材料を、堆肥化させることなしに使用するところに要旨を有するものである。ここで、葉を含有する木質材料としては、剪定材の使用が推奨される。本発明に用いられる好ましい白色腐朽菌としては、FERM BP−1859、FERM P−17514、及びファネロケーテ・ソルディダYK−624の菌株よりなる群から選択される少なくとも一種が挙げられる。
【0016】
【発明の実施の形態】
本発明者らは、白色腐朽菌による土壌浄化作用を高めるべく、特に培養基材を中心に鋭意検討してきた。その結果、培養基材として、葉を含有する木質材料を、堆肥化させることなしに使用すれば、葉を使用しない場合に比べ、リグニン分解能が向上し、難分解性物質汚染土壌を効率よく浄化し得ることを見出し、本発明を完成した。
【0017】
前述した通り、これまでにも、樹木の木質材料(木材チッブ、おがくず、木粉等)に白色腐朽菌を接種して培養し、汚染土壌を浄化する方法は提案されている(特許文献3及び4)。しかしながら、このうち特許文献3には、木質物質に、更に葉を添加した培地で培養すれば、白色腐朽菌による分解能が向上するという本発明独自の知見は、全く開示されていない。
【0018】
また、特許文献4の方法は、堆肥化に必要な飼料(消石灰、尿素等)を添加して長期間発酵させなければならない等、作業性等の点で問題がある。尚、上記公報には、剪定枝葉も挙げられているが、単に、木材の一例として木粉等と羅列されているに過ぎず、実際に、これを使用して分解能を調べた訳ではなく、この様な実施例もない。即ち、上記公報は、木材の堆肥化により白色腐朽菌の分解活性を高める技術である点で、堆肥化させない本発明とは、技術的に全く相違するものである。従って、堆肥化に関して教示された上記公報のなかに、たまたま、剪定枝葉が例示されているからといって、葉の存在意義に関し、全く認識していない上記公報に基づき、本発明を導き出すことは困難であると考える。
【0019】
そもそも白色腐朽菌は、木材を栄養源とする微生物であり、培養基材として、木材を使用することはあっても、葉も含めて使用するという発想はない。逆に、葉を混入すると、分解活性の発現に有用なフェノール酸化酵素等の産生が減少する等して所望の効果が発揮されない、とさえ考えられていた。従って、白色腐朽菌の培養に当たり、木質物質として剪定枝葉を採取してきたとしても、現実には、栄養分たる木材のみ使用し、葉は捨てていたのが実情である。
【0020】
ところが本発明者らの検討結果によれば、驚くべきことに、葉を混入した木質材料を用いれば、木質材料のみを使用した場合に比べ、リグニン分解能が顕著に上昇することが分かった。この結果は、従来の常識を覆すものであり、予想外の効果をもたらした点で極めて意義深い。
【0021】
以下、本発明について、具体的に説明する。
【0022】
まず、本発明に用いられる白色腐朽菌は、難分解性物質の分解に通常使用されているものが挙げられ、例えば、ファネロケーテ(Phanerochaete)属、プロイロータス(Pleurotus)属、レンツイテス(Lenzites)属、トラメテス(Trametes)属、コリオラス(Coriolus)属、ハイポキシラン(Hypoxylundeustrum)属の微生物等が例示される。このうちプロイロータス属の微生物としてはヒラタケ等;コリオラス属の微生物としてはカワラタケ等が挙げられる。
【0023】
上記白色腐朽菌のなかでも特に本発明による作用が顕著に発揮されるのは、白色腐朽菌FERM BP−1859(FERM P−9384より移管されたもので、NK−1148株と呼ぶ場合がある)、白色腐朽菌FERM P−17514(LSB−69株と呼ぶ場合がある)、及びファネロケーテ・ソルディダ(Phanerochaete sordida)ATCC 90872(以下、YK−624株と呼ぶ場合がある)の菌株であり、本発明では、これらを単独で使用してもよいし、2種以上の菌株を併用してもよい。
【0024】
このうちFERM BP−1859及びFERM P−17514の菌株は、前述した通り、いずれも本願出願人によって新規に見出されたものである。これらの菌学的性質等を考慮すると担子菌類に属する白色腐朽菌であると考えられるが、既知の菌と同定するには至らなかった為、寄託している。上記菌株は、ダイオキシン類等の分解微生物として知られている既知の白色腐朽菌ファネロケーテ・クリソスポリウムに比べ、格段に優れた分解能を発揮していることを確認している(特許文献1及び2)。
【0025】
また、ファネロケーテ・ソルディダATCC 90872は、American Type Culture Collectionに寄託されている白色腐朽菌であり、前記非特許文献3に記載の通り、優れたダイオキシン分解能を有することが知られているものである。
【0026】
本発明の分解対象たる難分解性物質は、芳香環を有する化合物を意味し、単素環、複素環の種類を問わない。このうち単素環としては、ベンゼン;ニトロベンゼン、フルオランテン等の置換基を有するベンゼン;フェノール;ニトロフェノール;ノニルフェノール、オクチルフェノール、ペンチルフェノール等のアルキルフェノール;カテコール;フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル等のフタル酸エステル;ナフタレン;アントラセン;ピレン、ベンゾピレン、ジベンゾピレン等のピレン類;ビスフェノールA等のビスフェノール系化合物;エストラジオール等が挙げられる。また、複素環としては、炭素以外に、N,O,Sなどのヘテロ原子を1個以上含む環が挙げられ、例えばピリジン、ピリミジン、フラン、チオフェン、ピロール等の芳香族化合物;これらの関連化合物が包含される。更に上記芳香族化合物には、単素環及び複素環の混合物も含まれる。また、芳香環を有するポリマー原料やその分解物(オリゴマー、部分分解物等)なども包含される。その他、フッ素、塩素、臭素、ヨウ素を少なくとも1種有するハロゲン化有機化合物も包含され、例えば、塩化ビニル系、塩化ビニリデン系の有機塩素化合物;テフロン、フロン等のフッ素系化合物等が挙げられる。更に、PCDDs(ポリ塩化ジベンゾダイオキシン類)やPCDFs(ポリ塩化ジベンゾフラン類)等に代表されるダイオキシン類;前記ダイオキシン類において塩素の代わりに臭素を含むダイオキシン類;コプラナーPCBを含むPCBs(ポリ塩化ビフェニル類)やCB(クロロベンゼン)、CP(クロロフェノール)等も包含される。
【0027】
白色腐朽菌によって、上記の難分解性物質が分解されるメカニズムは詳細には不明であるが、白色腐朽菌は、芳香族化合物であるリグニンの分解能に優れることから、リグニン分解代謝系が深く関与しており、ダイオキシン類を始めとする様々な芳香族化合物の分解作用に寄与しているのではないかと思料される。
【0028】
次に、上記の白色腐朽菌を用い、難分解性物質で汚染された土壌を浄化する方法について説明する。
【0029】
まず、上記微生物を担子菌用培地[低窒素合成培地(Kirkの培地)、ボテト・グルコース培地、サブロー培地等])に接種し、培養する。培養条件は使用する白色腐朽菌や培地の種類等によって異なるが、概ね20〜30℃で3〜14日間培養することが推奨される。
【0030】
次いで、得られた培養物を、本発明の培養基材(葉を含有する木質材料)に接種する。
【0031】
使用する木質材料の樹種は特に限定されず、街路樹、庭木、森林等に生育する一般的な樹木を使用すれば良い。具体的には、ケヤキ(Zelkova serrata)、ソメイヨシノ(Prunus yedoensis)、シダレヤナギ(Salix babylonica)、キンモクセイ(Osmanthus fragrans)、サザンカ(Camellia sasanqua)、クロガネモチ(Ilex rotunba)、サンゴジュ(Viburunum awabuki)、オオムラサキ(Rhododendron pulchrum)、サツキ(Rhododendron indicum)、イチョウ(Ginkgo biloba)、アメリカフウ(Platanus occidentalis)、ナンキンハゼ(Sapium sebiferum)、クスノキ(Cinnamomun camphora)、マテバシ(Pasania edulis)、イヌマキ(Podocarpus macrophylla)等が挙げられる。
【0032】
使用に当たっては、これらの木質材料を微細に粉砕し、木粉、木材チッブ等とすることが推奨される。好ましいサイズは5cm以下、より好ましくは1cm以下、更により好ましくは0.5cm以下である。
【0033】
また、上記木質材料の廃棄物(例えば木くず等)も使用することができる。これらの廃棄物も上記の木と同じサイズに、微細粉砕したものを使用すれば良い。
【0034】
上記木質材料に添加する葉の種類は特に限定されず、上述した木等の葉を使用すれば良い。使用に当たっては、葉を微細に粉砕するが、好ましくは5cm以下、より好ましくは1cm以下、更により好ましくは0.5cm以下である。
【0035】
ここで、上記木質材料と葉の混合割合は、木質材料100質量部に対し、葉(乾燥質量)を0.1〜50質量部(好ましくは1〜20質量部)とすることが好ましい。0.1質量部以下では、所望の効果が得られない。一方、50質量部を超えて添加すると木質材料の割合が少なくなり、白色腐朽菌による分解能が低下する。尚、混合方法は特に限定されず、機械式ミキサー等を用いて混合すれば良い。
【0036】
本発明では、特に、葉も木質材料も含まれている剪定材の使用が推奨される。使用に当たっては、前述した比率になる様、適宜調整したものを用いれば良い。
【0037】
本発明において、葉の添加により、白色腐朽菌によるリグニン分解能が向上する理由は詳細には不明であるが、葉に含まれる成分により白色腐朽菌の生育が促進され、リグニン分解に関与する酵素の産生が促進されること等が考えられる。
【0038】
この様な培養物基材に白色腐朽菌を接種するが、接種濃度は、培養基材に対し、0.01〜5質量%(好ましくは0.05〜0.5質量%)の白色腐朽菌とすることが推奨される。
【0039】
また、培養条件は、使用する白色腐朽菌の種類;木質材料及び葉の種類や添加量等によっても相違するが、概ね、20〜30℃で約1〜4週間培養することが推奨される。これにより、所望の培養物が得られる。この培養物は、リグニン分解能に非常に優れており、難分解性物質汚染土壌の浄化能も高いものである。尚、以下の記載では、上記培養物を、汚染土壌に添加する前の培養物という意味で、「前培養物」と呼ぶ場合がある。
【0040】
ここで特に重要なのは、本発明では、上記の木質材料と葉を含む培養基材を、堆肥化させる必要がないという点である。前述した特許文献2では、ブナ等の細破砕チップに、消石灰(0.6%)及び尿素(1%)を添加して水分を調整(含水率55%)し、堆肥化させており、堆肥化には少なくとも数ヶ月間かかると考えられるが、本発明では、木質材料に葉を添加した独特の培養基材を使用している為、この様な堆肥化工程は不要であり、僅かに約1〜4週間程度の短期間培養を行うだけで、リグニン分解能に極めて優れた前培養物が得られる。実際のところ、上記公報には、「この様にして得られる堆肥中には、ダイオキシンの前駆物質となり得るリグニンが残存している恐れがある」という理由で、「堆肥中に残存するリグニンを分解し、リグニンからのダイオキシン生成を防ぐことが好ましい」といった趣旨の記載がなされており、上記公報は、リグニンが完全に分解するまで、長期間堆肥化させる技術であることが認められる。これに対し、本発明では、リグニンの完全分解は不要であり、リグニンの分解能を活性化させる(リグニン分解代謝系の活性化)のに必要な程度の、短期間培養を行う技術であり、この点で、両者は明確に相違している。従って、本発明によれば、リグニン分解能の面でも、作業性(処理時間の短縮等)の面でも、非常に有用である。
【0041】
次に、上記の様にして得られた前培養物を、難分解性物質を含有する土壌中に混合し、更に培養する。ここで、土壌中の化合物濃度は、概ね1×10-8〜102mg/gとなる様に調整しておくことが好ましい。土壌処理条件は、処理対象物質の種類や前培養物の組成等によっても相違するが、上記の化合物濃度に調整された土壌と、上記前培養物の混合比率を、質量比率で1:0.1〜1.1(好ましくは1:0.3〜0.6)とし、培養条件は、概ね、20〜40℃で1〜180日間とすることが推奨される。この土壌処理工程では、リグニン分解代謝系が活性化された前培養物により、リグニンの分解と、土壌中の難分解性物質の分解が同時に進行していると考えられ、その結果、所望の土壌浄化能が発揮されると思料される。
【0042】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
【0043】
【実施例】
実施例1:カワラタケを用いたリグニン分解試験(1)
本発明による優れたリグニン分解能を調べる目的で、以下の実験を行った。リグニン分解能に優れるということは、ビスフェノールAやダイオキシン類を始めとする芳香族化合物に汚染された土壌の分解能にも優れることが充分期待され、この様な汚染土壌の浄化にも寄与することから、リグニン分解は、「土壌浄化処理の前段階」と位置付けることができる。
【0044】
まず、ケヤキ、ソメイヨシノ、クスノキ、イチョウ等の街路樹剪定材(木質材料に対し、葉を乾燥質量で5%含むもの)を粗粉砕した後、ウイリーミルで再粉砕して微細化したもの(40〜100メッシュ画分)を、メタノールで脱脂し、風乾させることにより本発明の培養基材を得た。尚、比較の為に、葉をカットした剪定枝を同様に粉砕・再粉砕し、脱脂することにより比較例の培養基材を得た。
【0045】
次に、上記の各培養基材(乾燥質量10g)に水25mLを加えた後、代表的な白色腐朽菌の一つであるカワラタケ(Trametes Versicolor)を接種(培養基材に対する接種濃度0.08%)し、30℃で培養した後、培養基材中のリグニン(クラーソンリグニンと酸可溶性リグニンの合計)分解率を経時的に測定した。このうちクラーソンリグニンは、JIS P8008−1961に記載の方法により測定し、一方、酸可溶性リグニンは、中野準三編「リグニンの化学」,p53(1982)に記載の方法により測定した。
【0046】
得られた結果を図1に示す。
【0047】
図1より、葉を添加した本発明例は、葉を含まない比較例に比べ、リグニン分解率に極めて優れていることが分かる。特に本発明によれば、処理後約7週間で、約70%と非常に高い分解率が得られた。
【0048】
実施例2:カワラタケを用いたリグニン分解試験
本実施例では、木質材料に対する葉の添加効果を確認する目的で実験を行った。具体的には、実施例1において、木質材料に対する葉(乾燥質量)の比率を、表1の如く種々変化させた培養基材を用いたこと以外は実施例1と同様にして、各培養基材のリグニン分解率を測定した(処理時間:7週間)。得られた結果を表1に示す。
【0049】
【表1】
【0050】
表中、++はリグニン分解率>60%を、+はリグニン分解率:30〜60%を、−はリグニン分解率<30%を、夫々、意味する。
【0051】
表1より、葉を全く含まない木質材料を使用した場合は、リグニン分解率は30%未満であったのに対し、葉を添加するとリグニン分解率は向上し、特に木質材料に対し、葉を1〜20%添加すると、リグニン分解率は60%を超え、極めて優れた分解能が発揮されることが分かった。
【0052】
実施例3:LSB−69、NK−1148、YK−624、及びカワラタケを用いたダイオキシン類汚染土壌浄化試験
LSB−69、NK−1148、YK−624、及びカワラタケの各白色腐朽菌を用い、本発明法による優れたダイオキシン類分解能を調べる目的で以下の実験を行なった。
【0053】
まず、上記菌株をPDA培地(ポテト・グルコース寒天培地)にて生育させ、得られた菌糸を、500mL容三角フラスコ中に添加した200mLのPD(ポテト・グルコース)培地に接種し、30℃で4日間培養して菌培養液を得た。
【0054】
次に、葉を含む培養基材として、ケヤキ、ソメイヨシノ、クスノキ、イチョウ等の街路樹剪定材(木質材料100質量部に対して葉を5質量部含有)を乾燥させた後、約0.5〜1cm長さに粉砕した粉砕済剪定材を調製した。この粉砕済剪定材1kg中に、1.5Lの水と200mLの上記菌培養液を加えて混合した後、30℃で3週間培養した。尚、比較の為に、葉を含まない培養基材として、上記の街路樹剪定材で葉を全て除去したものを乾燥させ、約1cmに粉砕した木質部のみの粉砕済剪定材を調製し、当該剪定材1kg中に、1.5Lの水と200mLの上記菌培養液を加えて混合した後、30℃で3週間培養した。
【0055】
この様にして得られた各培養物について、以下のダイオキシン汚染土壌浄化試験を行なった。具体的には、ゴミ焼却場周辺で得たダイオキシン汚染土壌10kg中に上記の各培養物1kgを混合し、含水率が約50%となる様に水を加え、これを土壌厚さが約10cmとなる様に容器に入れた。尚、直射日光を浴びると、紫外線の作用により菌がダメージを受ける恐れがある為、直射日光を避ける目的で、容器上部に寒冷砂をかけた。次いで、この容器を屋外に設置し、約20℃で培養させた。培養開始0日目、15日目、30日目に土壌をサンプリングし、ホモジナイズした後、13C−ダイオキシンをスパイク添加した後、ソックスレー抽出した。回収した有機層を硫酸ナトリウムで脱水した後、減圧濃縮し、150mLのヘキサンを加えて溶解した。この溶液を硫酸処理した後、水洗・脱水し、1mLになるまで減圧濃縮した。次に、硝酸銀シリカゲルおよび活性炭シリカゲルで精製した後、ガスクロマトグラフ質量分析により、ダイオキシン類の各異性体[ジベンゾパラダイオキシン(四塩素化物、五塩素化物、六塩素化物、七塩素化物、及び八塩素化物);ジベンゾフラン(四塩素化物、五塩素化物、六塩素化物、七塩素化物、及び八塩素化物)]を経時的に定量分析し、毒性等量(TEQ)換算のダイオキシン濃度を算出した。
【0056】
ここで、ガスクロマトグラフ質量分析計の測定条件は以下の通りである。
【0057】
[ガスクロマトグラフの測定条件]
HP5890シリーズII
(1)測定試料が、四〜六塩素化ジベンゾパラダイオキシン及び四〜六塩素化ジベンゾフランの場合
分離カラム :CP-Sil 88[60m×0.25mm(I.D.)0.10μm]
カラム温度 :100℃(2min)→(10℃/min)→190℃(0min)→(3℃/min)→250℃(20min)
キャリアガス:ヘリウム(1.10ml/min)
注入口温度 :250℃
注入方式 :スプリットレス(1min)
(2)測定試料が七〜八塩素化ジベンゾパラダイオキシン及び七〜八塩素化ジベンゾフランの場合
分離カラム :DB17[30m×0.25mm(I.D.)0.25μm]
カラム温度:100℃(2min)→(30℃/min)→220℃(0min)→(10℃/min)→280℃(15min)
キャリアガス:ヘリウム(1.12ml/min)
注入口温度 :270℃
注入方式 :スプリットレス(1min)
[質量分析計の条件]
VG AutoSpec-Ultmima
イオン化方式 :EI
イオン化エネルギー:35eV
イオン化電流 :500μA
イオン源温度 :260℃
イオン加速電圧 :8kV
分解能 :10,000
図2〜5に、各微生物で処理したときのダイオキシン類濃度(各異性体の合計濃度)の経時的変化を示す。このうち図2はLSB−69株を用いた例;図3はNK−1148株を用いた例;図4はYK−624株を用いた例;図5はカワラタケの例である。
【0058】
これらの図より、いずれの菌株を用いた場合においても、本発明の如く葉を含む培養基材で培養したとき(図中、●)には、葉を含まない培養基材で培養したとき(図中、○)に比べて優れたダイオキシン類分解能を有することが分かる。これら白色腐朽菌のなかでも特にLSB−69株、NK−1148株、及びYK−624株は、カワラタケに比べてダイオキシン類分解率が高い。
【0059】
【発明の効果】
本発明は上記の様に構成されているので、白色腐朽菌によるリグニン分解能が高められる結果、難分解性物質汚染土壌を効率よく浄化する方法を提供することができた。
【図面の簡単な説明】
【図1】実施例2におけるリグニンの分解率の経時的変化を示すグラフである。
【図2】実施例3において、LSB−69株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図3】実施例3において、NK−1148株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図4】実施例3において、YK−624株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図5】実施例3において、カワラタケを用いたときのダイオキシン類分解率の経時的変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification method for persistent soil contaminated with white rot fungi, and in particular, by increasing the lignin resolution by white rot fungi, aromatic compounds represented by bisphenol A, dioxins, etc. The present invention relates to a method for efficiently purifying soil contaminated with various persistent substances.
[0002]
[Prior art]
In recent years, environmental pollution caused by various harmful chemical substances and adverse effects on human bodies have been greatly highlighted.
[0003]
In particular, aromatic compounds such as bisphenol A, and organic chlorinated compounds such as dioxins are harmful and hardly decomposable, and have extremely high accumulation in the environment and the human body, causing serious social problems. It is. Therefore, many studies have been conducted on methods for purifying soil contaminated with these harmful compounds.
[0004]
At present, the method of using microorganisms [bioremediation (biological remediation)] is most in the limelight. If microorganisms with excellent resolution are used, it is faster and more advanced than conventional physicochemical methods (high-temperature melting method, thermal decomposition method, alkali treatment method, supercritical water decomposition method, catalytic oxidation method, ozonolysis method, etc.). This is because a decomposing action is obtained, energy consumption is small, and there is no concern about environmental pollution.
[0005]
In particular, wood-rotting fungi are attracting attention as microorganisms that have the ability to resolve various environmental pollutants. White-roting fungi, a type of wood-rotting fungi, are naturally difficult due to the phenol oxidase produced outside the cells. It is known that lignin, which is a degradable substance, is excellent in resolution.
[0006]
The most studied white rot fungus is Phanerochaete chrysosporium belonging to the genus Phanerochaete, which can decompose dioxins with 4 or more chlorine substitutions. It has been reported (Non-Patent Document 1). However, the above-mentioned decomposition action by microorganisms cannot be obtained under normal air conditions, and can only be demonstrated by performing a separate process such as increasing the oxygen concentration during the decomposition process. However, the resolution is still low. It was still insufficient for practical use. In addition, the above microorganisms are strains designated as import quarantine harmful bacteria, and there are problems that they are open systems and cannot be used for soil purification treatment in Japan.
[0007]
In addition, Phanerochaete sordida YK-624 strain has been reported to have a very excellent dioxin decomposing action, such as exhibiting about 50-70% resolution after treatment for 2 weeks (non-patented). Reference 2). However, only the experiments that have been reported so far have examined the dioxins resolution in water using the above-mentioned microorganisms, and experiments on dioxins in soil that are more difficult to decompose than water. Has not yet been reported. In addition, the ability of the above-mentioned microorganisms to decompose dioxins in water is exhibited only when the oxygen concentration is high, as in the case of funerokete chrysosporium described above; and in the dioxin decomposition method in water, However, when the soil is treated, miscellaneous bacteria are propagated when the soil is treated, and the growth and resolution of the added microorganism may be inhibited.
[0008]
In addition, as white rot fungi other than the above, FERMBP-1859 (transferred from FERM P-9384, which may be referred to as NK-1148 strain) newly found by the present applicant, and FERM P-17514 ( Sometimes referred to as LSB-69 strain). These microorganisms are superior in the resolution of dioxins in water as compared to funerokete chrysosporium (
[0009]
On the other hand, a method for purifying contaminated soil by inoculating and cultivating woody materials (wood chips, sawdust, wood flour, etc.) with white rot fungi as a method for purifying contaminated soil using the above white rot fungi has been proposed. Yes.
[0010]
For example, Patent Document 3 proposes the use of a substrate to which a wooden substance is added for the purpose of enhancing the organic compound decomposing activity by microorganisms such as white rot fungi. Examples of woody materials to be used include wood (wood flour, wood chips, etc.) and woody waste (wood, wood waste, etc.). Specifically, examples in which beech wood flour is added are disclosed. ing.
[0011]
[0012]
However, since the method of
[0013]
[Non-Patent Document 1]
Bumpus et al. Oxidation of Persistent Environmental Pollutants by a White Rot Fungus Phanerochaete chrysosporium, Science, USA, 1985, No. 228 , P.1434
[Non-Patent Document 2]
Takada et al., Degradation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by the White Rot Fungus Phanerochaete sordida YK-624 , USA, Appl. Environ. Microbiol, 1996, 62, p.4323
[Patent Document 1]
Japanese Patent Publication No. 3-32996 (Claims, Examples)
[Patent Document 2]
JP 2001-86980 A (Claims, Examples)
[Patent Document 3]
JP 2000-186272 A (Claims, pages 3 to 4)
[Patent Document 4]
JP 2000-107742 A (claims,
[0014]
[Problems to be solved by the invention]
This invention is made | formed in view of the said situation, The objective is to provide the method which can purify the hardly degradable substance contaminated soil efficiently by raising the lignin resolution | decomposability by a white rot fungus. is there.
[0015]
[Means for Solving the Problems]
The purification method of the hardly decomposable substance-contaminated soil according to the present invention that has solved the above problems is a method for purifying the hardly decomposable substance-contaminated soil by white rot fungi. It has a gist where it is used without being composted. Here, the use of pruned wood is recommended as the woody material containing leaves. Preferred white rot fungi used in the present invention include at least one selected from the group consisting of strains of FERM BP-1859, FERM P-17514, and Fanerokete Soldida YK-624.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In order to enhance the soil purification effect by white rot fungi, the present inventors have intensively studied especially focusing on the culture substrate. As a result, if the woody material containing leaves is used as a culture substrate without composting, the lignin resolution is improved compared to the case where leaves are not used, and the soil contaminated with persistent substances is efficiently purified. The present invention has been completed.
[0017]
As described above, a method for purifying contaminated soil has been proposed so far by inoculating a white material of wood (wood chips, sawdust, wood flour, etc.) with white rot fungi and culturing the same (Patent Documents 3 and 3). 4). However, among these, Patent Document 3 does not disclose the unique knowledge of the present invention that the resolution by white rot fungi improves when cultured in a medium in which leaves are further added to a wooden substance.
[0018]
In addition, the method of
[0019]
In the first place, white-rot fungi are microorganisms that use wood as a nutrient source, and although wood is used as a culture substrate, there is no idea of using it including leaves. On the contrary, it was even thought that when the leaves were mixed, the desired effect could not be exhibited, for example, the production of phenol oxidase useful for the expression of degrading activity decreased. Therefore, even when pruned branches and leaves have been collected as a woody substance when cultivating white rot fungi, in reality, only wood that is a nutrient is used and the leaves are discarded.
[0020]
However, according to the examination results of the present inventors, it has been surprisingly found that the use of a wood material mixed with leaves significantly increases the lignin resolution as compared to the case of using only the wood material. This result overturns conventional common sense and is extremely significant in that it has an unexpected effect.
[0021]
Hereinafter, the present invention will be specifically described.
[0022]
First, the white rot fungi used in the present invention include those usually used for the degradation of persistent substances, such as the genus Phanerochaete, the genus Pleuurotus, the genus Lenzites, Examples include microorganisms of the genus Trametes, the genus Coriolus, and the genus Hypoxylundeustrum. Among these, as a microorganism belonging to the genus Pleurotus, oyster mushroom and the like;
[0023]
Among the above-mentioned white rot fungi, the effect of the present invention is particularly exerted by the white rot fungus FERM BP-1859 (transferred from FERM P-9384, which may be referred to as NK-1148 strain). , White-rot fungus FERM P-17514 (sometimes referred to as LSB-69 strain), and Phanerochaete sordida ATCC 90872 (hereinafter sometimes referred to as YK-624 strain), and the present invention Then, these may be used alone, or two or more strains may be used in combination.
[0024]
Among these, the strains of FERM BP-1859 and FERM P-17514 are both newly found by the applicant of the present application as described above. Considering these bacteriological properties and the like, it is considered to be a white rot fungus belonging to the basidiomycete, but it has been deposited because it has not been identified as a known fungus. It has been confirmed that the above strains exhibit remarkably superior resolution compared to the known white-rot fungi Funerokete chrysosporium known as decomposing microorganisms such as dioxins (
[0025]
Funerocote Soldida ATCC 90872 is a white rot fungus deposited in the American Type Culture Collection and is known to have excellent dioxin resolution as described in Non-Patent Document 3.
[0026]
The hardly decomposable substance to be decomposed in the present invention means a compound having an aromatic ring, regardless of the kind of simple ring or heterocyclic ring. Among these, as the monocyclic ring, benzene; benzene having a substituent such as nitrobenzene, fluoranthene; phenol; nitrophenol; alkylphenol such as nonylphenol, octylphenol, pentylphenol; catechol; dimethyl phthalate, diethyl phthalate, dibutyl phthalate, Phthalic acid esters such as diheptyl phthalate and dioctyl phthalate; naphthalene; anthracene; pyrenes such as pyrene, benzopyrene and dibenzopyrene; bisphenol compounds such as bisphenol A; and estradiol. Moreover, examples of the heterocyclic ring include a ring containing one or more hetero atoms such as N, O, and S in addition to carbon. For example, aromatic compounds such as pyridine, pyrimidine, furan, thiophene, and pyrrole; these related compounds Is included. Further, the aromatic compound includes a mixture of a monocyclic ring and a heterocyclic ring. Moreover, the polymer raw material which has an aromatic ring, its decomposition products (oligomer, partial decomposition products, etc.), etc. are also included. In addition, a halogenated organic compound having at least one kind of fluorine, chlorine, bromine and iodine is also included, and examples thereof include vinyl chloride-based and vinylidene chloride-based organic chlorine compounds; fluorine-based compounds such as Teflon and Freon. Furthermore, dioxins represented by PCDDs (polychlorinated dibenzodioxins) and PCDFs (polychlorinated dibenzofurans); dioxins containing bromine instead of chlorine in the dioxins; PCBs containing polyplanar PCBs (polychlorinated biphenyls) ), CB (chlorobenzene), CP (chlorophenol) and the like.
[0027]
The mechanism by which white rot fungi degrade the above-mentioned hardly decomposable substances is unknown in detail, but white rot fungi are highly involved in lignin-degrading metabolic systems because of their excellent resolution of lignin, an aromatic compound. Therefore, it is thought that it may contribute to the decomposition action of various aromatic compounds including dioxins.
[0028]
Next, a method for purifying soil contaminated with a hardly decomposable substance using the above white rot fungus will be described.
[0029]
First, the microorganism is inoculated into a basidiomycete medium [low nitrogen synthesis medium (Kirk medium), potato glucose medium, Sabouraud medium, etc.]) and cultured. The culture conditions vary depending on the white rot fungi used, the type of medium, and the like, but it is recommended to culture at 20 to 30 ° C. for 3 to 14 days.
[0030]
Subsequently, the obtained culture is inoculated on the culture substrate of the present invention (wood material containing leaves).
[0031]
The tree species of the woody material to be used is not particularly limited, and general trees that grow on street trees, garden trees, forests, etc. may be used. Specifically, zelkova (Zelkova serrata), Yoshino cherry (Prunus yedoensis), weeping willow (Salix babylonica), beetle (Osmanthus fragrans), sasanqua (Camellia sasanqua), black moth (Ilex rotunba), sangoju (bibho) pulchrum, redwood (Rhododendron indicum), ginkgo (Ginkgo biloba), red-bellied (Platanus occidentalis), peanut (Sapium sebiferum), camphor (Cinnamomun camphora), physalis (Pasania edulis), macrophyll (Podocarpus)
[0032]
In use, it is recommended that these wood materials be finely crushed into wood flour, wood chips and the like. The preferred size is 5 cm or less, more preferably 1 cm or less, and even more preferably 0.5 cm or less.
[0033]
In addition, the wood material waste (for example, wood waste) can also be used. These wastes may be finely pulverized into the same size as the above tree.
[0034]
The kind of leaf added to the wood material is not particularly limited, and the above-described leaves such as wood may be used. In use, the leaves are finely pulverized, but are preferably 5 cm or less, more preferably 1 cm or less, and even more preferably 0.5 cm or less.
[0035]
Here, the mixing ratio of the wood material and the leaf is preferably 0.1 to 50 parts by mass (preferably 1 to 20 parts by mass) of the leaf (dry mass) with respect to 100 parts by mass of the wood material. If it is 0.1 parts by mass or less, a desired effect cannot be obtained. On the other hand, if it is added in excess of 50 parts by mass, the proportion of the woody material decreases, and the resolution due to white-rot fungi decreases. In addition, the mixing method is not specifically limited, What is necessary is just to mix using a mechanical mixer etc.
[0036]
In the present invention, it is particularly recommended to use a pruning material containing both leaves and wood materials. At the time of use, what is necessary is just to use suitably adjusted so that it may become the ratio mentioned above.
[0037]
In the present invention, the reason why the lignin resolution by white rot fungi is improved by the addition of leaves is unknown in detail, but the growth of white rot fungi is promoted by the components contained in the leaves, and the enzymes involved in lignin degradation It is conceivable that production is promoted.
[0038]
Such a culture base material is inoculated with white rot fungi, and the inoculation concentration is 0.01-5 mass% (preferably 0.05-0.5 mass%) of the white rot fungus relative to the culture base material. It is recommended that
[0039]
In addition, although the culture conditions vary depending on the type of white rot fungi used; the type of woody material and leaves, the amount added, etc., it is generally recommended to culture at 20 to 30 ° C. for about 1 to 4 weeks. Thereby, a desired culture is obtained. This culture is very excellent in lignin resolving power and has a high purification ability for soils contaminated with hardly decomposable substances. In the following description, the culture may be referred to as a “preculture” in the sense of a culture before being added to the contaminated soil.
[0040]
Particularly important here is that in the present invention, it is not necessary to compost the culture substrate containing the above woody material and leaves. In
[0041]
Next, the preculture obtained as described above is mixed in soil containing a hardly decomposable substance and further cultured. Here, the compound concentration in the soil is approximately 1 × 10.-8-102It is preferable to adjust so that it may become mg / g. The soil treatment conditions vary depending on the type of the substance to be treated, the composition of the preculture, and the like, but the mixing ratio of the soil adjusted to the above compound concentration and the preculture is 1: 0. It is recommended that the culture conditions are 1 to 1.1 (preferably 1: 0.3 to 0.6), and the culture conditions are generally 20 to 40 ° C. and 1 to 180 days. In this soil treatment process, it is considered that lignin degradation and degradation of refractory substances in the soil are proceeding simultaneously by the preculture in which the lignin degradation metabolic system is activated. It is thought that purification ability is demonstrated.
[0042]
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
[0043]
【Example】
Example 1: Lignin degradation test using Kawaratake (1)
In order to investigate the excellent lignin resolution according to the present invention, the following experiment was conducted. The fact that it has excellent lignin resolution is expected to be excellent in the resolution of soil contaminated with aromatic compounds such as bisphenol A and dioxins, and contributes to the purification of such contaminated soil. Lignin degradation can be positioned as a “pre-stage of soil remediation”.
[0044]
First, after pulverizing roadside tree pruning materials such as zelkova, Yoshino Yoshino, camphor tree, and ginkgo (containing 5% of dry weight of the leaves with respect to the woody material), re-pulverized with a wheelie mill (40 ~) The 100-mesh fraction) was degreased with methanol and air-dried to obtain the culture substrate of the present invention. For comparison, the pruned branch from which the leaves were cut was similarly crushed and re-ground and degreased to obtain a culture substrate of a comparative example.
[0045]
Next, after adding 25 mL of water to each of the above culture substrates (dry mass of 10 g), inoculated with Trametes Versicolor, which is one of typical white-rot fungi (inoculation concentration of 0.08 with respect to the culture substrate) %) And after culturing at 30 ° C., the degradation rate of lignin (total of Klarson lignin and acid-soluble lignin) in the culture substrate was measured over time. Among them, Klarson lignin was measured by the method described in JIS P8008-1961, while acid-soluble lignin was measured by the method described in Junzo Nakano “Lignin Chemistry”, p53 (1982).
[0046]
The obtained results are shown in FIG.
[0047]
From FIG. 1, it can be seen that the present invention example to which the leaf was added was extremely excellent in the lignin decomposition rate compared to the comparative example not containing the leaf. In particular, according to the present invention, a very high decomposition rate of about 70% was obtained in about 7 weeks after the treatment.
[0048]
Example 2: Lignin degradation test using Kawaratake
In this example, an experiment was conducted for the purpose of confirming the effect of adding leaves to the woody material. Specifically, in Example 1, each culture medium was prepared in the same manner as in Example 1 except that a culture substrate in which the ratio of leaves (dry mass) to the woody material was variously changed as shown in Table 1 was used. The lignin degradation rate of the material was measured (treatment time: 7 weeks). The obtained results are shown in Table 1.
[0049]
[Table 1]
[0050]
In the table, ++ means lignin degradation rate> 60%, + means lignin degradation rate: 30 to 60%, and-means lignin degradation rate <30%, respectively.
[0051]
From Table 1, when using a woody material that does not contain any leaves, the lignin degradation rate was less than 30%, but when leaves were added, the lignin degradation rate improved. It was found that when 1-20% was added, the lignin decomposition rate exceeded 60%, and an extremely excellent resolution was exhibited.
[0052]
Example 3: Dioxin contaminated soil purification test using LSB-69, NK-1148, YK-624, and Kawaratake
The following experiment was conducted for the purpose of examining the excellent dioxin resolution by the method of the present invention using LSB-69, NK-1148, YK-624, and Kawaratake white rot fungi.
[0053]
First, the above-mentioned strain was grown on a PDA medium (potato / glucose agar medium), and the obtained mycelia was inoculated into a 200 mL PD (potato / glucose) medium added to a 500 mL Erlenmeyer flask. Cultivated for a day to obtain a bacterial culture.
[0054]
Next, after drying a roadside tree pruning material such as zelkova, Yoshino cherry, camphor, and ginkgo (containing 5 parts by mass of leaves with respect to 100 parts by mass of the woody material) as a culture substrate containing leaves, about 0.5 A crushed pruned material crushed to a length of ˜1 cm was prepared. In 1 kg of this crushed pruned material, 1.5 L of water and 200 mL of the above bacterial culture were added and mixed, and then cultured at 30 ° C. for 3 weeks. For comparison, as a culture substrate that does not contain leaves, the above-mentioned street tree pruning material is used to dry all the leaves, and a crushed pruned material of only the wood part that has been crushed to about 1 cm is prepared. In 1 kg of pruning material, 1.5 L of water and 200 mL of the above bacterial culture were added and mixed, and then cultured at 30 ° C. for 3 weeks.
[0055]
Each culture thus obtained was subjected to the following dioxin-contaminated soil purification test. Specifically, 1 kg of each of the above cultures is mixed in 10 kg of dioxin-contaminated soil obtained in the vicinity of the garbage incineration plant, water is added so that the water content is about 50%, and the soil thickness is about 10 cm. It put into the container so that it might become. In addition, when exposed to direct sunlight, bacteria may be damaged by the action of ultraviolet rays, so cold sand was applied to the upper part of the container for the purpose of avoiding direct sunlight. Subsequently, this container was installed outdoors and cultured at about 20 ° C. After sampling and homogenizing the soil on the 0th, 15th, and 30th days from the start of the culture,13After spiked C-dioxin, Soxhlet extraction was performed. The collected organic layer was dehydrated with sodium sulfate, concentrated under reduced pressure, and dissolved by adding 150 mL of hexane. The solution was treated with sulfuric acid, washed with water, dehydrated, and concentrated under reduced pressure to 1 mL. Next, after purifying with silver nitrate silica gel and activated carbon silica gel, each isomer of dioxins [dibenzoparadioxin (tetrachlorinated, pentachlorinated, hexachlorinated, heptachlorinated, and octachlorinated by gas chromatography mass spectrometry) ); Dibenzofuran (tetrachlorinated product, pentachlorinated product, hexachlorinated product, heptachlorinated product, and octachlorinated product)] was quantitatively analyzed over time, and the dioxin concentration in terms of toxicity equivalent (TEQ) was calculated.
[0056]
Here, the measurement conditions of the gas chromatograph mass spectrometer are as follows.
[0057]
[Measurement conditions of gas chromatograph]
HP5890 Series II
(1) When the measurement sample is 4- to 6-chlorinated dibenzoparadioxin and 4- to 6-chlorinated dibenzofuran
Separation column: CP-Sil 88 [60m x 0.25mm (I.D.) 0.10μm]
Column temperature: 100 ℃ (2min) → (10 ℃ / min) → 190 ℃ (0min) → (3 ℃ / min) → 250 ℃ (20min)
Carrier gas: Helium (1.10ml / min)
Inlet temperature: 250 ° C
Injection method: Splitless (1min)
(2) When the measurement sample is 7 to 8 chlorinated dibenzoparadioxin and 7 to 8 chlorinated dibenzofuran
Separation column: DB17 [30m x 0.25mm (I.D.) 0.25μm]
Column temperature: 100 ℃ (2min) → (30 ℃ / min) → 220 ℃ (0min) → (10 ℃ / min) → 280 ℃ (15min)
Carrier gas: Helium (1.12ml / min)
Inlet temperature: 270 ° C
Injection method: Splitless (1min)
[Mass spectrometer conditions]
VG AutoSpec-Ultmima
Ionization method: EI
Ionization energy: 35 eV
Ionization current: 500μA
Ion source temperature: 260 ° C
Ion acceleration voltage: 8kV
Resolution: 10,000
2 to 5 show changes over time in dioxin concentration (total concentration of each isomer) when treated with each microorganism. Among these, FIG. 2 is an example using LSB-69 strain; FIG. 3 is an example using NK-1148 strain; FIG. 4 is an example using YK-624 strain; and FIG.
[0058]
From these figures, when any strain is used, when cultured on a culture substrate containing leaves as in the present invention (● in the figure), when cultured on a culture substrate containing no leaves ( In the figure, it can be seen that it has superior dioxin resolution as compared with ◯). Among these white rot fungi, LSB-69 strain, NK-1148 strain, and YK-624 strain have a higher dioxin degradation rate than Kawaratake.
[0059]
【The invention's effect】
Since this invention is comprised as mentioned above, as a result of improving the lignin resolution | decomposability by a white rot fungus, the method of purifying a hardly degradable substance contaminated soil efficiently could be provided.
[Brief description of the drawings]
1 is a graph showing the change over time in the degradation rate of lignin in Example 2. FIG.
FIG. 2 is a graph showing the change with time of the decomposition rate of dioxins when the LSB-69 strain is used in Example 3.
FIG. 3 is a graph showing the change with time of the decomposition rate of dioxins when NK-1148 strain is used in Example 3.
FIG. 4 is a graph showing the change with time of the decomposition rate of dioxins when the YK-624 strain is used in Example 3.
5 is a graph showing the change over time in the decomposition rate of dioxins when using Kawaratake in Example 3. FIG.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010004A JP4119759B2 (en) | 2003-01-17 | 2003-01-17 | Method for remediating soil contaminated with persistent substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003010004A JP4119759B2 (en) | 2003-01-17 | 2003-01-17 | Method for remediating soil contaminated with persistent substances |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004216342A JP2004216342A (en) | 2004-08-05 |
JP4119759B2 true JP4119759B2 (en) | 2008-07-16 |
Family
ID=32899331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003010004A Expired - Fee Related JP4119759B2 (en) | 2003-01-17 | 2003-01-17 | Method for remediating soil contaminated with persistent substances |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4119759B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05139234A (en) * | 1991-11-25 | 1993-06-08 | Tokai Rika Co Ltd | Airbag case |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006095412A (en) * | 2004-09-29 | 2006-04-13 | Tomoaki Nishida | Method for decomposing/removing heavy oils |
JP2007252972A (en) * | 2006-03-20 | 2007-10-04 | Idemitsu Kosan Co Ltd | Cleaning method for petroleum-contaminated soil |
-
2003
- 2003-01-17 JP JP2003010004A patent/JP4119759B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05139234A (en) * | 1991-11-25 | 1993-06-08 | Tokai Rika Co Ltd | Airbag case |
Also Published As
Publication number | Publication date |
---|---|
JP2004216342A (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Acevedo et al. | Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor | |
De Jong et al. | Significant biogenesis of chlorinated aromatics by fungi in natural environments | |
US4891320A (en) | Methods for the degradation of environmentally persistent organic compounds using shite rot fungi | |
Kaewlaoyoong et al. | White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated field soil via solid state fermentation | |
US5459065A (en) | Process for the degradation of coal tar and its constituents by Phanerochaete chrysosporium | |
Dercová et al. | Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite | |
Covino et al. | Mycoremediation of organic pollutants: principles, opportunities, and pitfalls | |
Loffredo et al. | Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids | |
Kaewlaoyoong et al. | Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites | |
Singh et al. | Isolation of functional ligninolytic Bacillus aryabhattai from paper mill sludge and its lignin degradation potential | |
JP4119759B2 (en) | Method for remediating soil contaminated with persistent substances | |
CN107900096A (en) | Based on compost reinforcing laccase by persistent organism contaminated soil restorative procedure | |
JP2002018480A (en) | Method for cleaning water contaminated by refractory material | |
JP4247395B2 (en) | Degradable bacteria of hardly degradable substances and environmental purification method using the same | |
Winquist | The potential of ligninolytic fungi in bioremediation of contaminated soils | |
Melendez-Estrada et al. | Phenanthrene removal by Penicillium frequentans grown on a solid-state culture: effect of oxygen concentration | |
Kim et al. | Degradation of polycyclic aromatic hydrocarbons by selected white-rot fungi and the influence of lignin peroxidase | |
Cheng et al. | Improved bioremediation of PCDD/Fs contaminated soil by mycelium-free liquids induced by agro-industrial residues | |
CN106424129B (en) | Method for repairing 2,2 ', 4, 4' -tetrabromobisphenol contaminated soil | |
JP2004002659A (en) | Hardly decomposable toxic substance decomposing agent and method for decomposing hardly decomposable toxic substance | |
JP2003334063A (en) | White rot fungus having high ability to degrade aromatic compound and/or halogenated organic compound | |
JP3831784B2 (en) | Novel microorganism having dioxin resolution and dioxin decomposition method | |
JP2002192166A (en) | Method for decomposition treatment of aromatic compound and/or halogenated organic compound | |
JP2001299330A (en) | New microorganism and method for degrading aromatic compound using the same | |
Low et al. | Biodegradation of polycyclic aromatic hydrocarbons by immobilized Pycnoporus sanguineus on ecomat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040809 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20051226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060113 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080425 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |