JP2004216342A - Purifying method for soil contaminated with hardly-decomposable substance - Google Patents

Purifying method for soil contaminated with hardly-decomposable substance Download PDF

Info

Publication number
JP2004216342A
JP2004216342A JP2003010004A JP2003010004A JP2004216342A JP 2004216342 A JP2004216342 A JP 2004216342A JP 2003010004 A JP2003010004 A JP 2003010004A JP 2003010004 A JP2003010004 A JP 2003010004A JP 2004216342 A JP2004216342 A JP 2004216342A
Authority
JP
Japan
Prior art keywords
leaves
lignin
soil
white
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003010004A
Other languages
Japanese (ja)
Other versions
JP4119759B2 (en
Inventor
Masaaki Matsubara
正明 松原
Yasuko Yakou
靖子 矢古宇
Hitoshi Murata
仁 村田
Tomoaki Nishida
友昭 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003010004A priority Critical patent/JP4119759B2/en
Publication of JP2004216342A publication Critical patent/JP2004216342A/en
Application granted granted Critical
Publication of JP4119759B2 publication Critical patent/JP4119759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new soil purifying method capable of efficiently purifying soil contaminated with a hardly-decomposable substance. <P>SOLUTION: This purifying method for soil contaminated with the hardly-decomposable substance by white rotting bacteria uses a woody material containing leaves as a culture medium without composting. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、白色腐朽菌を用いた難分解性物質汚染土壌の浄化方法に関し、詳細には、白色腐朽菌によるリグニン分解能を高めることにより、ビスフェノールAやダイオキシン類等に代表される芳香族化合物等の難分解性物質に汚染された土壌を効率よく浄化する方法に関するものである。
【0002】
【従来の技術】
近年、様々な有害化学物質による環境汚染や、人体に及ぼす悪影響等が大きくクローズアップされている。
【0003】
なかでもビスフェノールA等の芳香族化合物や、ダイオキシン類を始めとする有機塩素系化合物は、有害且つ難分解性で、しかも環境中や人体等への蓄積性も極めて高く、深刻な社会問題を招いている。その為、これらの有害化合物で汚染された土壌を浄化する方法に関し、多くの研究がなされている。
【0004】
現在、最も脚光を浴びているのが、微生物を用いる方法[バイオレメディエーション(生物学的修復)]である。分解能に優れた微生物を用いれば、従来の物理化学的方法(高温溶融法、加熱分解法、アルカリ処理法、超臨界水分解法、触媒酸化法、オゾン分解法等)に比べ、短期間で高度の分解作用が得られ、エネルギー消費量も小さく、環境汚染の心配もない等のメリットが得られるからである。
【0005】
とりわけ、木材腐朽菌は、様々な環境汚染物質に対する分解能を有する微生物として注目されており、木材腐朽菌の一種である白色腐朽菌は、菌体外に産生されるフェノール酸化酵素により、天然の難分解性物質であるリグニンの分解能に優れることが知られている。
【0006】
白色腐朽菌の中で最も研究されているのはファネロケーテ属(Phanerochaete)に属するファネロケーテ・クリソスポリウム(Phanerochaete chrysosporium)であり、上記微生物により、塩素置換数が4個以上のダイオキシン類を分解できることが報告されている(非特許文献1)。しかしながら、上記微生物による分解作用は通常の空気条件下では得られず、分解処理時に酸素濃度を高めたりする等の処理を別途実施して初めて発揮されるものであるが、それでもなお、分解能は低く、実用化するには未だ不充分であった。また、上記微生物は輸入検疫有害菌に指定されている菌株であり、開放系で、日本国内の土壌浄化処理に使用することはできない等の問題もある。
【0007】
また、ファネロケーテ・ソルディダ(Phanerochaete sordida)YK−624株は、2週間の処理で約50〜70%の分解能を発揮する等、非常に優れたダイオキシン分解作用を有することが報告されている(非特許文献2)。しかしながら、これまでに報告されているのは、上記微生物を用いた水中のダイオキシン類分解能を調べた実験に止まっており、水中に比べて分解がより困難な土壌中のダイオキシン類を対象とした実験は未だ報告されていない。また、上記微生物による水中のダイオキシン分解能は、前述したファネロケーテ・クリソスポリウムの場合と同様、酸素濃度が高いときにのみ発揮されること;しかも水中ダイオキシン分解法では、分解活性能を高める為にグルコースを添加しているが、土壌処理するに当たり、グルコースを添加すると雑菌が繁殖してしまい、添加した微生物の生育及び分解能が阻害される恐れがある。
【0008】
その他、上記以外の白色腐朽菌として、本願出願人が新規に見出したFERMBP−1859(FERM P−9384より移管されたもので、NK−1148株と呼ぶ場合がある)、及びFERM P−17514(LSB−69株と呼ぶ場合がある)がある。これらの微生物は、ファネロケーテ・クリソスポリウムに比べて水中のダイオキシン類分解能に優れている(特許文献1及び特許文献2)が、土壌中ダイオキシン類分解能については未だ検討していなかった。
【0009】
一方、上記白色腐朽菌を用いた汚染土壌浄化方法として、樹木の木質材料(木材チッブ、おがくず、木粉等)に白色腐朽菌を接種して培養し、汚染土壌を浄化する方法が提案されている。
【0010】
例えば特許文献3には、白色腐朽菌等の微生物による有機化合物分解活性を高める目的で、木質物質を添加した基質の使用が提案されている。使用する木質物質としては、木材(木粉、木材チッブ等)や、木質性廃棄物(藁、木くず等)が例示されており、具体的には、ブナ木粉を添加した実施例が開示されている。
【0011】
また、特許文献4には、担子菌によってコンポスト化(堆肥化)された木材を用いたダイオキシン汚染土壌の浄化方法が提案されており、コンポスト化に用いられる木材として、スギ、ヒノキ、マツ、カシ、シイ等のほか、雑木、剪定枝葉、刈り草などが挙げられている。
【0012】
しかしながら、上記特許文献4の方法は、あくまでも、これらの木材を堆肥化させて使用することを前提としている為、堆肥化に必要な飼料(消石灰、尿素等)を添加して長期間発酵させなければならない等、作業性等の点で問題がある。
【0013】
【非特許文献1】
バンパス(Bumpus)ら,白色腐朽菌ファネロケーテ・クリソスポリウムによる難分解性環境汚染物質の酸化(Oxidation of Persistent Environmental Pollutants by a White Rot Fungus Phanerochaete chrysosporium,サイエンス(Science),米国,1985年,第228号,p.1434
【非特許文献2】
高田(Takada)ら,白色腐朽菌ファネロケーテ・ソルディダによるポリ塩素化ジベンゾp−ダイオキシン類及びポリ塩素化ジベンゾフランの分解(Degradation of Polychlorinated Dibenzo−p−Dioxins and Polychlorinated Dibenzofuransby the White Rot Fungus Phanerochaete sordida YK−624,米国,応用環境微生物(Appl. Environ. Microbiol),1996年,第62号,p.4323
【特許文献1】
特公平3−32996号公報(特許請求の範囲、実施例)
【特許文献2】
特開2001−86980号公報(特許請求の範囲、実施例)
【特許文献3】
特開2000−186272号公報(特許請求の範囲、第3〜4頁)
【特許文献4】
特開2000−107742号公報(特許請求の範囲、第2〜3頁)
【0014】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、白色腐朽菌によるリグニン分解能を高めることにより、難分解性物質汚染土壌を効率よく浄化することが可能な方法を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る難分解性物質汚染土壌の浄化方法は、白色腐朽菌による難分解性物質汚染土壌の浄化方法において、培養基材として、葉を含有する木質材料を、堆肥化させることなしに使用するところに要旨を有するものである。ここで、葉を含有する木質材料としては、剪定材の使用が推奨される。本発明に用いられる好ましい白色腐朽菌としては、FERM BP−1859、FERM P−17514、及びファネロケーテ・ソルディダYK−624の菌株よりなる群から選択される少なくとも一種が挙げられる。
【0016】
【発明の実施の形態】
本発明者らは、白色腐朽菌による土壌浄化作用を高めるべく、特に培養基材を中心に鋭意検討してきた。その結果、培養基材として、葉を含有する木質材料を、堆肥化させることなしに使用すれば、葉を使用しない場合に比べ、リグニン分解能が向上し、難分解性物質汚染土壌を効率よく浄化し得ることを見出し、本発明を完成した。
【0017】
前述した通り、これまでにも、樹木の木質材料(木材チッブ、おがくず、木粉等)に白色腐朽菌を接種して培養し、汚染土壌を浄化する方法は提案されている(特許文献3及び4)。しかしながら、このうち特許文献3には、木質物質に、更に葉を添加した培地で培養すれば、白色腐朽菌による分解能が向上するという本発明独自の知見は、全く開示されていない。
【0018】
また、特許文献4の方法は、堆肥化に必要な飼料(消石灰、尿素等)を添加して長期間発酵させなければならない等、作業性等の点で問題がある。尚、上記公報には、剪定枝葉も挙げられているが、単に、木材の一例として木粉等と羅列されているに過ぎず、実際に、これを使用して分解能を調べた訳ではなく、この様な実施例もない。即ち、上記公報は、木材の堆肥化により白色腐朽菌の分解活性を高める技術である点で、堆肥化させない本発明とは、技術的に全く相違するものである。従って、堆肥化に関して教示された上記公報のなかに、たまたま、剪定枝葉が例示されているからといって、葉の存在意義に関し、全く認識していない上記公報に基づき、本発明を導き出すことは困難であると考える。
【0019】
そもそも白色腐朽菌は、木材を栄養源とする微生物であり、培養基材として、木材を使用することはあっても、葉も含めて使用するという発想はない。逆に、葉を混入すると、分解活性の発現に有用なフェノール酸化酵素等の産生が減少する等して所望の効果が発揮されない、とさえ考えられていた。従って、白色腐朽菌の培養に当たり、木質物質として剪定枝葉を採取してきたとしても、現実には、栄養分たる木材のみ使用し、葉は捨てていたのが実情である。
【0020】
ところが本発明者らの検討結果によれば、驚くべきことに、葉を混入した木質材料を用いれば、木質材料のみを使用した場合に比べ、リグニン分解能が顕著に上昇することが分かった。この結果は、従来の常識を覆すものであり、予想外の効果をもたらした点で極めて意義深い。
【0021】
以下、本発明について、具体的に説明する。
【0022】
まず、本発明に用いられる白色腐朽菌は、難分解性物質の分解に通常使用されているものが挙げられ、例えば、ファネロケーテ(Phanerochaete)属、プロイロータス(Pleurotus)属、レンツイテス(Lenzites)属、トラメテス(Trametes)属、コリオラス(Coriolus)属、ハイポキシラン(Hypoxylundeustrum)属の微生物等が例示される。このうちプロイロータス属の微生物としてはヒラタケ等;コリオラス属の微生物としてはカワラタケ等が挙げられる。
【0023】
上記白色腐朽菌のなかでも特に本発明による作用が顕著に発揮されるのは、白色腐朽菌FERM BP−1859(FERM P−9384より移管されたもので、NK−1148株と呼ぶ場合がある)、白色腐朽菌FERM P−17514(LSB−69株と呼ぶ場合がある)、及びファネロケーテ・ソルディダ(Phanerochaete sordida)ATCC 90872(以下、YK−624株と呼ぶ場合がある)の菌株であり、本発明では、これらを単独で使用してもよいし、2種以上の菌株を併用してもよい。
【0024】
このうちFERM BP−1859及びFERM P−17514の菌株は、前述した通り、いずれも本願出願人によって新規に見出されたものである。これらの菌学的性質等を考慮すると担子菌類に属する白色腐朽菌であると考えられるが、既知の菌と同定するには至らなかった為、寄託している。上記菌株は、ダイオキシン類等の分解微生物として知られている既知の白色腐朽菌ファネロケーテ・クリソスポリウムに比べ、格段に優れた分解能を発揮していることを確認している(特許文献1及び2)。
【0025】
また、ファネロケーテ・ソルディダATCC 90872は、American Type Culture Collectionに寄託されている白色腐朽菌であり、前記非特許文献3に記載の通り、優れたダイオキシン分解能を有することが知られているものである。
【0026】
本発明の分解対象たる難分解性物質は、芳香環を有する化合物を意味し、単素環、複素環の種類を問わない。このうち単素環としては、ベンゼン;ニトロベンゼン、フルオランテン等の置換基を有するベンゼン;フェノール;ニトロフェノール;ノニルフェノール、オクチルフェノール、ペンチルフェノール等のアルキルフェノール;カテコール;フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジオクチル等のフタル酸エステル;ナフタレン;アントラセン;ピレン、ベンゾピレン、ジベンゾピレン等のピレン類;ビスフェノールA等のビスフェノール系化合物;エストラジオール等が挙げられる。また、複素環としては、炭素以外に、N,O,Sなどのヘテロ原子を1個以上含む環が挙げられ、例えばピリジン、ピリミジン、フラン、チオフェン、ピロール等の芳香族化合物;これらの関連化合物が包含される。更に上記芳香族化合物には、単素環及び複素環の混合物も含まれる。また、芳香環を有するポリマー原料やその分解物(オリゴマー、部分分解物等)なども包含される。その他、フッ素、塩素、臭素、ヨウ素を少なくとも1種有するハロゲン化有機化合物も包含され、例えば、塩化ビニル系、塩化ビニリデン系の有機塩素化合物;テフロン、フロン等のフッ素系化合物等が挙げられる。更に、PCDDs(ポリ塩化ジベンゾダイオキシン類)やPCDFs(ポリ塩化ジベンゾフラン類)等に代表されるダイオキシン類;前記ダイオキシン類において塩素の代わりに臭素を含むダイオキシン類;コプラナーPCBを含むPCBs(ポリ塩化ビフェニル類)やCB(クロロベンゼン)、CP(クロロフェノール)等も包含される。
【0027】
白色腐朽菌によって、上記の難分解性物質が分解されるメカニズムは詳細には不明であるが、白色腐朽菌は、芳香族化合物であるリグニンの分解能に優れることから、リグニン分解代謝系が深く関与しており、ダイオキシン類を始めとする様々な芳香族化合物の分解作用に寄与しているのではないかと思料される。
【0028】
次に、上記の白色腐朽菌を用い、難分解性物質で汚染された土壌を浄化する方法について説明する。
【0029】
まず、上記微生物を担子菌用培地[低窒素合成培地(Kirkの培地)、ボテト・グルコース培地、サブロー培地等])に接種し、培養する。培養条件は使用する白色腐朽菌や培地の種類等によって異なるが、概ね20〜30℃で3〜14日間培養することが推奨される。
【0030】
次いで、得られた培養物を、本発明の培養基材(葉を含有する木質材料)に接種する。
【0031】
使用する木質材料の樹種は特に限定されず、街路樹、庭木、森林等に生育する一般的な樹木を使用すれば良い。具体的には、ケヤキ(Zelkova serrata)、ソメイヨシノ(Prunus yedoensis)、シダレヤナギ(Salix babylonica)、キンモクセイ(Osmanthus fragrans)、サザンカ(Camellia sasanqua)、クロガネモチ(Ilex rotunba)、サンゴジュ(Viburunum awabuki)、オオムラサキ(Rhododendron pulchrum)、サツキ(Rhododendron indicum)、イチョウ(Ginkgo biloba)、アメリカフウ(Platanus occidentalis)、ナンキンハゼ(Sapium sebiferum)、クスノキ(Cinnamomun camphora)、マテバシ(Pasania edulis)、イヌマキ(Podocarpus macrophylla)等が挙げられる。
【0032】
使用に当たっては、これらの木質材料を微細に粉砕し、木粉、木材チッブ等とすることが推奨される。好ましいサイズは5cm以下、より好ましくは1cm以下、更により好ましくは0.5cm以下である。
【0033】
また、上記木質材料の廃棄物(例えば木くず等)も使用することができる。これらの廃棄物も上記の木と同じサイズに、微細粉砕したものを使用すれば良い。
【0034】
上記木質材料に添加する葉の種類は特に限定されず、上述した木等の葉を使用すれば良い。使用に当たっては、葉を微細に粉砕するが、好ましくは5cm以下、より好ましくは1cm以下、更により好ましくは0.5cm以下である。
【0035】
ここで、上記木質材料と葉の混合割合は、木質材料100質量部に対し、葉(乾燥質量)を0.1〜50質量部(好ましくは1〜20質量部)とすることが好ましい。0.1質量部以下では、所望の効果が得られない。一方、50質量部を超えて添加すると木質材料の割合が少なくなり、白色腐朽菌による分解能が低下する。尚、混合方法は特に限定されず、機械式ミキサー等を用いて混合すれば良い。
【0036】
本発明では、特に、葉も木質材料も含まれている剪定材の使用が推奨される。使用に当たっては、前述した比率になる様、適宜調整したものを用いれば良い。
【0037】
本発明において、葉の添加により、白色腐朽菌によるリグニン分解能が向上する理由は詳細には不明であるが、葉に含まれる成分により白色腐朽菌の生育が促進され、リグニン分解に関与する酵素の産生が促進されること等が考えられる。
【0038】
この様な培養物基材に白色腐朽菌を接種するが、接種濃度は、培養基材に対し、0.01〜5質量%(好ましくは0.05〜0.5質量%)の白色腐朽菌とすることが推奨される。
【0039】
また、培養条件は、使用する白色腐朽菌の種類;木質材料及び葉の種類や添加量等によっても相違するが、概ね、20〜30℃で約1〜4週間培養することが推奨される。これにより、所望の培養物が得られる。この培養物は、リグニン分解能に非常に優れており、難分解性物質汚染土壌の浄化能も高いものである。尚、以下の記載では、上記培養物を、汚染土壌に添加する前の培養物という意味で、「前培養物」と呼ぶ場合がある。
【0040】
ここで特に重要なのは、本発明では、上記の木質材料と葉を含む培養基材を、堆肥化させる必要がないという点である。前述した特許文献2では、ブナ等の細破砕チップに、消石灰(0.6%)及び尿素(1%)を添加して水分を調整(含水率55%)し、堆肥化させており、堆肥化には少なくとも数ヶ月間かかると考えられるが、本発明では、木質材料に葉を添加した独特の培養基材を使用している為、この様な堆肥化工程は不要であり、僅かに約1〜4週間程度の短期間培養を行うだけで、リグニン分解能に極めて優れた前培養物が得られる。実際のところ、上記公報には、「この様にして得られる堆肥中には、ダイオキシンの前駆物質となり得るリグニンが残存している恐れがある」という理由で、「堆肥中に残存するリグニンを分解し、リグニンからのダイオキシン生成を防ぐことが好ましい」といった趣旨の記載がなされており、上記公報は、リグニンが完全に分解するまで、長期間堆肥化させる技術であることが認められる。これに対し、本発明では、リグニンの完全分解は不要であり、リグニンの分解能を活性化させる(リグニン分解代謝系の活性化)のに必要な程度の、短期間培養を行う技術であり、この点で、両者は明確に相違している。従って、本発明によれば、リグニン分解能の面でも、作業性(処理時間の短縮等)の面でも、非常に有用である。
【0041】
次に、上記の様にして得られた前培養物を、難分解性物質を含有する土壌中に混合し、更に培養する。ここで、土壌中の化合物濃度は、概ね1×10−8〜10mg/gとなる様に調整しておくことが好ましい。土壌処理条件は、処理対象物質の種類や前培養物の組成等によっても相違するが、上記の化合物濃度に調整された土壌と、上記前培養物の混合比率を、質量比率で1:0.1〜1.1(好ましくは1:0.3〜0.6)とし、培養条件は、概ね、20〜40℃で1〜180日間とすることが推奨される。この土壌処理工程では、リグニン分解代謝系が活性化された前培養物により、リグニンの分解と、土壌中の難分解性物質の分解が同時に進行していると考えられ、その結果、所望の土壌浄化能が発揮されると思料される。
【0042】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
【0043】
【実施例】
実施例1:カワラタケを用いたリグニン分解試験(1)
本発明による優れたリグニン分解能を調べる目的で、以下の実験を行った。リグニン分解能に優れるということは、ビスフェノールAやダイオキシン類を始めとする芳香族化合物に汚染された土壌の分解能にも優れることが充分期待され、この様な汚染土壌の浄化にも寄与することから、リグニン分解は、「土壌浄化処理の前段階」と位置付けることができる。
【0044】
まず、ケヤキ、ソメイヨシノ、クスノキ、イチョウ等の街路樹剪定材(木質材料に対し、葉を乾燥質量で5%含むもの)を粗粉砕した後、ウイリーミルで再粉砕して微細化したもの(40〜100メッシュ画分)を、メタノールで脱脂し、風乾させることにより本発明の培養基材を得た。尚、比較の為に、葉をカットした剪定枝を同様に粉砕・再粉砕し、脱脂することにより比較例の培養基材を得た。
【0045】
次に、上記の各培養基材(乾燥質量10g)に水25mLを加えた後、代表的な白色腐朽菌の一つであるカワラタケ(Trametes Versicolor)を接種(培養基材に対する接種濃度0.08%)し、30℃で培養した後、培養基材中のリグニン(クラーソンリグニンと酸可溶性リグニンの合計)分解率を経時的に測定した。このうちクラーソンリグニンは、JIS P8008−1961に記載の方法により測定し、一方、酸可溶性リグニンは、中野準三編「リグニンの化学」,p53(1982)に記載の方法により測定した。
【0046】
得られた結果を図1に示す。
【0047】
図1より、葉を添加した本発明例は、葉を含まない比較例に比べ、リグニン分解率に極めて優れていることが分かる。特に本発明によれば、処理後約7週間で、約70%と非常に高い分解率が得られた。
【0048】
実施例2:カワラタケを用いたリグニン分解試験
本実施例では、木質材料に対する葉の添加効果を確認する目的で実験を行った。具体的には、実施例1において、木質材料に対する葉(乾燥質量)の比率を、表1の如く種々変化させた培養基材を用いたこと以外は実施例1と同様にして、各培養基材のリグニン分解率を測定した(処理時間:7週間)。得られた結果を表1に示す。
【0049】
【表1】

Figure 2004216342
【0050】
表中、++はリグニン分解率>60%を、+はリグニン分解率:30〜60%を、−はリグニン分解率<30%を、夫々、意味する。
【0051】
表1より、葉を全く含まない木質材料を使用した場合は、リグニン分解率は30%未満であったのに対し、葉を添加するとリグニン分解率は向上し、特に木質材料に対し、葉を1〜20%添加すると、リグニン分解率は60%を超え、極めて優れた分解能が発揮されることが分かった。
【0052】
実施例3:LSB−69、NK−1148、YK−624、及びカワラタケを用いたダイオキシン類汚染土壌浄化試験
LSB−69、NK−1148、YK−624、及びカワラタケの各白色腐朽菌を用い、本発明法による優れたダイオキシン類分解能を調べる目的で以下の実験を行なった。
【0053】
まず、上記菌株をPDA培地(ポテト・グルコース寒天培地)にて生育させ、得られた菌糸を、500mL容三角フラスコ中に添加した200mLのPD(ポテト・グルコース)培地に接種し、30℃で4日間培養して菌培養液を得た。
【0054】
次に、葉を含む培養基材として、ケヤキ、ソメイヨシノ、クスノキ、イチョウ等の街路樹剪定材(木質材料100質量部に対して葉を5質量部含有)を乾燥させた後、約0.5〜1cm長さに粉砕した粉砕済剪定材を調製した。この粉砕済剪定材1kg中に、1.5Lの水と200mLの上記菌培養液を加えて混合した後、30℃で3週間培養した。尚、比較の為に、葉を含まない培養基材として、上記の街路樹剪定材で葉を全て除去したものを乾燥させ、約1cmに粉砕した木質部のみの粉砕済剪定材を調製し、当該剪定材1kg中に、1.5Lの水と200mLの上記菌培養液を加えて混合した後、30℃で3週間培養した。
【0055】
この様にして得られた各培養物について、以下のダイオキシン汚染土壌浄化試験を行なった。具体的には、ゴミ焼却場周辺で得たダイオキシン汚染土壌10kg中に上記の各培養物1kgを混合し、含水率が約50%となる様に水を加え、これを土壌厚さが約10cmとなる様に容器に入れた。尚、直射日光を浴びると、紫外線の作用により菌がダメージを受ける恐れがある為、直射日光を避ける目的で、容器上部に寒冷砂をかけた。次いで、この容器を屋外に設置し、約20℃で培養させた。培養開始0日目、15日目、30日目に土壌をサンプリングし、ホモジナイズした後、13C−ダイオキシンをスパイク添加した後、ソックスレー抽出した。回収した有機層を硫酸ナトリウムで脱水した後、減圧濃縮し、150mLのヘキサンを加えて溶解した。この溶液を硫酸処理した後、水洗・脱水し、1mLになるまで減圧濃縮した。次に、硝酸銀シリカゲルおよび活性炭シリカゲルで精製した後、ガスクロマトグラフ質量分析により、ダイオキシン類の各異性体[ジベンゾパラダイオキシン(四塩素化物、五塩素化物、六塩素化物、七塩素化物、及び八塩素化物);ジベンゾフラン(四塩素化物、五塩素化物、六塩素化物、七塩素化物、及び八塩素化物)]を経時的に定量分析し、毒性等量(TEQ)換算のダイオキシン濃度を算出した。
【0056】
ここで、ガスクロマトグラフ質量分析計の測定条件は以下の通りである。
【0057】
[ガスクロマトグラフの測定条件]
HP5890シリーズII
(1)測定試料が、四〜六塩素化ジベンゾパラダイオキシン及び四〜六塩素化ジベンゾフランの場合
分離カラム :CP−Sil 88[60m×0.25mm(I.D.)0.10μm]
カラム温度 :100℃(2min)→(10℃/min)→190℃(0min)→(3℃/min)→250℃(20min)
キャリアガス:ヘリウム(1.10ml/min)
注入口温度 :250℃
注入方式 :スプリットレス(1min)
(2)測定試料が七〜八塩素化ジベンゾパラダイオキシン及び七〜八塩素化ジベンゾフランの場合
分離カラム :DB17[30m×0.25mm(I.D.)0.25μm]
カラム温度:100℃(2min)→(30℃/min)→220℃(0min)→(10℃/min)→280℃(15min)
キャリアガス:ヘリウム(1.12ml/min)
注入口温度 :270℃
注入方式 :スプリットレス(1min)
[質量分析計の条件]
VG AutoSpec−Ultmima
イオン化方式 :EI
イオン化エネルギー:35eV
イオン化電流 :500μA
イオン源温度 :260℃
イオン加速電圧 :8kV
分解能 :10,000
図2〜5に、各微生物で処理したときのダイオキシン類濃度(各異性体の合計濃度)の経時的変化を示す。このうち図2はLSB−69株を用いた例;図3はNK−1148株を用いた例;図4はYK−624株を用いた例;図5はカワラタケの例である。
【0058】
これらの図より、いずれの菌株を用いた場合においても、本発明の如く葉を含む培養基材で培養したとき(図中、●)には、葉を含まない培養基材で培養したとき(図中、○)に比べて優れたダイオキシン類分解能を有することが分かる。これら白色腐朽菌のなかでも特にLSB−69株、NK−1148株、及びYK−624株は、カワラタケに比べてダイオキシン類分解率が高い。
【0059】
【発明の効果】
本発明は上記の様に構成されているので、白色腐朽菌によるリグニン分解能が高められる結果、難分解性物質汚染土壌を効率よく浄化する方法を提供することができた。
【図面の簡単な説明】
【図1】実施例2におけるリグニンの分解率の経時的変化を示すグラフである。
【図2】実施例3において、LSB−69株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図3】実施例3において、NK−1148株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図4】実施例3において、YK−624株を用いたときのダイオキシン類分解率の経時的変化を示すグラフである。
【図5】実施例3において、カワラタケを用いたときのダイオキシン類分解率の経時的変化を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying soil contaminated with hardly decomposable substances using white rot fungi, and in particular, by increasing the lignin decomposability by white rot fungi, aromatic compounds represented by bisphenol A and dioxins, etc. And a method for efficiently purifying soil contaminated with hardly decomposable substances.
[0002]
[Prior art]
BACKGROUND ART In recent years, environmental pollution by various harmful chemical substances, adverse effects on human bodies, and the like have been greatly highlighted.
[0003]
Above all, aromatic compounds such as bisphenol A and organic chlorine compounds such as dioxins are harmful and difficult to decompose, and have extremely high accumulation in the environment and the human body, causing serious social problems. Have been. Therefore, many studies have been made on a method for purifying soil contaminated with these harmful compounds.
[0004]
At present, the method that uses microorganisms [bioremediation (biological repair)] is most in the spotlight. By using microorganisms with high resolution, compared to conventional physicochemical methods (high-temperature melting method, thermal decomposition method, alkali treatment method, supercritical water decomposition method, catalytic oxidation method, ozonolysis method, etc.) This is because there are obtained merits such as a decomposition effect, a small energy consumption, and no fear of environmental pollution.
[0005]
In particular, wood-rot fungi are attracting attention as microorganisms having the ability to degrade various environmental pollutants, and white-rot fungi, a kind of wood-rot fungi, are naturally occurring due to phenol oxidase produced outside the cells. It is known that lignin, which is a decomposable substance, has excellent resolution.
[0006]
Among the white rot fungi, the most studied is Phanelocate chrysosporium belonging to the genus Phanelocate, which is capable of decomposing dioxins having four or more chlorine substitutions by the microorganism. It has been reported (Non-Patent Document 1). However, the decomposing action of the above microorganisms cannot be obtained under normal air conditions, and is exhibited only by separately performing a treatment such as increasing the oxygen concentration during the decomposition treatment, but the resolution is still low. However, it was still insufficient for practical use. In addition, the microorganisms are strains designated as harmful bacteria for import quarantine, and have the problem that they cannot be used for soil purification treatment in Japan in an open system.
[0007]
Also, it has been reported that Phanelocate sodida strain YK-624 has a very excellent dioxin-degrading action, such as exhibiting a resolution of about 50 to 70% after two weeks of treatment (non-patent). Reference 2). However, what has been reported so far has been limited to experiments using the above-mentioned microorganisms to determine the resolution of dioxins in water, and experiments on dioxins in soil, which are more difficult to decompose than water. Has not yet been reported. In addition, dioxin decomposability in water by the above-mentioned microorganisms is exerted only when the oxygen concentration is high, as in the case of Fanelocate chrysosporium described above. In addition, in the dioxin decomposition method in water, glucose is used to increase the decomposition activity. However, in the soil treatment, when glucose is added, various bacteria may proliferate, and the growth and resolution of the added microorganism may be inhibited.
[0008]
In addition, as other white rot fungi, FERMBP-1859 newly discovered by the present applicant (transferred from FERM P-9384 and sometimes referred to as NK-1148 strain), and FERM P-17514 ( LSB-69 strain). These microorganisms are superior in decomposing dioxins in water as compared to Fanelocate chrysosporium (Patent Literatures 1 and 2), but have not yet studied the resolution of dioxins in soil.
[0009]
On the other hand, as a method for purifying contaminated soil using the above-mentioned white rot fungi, a method has been proposed for purifying contaminated soil by inoculating white rot fungi on woody materials (wood chips, sawdust, wood flour, etc.) of trees and culturing them. I have.
[0010]
For example, Patent Document 3 proposes the use of a substrate to which a woody substance is added in order to enhance the activity of decomposing organic compounds by microorganisms such as white rot fungi. Examples of the woody substance to be used include wood (wood flour, wood chips, etc.) and woody waste (straw, wood chips, etc.). Specifically, an example in which beech wood flour is added is disclosed. ing.
[0011]
Patent Document 4 proposes a method for purifying dioxin-contaminated soil using wood that has been composted (composted) by basidiomycetes, and includes cedar, hinoki, pine, and oak as wood used for composting. And trees, pruned foliage, cut grass, and the like.
[0012]
However, the method of Patent Document 4 is based on the premise that these woods are composted and used, and thus the feed (slaked lime, urea, etc.) necessary for composting must be added and fermented for a long time. There is a problem in workability and the like.
[0013]
[Non-patent document 1]
Bumpus et al., Oxidation of Persistent Environmental Pollutants by a White Rot White Rot Fungus Psycho, United States of America; , P.
[Non-patent document 2]
Takada et al., Degradation of Polychlorinated Dibenzo-p-Dioxin and Water Fluorescent Water Dispersion of Polychlorinated Dibenzo p-dioxins and Polychlorinated Dinitrosone Dinitrosone by Polyphenols United States, Applied Environmental Microorganisms (Appl. Environ. Microbiol), 1996, No. 62, p.
[Patent Document 1]
JP-B-3-32996 (Claims, Examples)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-86980 (Claims, Examples)
[Patent Document 3]
JP-A-2000-186272 (Claims, pp. 3-4)
[Patent Document 4]
JP-A-2000-107742 (Claims, pages 2-3)
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of efficiently purifying soil contaminated with hardly decomposable substances by increasing lignin decomposability by white rot fungi. is there.
[0015]
[Means for Solving the Problems]
The method of purifying soil contaminated with hardly decomposable substances according to the present invention that has solved the above-mentioned problems is a method of purifying soil contaminated with hardly decomposable substances caused by white rot fungi, wherein a wood material containing leaves is used as a culture substrate. It has a gist where it can be used without composting. Here, the use of a pruning material is recommended as the wood material containing leaves. Preferred white rot fungi used in the present invention include at least one selected from the group consisting of strains of FERM BP-1859, FERM P-17514, and FANLOCATETE SORDIDA YK-624.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have intensively studied, particularly focusing on a culture substrate, in order to enhance the soil purification action by white rot fungi. As a result, if wood material containing leaves is used as a culture substrate without composting, lignin degradability is improved and soil contaminated with hardly decomposable substances is efficiently purified as compared to the case where leaves are not used. The inventors have found that the present invention can be performed and completed the present invention.
[0017]
As described above, there has been proposed a method of purifying contaminated soil by inoculating white rot fungi on woody materials (wood chips, sawdust, wood flour, etc.) of trees (Patent Document 3 and Patent Document 3). 4). However, among these, Patent Document 3 does not disclose any finding unique to the present invention that the resolution by white rot fungi is improved by culturing in a medium in which leaves are further added to a woody substance.
[0018]
Further, the method of Patent Document 4 has a problem in workability and the like, for example, it is necessary to add a feed (eg, slaked lime, urea) necessary for composting and ferment for a long period of time. In addition, although the above-mentioned publication also mentions pruned branches and leaves, it is merely listed as wood flour or the like as an example of wood, and the resolution was not actually examined using this, There is no such embodiment. That is, the above-mentioned publication is technically completely different from the present invention in which composting is not performed, in that it is a technique for increasing the decomposition activity of white rot fungi by composting wood. Therefore, in the above-mentioned publications taught on composting, even though pruned branches and leaves happen to be exemplified, it is not possible to derive the present invention based on the above-mentioned publications which do not recognize the significance of the leaves at all. Think difficult.
[0019]
In the first place, white rot fungi are microorganisms using wood as a nutrient source, and even though wood is used as a culture base, there is no idea of using them including leaves. Conversely, it has been even thought that when leaves are mixed, the desired effect is not exhibited due to a decrease in the production of phenol oxidase and the like useful for the expression of the decomposition activity. Therefore, in culturing white rot fungi, even if pruned leaves are collected as a woody substance, in reality, only nutrient wood is used and the leaves are discarded.
[0020]
However, according to the study results of the present inventors, surprisingly, it was found that the use of a wood material mixed with leaves significantly increased the lignin decomposability as compared with the case where only the wood material was used. This result is contrary to conventional wisdom, and is extremely significant in having unexpected effects.
[0021]
Hereinafter, the present invention will be described specifically.
[0022]
First, examples of the white rot fungi used in the present invention include those usually used for decomposing hardly decomposable substances. For example, genus Fanerochaete, genus Pleurotus, genus Lenzites, Microorganisms of the genus Trametes, Coriolus, Hypoxylundeustrum and the like are exemplified. Among them, Phylotha spp. Microorganisms include Oyster mushroom and the like; Coriolus microorganisms include Kawatake mushroom and the like.
[0023]
Among the above-mentioned white-rot fungi, the effect of the present invention is particularly remarkably exhibited because the white-rot fungus FERM BP-1859 (transferred from FERM P-9384 and may be referred to as NK-1148 strain). And the white rot fungus FERM P-17514 (may be referred to as LSB-69 strain), and Phanerochaete sordida ATCC 90872 (hereinafter sometimes referred to as YK-624 strain), and the present invention. Then, these may be used alone or in combination of two or more strains.
[0024]
Among them, the strains of FERM BP-1859 and FERM P-17514 have been newly discovered by the present applicant, as described above. Considering these mycological properties and the like, it is considered to be a white-rot fungus belonging to basidiomycetes, but has not been identified as a known fungus. It has been confirmed that the above-mentioned strain exhibits remarkably superior resolution as compared with the known white rot fungus Funerolocetus chrysosporium known as a decomposition microorganism such as dioxins (Patent Documents 1 and 2) ).
[0025]
Further, FANLOCATETE SORDIDA ATCC 90872 is a white rot fungus deposited with the American Type Culture Collection, and is known to have excellent dioxin resolution as described in Non-Patent Document 3.
[0026]
The hardly decomposable substance to be decomposed in the present invention means a compound having an aromatic ring, regardless of the type of a homocyclic or heterocyclic ring. Among them, monocyclic rings include benzene; benzene having a substituent such as nitrobenzene and fluoranthene; phenol; nitrophenol; alkylphenol such as nonylphenol, octylphenol and pentylphenol; catechol; dimethylphthalate, diethylphthalate, dibutylphthalate; Phthalic acid esters such as diheptyl phthalate and dioctyl phthalate; naphthalene; anthracene; pyrenes such as pyrene, benzopyrene and dibenzopyrene; bisphenol compounds such as bisphenol A; and estradiol. In addition, examples of the heterocyclic ring include rings containing one or more hetero atoms such as N, O, and S in addition to carbon. For example, aromatic compounds such as pyridine, pyrimidine, furan, thiophene, and pyrrole; Is included. Further, the aromatic compound also includes a mixture of a homocyclic ring and a heterocyclic ring. Further, a polymer raw material having an aromatic ring and a decomposition product thereof (an oligomer, a partial decomposition product, and the like) are also included. In addition, halogenated organic compounds having at least one kind of fluorine, chlorine, bromine and iodine are also included, and examples thereof include vinyl chloride-based and vinylidene chloride-based organic chlorine compounds; and fluorine-based compounds such as Teflon and Freon. Furthermore, dioxins represented by PCDDs (polychlorinated dibenzodioxins) and PCDFs (polychlorinated dibenzofurans); dioxins containing bromine instead of chlorine in the dioxins; PCBs containing coplanar PCB (polychlorinated biphenyls) ), CB (chlorobenzene), CP (chlorophenol) and the like.
[0027]
The mechanism by which white rot fungi decomposes the above-mentioned hardly decomposable substances is not known in detail, but white rot fungi is closely related to the lignin-degrading metabolic system because it excels in the resolution of lignin, an aromatic compound. It is thought that it contributes to the decomposition of various aromatic compounds including dioxins.
[0028]
Next, a method for purifying soil contaminated with a hardly decomposable substance using the above white rot fungus will be described.
[0029]
First, the microorganism is inoculated into a basidiomycete medium [low-nitrogen synthesis medium (Kirk medium), potato-glucose medium, Sabouraud medium, etc.] and cultured. Culture conditions vary depending on the type of white rot fungus, medium, and the like, but it is generally recommended to culture at 20 to 30 ° C. for 3 to 14 days.
[0030]
Next, the obtained culture is inoculated to the culture substrate (wood material containing leaves) of the present invention.
[0031]
The tree species of the woody material to be used is not particularly limited, and general trees that grow on street trees, garden trees, forests and the like may be used. Specifically, zelkova (Zelkova serrata), Someiyoshino (Prunus yedoensis), Salix (Salix babylonica), osmanthus (Osmanthus fragrans), sasanqua (Camellia sasanqua), Ilex rotunda (Ilex rotunba), Sweet viburnum (Viburunum awabuki), charonda (Rhododendron pulchrum), Satsuki (Rhodendron indicum), Ginkgo (Ginkgo biloba), American squirrel (Platanus ocidentalis), Bedweed (Sapium sebiferum), Camphor tree (Cinnamomampacuma munica pamamunca, Cinnamomapum cinnamona pumrum) sania edulis), Podocarpus (Podocarpus macrophylla), and the like.
[0032]
In use, it is recommended that these woody materials be finely crushed into wood flour, wood chips and the like. The preferred size is 5 cm or less, more preferably 1 cm or less, even more preferably 0.5 cm or less.
[0033]
In addition, waste of the above-mentioned woody material (for example, wood chips) can also be used. These wastes may be finely pulverized to the same size as the above tree.
[0034]
The type of leaf to be added to the above-mentioned woody material is not particularly limited, and the above-mentioned leaves such as trees may be used. In use, the leaves are finely crushed, preferably 5 cm or less, more preferably 1 cm or less, even more preferably 0.5 cm or less.
[0035]
Here, the mixing ratio of the wood material and the leaves is preferably 0.1 to 50 parts by mass (preferably 1 to 20 parts by mass) with respect to 100 parts by mass of the wood material. If the amount is less than 0.1 parts by mass, the desired effect cannot be obtained. On the other hand, when it is added in excess of 50 parts by mass, the ratio of the woody material decreases, and the resolution by white rot fungi decreases. The mixing method is not particularly limited, and mixing may be performed using a mechanical mixer or the like.
[0036]
The present invention particularly recommends the use of pruners that include both leaves and woody materials. In use, a material appropriately adjusted so as to have the above-mentioned ratio may be used.
[0037]
In the present invention, the reason why the addition of leaves improves the lignin decomposability by white-rot fungi is unknown in detail, but the growth of white-rot fungi is promoted by the components contained in the leaves, and the enzyme involved in lignin degradation It is considered that production is promoted.
[0038]
Such a culture substrate is inoculated with white rot fungi, and the inoculation concentration is 0.01 to 5% by mass (preferably 0.05 to 0.5% by mass) based on the culture substrate. It is recommended that
[0039]
The cultivation conditions vary depending on the type of white rot fungus to be used; the type and amount of woody materials and leaves, and the amount of addition. However, it is generally recommended to culture at 20 to 30 ° C for about 1 to 4 weeks. Thereby, a desired culture is obtained. This culture is excellent in lignin decomposability and also has a high ability to purify soil contaminated with hardly decomposable substances. In the following description, the above culture may be referred to as "pre-culture" in the sense that it is a culture before being added to contaminated soil.
[0040]
What is particularly important here is that, in the present invention, it is not necessary to compost the culture substrate containing the above-mentioned woody material and leaves. In Patent Document 2 described above, slaked lime (0.6%) and urea (1%) are added to finely crushed chips such as beech to adjust the water content (water content: 55%) and compost. Although it is considered that the conversion takes at least several months, in the present invention, such a composting step is not necessary because a unique culture substrate in which leaves are added to a woody material is unnecessary, and a slight By performing cultivation for only a short period of about 1 to 4 weeks, a preculture excellent in lignin decomposability can be obtained. In fact, the above publication states that "compost obtained in this manner may contain lignin that may be a precursor of dioxin." However, it is preferable to prevent the production of dioxin from lignin. "The above-mentioned publication is recognized as a technique for composting for a long time until lignin is completely decomposed. On the other hand, in the present invention, complete decomposition of lignin is unnecessary, and this is a technique for culturing for a short period of time necessary for activating lignin resolution (activation of lignin-degrading metabolic system). In that respect, the two are clearly different. Therefore, according to the present invention, it is very useful in terms of lignin resolution and workability (reduction of processing time, etc.).
[0041]
Next, the preculture obtained as described above is mixed in a soil containing a hardly decomposable substance, and further cultured. Here, the compound concentration in the soil is approximately 1 × 10-8-102It is preferable to adjust to be mg / g. The soil treatment conditions vary depending on the type of the substance to be treated, the composition of the preculture, and the like. However, the mixing ratio between the soil adjusted to the above compound concentration and the preculture is 1: 0. 1 to 1.1 (preferably 1: 0.3 to 0.6), and it is recommended that culture conditions be generally at 20 to 40 ° C for 1 to 180 days. In this soil treatment step, it is considered that the decomposition of lignin and the decomposition of hardly decomposable substances in soil are simultaneously progressing by the preculture in which the lignin decomposition metabolism system is activated, and as a result, the desired soil It is thought that the purification ability is exhibited.
[0042]
Hereinafter, the present invention will be described in detail based on examples. However, the following embodiments do not limit the present invention, and all modifications and implementations without departing from the spirit of the preceding and the following are included in the technical scope of the present invention.
[0043]
【Example】
Example 1: Lignin degradation test using Kawatake mushroom (1)
The following experiments were conducted for the purpose of examining the excellent lignin decomposability according to the present invention. Being superior in lignin resolving power is expected to be excellent in resolving power of soil contaminated with aromatic compounds such as bisphenol A and dioxins, and contributes to purification of such contaminated soil. Lignin degradation can be positioned as a "pre-stage for soil remediation."
[0044]
First, after roughly pulverizing a pruning material such as zelkova, Yoshino cherry, camphor tree, and ginkgo (a material containing 5% by dry weight of leaves with respect to a woody material), the material is pulverized again with a wheely mill and refined (40 to The 100-mesh fraction) was defatted with methanol and air-dried to obtain a culture substrate of the present invention. For comparison, the pruned branches from which the leaves were cut were similarly pulverized and re-pulverized and defatted to obtain a culture substrate of the comparative example.
[0045]
Next, 25 mL of water was added to each of the above culture substrates (dry mass: 10 g), and then inoculated with agaricus (Tramets Versicolor), one of the representative white rot fungi (inoculation concentration of 0.08 to the culture substrate) %) And cultured at 30 ° C., and the lignin (total of Klason lignin and acid-soluble lignin) degradation rate in the culture substrate was measured over time. Among them, Klason lignin was measured by the method described in JIS P8008-1961, while acid-soluble lignin was measured by the method described in Nakano Junzo, "Lignin Chemistry", p53 (1982).
[0046]
The results obtained are shown in FIG.
[0047]
From FIG. 1, it can be seen that the example of the present invention to which leaves were added was extremely superior in the lignin decomposition rate as compared with the comparative example containing no leaves. In particular, according to the present invention, a very high decomposition rate of about 70% was obtained about 7 weeks after the treatment.
[0048]
Example 2: Lignin decomposition test using Kawatake mushroom
In this example, an experiment was conducted with the purpose of confirming the effect of adding leaves to the woody material. Specifically, each culture medium was prepared in the same manner as in Example 1, except that the ratio of the leaves (dry mass) to the woody material was varied as shown in Table 1. The lignin decomposition rate of the material was measured (treatment time: 7 weeks). Table 1 shows the obtained results.
[0049]
[Table 1]
Figure 2004216342
[0050]
In the table, ++ means lignin decomposition rate> 60%, + means lignin decomposition rate: 30 to 60%, and-means lignin decomposition rate <30%, respectively.
[0051]
According to Table 1, when a woody material containing no leaves was used, the lignin decomposition rate was less than 30%, whereas when leaves were added, the lignin decomposition rate was improved. When 1-20% was added, the lignin decomposition rate exceeded 60%, and it was found that extremely excellent resolution was exhibited.
[0052]
Example 3: Dioxin-contaminated soil purification test using LSB-69, NK-1148, YK-624, and Kawatake mushroom
The following experiments were performed using LSB-69, NK-1148, YK-624, and Kawatake mushroom white rot fungi in order to examine the excellent dioxin resolution by the method of the present invention.
[0053]
First, the above strain was grown on a PDA medium (potato-glucose agar medium), and the resulting mycelium was inoculated into 200 mL of a PD (potato-glucose) medium added to a 500-mL Erlenmeyer flask. Culture was performed for a day to obtain a bacterial culture.
[0054]
Next, as a culture substrate containing leaves, a pruning material for street trees such as zelkova, Yoshino cherry, camphor tree, ginkgo and the like (containing 5 parts by mass of leaves with respect to 100 parts by mass of the woody material) is dried, and then dried for about 0.5%. A pruned pulverized material having a length of 11 cm was prepared. 1.5 kg of water and 200 mL of the above culture broth were added to 1 kg of this pulverized pruning material, mixed, and then cultured at 30 ° C. for 3 weeks. For comparison, as a culture substrate containing no leaves, all leaves were removed with the above-mentioned street tree pruning material, and dried to prepare a pulverized pruning material of only the woody portion pulverized to about 1 cm. After adding and mixing 1.5 L of water and 200 mL of the above bacterial culture solution in 1 kg of the pruning material, the mixture was cultured at 30 ° C. for 3 weeks.
[0055]
The following dioxin-contaminated soil purification test was performed on each of the thus obtained cultures. Specifically, 1 kg of each of the above cultures was mixed with 10 kg of dioxin-contaminated soil obtained around a garbage incineration plant, and water was added so that the water content became about 50%. And placed in a container. In addition, when exposed to direct sunlight, bacteria may be damaged by the action of ultraviolet rays. Therefore, cold sand was applied to the upper part of the container in order to avoid direct sunlight. Next, the container was placed outdoors and cultured at about 20 ° C. On day 0, day 15 and day 30 of the culture start, the soil was sampled and homogenized.ThirteenAfter spike addition of C-dioxin, Soxhlet extraction was performed. The collected organic layer was dried over sodium sulfate, concentrated under reduced pressure, and dissolved by adding 150 mL of hexane. This solution was treated with sulfuric acid, washed with water, dehydrated, and concentrated under reduced pressure to 1 mL. Next, after purifying with silver nitrate silica gel and activated carbon silica gel, each isomer of dioxins [dibenzoparadioxin (tetrachloride, pentachloride, hexachloride, heptachloride, and heptachloride) is determined by gas chromatography mass spectrometry. ); Dibenzofuran (tetrachloride, pentachloride, hexachloride, heptachloride, and octachloride)] were quantitatively analyzed with time, and the dioxin concentration in terms of toxic equivalent (TEQ) was calculated.
[0056]
Here, the measurement conditions of the gas chromatograph mass spectrometer are as follows.
[0057]
[Measurement conditions of gas chromatograph]
HP5890 Series II
(1) When the measurement sample is 4- to 6-chlorinated dibenzoparadioxin and 4- to 6-chlorinated dibenzofuran
Separation column: CP-Sil 88 [60 m × 0.25 mm (ID) 0.10 μm]
Column temperature: 100 ° C (2 min) → (10 ° C / min) → 190 ° C (0 min) → (3 ° C / min) → 250 ° C (20 min)
Carrier gas: helium (1.10 ml / min)
Inlet temperature: 250 ° C
Injection method: Splitless (1 min)
(2) When the measurement sample is 7 to 8 chlorinated dibenzoparadioxin and 7 to 8 chlorinated dibenzofuran
Separation column: DB17 [30 m × 0.25 mm (ID) 0.25 μm]
Column temperature: 100 ° C (2min) → (30 ° C / min) → 220 ° C (0min) → (10 ° C / min) → 280 ° C (15min)
Carrier gas: helium (1.12 ml / min)
Inlet temperature: 270 ° C
Injection method: Splitless (1 min)
[Conditions of mass spectrometer]
VG AutoSpec-Ultmima
Ionization method: EI
Ionization energy: 35 eV
Ionization current: 500 μA
Ion source temperature: 260 ° C
Ion acceleration voltage: 8 kV
Resolution: 10,000
2 to 5 show changes over time in the concentration of dioxins (total concentration of each isomer) when treated with each microorganism. 2 shows an example using the LSB-69 strain; FIG. 3 shows an example using the NK-1148 strain; FIG. 4 shows an example using the YK-624 strain;
[0058]
From these figures, when any of the strains was used, when the cells were cultured on the culture substrate containing leaves as in the present invention (in the figure, ●), the cells were cultured on the culture substrate containing no leaves ( In the figure, it can be seen that it has a superior dioxin resolution as compared to ○). Among these white-rot fungi, the LSB-69 strain, the NK-1148 strain, and the YK-624 strain have a higher decomposition rate of dioxins than Kawatake mushroom.
[0059]
【The invention's effect】
Since the present invention is configured as described above, lignin decomposability by white rot fungi can be enhanced, and as a result, a method for efficiently purifying soil contaminated with hardly decomposable substances can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the change over time of the lignin degradation rate in Example 2.
FIG. 2 is a graph showing the time-dependent change in the decomposition rate of dioxins when the LSB-69 strain was used in Example 3.
FIG. 3 is a graph showing the time-dependent change in the decomposition rate of dioxins when the NK-1148 strain was used in Example 3.
FIG. 4 is a graph showing the change over time in the decomposition rate of dioxins when the YK-624 strain is used in Example 3.
FIG. 5 is a graph showing the change over time in the decomposition rate of dioxins when Kawatake mushroom was used in Example 3.

Claims (3)

白色腐朽菌による難分解性物質汚染土壌の浄化方法において、
培養基材として、葉を含有する木質材料を、堆肥化させることなしに使用することを特徴とする難分解性物質汚染土壌の浄化方法。
In a method for purifying soil contaminated with hardly decomposable substances by white rot fungi,
A method for purifying soil contaminated with hardly decomposable substances, wherein a woody material containing leaves is used as a culture base without composting.
前記葉を含有する木質材料は、剪定材である請求項1に記載の浄化方法。The purification method according to claim 1, wherein the wood material containing leaves is a pruning material. 前記白色腐朽菌は、白色腐朽菌FERM BP−1859、白色腐朽菌FERM P−17514、及びファネロケーテ・ソルディダ(Phanerochaete sordida)ATCC 90872の菌株よりなる群から選択される少なくとも一種の菌株である請求項1または2に記載の浄化方法。2. The white-rot fungus is at least one strain selected from the group consisting of white-rot fungus FERM BP-1859, white-rot fungus FERM P-17514, and strain FANLOCATETE SORDIDA ATCC 90872. Or the purification method according to 2.
JP2003010004A 2003-01-17 2003-01-17 Method for remediating soil contaminated with persistent substances Expired - Fee Related JP4119759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010004A JP4119759B2 (en) 2003-01-17 2003-01-17 Method for remediating soil contaminated with persistent substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010004A JP4119759B2 (en) 2003-01-17 2003-01-17 Method for remediating soil contaminated with persistent substances

Publications (2)

Publication Number Publication Date
JP2004216342A true JP2004216342A (en) 2004-08-05
JP4119759B2 JP4119759B2 (en) 2008-07-16

Family

ID=32899331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010004A Expired - Fee Related JP4119759B2 (en) 2003-01-17 2003-01-17 Method for remediating soil contaminated with persistent substances

Country Status (1)

Country Link
JP (1) JP4119759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095412A (en) * 2004-09-29 2006-04-13 Tomoaki Nishida Method for decomposing/removing heavy oils
JP2007252972A (en) * 2006-03-20 2007-10-04 Idemitsu Kosan Co Ltd Cleaning method for petroleum-contaminated soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139234A (en) * 1991-11-25 1993-06-08 Tokai Rika Co Ltd Airbag case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095412A (en) * 2004-09-29 2006-04-13 Tomoaki Nishida Method for decomposing/removing heavy oils
JP2007252972A (en) * 2006-03-20 2007-10-04 Idemitsu Kosan Co Ltd Cleaning method for petroleum-contaminated soil

Also Published As

Publication number Publication date
JP4119759B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Lü et al. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review
Acevedo et al. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor
Yu et al. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria
Purnomo et al. Basic studies and applications on bioremediation of DDT: a review
US4891320A (en) Methods for the degradation of environmentally persistent organic compounds using shite rot fungi
Kaewlaoyoong et al. White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated field soil via solid state fermentation
US5459065A (en) Process for the degradation of coal tar and its constituents by Phanerochaete chrysosporium
US5486474A (en) Bioremediation method using a high nitrogen-containing culture of white rot fungi on sugar beet pulp
Covino et al. Mycoremediation of organic pollutants: principles, opportunities, and pitfalls
Orndorff et al. Microbial transformation of kepone
Kaewlaoyoong et al. Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites
Eggen et al. Use of edible and medicinal oyster mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] spent compost in remediation of chemically polluted soils
JP4119759B2 (en) Method for remediating soil contaminated with persistent substances
JP4247395B2 (en) Degradable bacteria of hardly degradable substances and environmental purification method using the same
Rosenbrock et al. Enhancing the mineralization of [U-14 C] dibenzo-p-dioxin in three different soils by addition of organic substrate or inoculation with white-rot fungi
Kumar et al. Biodegradation of B-lactam antibiotic ampicillin by white rot fungi from aqueous solutions
CN106424129B (en) Method for repairing 2,2 &#39;, 4, 4&#39; -tetrabromobisphenol contaminated soil
Cheng et al. Improved bioremediation of PCDD/Fs contaminated soil by mycelium-free liquids induced by agro-industrial residues
JP3831784B2 (en) Novel microorganism having dioxin resolution and dioxin decomposition method
JP2004002659A (en) Hardly decomposable toxic substance decomposing agent and method for decomposing hardly decomposable toxic substance
JP2004321052A (en) Method for decomposing estrogen
Harry-Asobara et al. Indirect bacterial effect enhanced less recovery of neonicotinoids by improved activities of white-rot fungus Phlebia brevispora
JP3860597B2 (en) Novel microorganism having dioxin resolution and dioxin decomposition method
KR102520249B1 (en) Composition for decomposing pesticides
JP4401832B2 (en) Method for producing complex microbial preparation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees