JP4119310B2 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
JP4119310B2
JP4119310B2 JP2003164741A JP2003164741A JP4119310B2 JP 4119310 B2 JP4119310 B2 JP 4119310B2 JP 2003164741 A JP2003164741 A JP 2003164741A JP 2003164741 A JP2003164741 A JP 2003164741A JP 4119310 B2 JP4119310 B2 JP 4119310B2
Authority
JP
Japan
Prior art keywords
image data
transmission
serial
clock
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164741A
Other languages
English (en)
Other versions
JP2005004310A (ja
Inventor
忠信 鳥羽
修司 菊地
諭 村岡
成弥 田中
善幸 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003164741A priority Critical patent/JP4119310B2/ja
Publication of JP2005004310A publication Critical patent/JP2005004310A/ja
Application granted granted Critical
Publication of JP4119310B2 publication Critical patent/JP4119310B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Input (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学式、又は電子線等による半導体デバイスや基板回路パターンの検査装置及び該検査装置等における画像処理装置に関する。
【0002】
【従来の技術】
従来の検査装置における画像処理装置では、半導体の微細化、基板配線の高密度化等により、要求される画像処理能力が年々増大しており、これに伴い、単一の画像処理用演算プロセッサから並列プロセッサ化が進んでいる。例えば、特開平5−324583号公報、特開平7−334469号公報、特開平10−276323号公報等に記述されている。
【0003】
上記特開平5−324583号、特開平10−276323号に代表される並列プロセッサ形の画像処理装置は、汎用的な並列コンピュータ同様、共通バスにより画像データ取得部位から並列化した各演算プロセッサへと演算プロセッサ間の画像データの供給を行う構成となっている。また、特開平7−334469号のように入力・出力を別バスで構成する等目的別の専用バスを設けた構成もある。
【0004】
また、特開2002−223203号公報には、ウエハ外観検査装置、走査型電子顕微鏡などに代表される装置において、膨大な量の画像データを送信器から受信器にシリアル伝送することが記載されている。
【0005】
【特許文献1】
特開平5−324583号公報
【特許文献2】
特開平7−334469号公報
【特許文献3】
特開平10−276323号公報
【特許文献4】
特開2002−223203号公報
【0006】
【発明が解決しようとする課題】
プロセッサの並列化で処理能力を向上するためには、各プロセッサの演算性能向上にも増して、バススループットの向上が重要である。バススループットを向上する方法として、伝送速度の向上、データバス幅拡張がある。しかし、伝送速度の向上は、バス線間のスキュー管理や信号線間の相互干渉による電気的損失が課題になる。また、データバス幅の拡張は、物理的な実装面積の広がりによる装置サイズの増大を招くとともに、上記伝送速度向上時と同様に、バス信号線間の電気的な相互干渉が課題になる。このため、画像処理能力の向上を目的としてプロセッサ数を増やすことは、電気的、物理的な制約による限界がある。
【0007】
本発明の目的は、上記バス接続におけるスキュー管理、電気的な相互干渉等の課題を解決し、複数のシリアル伝送路によるデータ伝送能力を向上することで並列化された複数の画像データ処理部での画像処理能力を向上させた検査装置及び検査装置等における画像処理装置を提供することにある。
【0008】
【課題を解決しようとする手段】
上記目的を達成するために、本発明は、画像データ取得手段で取得された画像データを複数の画像処理プロセッサで処理する画像処理装置であって、前記画像データを入力して分配する画像データ分配制御部と、該画像データ分配制御部で分配された画像データをビットシリアル形式に変換して送信する複数の送信部と、該複数の送信部の各々で送信されたビットシリアル形式の画像データを伝送する複数のシリアル伝送路と、該複数のシリアル伝送路の各々で伝送されたビットシリアル形式の画像データを受信する複数の受信部と、該複数の受信部の各々において受信されたビットシリアル形式の画像データからクロック成分を抽出してシリアルビット形式の画像データを識別する複数の回復回路と、該複数の回復回路の各々で識別されたシリアルビット形式の画像データをバラレルビット形式の画像データに展開する複数の展開部と、該複数の展開部の各々で展開されたパラレルビット形式の画像データを前記複数の画像処理プロセッサの各々に伝送する複数の伝送路とを設けたことを特徴とする。
【0009】
また、本発明は、前記複数の送信部は、同一クロックソースによりビットシリアル形式の画像データを送信するように構成したことを特徴とする。
【0010】
また、本発明は、前記画像処理装置において、前記各受信部には受信状態を監視する監視手段を有し、該監視手段での監視結果を前記各送信部に伝送するように構成したことを特徴とする。
【0011】
また、本発明は、前記画像処理装置において、更に、前記各受信部から前記各送信部へ前記シリアル伝送路の確立を確認した結果を伝送して各送信部からの伝送(例えば伝送の開始)を制御する制御手段を設けたことを特徴とする。
【0012】
また、本発明は、前記複数の伝送路において、伝送するビットシリアル形式の画像データを中継して分配する複数の画像データ中継部を有し、階層化することを特徴とする。
【0013】
また、本発明は、前記複数の画像データ中継部は同一クロックソースによりビットシリアル形式の画像データを送信するように構成したことを特徴とする。
【0014】
また、本発明は、前記画像処理装置において、更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶して前記各画像処理プロセッサへの画像データ伝送タイミングを調整するための複数の一時記憶手段と、前記各画像処理プロセッサでの画像処理の基準時間となる画像処理クロックを生成する画像処理クロック生成手段とを設け、該画像処理クロック生成手段で生成された画像処理クロックを前記画像データ分配制御部、前記各一時記憶手段及び前記各画像処理プロセッサに分配することを特徴とする。
【0015】
また、本発明は、前記画像処理装置において、更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶して前記各画像処理プロセッサへの画像データ伝送タイミングを調整するための複数の一時記憶手段と、該各一時記憶手段の使用状態を監視する監視手段と、該監視手段での監視結果を前記各送信部に伝送することによって前記各送信部での送信時間を調整する手段とを設けたことを特徴とする。
【0016】
また、本発明は、前記画像処理装置において、更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶する複数の一時記憶手段と、該複数の一時記憶手段の各々の状態を監視し、該監視結果に基いて前記各シリアル伝送路での画像データ伝送の停止および再開を制御する統括制御部とを設けたことを特徴とする。
【0017】
また、本発明は、前記画像処理装置において、更に、前記各画像処理プロセッサの処理時間と前記各シリアル伝送路による伝送時間とを監視し、該監視結果に基いて前記各シリアル伝送路での画像データ伝送の停止および再開を制御する統括制御部とを設けたことを特徴とする。
【0018】
また、本発明は、前記画像処理装置において、前記各受信部には受信状態を監視する監視手段を有し、該監視手段での監視結果を前記各送信部に伝送するように構成したことを特徴とする。
【0019】
また、本発明は、前記複数の送信部において、変換されたビットシリアル形式の画像データについて同一クロックソースにより送信間隔を空けて送信するように構成したことを特徴とする。
【0020】
また、本発明は、前記画像処理装置(画像データ分配制御部から画像処理プロセッサへと画像データを一方向に伝送する構成)を設けたことを特徴する検査装置である。
【0021】
【発明の実施の形態】
本発明に係る画像処理装置の実施の形態について、図面を参照して説明する。
【0022】
まず、本発明に係る画像処理装置を備えた検査装置の一実施例について説明する。検査装置としては、光学式やSEM式外観検査装置およびSEM測長装置などがある。そして、検査装置における画像処理装置において、画像データ処理部は画像データ取得手段から得られる膨大な画像データを高速で処理する必要が生じてきている。図1は、本発明に係る画像処理装置を備えた例えば光学式外観検査装置の一実施例を示す概略構成図である。図1に示す実施例では、光源45から出射された光(例えばUV光、DUV光)を集光レンズ47でスリット状に集光して対物レンズ48を通して所定方向に移動するウエハ49上に照射する。ウエハ49上に形成された回路パターンから反射された光を対物レンズ48で集光して結像された回路パターンの像をTDIセンサ等のイメージセンサ46で撮像して画像情報を出力する。このようにAD変換器41は、上記光学系からの画像情報をセンサ46から取り込み、アナログ量からディジタル情報に変換する。このディジタル化した画像データを一旦画像メモリ42に格納した後、画像データ分配制御部1で分割して並列化し、シリアル伝送路501〜50nにより画像データ処理部21〜2nへGHzオーダの高速で送る。全体制御部43は、AD変換器41や画像メモリ42をセンサ46から得られる画像情報を基に制御し、さらに画像データ分配制御部1を制御し、更に各画像データ処理部21〜2nから得られる画像処理結果を入力して画像統合処理を行う。
【0023】
次に、本発明に係る画像処理装置の実施の形態について説明をする。
【0024】
画像処理装置の第1の実施の形態は、図2に示すように、画像データ取得手段100(41、42、45〜48等)で取得された膨大な画像データを入力、分配する画像データ分配制御部1と、膨大な画像データを高速で処理するために並列に処理を行う複数の画像データ処理部(画像処理プロセッサ)21〜2nと、上記画像データ分配制御部1と複数の画像データ処理部21〜2nとの間を接続する複数のシリアル伝送路501〜50nとで構成される。
【0025】
次に、上述の画像処理装置の第1の実施の形態の動作について説明する。まず、光学式、又は電子線等で構成される画像データ取得手段100から画像データを取得後、画像データ分配制御部1で受け取る。画像データ分配制御部1は、受け取った画像データを分割して並列化している複数の画像データ処理部(画像処理プロセッサ)21〜2nに複数のシリアル伝送路501〜50nを使って画像データを送信する。画像データ処理部21〜2nの各々は、送られてきた画像データをもとに順次画像処理を行う。このシリアル伝送による画像データ伝送は、バス接続に比べ電気的相互干渉や信号間スキューの考慮が不要となり、伝送速度を高めることができる。また、シリアル化することで、信号線数が大幅に削減でき、配線領域を小さくできることから装置サイズの小形化が容易になる。
【0026】
画像処理装置の第2の実施の形態は、図3に示すように、画像データ取得手段から画像データを入力、分配する画像データ分配制御部1と、複数の画像データ中継部31〜3eと、複数の画像データ処理部(211〜21g;…;2e1〜2eg)と、画像データ分配制御部1と複数の画像データ中継部31〜3eの各々との間を接続するシリアル伝送路511〜51eと、複数の画像データ中継部31〜3eの各々と複数の画像データ処理部(211〜21g;…;2e1〜2eg)の各々との間を接続するシリアル伝送路(5211〜521g;…;52e1〜52eg)とを備えて構成される。なお、画像データ分配制御部1と画像データ中継部31〜3eとの間、または画像データ中継部31〜3eと画像データ処理部(211〜21g;…;2e1〜2eg)との間に、画像データ中継部3が階層化する構成もある。また、画像データ中継部31〜3eで、画像データの伝送経路を変更する手段を設ける構成もある。
【0027】
以上説明したように、画像データ中継部31〜3eにより画像データ分配制御部1で分配した画像データを、画像データ中継部31〜3eで階層化することで、本発明に係る画像処理装置を実現する基板、半導体等のピン数、サイズ等物理的な制約を緩和することができ、画像データ処理部の並列数を増やすことが容易になるとともに、第1の実施の形態と同様の効果を得ることができる。即ち、検査装置等で扱う膨大な画像データを高速に処理するためには、画像データ処理部(画像処理プロセッサ)(211〜21g;…;2e1〜2eg)の並列化が必要となる。そこで、画像データ分配制御部1から並列化した画像データ処理部(211〜21g;…;2e1〜2eg)へGHzオーダの高速にデータ伝送するシリアル伝送を階層化することで物理的な制約を排除することが可能となる。
【0028】
ここで、シリアル伝送の概念を図4に示す。シリアル伝送とは、複数ビットで構成されるデータをパラレルからシリアルに変換するパラレル−シリアル変換回路60により、1ビットずつの並びに変換するものである。図4の実施例では、パラレルデータとして8ビットを入力後、パラレル−シリアル変換回路60により1ビットへ変換し、ビット[0]から順次出力している。この8ビットバスは、ビットシリアル化により1本のシリアル伝送路61に変換され、電気的な相互干渉が排除されるなど電気的に伝送周波数を上げることが可能になる。従って、図4の場合、パラレルデータで伝送周波数の8倍にすることで同一のスループットを達成できる上、電気的な制約から解放される。
【0029】
図5は、シリアル伝送方法としてデータからクロック成分を抽出して受信部でデータを認識するクロックデータリカバリ(CDR)を用いた実施の形態を示す。画像データ取得手段100から画像データを入力、分配する画像データ分配制御部1と並列化した画像データ処理部21〜2nとは、シリアル伝送送信部41〜4n及びシリアル伝送受信部51〜5nを介してシリアル伝送路501〜50nで接続される。画像データ分配制御部1は、各シリアル伝送送信部41〜4nにパラレル伝送路701〜70nを用いて各々画像データを配信する。パラレルデータを受けたシリアル伝送送信部41〜4nは、パラレル−シリアル変換後、シリアル伝送路501〜50nにシリアル化したデータを送信する。なお、シリアル伝送送信部41〜4nには、ソースを同一化した伝送時間基準(送信用参照クロック:送信側伝送クロック)が入力される。シリアル伝送受信部51〜5nは、受信したビットデータの‘H’,‘L’の変化点をもとにクロック成分を抽出するクロックデータリカバリ回路(回復回路)(CDR:Clock Data Recovery)によりクロックを復元し、そのクロックをもとに、シリアルビットデータを識別する。さらに、シリアル伝送受信部51〜5nは、シリアル−パラレル変換後、パラレル伝送路711〜71nを介してパラレル化したデータを各画像データ処理部21〜2nに送信する。
【0030】
しかしながら、バス接続の場合、データの受け渡しのために、送信側と受信側でクロック同期を取る必要があるため、クロックのデータ並走や共通クロックを供給することが必要になり、クロックとデータの遅延、スキューを考慮する必要がある。
【0031】
そこで、本発明に係る画像データ処理部21〜2n(階層化された場合、211〜21g;…;2e1〜2eg)を並列化した検査装置においては、処理タイミングを決めるシステムクロックを基いて、並列化した画像処理部21〜2n間のデータ同期をとることで、リアルタイム動作の画像処理を実現する実施例について、図6に示すタイムチャートを用いて説明する。
【0032】
まず、画像データ(Data0, Data1, Data2,…, Data5, …)を取り込み、そのデータを画像データ分配制御部1で分配し、各々ターゲットとなる画像データ処理部21〜2n(図中PE:Processor Element)へPE0〜PEn-1入力として渡す。この時の伝送時間は、シリアル伝送路長等の要因により画像データ処理部21〜2n間で違いが生じる。画像データ処理部21〜2nでの演算結果をまとめることが必要な場合、全画像データ処理部21〜2n間で画像処理タイミングを一致させる必要がある。これは画像統合処理として必要な時間間隔をシリアル伝送路501〜50nでも常に守ることで同期化が図れる。しかし、シリアル伝送路501〜50nでは、各伝送路のタイミングを完全に同期化することはバス接続と同様に電気的制約を生じることになり、高速、大容量の伝送を困難にする。
【0033】
即ち、CDRを用いたシリアル伝送では、伝送用クロックのジッタが伝送時のビットエラー率(BER:Bit Error Rate)に影響する。そのため、本発明で想定している大規模な装置内に多数のシリアル伝送路501〜50n(階層化された場合、511〜51eと、5211〜521g;…;52e1〜52eg)を設ける場合、必然的にシステム動作の基本クロックを伝送クロックと同一にすることが困難となる。他方、画像データの処理を行う一つの目的のために多数のシリアル伝送路を使用して画像データの伝送を行う装置内では、処理タイミングを決めるシステムクロックは必要となる。従って、本発明では、画像処理タイミングを決めるシステムクロックとシリアル伝送クロックを併用する構成にする。即ち、全画像データ処理部21〜2n間での画像処理タイミングはシステムクロックによって一致させられることになる。
【0034】
次に、本発明に係る並列化した画像データ処理部21〜2n(階層化された場合も含む)での画像処理タイミングとシリアル伝送でのデータ同期を取る第3の実施の形態について図7及び図8を用いて説明する。
【0035】
図7は、並列化した画像データ処理部21〜2nでの演算結果をまとめる統合画像処理部6(43)を設けた画像処理装置の実施の形態である。この場合、全ての画像データ処理部21〜2nで一つの演算結果を出すまでの時間間隔を図6で説明した同一の画像処理タイミングに沿って動作させることが必要で、かつ装置が稼動している間中守ることが要求される。ここで、シリアル伝送路501〜50nのデータ伝送周期のずれについて説明する。シリアル伝送の場合、シリアル伝送送信部41〜4nの伝送クロックをもとにシリアル伝送受信部51〜5nでクロックをリカバリする(CDRする)ことから、伝送速度は、送信側の伝送クロックにより決まる。一般的な発振器には、周波数偏差が存在するため、シリアル伝送送信部41〜4nで個別の発振器を用いた場合、周波数偏差によるずれの影響を考慮する必要がある。例えば、周波数偏差が±100ppmの発振器を使用した場合、シリアル伝送送信部41〜4nでの伝送用クロック発振器の発振周波数が62.5MHzで周波数偏差を上記±100ppmとすると、次に示す(1)式及び(2)式の関係となる。
【0036】
fmax(最大)=62.5063MHz (1)
fmin(最小)=62.4938MHz (2)
ここから1サイクル当りの差分(Dcyc)は、次の(3)式となり、伝送データサイズS毎に1サイクルずれることになる。
【0037】
Dcyc=|(1/fmax−1/fmin)|=3.2[ps] (3)
∴伝送データサイズS=(1/fmax)/Dcyc=4999.5040
例えば連続的に画像データを伝送する場合、並列化したシリアル伝送受信部間のデータ到着が上記計算のように微小にずれることで、長期間データを送り続けると大きなずれとなる。
【0038】
そこで、本発明においては、図7に示すように、各シリアル伝送送信部41〜4nの伝送動作タイミングを同一のソースによる共通時間基準(送信側伝送クロック)7aに統一することで、送信時の伝送時間のずれを防ぐことが可能となる。各シリアル伝送受信部51〜5nでは、送信側のデータに乗るクロック成分を抽出することから、送信側同様データの到着時間の同期(データ同期)が保持され、長期間データ伝送を継続しても各シリアル伝送路501〜50nによるデータ同期を保持できる。例えば、共通時間基準として水晶発振器を用いる場合、各シリアル伝送送信部41〜4nに同一の水晶発振器(同一のソース)7aから伝送用クロックを供給することを意味する。
【0039】
次に、上述した実施形態において階層化構成にした場合について図8を用いて説明する。この階層化構成の実施の形態では、各シリアル伝送送信部41〜4eからシリアル化した画像データがシリアル伝送路511〜51eにより送り出され、各画像データ中継部31〜3eで中継もしくは分岐、経路変更などを行い、中継部に対応させた各シリアル伝送路(5211〜521g;…;52e1〜52eg)により各シリアル伝送受信部(511〜51g;…;51e1〜51eg)に送られる。各画像データ中継部31〜3eは、各シリアル伝送受信部51〜5nと同様に送られてきたデータから送信側のクロックをリカバリする(CDRする)ことでデータを認識し、あらためて中継部に対応させた各シリアル伝送受信部(511〜51g;…;51e1〜51eg)へ送信する。その際、各シリアル伝送送信部41〜4eにおける伝送クロック源(共通時間基準)7aの同一化と同様、各画像データ中継部31〜3eにおいても伝送クロック源7bを同一の時間基準にすることで、中継手段でのデータ同期を保証し、全てのシリアル伝送受信部(511〜51g;…;51e1〜51eg)でのデータ同期を実現する。なお、各中継部31〜3eに対応させて各シリアル伝送路521〜52eで接続されるシリアル伝送受信部と画像データ処理部との各々を531〜53eで示す。また、図8では、各中継部31〜3eに接続されるシリアル伝送受信部と画像データ処理部の個数を同じにしているが、当然各々個数を変えても良い。また、図8では、画像データ中継部3を1階層のみで示したが、これが複数階層になっても同様である。
【0040】
次に、本発明に係る並列化した画像データ処理部21〜2n(階層化された場合も含む)での画像処理タイミングとシリアル伝送でのデータ同期を取る第4の実施の形態について図9を用いて説明する。
【0041】
図9には、第4の実施の形態を示す。この第4の実施の形態は、画像データ分配制御部1と、並列化した複数の画像データ処理部(PE0〜PEn-1)21〜2nと、複数のシリアル伝送送信部41〜4nと、複数のシリアル伝送受信部51〜5nと、統合画像処理部6(43)と、伝送のための共通の時間基準7と、各シリアル伝送受信部51〜5nと各画像データ処理部21〜2nとの間のバッファメモリ81〜8nと、装置全体の画像処理タイミングの共通的な画像処理時間基準9とで構成する。この第2の実施形態の動作は、図7で示した実施の形態と同様、画像データ分配制御部1から送り出される画像データを複数のシリアル伝送路501〜50nを経て複数のシリアル伝送受信部51〜5nに送る。シリアル伝送受信部51〜5nまでは、伝送系の同一の時間基準7に従いデータ同期を確立する。画像処理装置は、送られてくる画像データを順次処理するリアルタイムシステムであるため、並列化した画像データ処理部21〜2nは、処理結果を統合画像処理部6へ決められた画像処理サイクル以内に出力する必要がある。そのため、シリアル伝送路での基準となる時間から、画像データ処理で基準となる時間に乗せかえる必要がある。本第4の実施の形態では、受信した画像データを、各シリアル伝送受信部51〜5nからリカバリクロック561〜56nとして抽出される伝送時の時間基準に従って順次各バッファ(一時記憶手段)81〜8nに書き込み、ソース(画像処理クロック生成手段)9から得られる画像データ処理での時間基準に従って各バッファ(一時記憶手段)81〜8nから読み出すことで、基準となる時間を乗せかえる。各画像データ処理部21〜2nにおける画像データの演算処理は、複数の画素データを集めて行うことから、画像データ処理の時間基準(画像処理単位)の時間間隔は、伝送系の時間間隔に比べて広くなる。従って、電気的制約が少なく、装置全体の同期信号として使用することが可能である。例えば、伝送系時間基準7を発振器とした場合、伝送速度を決める発振周波数を画像処理タイミング用発振器(画像処理クロック生成手段)9とは独立したもので構成でき、装置全体に供給することが必要ないため、伝送クロック用に使用する発振器7を高精度な発振器かつ高い周波数にすることが容易になる。なお、発振器(画像処理クロック生成手段)9からの画像処理時間基準(画像処理単位)を示すクロック信号が画像データ分配制御部1、複数の画像データ処理部21〜2n及び統合画像処理部6(43)に送信されて同期が取られることになる。また、第2の実施の形態を、階層化した場合にも適用することは可能である。
【0042】
次に、本発明に係る並列化した画像データ処理部21〜2n(階層化された場合も含む)での画像処理タイミングとシリアル伝送でのデータ同期を取る第5の実施の形態について図10、図11及び図12を用いて説明する。
【0043】
図10には、第5の実施の形態を示す。この第5の実施の形態は、複数の画像データ分配制御部1と、並列化した複数の画像データ処理部(図中はPE)(211〜21g;…;2n1〜2ng)と、複数のシリアル伝送送信部(図中Tx)111〜11nと、複数のシリアル伝送受信部(図中Rx)121〜12nと、複数のTx側バッファメモリ(図中TxBuf)131〜13nと、複数のRx側バッファメモリ(一時記憶手段)(図中RxBuf)141〜14nと、画像処理の時間基準9と、シリアル伝送路毎独立した伝送系の時間基準151〜15nと、シリアル伝送線路541〜54nとで構成される。この第3の実施の形態では、シリアル伝送路毎に独立した伝送系時間基準151〜15nにより構成している。これは、伝送路毎に装置の物理的実装上、別基板で実現する必要がある場合、伝送系の時間基準を共通化することが物理的に困難なことがある。例えば、シリアル伝送送信部111〜11nが、別基板になっている場合で、伝送系の時間基準を発振器としたときに、発振器からのクロック供給ラインの遅延管理やノイズ等の電気的障害を考慮する必要がある。
【0044】
そこで、図10に示す第5の実施の形態では、各シリアル伝送送信部111〜11nと各シリアル伝送受信部121〜12nとの間の各シリアル伝送路541〜54nとは別に受信側から送信側へのリターン信号551〜55nを設ける。画像データ処理部(211〜21g;…;2n1〜2ng)は、画像処理を行う単位の画像データが集まった時点で、画像処理時間基準9に合わせて画像処理を実行する。このとき、必要な画像データは、各受信側バッファメモリ14から順次読み出す。各シリアル伝送受信部12は、この各受信側バッファメモリ14の使用状態を監視し、その状態情報を各リターン信号55により各シリアル伝送送信部11へ出力する。各シリアル伝送送信部11は、この各リターン信号55を元に送信タイミングを、各送信側バッファメモリTxBuf13を使い、伝送開始タイミングを調整する。
【0045】
図11には、画像処理タイミングとの同期制御の流れを示す。各Tx11から各Rx12へ画像データを送信している間、各Rx12は、各RxBuf14の使用状態を監視する。図12に各RxBuf(一時記憶手段)14の動作を示す。図12では、左側からデータを書き込み、右側から読み出している。読み出し位置を指すリードポインタの位置は、画像処理時間基準9で決められるため一定となる。ところで、バッファ14へのアクセス速度が、送信≒受信の場合、読み出し位置を指すリードポインタの位置と書き込み位置を示すライトポインタの関係は、ほぼ同じ間隔で推移することになる。一方、送信>受信の場合、ライトポインタの位置がリードポインタの位置よりも離れるように進み、バッファ14がFULLになり、画像データを受け取れなくなる。他方、送信<受信の場合、バッファ14に記憶されている画像データが減少し、ライトポインタの位置がリードポインタの位置に近づくことになる。そこで、本第3の実施の形態では、バッファ14へのポインタの適正範囲を定義し、例えばライトポインタの位置が適正範囲を超えた場合、図11に示すように受信側(Rx)から送信側(Tx)へリターン信号55を使い、ポインタ調整を要求する。この実施例では、画像伝送受信部(Rx)12からリターン信号55で“SLOW”要求を送り、この要求を受けた画像伝送送信部(Tx)11は、画像データではない特殊なコードを送ることで、RxBuf14のライトポインタを適正範囲に入るよう調整する。送信<受信の場合、リターン信号55による調整は不要だが、画像データ処理部2でのリードタイミング調整や統合画像処理部6での時間調整を行う。
【0046】
なお、図10の構成において、シリアルデータを固定または可変サイズのブロックに分割し、そのブロック間に無効データ(空き)を挿入することで、シリアル伝送用時間基準151〜15nの長周期精度に関わらず、複数のシリアル伝送路541〜54nのデータ同期を画像処理時間基準9に合わせることを可能にする。
【0047】
通常,データに空きを設けずに伝送クロックを個別にすると、伝送用時間基準の長周期精度の誤差による時間のずれが大きくなる。そこで、画像データに強制的に空きを設け、画像データ分配部1からの送信タイミングを、画像処理時間基準9での画像処理タイミングに合わせることで、各シリアル伝送路541〜54nの間のデータ同期をとると共に、画像処理時間基準9との同期を確立する。
【0048】
次に、第5の実施の形態で用いられる画像伝送受信部12の一実施例について図13を用いて説明する。この実施例では、画像伝送受信部12は、シリアル画像データ54を受信してビット識別を行うシリアルデータ受信部21と、ビットシリアルデータをパラレルデータに変換するシリアル−パラレル変換部22と、パラレル化した画像データのバッファ出力タイミングを調整するデータ出力部23と、クロックデータを復元するCDR回路部(回復回路部)24と、ライトポインタ制御部25と、バッファポインタの動きを監視するバッファ監視部27と、リターン信号55の出力タイミング調整を行うリターン信号出力制御部28とで構成される。上記画像伝送受信部12の動作は、画像伝送送信部11から送られるシリアル化された画像データをシリアルデータ受信部21で受け、CDR回路部24で抽出されたクロックを基にビット識別を行う。識別したビットは、シリアル−パラレル変換部(展開部)22でパラレルデータに変換し、データ出力部23を経て、ライトポインタ制御部25によりRxBuf14におけるライトポインタで指示されている領域へ書き込む。ライトポインタ更新後、バッファ監視部27でリードポインタとの間隔が適正範囲であるかを判断し、図11及び図12で説明したリターン信号55をリターン信号出力制御部28から出力する。なお、14、21〜24までの構成は、他の実施の形態における各シリアル伝送受信部5において使用可能である。
【0049】
以上説明したように、第5の実施の形態によれば、受信側バッファ(RxBuf)14への書き込み状態を監視し、その状態に応じたリターン信号55を各シリアル伝送路の受信側から送信側に送信することによって、並列化した画像データ処理部21〜2n(階層化された場合も含む)の間の画像処理タイミングとシリアル伝送でのデータ同期を取ることが可能となる。
【0050】
次に、本発明に係る並列化した画像データ処理部21〜2n(階層化された場合も含む)での画像処理時間とシリアル伝送での画像データ伝送時間を調整する第6の実施の形態について図14を用いて説明する。図14には第6の実施の形態を示す。この第6の実施の形態は、図9での構成に統括制御部31を加えた構成をとる。画像データは、画像データ分配制御部1からシリアル伝送の時間基準7をもとに並列化した各画像データ処理部21〜2nへ各シリアル伝送路501〜50nを経て伝送する。この時、各画像データ処理部21〜2nでの処理時間が画像データの伝送時間より長くなった場合(各バッファ(一時記憶手段)81〜8nを監視して空きがなくなった場合)、各画像データ処理部21〜2nは、統括制御部31に伝送休止信号を送る。統括制御部31は、画像を取り込む画像取得部100と画像データ分配制御部1に対し、伝送休止を要求する。その後、画像処理が進み各バッファ(一時記憶手段)81〜8nに所定の空きが出た時点で伝送再開を要求する。
【0051】
次に、本発明に係る並列化した画像データ処理部21〜2n(階層化された場合も含む)での画像処理タイミングとシリアル伝送でのデータ同期を取る第7の実施の形態について図15を用いて説明する。
【0052】
図15は図7に示す構成において各シリアル伝送路の確立・監視について示す。本第7の実施の形態では、各シリアル伝送受信部51〜5nからシリアル伝送送信部41〜4nへリターン信号571〜57nを設ける構成とする。シリアル伝送受信部51〜5nは、パワーオン等による初期化時は、送信側からのデータが不定であるため、クロック抽出、ビット識別やパラレルデータの区切りを検出できず、リンク確立ができない。本第7の実施の形態でのリンク確立手順を以下に示す。まず、各シリアル伝送送信部41〜4n及び受信部51〜5nを初期化する。次に、シリアル伝送送信部41〜4nは、クロック抽出、ビット識別やパラレルデータ区切り検出のための識別データを送信する。各シリアル伝送受信部51〜5nは、識別データを認識できるクロックタイミングを求め、確実に識別できた時点で、各リターン信号571〜57nを各シリアル伝送送信部41〜4nへ送る。送信側では、各リターン信号571〜57nを受けた時点でリンク確立を認識し、画像データ伝送を開始する。以上により、各リターン信号571〜57nによるリンク制御を実現する。また、このリターン信号571〜57nは、図10で述べたリターン信号551〜55nと兼ねても良い。
【0053】
なお、何れの実施の形態でも、各シリアル伝送送信部41〜4nにおいてパリテイを付与し、各シリアル伝送受信部51〜5nにおいてパリテイチェックをしてその結果を各画像データ処理部21〜2nに報告することになる。
【0054】
以上説明したように、本発明に係る実施の形態によれば、画像データ伝送をシリアル伝送により行い、シリアル伝送送信部からはソースを同一化した送信側伝送クロックを送信し、シリアル伝送受信部では、受信したビットデータの変化点をもとにクロック成分を抽出するCDR回路等によりクロックを復元し、そのクロックをもとに、シリアルビットデータを識別するようにしたので、バス接続に比べ電気的相互干渉や信号間スキューの考慮が不要となり、基板実装が容易になることで、より伝送周波数をGHzオーダに高めることができる効果がある。また、信号線数も少なくなることで、配線領域が小さくでき、装置サイズの小形化が可能になる。
【0055】
また、本発明に係る実施の形態によれば、シリアル伝送路を階層化することで、画像処理装置を実現する基板、半導体等のピン数、サイズ等物理的な制約を緩和することができ、画像データ処理部の並列数を増やすことが容易になる。
【0056】
【発明の効果】
本発明によれば、シリアル伝送路を用いて画像データ伝送を行い、CDR回路等のクロック抽出手段によりシリアルビットデータを識別するようにしたので、バス接続に比べ電気的相互干渉や信号間スキューの考慮が不要となり、基板実装が容易になることで、伝送周波数をGHzオーダに高め、伝送スループットを向上できる効果がある。これにより、検査装置等における画像処理装置において処理性能を向上させることが可能となる。
【0057】
また、本発明によれば、検査装置等における画像処理装置において、信号線数も少なくなることで、配線領域が小さくでき、低コスト化、小形化の効果がある。
【図面の簡単な説明】
【図1】本発明に係る画像処理装置を備えた例えば光学式外観検査装置の一実施例を示す概略構成図である。
【図2】本発明に係る画像処理装置の第1の実施の形態を示す概略構成図である。
【図3】本発明に係る画像処理装置の第2の実施の形態であるシリアル伝送路を階層化した場合を示す概略構成図である。
【図4】シリアル・パラレル変換の概要を示す図である。
【図5】本発明に係るクロックデータリカバリ(CDR)によるシリアル伝送の一構成例を示すブロック図である。
【図6】本発明に係る並列プロセッサによる画像処理におけるデータ同期に関するタイミングチャートである。
【図7】本発明に係る送信タイミングによるデータ同期化を図る第3の実施の形態を示す概略構成図である。
【図8】本発明に係る送信タイミングによるデータ同期化を図る第3の実施の形態においてシリアル伝送路を階層化した場合を示す概略構成図である。
【図9】本発明に係る送信タイミングと画像処理タイミングとの同期化を図った第4の実施の形態を示す概略構成図である。
【図10】本発明に係る送信タイミングと画像処理タイミングとの同期化をリターン信号で実現する第5の実施の形態を示す概略構成図である。
【図11】リターン信号による同期制御シーケンスを示す図である。
【図12】バッファポインタの動きを模した図である。
【図13】受信制御部のハードウエア構成の一実施例を示す図である。
【図14】本発明に係る画像データ処理部での画像処理時間とシリアル伝送での画像データ伝送時間を調整する(待ち制御)の第6の実施の形態を示す概略構成図である。
【図15】本発明に係るシリアル伝送送信部とシリアル伝送受信部との間でリンク確立を実現する第7の実施の形態を示す概略構成図である。
【符号の説明】
1…画像データ分配制御部、2、21〜2n、211〜2eg、211〜2ng…画像データ処理部、21〜2n…PE0〜PEn−1、13、31〜3e…画像データ中継部、4、41〜4n、41〜4e…シリアル伝送送信部、5、51〜5n、511〜5eg…シリアル伝送受信部、6…統合画像処理部、7、7a、7b…伝送系時間基準(同一クロックソース)、8…バッファ(一時記憶手段)、9…画像処理時間基準(画像処理クロック生成手段)、11、111〜11n…Tx(送信制御部)、12、121〜12n…Rx(受信制御部)、13、131〜13n…TxBuf(送信側バッファ)、14、141〜14n…RxBuf(受信側バッファ:一時記憶手段)、151〜15n…伝送系時間基準(基準クロック)、21…シリアルデータ受信部、22…シリアル−パラレル変換部(展開部)、23…データ出力部、24…CDR(Clock Data Recovery)回路部(回復回路部)、25…ライトポインタ制御部、27…バッファ監視部、28…リターン信号出力制御部、31…統括制御部、41…AD変換器、42…画像メモリ、43…全体制御部(統合画像処理部)、45…光源、47…集光レンズ、46…センサ、48…対物レンズ、49…ウエハ、501〜50n、511〜51e、5211〜52eg、541〜54n…シリアル伝送路、531〜53e…シリアル伝送受信部及び画像データ処理部、55、551〜55n、571〜57n…リターン信号、561〜56n…リカバリクロック、60…パラレル−シリアル変換部、61…シリアル伝送路、701〜70n、711〜71n、7111〜71eg…パラレル伝送路。

Claims (15)

  1. 検査対象に関する画像データを取得する画像データ取得手段と、
    前記画像データ取得手段で取得された画像データを処理する画像処理装置と、
    を有する検査装置であって、
    前記画像処理装置は、
    前記画像データを入力して分配する画像データ分配制御部と、
    前記画像データ分配制御部で分配された画像データをシリアルビット形式で伝送する複数のシリアル伝送路と、
    前記複数のシリアル伝送路の各々で伝送されたシリアルビット形式の画像データを受信する複数の受信部と、
    前記複数の受信部の各々において受信されたシリアルビット形式の画像データからクロック成分を抽出してクロックを復元し、前記クロックに基づいてシリアルビット形式の画像データを識別する複数の回復回路と、
    前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを伝送する複数の伝送路と、
    前記複数の伝送路の各々で伝送された画像データを受信し、前記回復回路により復元されたクロックとは異なるシステムクロックに同期させて画像処理を行う複数の画像処理プロセッサと、
    を有することを特徴とする検査装置
  2. 請求項1記載の検査装置であって、
    前記複数のシリアル伝送路は、伝送するシリアルビット形式の画像データを中継して分配する画像データ中継部を有し、階層化されていることを特徴とする検査装置
  3. 検査対象に関する画像データを取得する画像データ取得手段と、
    前記画像データ取得手段で取得された画像データを処理する画像処理装置と、
    を有する検査装置であって、
    前記画像処理装置は、
    前記画像データを入力して分配する画像データ分配制御部と、
    前記画像データ分配制御部で分配された画像データをシリアルビット形式に変換して送信する複数の送信部と、
    前記複数の送信部の各々で変換されたシリアルビット形式の画像データを伝送する複数のシリアル伝送路と、
    前記複数のシリアル伝送路の各々で伝送されたシリアルビット形式の画像データを受信する複数の受信部と、
    前記複数の受信部の各々において受信されたシリアルビット形式の画像データからクロック成分を抽出してクロックを復元し、前記クロックに基づいてビットシリアル形式の画像データを識別する複数の回復回路と、
    前記複数の回復回路の各々で識別されたシリアルビット形式の画像データをバラレルビット形式の画像データに展開する複数の展開部と、
    前記複数の展開部の各々で展開されたパラレルビット形式の画像データを伝送する複数の伝送路と、
    前記複数の伝送路の各々で伝送されたパラレルビット形式の画像データを受信し、前記回復回路により復元されたクロックとは異なるシステムクロックに同期させて画像処理を行う複数の画像処理プロセッサと、
    を有し、
    前記複数のシリアル伝送路の各々は、伝送するシリアルビット形式の画像データを中継して分配する画像データ中継部を有し、階層化されていることを特徴とする検査装置
  4. 検査対象に関する画像データを取得する画像データ取得手段と、
    前記画像データ取得手段で取得された画像データを処理する画像処理装置と、
    を有する検査装置であって、
    前記画像処理装置は、
    前記画像データを入力して分配する画像データ分配制御部と、
    前記画像データ分配制御部で分配された画像データをシリアルビット形式に変換して送信する複数の送信部と、
    前記複数の送信部の各々で送信されたシリアルビット形式の画像データを伝送する複数のシリアル伝送路と、
    前記複数のシリアル伝送路の各々で伝送されたシリアルビット形式の画像データを受信する複数の受信部と、
    前記複数の受信部の各々において受信されたシリアルビット形式の画像データからクロック成分を抽出してクロックを復元し、前記クロックに基づいてシリアルビット形式の画像データを識別する複数の回復回路と、
    前記複数の回復回路の各々で識別されたシリアルビット形式の画像データをバラレルビット形式の画像データに展開する複数の展開部と、
    前記複数の展開部の各々で展開されたパラレルビット形式の画像データを伝送する複数の伝送路と、
    前記複数の伝送路の各々で伝送されたパラレルビット形式の画像データを受信し、前記回復回路により復元されるクロックとは異なるシステムクロックに同期させて画像処理を行う複数の画像処理プロセッサと、
    を有することを特徴とする検査装置
  5. 請求項4記載の検査装置であって、
    前記複数の送信部の各々は、同一クロックソースにより前記シリアルビット形式の画像データを送信するように構成したことを特徴とする検査装置
  6. 請求項4記載の検査装置であって、
    前記各受信部には受信状態を監視する監視手段を有し、該監視手段での監視結果を前記各送信部に伝送するように構成したことを特徴とする検査装置
  7. 請求項5または6記載の検査装置であって、
    更に、前記各受信部から前記各送信部へ前記シリアル伝送路の確立を確認した結果を伝送して前記各送信部からの伝送を制御する制御手段を設けたことを特徴とする検査装置
  8. 請求項4記載の検査装置であって、
    前記複数のシリアル伝送路の各々は、伝送するシリアルビット形式の画像データを中継して分配する画像データ中継部を有し、階層化されていることを特徴とする画像検査装置
  9. 請求項8記載の検査装置であって、
    前記各画像データ中継部は、同一クロックソースにより前記シリアルビット形式の画像データを送信するように構成したことを特徴とする検査装置
  10. 請求項4記載の検査装置であって、
    更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶して前記各画像処理プロセッサへの画像データ伝送タイミングを調整するための複数の一時記憶手段と、前記各画像処理プロセッサでの画像処理タイミングを決める前記システムクロックである画像処理クロックを生成する画像処理クロック生成手段とを設け、該画像処理クロック生成手段で生成された前記システムクロックである画像処理クロックを前記画像データ分配制御部、前記各一時記憶手段及び前記各画像処理プロセッサに分配することを特徴とする検査装置
  11. 請求項4記載の検査装置であって、
    更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶して前記各画像処理プロセッサへの画像データ伝送タイミングを調整するための複数の一時記憶手段と、該各一時記憶手段の使用状態を監視する監視手段と、該監視手段での監視結果を前記各送信部に伝送することによって前記各送信部での送信時間を調整する手段とを設けたことを特徴とする検査装置
  12. 請求項4記載の検査装置であって、
    更に、前記複数の回復回路の各々で識別されたシリアルビット形式の画像データを一時記憶する複数の一時記憶手段と、該複数の一時記憶手段の各々の状態を監視し、該監視結果に基いて前記各シリアル伝送路での画像データ伝送の停止および再開を制御する統括制御部とを設けたことを特徴とする検査装置
  13. 請求項4記載の検査装置であって、
    更に、前記各画像処理プロセッサの処理時間と前記各シリアル伝送路による伝送時間とを監視し、該監視結果に基いて前記各シリアル伝送路での画像データ伝送の停止および再開を制御する統括制御部とを設けたことを特徴とする検査装置
  14. 請求項4記載の検査装置であって、
    前記各受信部には受信状態を監視する監視手段を有し、該監視手段での監視結果を前記各送信部に伝送するように構成したことを特徴とする検査装置
  15. 請求項4記載の検査装置であって、
    前記複数の送信部は、前記変換されたシリアルビット形式の画像データについて同一クロックソースにより送信間隔を空けて送信するように構成したことを特徴とする検査装置
JP2003164741A 2003-06-10 2003-06-10 検査装置 Expired - Fee Related JP4119310B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164741A JP4119310B2 (ja) 2003-06-10 2003-06-10 検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164741A JP4119310B2 (ja) 2003-06-10 2003-06-10 検査装置

Publications (2)

Publication Number Publication Date
JP2005004310A JP2005004310A (ja) 2005-01-06
JP4119310B2 true JP4119310B2 (ja) 2008-07-16

Family

ID=34091433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164741A Expired - Fee Related JP4119310B2 (ja) 2003-06-10 2003-06-10 検査装置

Country Status (1)

Country Link
JP (1) JP4119310B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972298B2 (ja) 2005-08-10 2012-07-11 株式会社日立ハイテクノロジーズ 半導体デバイスの欠陥検査方法及びその装置
JP2011153832A (ja) * 2010-01-26 2011-08-11 Hitachi High-Technologies Corp 欠陥レビュー装置
JP5722264B2 (ja) * 2012-03-23 2015-05-20 株式会社日立ハイテクノロジーズ データ処理装置、データ容量増加抑制方法
JP6164836B2 (ja) 2012-12-25 2017-07-19 Hoya株式会社 内視鏡

Also Published As

Publication number Publication date
JP2005004310A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
CN108270504B (zh) 分散式网络的时间同步
JP5569299B2 (ja) 通信システム及び通信インタフェース装置、並びに同期方法
TWI608326B (zh) 用以測量介於具有獨立矽時脈的裝置之間的時間偏置之設備、方法及系統
US9715270B2 (en) Power reduction in a parallel data communications interface using clock resynchronization
JP2012527660A (ja) SuperSpeedUSBデバイスおよび非SuperSpeedUSBデバイスの同期ネットワーク
US8850250B2 (en) Integration of processor and input/output hub
KR100681287B1 (ko) 시스템 클럭 분배 장치, 시스템 클럭 분배 방법
JP5772911B2 (ja) フォールトトレラントシステム
JP4119310B2 (ja) 検査装置
KR101847366B1 (ko) 시각 동기 장치 및 시각 동기 시스템
US7694176B2 (en) Fault-tolerant computer and method of controlling same
JPH11112483A (ja) データ転送システム
EP1482399A1 (en) Programmable clock management component reconfiguration upon receipt of one or more control signals to be able process one or more frequency signals
US20130241751A1 (en) Providing a feedback loop in a low latency serial interconnect architecture
JP4788876B2 (ja) 非同期クロック利用の分散処理同期システム、マスターシステム及びクロック同期制御方法
US20040225820A1 (en) Systems and methods for generating transaction identifiers
KR100406863B1 (ko) 다중컴퓨터 시스템의 클럭 생성장치
US20070297546A1 (en) Signal synchronization system
JP2004326222A (ja) データ処理システム
CN116955239B (zh) 一种应用于测量及自动化领域的开放式模块化仪器架构
CN100392542C (zh) 通信控制装置
US11777628B2 (en) Hitless protection for packet based digitized clock distribution
JP3268428B2 (ja) デマルチプレクサ装置及びマルチプレクサ装置並びにそれらを備えた信号処理装置
Bezet et al. Timestamping uncertainties in distributed data acquisition systems
Tengg et al. I-SENSE: A light-weight middleware for embedded multi-sensor data-fusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees