JP4118754B2 - Random number generator - Google Patents

Random number generator Download PDF

Info

Publication number
JP4118754B2
JP4118754B2 JP2003183726A JP2003183726A JP4118754B2 JP 4118754 B2 JP4118754 B2 JP 4118754B2 JP 2003183726 A JP2003183726 A JP 2003183726A JP 2003183726 A JP2003183726 A JP 2003183726A JP 4118754 B2 JP4118754 B2 JP 4118754B2
Authority
JP
Japan
Prior art keywords
differential resistance
negative differential
random number
composite negative
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003183726A
Other languages
Japanese (ja)
Other versions
JP2005018500A (en
Inventor
秀昭 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003183726A priority Critical patent/JP4118754B2/en
Publication of JP2005018500A publication Critical patent/JP2005018500A/en
Application granted granted Critical
Publication of JP4118754B2 publication Critical patent/JP4118754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、小型、低消費電力の自然乱数の発生が可能な回路構成に係る。
【0002】
【従来の技術】
【特許文献1】
特開2000−259395号公報
乱数を得る方法としては、予め定められたプログラムによって乱数を発生する擬似乱数発生法と自然界で生じる確率的事象を利用した自然乱数発生法の2つがあげられる。ともに、暗号化通信における鍵の生成などに利用されるが、前者はアルゴリズムが知られてしまうと、生成される乱数が予測できる一方、後者は文宇通り、自然界で確率的に生じる事象を利用するため、真の乱数が得られる。このため、後者の自然界における確率事象を利用する方法による乱数発生を用いることが通信における情報の暗号化には最適とされている。
従来の自然乱数を得る方法として、抵抗体を用意し、熱雑音によって生じる抵抗値の揺らぎを電圧変換し、さらに増幅器によって信号を増幅し、得られる信号に対して、予め定めた閾値と比較することで、“0”,“1”判定を行い、乱数を得る、という方法が挙げられる。
【0003】
【発明が解決しようとする課題】
しかしながら、熱雑音によって生じる抵抗値の揺らぎは非常に微小であるため、信号増幅のための増幅器を用意する必要があり、結果として、乱数発生回路の大規模化・消費電力の増大を引き起こす。据え置き型の端末であれば、このような乱数発生器を利用しても致命的な問題は生じないが、携帯端末やスマートカードなど、端末の物理的サイズが小さく、あらゆる回路部品の低消費電力化が望まれる場合にこれを利用することは不可能である。また、乱数の発生速度も240Mbit/s程度であり、高速・大容量化するネットワークに対応するためには、より高速な乱数発生も要求される。本発明は、以上の問題点を解決し、回路規模(小面積)が小さく、かつ低消費電力の乱数発生回路の実現を目的としている。
【0004】
【課題を解決するための手段】
本発明では、上記目的を達成するために、きわめて簡単な回路構成で高速な自然乱数を得る方法を提供する。すなわち、
請求項1においては、静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、前記複合負性微分抵抗素子は、第1の抵抗体を負性微分抵抗素子に並列に接続したものであり、前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いる乱数発生回路について規定している。
【0005】
請求項2においては、静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、前記複合負性微分抵抗素子は、第1のトランジスタを負性微分抵抗素子に並列に接続したものであり、前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いる構成の乱数発生回路について規定している。
【0006】
請求項3においては静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、前記複合負性微分抵抗素子は、第2の抵抗体と第2のトランジスタとを負性微分抵抗素子に並列に接続したものであり、前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いる構成の乱数発生回路について規定している。
【0007】
請求項4においては、請求項1乃至請求項3の何れかに記載の乱数発生回路において、前記複合負性微分抵抗素子として共鳴トンネルダイオードを用いる構成の乱数発生回路を規定している。
【0008】
請求項5においては、請求項1乃至請求項の何れかに記載の乱数発生回路において、前記複合負性微分抵抗素子としてエサキダイオードを用いる構成の乱数発生回路について規定している。
【0009】
請求項6においては、静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、前記複合負性微分抵抗素子は、トランジスタとキャパシタとインダクタとからなる負性微分抵抗特性を有する回路であり、前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いる構成の乱数発生回路について規定している。
【0011】
【発明の実施の形態】
以下、本発明による乱数発生回路の実施の形態の例を図により説明する。本発明は、負性微分抵抗素子を直列に接続した回路を振動型の電圧で駆動し、熱雑音によって決まる2つの負性微分抵抗素子における極大電流値の大小関係で“0”か“1”かどちらかに出力が決定されることを利用することで、自然乱数を得るためのものである。
【0012】
図1に本発明における基本的な実施の形態の例を示す。電流−電圧特性が同一の2つの共鳴トンネルダイオード1および2を直列に接続し、電源端子3に振動型電圧(クロック)を印加し、出力をこれらトンネルダイオード間の接続点から引き出す構成となっている。
図2はこの動作原理を示すもので、(a)図は印加クロックが“Low”の場合の、負性微分抵抗素子の特性から得られる回路の負荷曲線図である。クロックが“Low”から“High”へと変化するのに従い、回路の負荷曲線は、(a)図から(b)図、(b)図から(e)または(f)図に示した状態に変化する。(b)図は、印加クロック電圧が、2つの負性微分抵抗素子のピーク電圧(ピーク電圧:極大電流値をとるときの素子への印加電圧)の和に等しい場合の負荷曲線図である。ここで、真性の極大電流値をiとし、熱雑音による極大電流の揺らぎを、共鳴トンネルダイオード1および2に対してそれぞれ、δ1、δ2(δ1、δ2は任意の実数)とすれば、i+δ1=i+δ2とならない限り、負性抵抗素子に熱雑音が加わることにより、(b)図にある負荷曲線は実際には、(c)、(d)図に示すような極大電流値に必ず大小関係が生じた形になる。はじめに回路が(a)図の状態にあって、印加クロック電圧が上昇し、2つの負性微分抵抗素子のピーク電圧の和に等しくなった時((b)図の状態)、i+δ1>i+δ2であれば、出力は(e)図にあるように“0”となる。逆にi+δ1<i+δ2であれば、出力は(f)図にあるように“1”となる。この場合、印加クロックの波形は正弦波、矩形波その他何れの波形であっても使用可能である。出力の決定、すなわち回路の出力電圧の変化は共鳴トンネルダイオードの高速なスイッチング特性を利用することにより、極めて高速に行われる。図3は共鳴トンネルダイオードの極大電流に適当な揺らぎを与えた場合の出力変化の様子をシミュレーションした結果を示したものである。シミュレーションによって恣意的な揺らぎを与えているため、正確には乱数が発生していないという問題はあるが、この場合の乱数発生速度として10Gbit/s,出力振幅として1V程度の値が得られている。このように従来技術に比べ非常に高速な乱数が極めて簡単な回路で得られることがわかる。
【0013】
また、熱雑音による揺らぎの効果を大きくするために、図4に示すようにトンネルダイオードの少なくとも一方に並列にトランジスタ、あるいは図5に示すように抵抗体をトンネルダイオードの少なくとも一方に接続することも効果的である。このような構成をとることによって、周辺回路や環境に起因するノイズの影響を軽減することが出来、回路作成上ノイズの遮蔽に関する要求条件が緩和される、という利点がある。しかしながら、共鳴トンネルダイオードのみで回路を構成した場合に比べ、消費電力は大きくなってしまう。また、更なる熱雑音による揺らぎの効果を得るために、図6に示すように、トンネルダイオードの少なくとも一方に並列にトランジスタと抵抗体とを接続する方法もある。この場合も、ノイズの遮蔽に関する要求条件が緩和される一方、消費電力は大きくなってしまう。
【0014】
さらにまた、これら実施の形態の例における負性抵抗素子として共鳴トンネルダイオードの代わりに、図7に示すように、エサキダイオードやトランジスタを複数組み合わせて得られる負性微分抵抗特性を有する回路を用いても本発明と同様の効果が得られる。しかし、エサキダイオードやトランジスタ回路のスイッチング速度は共鳴トンネルダイオードに比べて遅いため、乱数発生速度の観点からは共鳴トンネルダイオードを用いたほうが良い結果が得られる。
【0015】
【発明の効果】
僅か2つの素子を用いるだけで乱数を得ることができるため、本発明は、発生器の大きさが従来20mm相当であったものが、1mm程度になり消費電力も100mW以下とすることができ、乱数の発生速度についても従来(240Mbit/s)の10倍以上を得ることができる等、自然乱数発生回路の小規模化・低消電力化・高速化に資するものである。
【図面の簡単な説明】
【図1】第1の実施の形態を示す回路図。
【図2】本発明の原理を説明する特性図。
【図3】本発明に共鳴トンネルダイオードを適用した場合のシミュレーション結果を示す出力波形図。
【図4】第2の実施の形態を示す回路図。
【図5】第3の実施の形態を示す回路図。
【図6】第4の実施の形態を示す回路図。
【図7】第5の実施の形態を示す回路図。
【符号の説明】
1、2,7,8、13,14、19,20、:負性微分抵抗素
3、11、17、25、33:駆動(クロック)電圧印加点(電源端子)
4、12,18,26,34:出力端子
5:第1の負性微分抵抗素の電流電圧特性
6:第2の負性微分抵抗素子の電流電圧特性
9、10、22,24、27,28:トランジスタ
15、16、21、23:抵抗体
29、30:キャパシタ
31、32:インダクタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit configuration capable of generating natural random numbers with a small size and low power consumption.
[0002]
[Prior art]
[Patent Document 1]
There are two methods for obtaining a random number: a pseudo-random number generation method that generates a random number using a predetermined program, and a natural random number generation method that uses a probabilistic event that occurs in nature. Both are used for key generation in encrypted communication, etc., but the former can predict the random number that is generated when the algorithm is known, while the latter uses events that occur probabilistically in the natural world. Therefore, a true random number is obtained. For this reason, the use of random number generation by the latter method of utilizing a probability event in the natural world is considered optimal for information encryption in communication.
As a conventional method of obtaining natural random numbers, a resistor is prepared, voltage fluctuations of resistance values caused by thermal noise are converted, and a signal is amplified by an amplifier, and the obtained signal is compared with a predetermined threshold value. Thus, there is a method in which “0” and “1” are determined to obtain a random number.
[0003]
[Problems to be solved by the invention]
However, since the resistance value fluctuation caused by thermal noise is very small, it is necessary to prepare an amplifier for signal amplification. As a result, the random number generation circuit is increased in scale and power consumption. If it is a stationary terminal, there will be no fatal problem even if such a random number generator is used, but the physical size of the terminal, such as a portable terminal or smart card, is small and low power consumption of all circuit components. It is impossible to use this when it is desired to make it. In addition, the random number generation speed is about 240 Mbit / s, and higher-speed random number generation is required in order to cope with high-speed and large-capacity networks. An object of the present invention is to solve the above-described problems and to realize a random number generation circuit with a small circuit scale (small area) and low power consumption.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for obtaining a high-speed natural random number with a very simple circuit configuration. That is,
2. The circuit according to claim 1, wherein two composite negative differential resistance elements having the same static maximum current value are connected in series, wherein the composite negative differential resistance element converts the first resistor into a negative differential. Connected in parallel to a resistance element, the connection point of the two composite negative differential resistance elements is taken as the output extraction point, and a vibration-type voltage is applied to the power supply side terminal of one of the composite negative differential resistance elements Thus, a random number generation circuit that uses a binary output determined by the thermal noise applied to the composite negative differential resistance element as a natural random number when the circuit is driven is defined.
[0005]
3. The circuit according to claim 2, wherein two composite negative differential resistance elements having the same static maximum current value are connected in series, wherein the composite negative differential resistance element includes a negative differential resistance. Connected in parallel to the element, the connection point of the two composite negative differential resistance elements is taken as the output extraction point, and a vibration-type voltage is applied to the power supply side terminal of one of the composite negative differential resistance elements When the circuit is driven, a random number generation circuit having a configuration in which a binary output determined by thermal noise applied to the composite negative differential resistance element is used as a natural random number is defined.
[0006]
4. A circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series, wherein the composite negative differential resistance element comprises a second resistor and a second transistor. Are connected in parallel to the negative differential resistance element, the connection point of the two composite negative differential resistance elements is taken as the output extraction point, and the vibration type is connected to the power supply side terminal of one of the composite negative differential resistance elements When a circuit is driven by applying a voltage of, a random number generation circuit configured to use a binary output determined by thermal noise applied to the composite negative differential resistance element as a natural random number is defined.
[0007]
According to a fourth aspect of the present invention, in the random number generation circuit according to any one of the first to third aspects , a random number generation circuit configured to use a resonant tunnel diode as the composite negative differential resistance element is defined.
[0008]
According to a fifth aspect of the present invention, in the random number generation circuit according to any one of the first to fourth aspects, a random number generation circuit configured to use an Esaki diode as the composite negative differential resistance element is defined.
[0009]
According to a sixth aspect of the present invention, there is provided a circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series, wherein the composite negative differential resistance element comprises a transistor, a capacitor, and an inductor. A circuit having sex differential resistance characteristics, wherein a connection point of the two composite negative differential resistance elements is used as an output extraction point, and a vibration-type voltage is applied to a power supply side terminal of one of the composite negative differential resistance elements When the circuit is driven, a random number generation circuit having a configuration in which a binary output determined by thermal noise applied to the composite negative differential resistance element is used as a natural random number is defined.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of a random number generation circuit according to the present invention will be described with reference to the drawings. In the present invention, a circuit in which negative differential resistance elements are connected in series is driven with a vibration-type voltage, and “0” or “1” is determined depending on the magnitude relationship between the maximum current values in two negative differential resistance elements determined by thermal noise. By using the fact that the output is determined for either, a natural random number is obtained.
[0012]
FIG. 1 shows an example of a basic embodiment in the present invention. Two resonant tunneling diodes 1 and 2 having the same current-voltage characteristic are connected in series, an oscillation voltage (clock) is applied to the power supply terminal 3, and an output is drawn from the connection point between these tunneling diodes. Yes.
FIG. 2 shows this operation principle. FIG. 2A is a load curve diagram of the circuit obtained from the characteristics of the negative differential resistance element when the applied clock is “Low”. As the clock changes from "Low" to "High", the load curve of the circuit changes to the state shown in (a) to (b), (b) to (e), or (f). Change. FIG. 5B is a load curve diagram when the applied clock voltage is equal to the sum of the peak voltages of two negative differential resistance elements (peak voltage: applied voltage to the element when taking a maximum current value). Here, if the intrinsic maximum current value is i and the fluctuation of the maximum current due to thermal noise is δ1, δ2 (δ1, δ2 are arbitrary real numbers) with respect to the resonant tunneling diodes 1 and 2, respectively, i + δ1 = As long as i + δ2 does not occur, thermal noise is added to the negative resistance element, so that the load curve in FIG. (b) actually has a magnitude relationship with the maximum current value as shown in (c) and (d). The resulting shape. First, when the circuit is in the state of (a) and the applied clock voltage rises and becomes equal to the sum of the peak voltages of the two negative differential resistance elements (state of (b)), i + δ1> i + δ2. If there is, the output becomes “0” as shown in FIG. On the other hand, if i + δ1 <i + δ2, the output is “1” as shown in FIG. In this case, the waveform of the applied clock can be any sine wave, rectangular wave, or other waveform. The determination of the output, i.e., the change in the output voltage of the circuit, is performed very quickly by utilizing the fast switching characteristics of the resonant tunneling diode. FIG. 3 shows the result of simulating the state of output change when an appropriate fluctuation is given to the maximum current of the resonant tunneling diode. Since random fluctuation is given by the simulation, there is a problem that the random number is not generated accurately. In this case, the random number generation speed is 10 Gbit / s, and the output amplitude is about 1 V. . Thus, it can be seen that a very high-speed random number can be obtained with a very simple circuit compared to the prior art.
[0013]
In order to increase the effect of fluctuation due to thermal noise, a transistor may be connected in parallel to at least one of the tunnel diodes as shown in FIG. 4, or a resistor may be connected to at least one of the tunnel diodes as shown in FIG. It is effective. By adopting such a configuration, it is possible to reduce the influence of noise caused by peripheral circuits and the environment, and there is an advantage that requirements for shielding noise in circuit creation are relaxed. However, the power consumption increases compared to the case where the circuit is configured with only resonant tunneling diodes. In order to obtain a further effect of fluctuation due to thermal noise, there is also a method of connecting a transistor and a resistor in parallel with at least one of the tunnel diodes as shown in FIG. In this case as well, the requirements regarding noise shielding are eased, but the power consumption increases.
[0014]
Furthermore, instead of the resonant tunneling diode as the negative resistance element in the examples of these embodiments, as shown in FIG. 7, a circuit having negative differential resistance characteristics obtained by combining a plurality of Esaki diodes and transistors is used. The same effects as those of the present invention can be obtained. However, since the switching speed of the Esaki diode and the transistor circuit is slower than that of the resonant tunnel diode, the use of the resonant tunnel diode provides better results from the viewpoint of the random number generation speed.
[0015]
【The invention's effect】
It is possible to obtain random numbers by simply using only two elements, the present invention may be those the size of the generator is a conventional 20 mm 2 equivalent is, the power consumption becomes about 1 mm 2 is also less 100mW In addition, the random number generation speed can be 10 times or more that of the conventional (240 Mbit / s), which contributes to the reduction in the size, power consumption, and speed of the natural random number generation circuit.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment;
FIG. 2 is a characteristic diagram illustrating the principle of the present invention.
FIG. 3 is an output waveform diagram showing a simulation result when a resonant tunneling diode is applied to the present invention.
FIG. 4 is a circuit diagram showing a second embodiment.
FIG. 5 is a circuit diagram showing a third embodiment.
FIG. 6 is a circuit diagram showing a fourth embodiment.
FIG. 7 is a circuit diagram showing a fifth embodiment.
[Explanation of symbols]
1, 2, 7, 8, 13, 14, 19, 20,: Negative differential resistance elements 3, 11, 17, 25, 33: Driving (clock) voltage application point (power supply terminal)
4, 12, 18, 26, 34: output terminal 5: current-voltage characteristics of the first negative differential resistance element 6: current-voltage characteristics of the second negative differential resistance element 9, 10, 22, 24, 27, 28: Transistors 15, 16, 21, 23: Resistors 29, 30: Capacitors 31, 32: Inductors

Claims (6)

静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、
前記複合負性微分抵抗素子は、第1の抵抗体を負性微分抵抗素子に並列に接続したものであり、
前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いることを特徴とする乱数発生回路。
A circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series,
The composite negative differential resistance element has a first resistor connected in parallel to the negative differential resistance element,
When the connection point of the two composite negative differential resistance element and extraction point of the output, to drive the circuit by applying a voltage of the oscillation type power supply side terminal of one of the composite negative differential resistance element, the composite negative A random number generation circuit using a binary output determined by thermal noise applied to a sex differential resistance element as a natural random number.
静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、
前記複合負性微分抵抗素子は、第1のトランジスタを負性微分抵抗素子に並列に接続したものであり、
前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いることを特徴とする乱数発生回路。
A circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series,
The composite negative differential resistance element has a first transistor connected in parallel to a negative differential resistance element,
When the circuit is driven by applying a vibration-type voltage to the power supply side terminal of one of the composite negative differential resistance elements, the connection point of the two composite negative differential resistance elements is the output extraction point. A random number generation circuit using a binary output determined by thermal noise applied to a sex differential resistance element as a natural random number .
静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、
前記複合負性微分抵抗素子は、第2の抵抗体と第2のトランジスタとを負性微分抵抗素子に並列に接続したものであり、
前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いることを特徴とする乱数発生回路。
A circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series,
The composite negative differential resistance element is formed by connecting a second resistor and a second transistor in parallel with a negative differential resistance element,
When the circuit is driven by applying a vibration-type voltage to the power supply side terminal of one of the composite negative differential resistance elements, the connection point of the two composite negative differential resistance elements is the output extraction point. A random number generation circuit using a binary output determined by thermal noise applied to a sex differential resistance element as a natural random number .
請求項1乃至請求項3の何れかに記載の乱数発生回路において、
前記負性微分抵抗素子として共鳴トンネルダイオードを用いることを特徴とする乱数発生回路。
The random number generation circuit according to any one of claims 1 to 3 ,
A random number generation circuit using a resonant tunneling diode as the negative differential resistance element .
請求項1乃至請求項の何れかに記載の乱数発生回路において、
前記負性微分抵抗素子としてエサキダイオードを用いることを特徴とする乱数発生回路。
The random number generation circuit according to any one of claims 1 to 3 ,
A random number generation circuit using an Esaki diode as the negative differential resistance element.
静的な極大電流値が等しい二つの複合負性微分抵抗素子を直列に接続した回路であって、
前記複合負性微分抵抗素子は、トランジスタとキャパシタとインダクタとからなる負性微分抵抗特性を有する回路であり、
前記二つの複合負性微分抵抗素子の接続点を出力の取り出し点とし、一方の複合負性微分抵抗素子の電源側端子に振動型の電圧を印加することで回路を駆動した時に、前記複合負性微分抵抗素子に加わる熱雑音によって決定される2値出力を自然乱数として用いることを特徴とする乱数発生回路。
A circuit in which two composite negative differential resistance elements having the same static maximum current value are connected in series,
The composite negative differential resistance element is a circuit having a negative differential resistance characteristic including a transistor, a capacitor, and an inductor.
When the circuit is driven by applying a vibration-type voltage to the power supply side terminal of one of the composite negative differential resistance elements, the connection point of the two composite negative differential resistance elements is the output extraction point. A random number generation circuit using a binary output determined by thermal noise applied to a sex differential resistance element as a natural random number .
JP2003183726A 2003-06-27 2003-06-27 Random number generator Expired - Fee Related JP4118754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183726A JP4118754B2 (en) 2003-06-27 2003-06-27 Random number generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183726A JP4118754B2 (en) 2003-06-27 2003-06-27 Random number generator

Publications (2)

Publication Number Publication Date
JP2005018500A JP2005018500A (en) 2005-01-20
JP4118754B2 true JP4118754B2 (en) 2008-07-16

Family

ID=34183690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183726A Expired - Fee Related JP4118754B2 (en) 2003-06-27 2003-06-27 Random number generator

Country Status (1)

Country Link
JP (1) JP4118754B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365872B2 (en) 2007-05-31 2009-11-18 株式会社東芝 Random number generator
JP4625936B2 (en) 2007-06-12 2011-02-02 独立行政法人産業技術総合研究所 Random number generator
JP6980407B2 (en) * 2016-05-30 2021-12-15 ローム株式会社 Random number generation method
GB2543125B (en) * 2016-07-27 2017-10-18 Quantum Base Ltd Generating a unique response to a challenge
GB2543126B (en) * 2016-07-27 2017-10-25 Quantum Base Ltd Generating a nondeterministic response to a challenge
GB2548428B (en) * 2016-08-08 2018-05-16 Quantum Base Ltd Nondeterministic response to a challenge
US10340901B2 (en) 2017-03-01 2019-07-02 Tdk Corporation Random number generator, random number generation device, neuromorphic computer, and quantum computer
EP4156507A4 (en) 2020-05-18 2023-07-19 Fujitsu Limited Oscillation circuit and information processing device

Also Published As

Publication number Publication date
JP2005018500A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
Chang et al. Analysis and design of power efficient class D amplifier output stages
Anuar et al. Two phase clocked adiabatic static CMOS logic and its logic family
JP4118754B2 (en) Random number generator
JP2005064691A (en) Resonance circuit and voltage controlled oscillator
CN103869861B (en) Band-gap reference circuit
CN106537767A (en) Limiting oscillation circuit
JP2008527915A (en) Circuit and method for minimizing chopping artifacts at the output of a chopper stabilized operational amplifier
JPH01165090A (en) Back bias voltage generating circuit
Hezayyin et al. A generalized family of memristor‐based voltage controlled relaxation oscillator
TWI362611B (en) Random number generator and random number generating method thereof
Uzunoglu et al. Modeling and suppression of chaotic ferroresonance in a power system by using memristor-based system
Sharma et al. Low‐power FinFET based boost converter design using dynamic threshold body biasing technique
JP4252924B2 (en) Random number generator
Patel et al. Design of area optimised, energy efficient quaternary circuits using CNTFETs
JP2004118651A (en) Random numbers generation method and random numbers generation device
EP1387490A1 (en) Method for generating random number and random number generator
JP2006067497A (en) Signal control circuit, and device mounting the same
JP4868380B2 (en) Variable capacitance circuit and integrated circuit including the same
Ozoguz et al. A nonautonomous IC chaotic oscillator and its application for random bit generation
JP4790306B2 (en) Laser diode drive circuit
CN110554855B (en) True random number generator
JPH05145032A (en) Input circuit
Hashim et al. Analysis of memristor based ring oscillators for hardware security
CN114860024B (en) Voltage stabilizing circuit based on memristor
JP4389872B2 (en) Voltage controlled oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees