JP4118085B2 - Silica-coated gold fine particles, method for producing the same, and red pigment - Google Patents

Silica-coated gold fine particles, method for producing the same, and red pigment Download PDF

Info

Publication number
JP4118085B2
JP4118085B2 JP2002155268A JP2002155268A JP4118085B2 JP 4118085 B2 JP4118085 B2 JP 4118085B2 JP 2002155268 A JP2002155268 A JP 2002155268A JP 2002155268 A JP2002155268 A JP 2002155268A JP 4118085 B2 JP4118085 B2 JP 4118085B2
Authority
JP
Japan
Prior art keywords
silica
fine particles
gold fine
coated
coated gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002155268A
Other languages
Japanese (ja)
Other versions
JP2003342496A (en
Inventor
広泰 西田
義憲 若宮
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP2002155268A priority Critical patent/JP4118085B2/en
Publication of JP2003342496A publication Critical patent/JP2003342496A/en
Application granted granted Critical
Publication of JP4118085B2 publication Critical patent/JP4118085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の技術分野】
本発明は、シリカで表面を被覆した金微粒子およびその製造方法、ならびに該微粒子からなる赤色顔料に関する。
【0002】
【発明の技術的背景】
塗料、化粧品、印刷インキ、液晶表示素子用カラーフィルター等には、着色またはカラー表示のために各種顔料が使用されており、このときの赤色顔料として、ベンガラ、モリブデン赤、などの無機顔料が一般的に知られている。しかしながら、この種の赤色顔料は赤色を呈する400〜800nmの波長の吸収領域において、その吸収領域がブロードであり、このため鮮明さや透明感に欠けるという欠点を有している。
一方、粒子径が数十nmの金粒子は550nm付近にシャープな吸収ピークを持ち、鮮明で透明感のある顔料として知られている。しかしながら金粒子を顔料として用いた場合には、顔料が高温に曝されると、凝集したり、凝集に伴って変色したり、さらには黒色に変色するという問題、即ち、耐熱性に関する課題が残されている。
【0003】
【発明の目的】
本発明は、上記問題点に鑑みてなされたものであり、高温に曝されても鮮明さが低下したり変色することのない赤色顔料として有用なシリカ被覆金微粒子およびその製造方法、ならびに該微粒子からなる赤色顔料を提供するものである。
【0004】
【発明の概要】
本発明に係るシリカ被覆金微粒子は、平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の表面をシリカで被覆したことを特徴としている。
前記シリカ被覆金微粒子は、平均粒子径(DP )が4nm〜150nmの範囲にあることが好ましい。
本発明に係るシリカ被覆金微粒子の製造方法は、平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の水分散液または水と有機溶媒混合分散液に、界面活性剤を添加し、ついで、アルカリを添加して分散液のpHを9〜12の範囲に調整し、必要に応じて加熱熟成し、酸性珪酸液またはシリカゾルを添加することを特徴としている。
本発明に係る赤色顔料は前記シリカ被覆金微粒子からなることを特徴としている。
【0005】
【発明の具体的説明】
以下、本発明について具体的に説明する。
【0006】
シリカ被覆金粒子
本発明に係るシリカ被覆金微粒子は、平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の表面をシリカで被覆したものであり、金微粒子の平均粒子径は、特に、2〜30nmの範囲にあることが好ましい。平均粒子径が2nm未満の場合は、プラズモン吸収による光吸収波長が400nm未満となり、鮮明で透明感のある赤色顔料としての金微粒子の鮮明さ、透明感が低下する。平均粒子径が50nmを越えると、550nm付近の吸収が低下し、赤色を呈さなくなる。また、分散性が低下するので、均一にシリカを被覆したり、単分散の状態のシリカ被覆金粒子を得ることが困難となり、このため鮮明で透明感のある赤色顔料のためのシリカ被覆金微粒子を得ることが困難となる。
【0007】
上記金微粒子としては、平均粒子径が上記範囲にある従来公知の金微粒子を用いることができ、特に、粒子径分布が揃った金微粒子を用いると吸収領域の広がりを抑制でき、鮮明で透明感のあるシリカ被覆金微粒子を得ることができる。
本発明に用いる金微粒子は、例えば、金化合物水溶液に還元剤を加えることによって製造することができる。また、金化合物水溶液に超音波を照射することによっても得ることができる。
【0008】
本発明においてシリカ被覆層の厚さは1〜50nm、特に1〜20nmの範囲にあることが好ましい。金微粒子がシリカで被覆されていると、製造および使用時に高温の熱履歴を受けても凝集したり、凝集に伴って変色することが抑制され、鮮明で透明感を有するとともに耐熱性に優れた赤色顔料としてのシリカ被覆金微粒子が得られる。シリカ被覆層の厚さが1nm未満の場合は、凝集を抑制する効果が不充分となり、耐熱性が不充分となることがある。シリカ被覆層の厚さが50nmを越えると、シリカ被覆層による光の散乱が顕著となり、桃色さらには白色を呈するようになる。従って、本発明に係るシリカ被覆金微粒子は平均粒子径(DP )が4〜150nm、さらには4〜100nmの範囲にあることが好ましい。
【0009】
なお、本発明のシリカ被覆金微粒子において、鮮明で透明感を有するとともに耐熱性に優れた赤色顔料を得ることができれば、シリカに代えて他の金属酸化物(例えば、アルミナ、ジルコニア、チタニア等)、複合金属酸化物(例えば、シリカ・アルミナ、シリカ・ジルコニア、シリカ・チタニア等)を用いることも可能である。
【0010】
シリカ被覆金微粒子の製造方法
ついで、本発明に係るシリカ被覆金微粒子の製造方法について説明する。
本発明に係るシリカ被覆金微粒子の製造方法は、平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の水分散液または水と有機溶媒混合分散液に、界面活性剤を添加し、ついで、アルカリを添加して分散液のpHを9〜12の範囲に調整し、必要に応じて加熱熟成し、酸性珪酸液またはシリカゾルを添加することを特徴としている。
金微粒子としては前記した金微粒子を用いることができる。また、分散媒としては、水または水と有機溶媒を用いるが、有機溶媒としてはメタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類;ジメチルホルムアミド等のアミド類;などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。この中では特に、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類が、金微粒子を安定して単分散させる点で好ましい。この理由は必ずしも明らかではないが、アルコール類と界面活性剤との高い親和性に起因して、均一なシリカ被覆層が形成されるものと推測される。
【0011】
金微粒子分散液中の金微粒子の濃度は0. 1〜5重量%、さらには0. 2〜2重量%の範囲にあることが好ましい。金微粒子の濃度が0. 1重量%未満の場合は、シリカ被覆効率(シリカの利用率)が低く、生産効率も低くなり好ましくない。一方、金微粒子の濃度が5重量%を越えると分散液の安定性が低下し、酸性珪酸液またはシリカゾルを添加する際に金微粒子がゲル化したり、酸性珪酸液またはシリカゾルがゲル化し、均一なシリカ被覆層を形成することができないことがある。
【0012】
金微粒子分散液に添加する界面活性剤としては、カチオン界面活性剤が好ましい。カチオン界面活性剤は金微粒子の表面に配位して、表面が正電荷を有するようになり、これに負電荷を有する酸性珪酸液やシリカゾルが効率的に付着・凝集し、シリカが析出して、シリカ被覆層を形成するようになる。カチオン界面活性剤としては、▲1▼脂肪族アミン塩およびそのアンモニウム塩、▲2▼芳香族4級アンモニウム塩、▲3▼複素環4級アンモニウム塩等、従来公知のカチオン界面活性剤を用いることができる。
【0013】
界面活性剤の添加量は、最終的に得られる金微粒子の表面をシリカで充分覆い、耐熱性を向上できる程度に用いればよく、用いる金微粒子の平均粒子径によっても異なるが、金微粒子水分散液または水と有機溶媒混合分散液中の濃度が概ね0. 2〜20重量%、さらには0. 5〜10重量%の範囲になるように添加することが好ましい。界面活性剤の濃度が0. 2重量%未満の場合は、金微粒子表面に配位する界面活性剤が少ないためにシリカが充分析出せず、前記した範囲の厚みを有する被覆層が形成され難い。界面活性剤の濃度が20重量%を越えても、金微粒子表面の界面活性剤が増えることも、正電荷が増すこともなく、逆に、シリカの析出を阻害したり、経済性が低下することがある。
【0014】
なお、別の方法として、金としての濃度が0. 1〜5重量%の範囲にある金化合物水溶液または水/有機溶媒混合溶媒溶液に、前記同様の界面活性剤を添加し、ついで還元剤を添加することによって上記と同様の界面活性剤を添加した金微粒子分散液を得ることができる。このときの還元剤としては、金化合物の金を還元して金微粒子を得ることができれば特別の制限はなく、硫酸第一鉄、クエン酸三ナトリウム、酒石酸、水素化ホウ素ナトリウム、次亜リン酸ナトリウムなどが挙げられる。また、有機溶媒としては前記同様のものを用いることができ、この場合もアルコール溶媒を用いることが好ましい。
【0015】
ついで、界面活性剤を添加した金微粒子分散液にアルカリを添加して分散液のpHを9〜12、好ましくは9〜11の範囲に調整する。アルカリとしてはNaOH、KOH、RbOH、CsOH等を用いることができ、これらアルカリ金属の水溶液を添加することによってpH調整を行う。金微粒子分散液のpHが9未満の場合は、シリカの溶解度が低いために金微粒子表面にシリカが析出せず、シリカ微粒子が生成したり、シリカゾルがゲル化して、シリカ被覆金微粒子が得られないことがある。金微粒子分散液のpHが12を越えると、シリカの溶解度が高いために金微粒子表面へのシリカの析出が抑制されたり、シリカゾルの付着速度が低下したり、析出しないことがある。
【0016】
ついで、上記pHを調整した金微粒子分散液に酸性珪酸液またはシリカゾルを添加する。酸性珪酸液としては、例えば、珪酸ソーダ、珪酸カリウム等のアルカリ金属珪酸塩の水溶液をイオン交換樹脂等で脱アルカリして得られる酸性珪酸液が好ましい。また、シリカゾルとしては従来公知のシリカゾルを用いることができ、例えば、本願出願人の出願による特開昭63−45114号公報、特開昭63−64911号公報に開示したシリカゾルはシリカ粒子径が均一であり、安定性に優れているので好ましい。
【0017】
酸性珪酸液を用いる場合、酸性珪酸液の添加量は、金微粒子の平均粒子径によっても異なるが、金微粒子1重量部当たりSiO2 として0. 01〜20重量部、さらには0. 02〜5重量部の範囲にあることが好ましい。酸性珪酸液の添加量が0. 01重量部未満の場合は、前記した範囲の厚みを有するシリカ被覆層を形成できず、耐熱性が不充分となることがある。酸性珪酸液の添加量が20重量部を越えてもさらに耐熱性が向上することもなく、また、シリカ被覆層の厚さが厚くなり過ぎて光の散乱の原因となり、桃色さらには白色を呈するようになることがある。また、酸性珪酸液の添加速度は、前記耐熱性を発現できるシリカ被覆層を形成できれば特に制限はなく、シリカ被覆層の形成に与らないシリカ微粒子が生成しない範囲で時間を掛けて添加することが好ましい。
【0018】
次に、シリカゾルを用いる場合、シリカゾルの添加量は、金微粒子の平均粒子径によっても異なるが、金微粒子1重量部当たりSiO2 として0. 1〜20重量部、さらには1〜10重量部の範囲にあることが好ましい。シリカゾルの添加量が0. 1重量部未満の場合は、耐熱性が不充分となることがある。シリカゾルの添加量が20重量部を越えてもさらに耐熱性が向上することもなく、また、シリカ被覆層の厚さが厚くなり過ぎて光の散乱の原因となり、桃色さらには白色を呈するようになることがある。また、シリカゾルの添加速度は、前記耐熱性を発現できるシリカ被覆層を形成できれば特に制限はなく、シリカ被覆量が少ない場合は一時に添加することも可能である。
【0019】
前記シリカゾル中のシリカ粒子の平均粒子径は4〜50nm、さらには5〜30nmの範囲にあることが好ましい。シリカ粒子の平均粒子径が4nm未満のものは、安定なシリカゾルとして得ることが困難であり、他方、平均粒子径が50nmを越えると、金微粒子表面に付着・析出することが困難であり、また被覆できたとしてもシリカ被覆層が厚くなり過ぎて光の散乱の原因となり、桃色さらには白色を呈するようになることがある。
本発明の製造方法では、前記酸性珪酸液またはシリカゾルを添加した後、必要に応じて熟成することができる。具体的には、30〜150℃、好ましくは50〜100℃で、数時間加熱処理すれば良く、このような加熱熟成を行うことにより、一層緻密なシリカ被覆層を形成したり、一層均一な厚みのシリカ被覆層を形成することができる。
【0020】
赤色顔料
本発明に係る赤色顔料は前記シリカ被覆金微粒子からなっている。
前記シリカ被覆金微粒子は金微粒子の平均粒子径が2〜50nmの範囲にあるので、波長480〜600nmの狭い範囲に吸収ピークをもち、このため鮮明で透明感のある赤色顔料として有用である。さらに金微粒子はシリカで被覆されているので、例えば、500℃以上の高温に曝されても凝集したり、凝集に伴って変色することがなく、鮮明で透明感のある赤色を維持することができ、耐熱性に優れた赤色顔料として有用である。
【0021】
【発明の効果】
本発明に係るシリカ被覆金微粒子は、金微粒子の平均粒子径が特定範囲にあるので鮮明で透明感のある赤色を呈すると共に、金微粒子がシリカで被覆されているので高温に曝されても金微粒子が凝集したり粒子成長することがない。このため、鮮明さや透明感を低下させたり変色することがなく、耐熱性に優れた赤色顔料を得ることができる。
本発明に係るシリカ被覆金微粒子の製造方法によれば、前記シリカ被覆金微粒子を簡易かつ効率的に製造することができる。
本発明に係る赤色顔料は耐熱性に優れ、塗料、化粧品、印刷インキ、液晶表示素子用カラーフィルター等に用いる顔料として有用である。
【0022】
【実施例】
以下に本発明の好適な実施例を挙げるが、本発明はこれら実施例に限定されるものではない。
【0023】
【実施例1】
シリカ被覆金微粒子(A)の調製
蒸留水1410gに塩化金酸4水塩(HAuCl・4H2 O)14. 25gを溶解させ、これに界面活性剤(花王(株)製:コータミン24P;CH3 (CH2 11N(CH3 3 Cl)28. 5gを添加した。ついで、還元剤として濃度1重量%の水素化ホウ素ナトリウム(NaBH4 )7. 7gを添加して金微粒子表面にカチオン界面活性剤が配位した(吸着した)金微粒子分散液を調製した。このときの金微粒子の平均粒子径を測定し結果を表1に示した。
次に、金微粒子分散液100gを採取し、これに濃度1重量%のNaOH水溶液を添加して分散液のpHを10. 5に調整し、95℃に昇温し30分間加熱した。その後、SiO2 濃度3重量%の酸性珪酸液1. 3gを15分間で添加して、シリカ被覆金微粒子(A)分散液を調製した。
ついで、粒子を分離した後、120℃で1時間乾燥してシリカ被覆金微粒子(A)を調製した。
【0024】
シリカ被覆金微粒子の評価
(1)赤色度(赤色色調の鮮明さ)
シリカ被覆金微粒子(A)について、目視観察により赤色度を観察し、以下の基準で評価し、結果を表1に示した。
鮮明な赤色、透明性あり :◎
赤色、透明性やや低下 :○
ピンク色・ピンク色に近い、透明性低下 :△
白っぽさを増したピンク・白色、透明性無し:×
(2)反射率(赤色度および透明性)
シリカ被覆金微粒子(A)を金の濃度が0.005重量%となるように純水に分散させ、反射率を分光光度計(大塚電子(株)製:MCPD-2000 )を用いて測定し、波長480〜600nmの範囲における反射率の平均値として表示した。結果を表1に示した。
(3)耐熱性
シリカ被覆金微粒子(A)を700℃で1時間焼成し、目視観察によ赤色度を観察し、以下の基準で評価し、結果を表1に示した。
鮮明な赤色、透明性あり :◎
赤色、透明性やや低下 :○
ピンク色・ピンク色に近い、透明性低下 :△
黒色または金色 :×
(4)粒子分散性
シリカ被覆金微粒子(A)分散液を1時間静置し、微粒子の沈降の有無を観察し、以下の基準で評価し、結果を表1に示した。
微粒子の沈降が認められない:○
微粒子の沈降が認められる :×
【0025】
【実施例2】
シリカ被覆金微粒子(B)の調製
実施例1において、SiO2 濃度3重量%の酸性珪酸液3gを30分間で添加した以外は実施例1と同様にして、シリカ被覆金微粒子(B)分散液およびシリカ被覆金微粒子(B)を調製した。得られたシリカ被覆金微粒子(B)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。
【0026】
【実施例3】
シリカ被覆金微粒子(C)の調製
実施例1において、SiO2 濃度3重量%の酸性珪酸液24gを30分間で添加した以外は実施例1と同様にして、シリカ被覆金微粒子(C)分散液およびシリカ被覆金微粒子(C)を調製した。得られたシリカ被覆金微粒子(C)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。
【0027】
【実施例4】
シリカ被覆金微粒子(D)の調製
実施例1において、酸性珪酸液の代わりにシリカゾル(触媒化成工業(株)製:SI−550、平均粒子径5nm、SiO2 濃度48重量%)3. 0gを一時に添加した以外は実施例1と同様にして、シリカ被覆金微粒子(D)を調製した。シリカ被覆金微粒子(D)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。但し、シリカ被覆金微粒子(D)は沈降し易く、反射率の測定ができなかった。
【0028】
【実施例5】
シリカ被覆金微粒子(E)の調製
実施例4において、シリカゾル(触媒化成工業(株)製:SI−550、平均粒子径5nm、SiO2 濃度48重量%)5. 5gを一時に添加した以外は実施例1と同様にして、シリカ被覆金微粒子(E)を調製した。シリカ被覆金微粒子(E)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。但し、シリカ被覆金微粒子(E)は沈降し易く、反射率の測定ができなかった。
【0029】
【実施例6】
シリカ被覆金微粒子(F)の調製
実施例4において、シリカゾル(触媒化成工業(株)製:SI−550、平均粒子径5nm、SiO2 濃度48重量%)9. 9gを一時に添加した以外は実施例1と同様にして、シリカ被覆金微粒子(F)を調製した。シリカ被覆金微粒子(F)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。但し、シリカ被覆金微粒子(F)は沈降し易く、反射率の測定ができなかった。
【0030】
【実施例7】
シリカ被覆金微粒子(G)の調製
実施例2において、蒸留水を2820g用いた以外は実施例2と同様にして、金微粒子表面にカチオン界面活性剤が配位した(吸着した)金微粒子分散液を調製した。このときの金微粒子の平均粒子径を測定し、結果を表1に示した。
ついで、実施例1と同様にしてシリカ被覆金微粒子(G)分散液およびシリカ被覆金微粒子(G)を調製した。シリカ被覆金微粒子(G)について赤色度、反射率、耐熱性および分散性を評価し、結果を表1に示した。
【0031】
【比較例1】
金微粒子(H)の調製
実施例1と同様にしてカチオン界面活性剤が配位した(吸着した)金微粒子分散液を調製した。ついで、この分散液を120℃で乾燥して、金微粒子(H)を調製した。金微粒子(H)について平均粒子径の測定値と赤色度、反射率、耐熱性および分散性の評価を表1に示した。なお、金微粒子(H)分散液の色調は鮮明で、透明感のある赤色であった。
【0032】
【比較例2】
金微粒子(I)の調製
実施例7と同様にしてカチオン界面活性剤が配位した(吸着した)金微粒子分散液を調製した。ついで120℃で乾燥して、金微粒子(I)を調製した。金微粒子(I)について平均粒子径の測定値と赤色度、反射率、耐熱性および分散性の評価を表1に示した。なお、金微粒子(I)分散液の色調は鮮明で、透明感のある赤色であった。
【0033】
【表1】

Figure 0004118085
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gold fine particle whose surface is coated with silica, a method for producing the same, and a red pigment comprising the fine particle.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Various pigments are used for coloring or color display in paints, cosmetics, printing inks, color filters for liquid crystal display elements, etc., and inorganic pigments such as Bengala, molybdenum red, etc. are commonly used as red pigments at this time Known. However, this type of red pigment has a defect that the absorption region is broad in the absorption region having a wavelength of 400 to 800 nm which exhibits red, and therefore lacks in clarity and transparency.
On the other hand, gold particles having a particle size of several tens of nm have a sharp absorption peak around 550 nm, and are known as clear and transparent pigments. However, when gold particles are used as a pigment, there is a problem that when the pigment is exposed to a high temperature, it aggregates, discolors with aggregation, and further turns black, that is, a problem regarding heat resistance. Has been.
[0003]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems, and is a silica-coated gold fine particle useful as a red pigment that does not deteriorate or change color even when exposed to high temperatures, and a method for producing the same, and the fine particles. The red pigment which consists of this is provided.
[0004]
SUMMARY OF THE INVENTION
The silica-coated gold fine particles according to the present invention are characterized in that the surface of gold fine particles having an average particle diameter (D G ) in the range of 2 nm to 50 nm is coated with silica.
The silica-coated gold fine particles preferably have an average particle diameter (D P ) in the range of 4 nm to 150 nm.
Method for producing a silica-coated gold particles according to the present invention, the aqueous dispersion or water and an organic solvent mixed dispersion of gold fine particles having a mean particle size of (D G) is in the range of 2 nm to 50 nm, a surfactant is added Then, an alkali is added to adjust the pH of the dispersion to a range of 9 to 12, and heat aging is performed as necessary, and an acidic silicic acid solution or silica sol is added.
The red pigment according to the present invention is characterized by comprising the silica-coated gold fine particles.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
[0006]
Silica-coated gold particles The silica-coated gold fine particles according to the present invention are obtained by coating the surface of gold fine particles having an average particle diameter (D G ) in the range of 2 nm to 50 nm with silica. The particle diameter is particularly preferably in the range of 2 to 30 nm. When the average particle size is less than 2 nm, the light absorption wavelength due to plasmon absorption is less than 400 nm, and the sharpness and transparency of the gold fine particles as a clear and transparent red pigment are lowered. When the average particle diameter exceeds 50 nm, the absorption near 550 nm is lowered and the red color is not exhibited. In addition, since the dispersibility is lowered, it is difficult to uniformly coat silica or to obtain monodispersed silica-coated gold particles. For this reason, silica-coated gold fine particles for a clear and transparent red pigment It becomes difficult to obtain.
[0007]
As the gold fine particles, conventionally known gold fine particles having an average particle diameter in the above range can be used. In particular, when gold fine particles having a uniform particle size distribution are used, the spread of the absorption region can be suppressed, and the clear and transparent feeling can be obtained. It is possible to obtain silica-coated gold fine particles.
Gold fine particles used in the present invention can be produced, for example, by adding a reducing agent to an aqueous gold compound solution. It can also be obtained by irradiating an aqueous gold compound solution with ultrasonic waves.
[0008]
In the present invention, the thickness of the silica coating layer is preferably in the range of 1 to 50 nm, particularly 1 to 20 nm. When the gold fine particles are coated with silica, they are aggregated even when subjected to a high-temperature thermal history during production and use, and are prevented from being discolored along with the aggregation, and have a clear, transparent feeling and excellent heat resistance. Silica-coated gold fine particles as a red pigment are obtained. When the thickness of the silica coating layer is less than 1 nm, the effect of suppressing aggregation is insufficient, and the heat resistance may be insufficient. When the thickness of the silica coating layer exceeds 50 nm, light scattering by the silica coating layer becomes remarkable, and pink or white color is exhibited. Therefore, the silica-coated gold fine particles according to the present invention preferably have an average particle diameter (D P ) in the range of 4 to 150 nm, more preferably 4 to 100 nm.
[0009]
In addition, in the silica-coated gold fine particles of the present invention, other metal oxides (for example, alumina, zirconia, titania, etc.) can be used instead of silica if a red pigment having a clear, transparent feeling and excellent heat resistance can be obtained. It is also possible to use composite metal oxides (for example, silica / alumina, silica / zirconia, silica / titania, etc.).
[0010]
Method for producing silica-coated gold fine particles Next, a method for producing silica-coated gold fine particles according to the present invention will be described.
Method for producing a silica-coated gold particles according to the present invention, the aqueous dispersion or water and an organic solvent mixed dispersion of gold fine particles having a mean particle size of (D G) is in the range of 2 nm to 50 nm, a surfactant is added Then, an alkali is added to adjust the pH of the dispersion to a range of 9 to 12, and heat aging is performed as necessary, and an acidic silicic acid solution or silica sol is added.
The gold fine particles described above can be used as the gold fine particles. As the dispersion medium, water or water and an organic solvent are used. Examples of the organic solvent include methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, and hexylene glycol. Alcohols; esters such as methyl acetate and ethyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; acetone, methyl ethyl ketone Ketones such as acetylacetone and acetoacetate; amides such as dimethylformamide; It is. These may be used singly or in combination of two or more. Among these, alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, and hexylene glycol are particularly preferable in terms of stably monodispersing gold fine particles. . The reason for this is not necessarily clear, but it is assumed that a uniform silica coating layer is formed due to the high affinity between the alcohol and the surfactant.
[0011]
The concentration of the gold fine particles in the gold fine particle dispersion is preferably in the range of 0.1 to 5% by weight, more preferably 0.2 to 2% by weight. If the concentration of the gold fine particles is less than 0.1% by weight, the silica coating efficiency (utilization rate of silica) is low, and the production efficiency is low, which is not preferable. On the other hand, when the concentration of the gold fine particles exceeds 5% by weight, the stability of the dispersion is lowered, and when the acidic silicate liquid or silica sol is added, the gold fine particles gel or the acidic silicate liquid or silica sol gels and becomes uniform. A silica coating layer may not be formed.
[0012]
As the surfactant added to the gold fine particle dispersion, a cationic surfactant is preferable. The cationic surfactant is coordinated to the surface of the gold fine particles so that the surface has a positive charge, and an acidic silicic acid solution or silica sol having a negative charge is efficiently attached and aggregated on this, and silica is precipitated. Then, a silica coating layer is formed. As the cationic surfactant, (1) an aliphatic amine salt and its ammonium salt, (2) an aromatic quaternary ammonium salt, (3) a heterocyclic quaternary ammonium salt, or the like, a conventionally known cationic surfactant is used. Can do.
[0013]
The addition amount of the surfactant may be used to such an extent that the surface of the finally obtained gold fine particles is sufficiently covered with silica and heat resistance can be improved. It is preferable to add such that the concentration in the liquid or water and organic solvent mixed dispersion is in the range of about 0.2 to 20% by weight, more preferably 0.5 to 10% by weight. When the concentration of the surfactant is less than 0.2% by weight, since the surfactant coordinated on the surface of the gold fine particles is small, silica is not sufficiently precipitated, and it is difficult to form a coating layer having a thickness in the above-described range. . Even if the concentration of the surfactant exceeds 20% by weight, the surfactant on the surface of the gold fine particles does not increase, the positive charge does not increase, conversely, the precipitation of silica is inhibited, and the economic efficiency is lowered. Sometimes.
[0014]
As another method, a surfactant similar to the above is added to a gold compound aqueous solution or water / organic solvent mixed solvent solution having a gold concentration in the range of 0.1 to 5% by weight, and then a reducing agent is added. By adding the same, a gold fine particle dispersion to which the same surfactant as described above is added can be obtained. The reducing agent at this time is not particularly limited as long as gold fine particles can be obtained by reducing the gold of the gold compound. Ferrous sulfate, trisodium citrate, tartaric acid, sodium borohydride, hypophosphorous acid Sodium etc. are mentioned. Moreover, as an organic solvent, the same thing as the above-mentioned can be used, In this case, it is preferable to use an alcohol solvent.
[0015]
Next, an alkali is added to the gold fine particle dispersion added with the surfactant to adjust the pH of the dispersion to a range of 9 to 12, preferably 9 to 11. As the alkali, NaOH, KOH, RbOH, CsOH or the like can be used, and the pH is adjusted by adding an aqueous solution of these alkali metals. If the pH of the gold fine particle dispersion is less than 9, the silica solubility is low, so that silica does not precipitate on the surface of the gold fine particles, so that silica fine particles are formed or the silica sol is gelled to obtain silica-coated gold fine particles. There may not be. If the pH of the gold fine particle dispersion exceeds 12, the silica solubility is high, so that the precipitation of silica on the surface of the gold fine particles may be suppressed, the deposition rate of the silica sol may be reduced, or no precipitation may occur.
[0016]
Next, an acidic silicic acid solution or silica sol is added to the gold fine particle dispersion whose pH has been adjusted. As the acidic silicate solution, for example, an acidic silicate solution obtained by dealkalizing an aqueous solution of an alkali metal silicate such as sodium silicate or potassium silicate with an ion exchange resin or the like is preferable. As the silica sol, a conventionally known silica sol can be used. For example, the silica sol disclosed in JP-A-63-45114 and JP-A-63-64911 filed by the applicant of the present application has a uniform silica particle diameter. It is preferable because it is excellent in stability.
[0017]
When an acidic silicic acid solution is used, the addition amount of the acidic silicic acid solution varies depending on the average particle diameter of the gold fine particles, but is 0.01 to 20 parts by weight as SiO 2 per 1 part by weight of the gold fine particles, and further 0.05 to 5 It is preferably in the range of parts by weight. When the addition amount of the acidic silicic acid solution is less than 0.01 parts by weight, a silica coating layer having a thickness in the above-described range cannot be formed, and heat resistance may be insufficient. Even when the amount of the acidic silicate solution exceeds 20 parts by weight, the heat resistance is not further improved, and the thickness of the silica coating layer becomes too thick, causing light scattering, and pink or white. It may become like this. Further, the addition speed of the acidic silicic acid solution is not particularly limited as long as the silica coating layer capable of exhibiting the above heat resistance can be formed, and it is added over a time range in which silica fine particles that do not affect the formation of the silica coating layer are not generated. Is preferred.
[0018]
Next, when silica sol is used, the amount of silica sol added varies depending on the average particle diameter of the gold fine particles, but is 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight as SiO 2 per 1 part by weight of the gold fine particles. It is preferable to be in the range. When the amount of silica sol added is less than 0.1 parts by weight, the heat resistance may be insufficient. Even if the addition amount of silica sol exceeds 20 parts by weight, the heat resistance is not further improved, and the thickness of the silica coating layer becomes too thick, causing light scattering, and pink or even white. May be. The addition rate of the silica sol is not particularly limited as long as the silica coating layer capable of exhibiting the heat resistance can be formed, and can be added at a time when the silica coating amount is small.
[0019]
The average particle diameter of the silica particles in the silica sol is preferably in the range of 4 to 50 nm, more preferably 5 to 30 nm. When the average particle diameter of the silica particles is less than 4 nm, it is difficult to obtain a stable silica sol. On the other hand, when the average particle diameter exceeds 50 nm, it is difficult to adhere and precipitate on the surface of the gold fine particles. Even if it can be coated, the silica coating layer becomes too thick, causing light scattering, and may appear pink or white.
In the manufacturing method of this invention, after adding the said acidic silicic acid liquid or silica sol, it can age | cure | ripen as needed. Specifically, it may be heat-treated at 30 to 150 ° C., preferably 50 to 100 ° C. for several hours. By performing such heat aging, a denser silica coating layer can be formed, or a more uniform coating can be obtained. A silica coating layer having a thickness can be formed.
[0020]
Red pigment The red pigment according to the present invention comprises the silica-coated gold fine particles.
Since the silica-coated gold fine particles have an average particle diameter of 2 to 50 nm in the range of 2 to 50 nm, the silica-coated gold fine particles have an absorption peak in a narrow range of 480 to 600 nm, and are therefore useful as a clear and transparent red pigment. Further, since the gold fine particles are coated with silica, for example, even when exposed to a high temperature of 500 ° C. or higher, the gold fine particles do not aggregate or change color with aggregation, and can maintain a clear and transparent red color. And is useful as a red pigment having excellent heat resistance.
[0021]
【The invention's effect】
The silica-coated gold fine particles according to the present invention have a clear and transparent red color because the average particle size of the gold fine particles is in a specific range, and the gold fine particles are coated with silica, so that the gold fine particles are exposed to high temperatures even when exposed to high temperatures. Fine particles do not aggregate or grow. For this reason, it is possible to obtain a red pigment having excellent heat resistance without deteriorating or changing the vividness and transparency.
According to the method for producing silica-coated gold fine particles according to the present invention, the silica-coated gold fine particles can be produced simply and efficiently.
The red pigment according to the present invention has excellent heat resistance and is useful as a pigment used in paints, cosmetics, printing inks, color filters for liquid crystal display elements, and the like.
[0022]
【Example】
Preferred examples of the present invention will be given below, but the present invention is not limited to these examples.
[0023]
[Example 1]
Preparation of silica-coated gold fine particles (A) 14.25 g of chloroauric acid tetrahydrate (HAuCl · 4H 2 O) was dissolved in 1410 g of distilled water, and a surfactant (manufactured by Kao Corporation: Cotamine) was dissolved therein. 24P; 28.5 g of CH 3 (CH 2 ) 11 N (CH 3 ) 3 Cl) was added. Subsequently, 7.7 g of sodium borohydride (NaBH 4 ) having a concentration of 1% by weight was added as a reducing agent to prepare a gold fine particle dispersion in which a cationic surfactant was coordinated (adsorbed) on the surface of the gold fine particles. The average particle diameter of the gold fine particles at this time was measured, and the results are shown in Table 1.
Next, 100 g of a gold fine particle dispersion was collected, and a 1% by weight NaOH aqueous solution was added thereto to adjust the pH of the dispersion to 10.5, and the temperature was raised to 95 ° C. and heated for 30 minutes. Thereafter, 1.3 g of an acidic silicic acid solution having a SiO 2 concentration of 3% by weight was added over 15 minutes to prepare a silica-coated gold fine particle (A) dispersion.
Next, the particles were separated and dried at 120 ° C. for 1 hour to prepare silica-coated gold fine particles (A).
[0024]
Evaluation of silica-coated gold fine particles (1) Redness (clearness of red color)
Regarding the silica-coated gold fine particles (A), the redness was observed by visual observation and evaluated according to the following criteria. The results are shown in Table 1.
Clear red, transparent: ◎
Red, slightly reduced transparency: ○
Transparency drop near pink / pink, △
Pink / white with increased whiteness, no transparency: ×
(2) Reflectance (redness and transparency)
Silica-coated gold fine particles (A) are dispersed in pure water so that the gold concentration is 0.005% by weight, and the reflectance is measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd .: MCPD-2000). , And expressed as an average value of the reflectance in a wavelength range of 480 to 600 nm. The results are shown in Table 1.
(3) The heat-resistant silica-coated gold fine particles (A) were fired at 700 ° C. for 1 hour, the redness was observed by visual observation, and evaluated according to the following criteria. The results are shown in Table 1.
Clear red, transparent: ◎
Red, slightly reduced transparency: ○
Transparency drop near pink / pink, △
Black or gold: ×
(4) Particle dispersible silica-coated gold fine particles (A) The dispersion was allowed to stand for 1 hour, the presence or absence of sedimentation of the fine particles was observed, evaluated according to the following criteria, and the results are shown in Table 1.
No settling of fine particles is observed: ○
Sedimentation of fine particles is observed: ×
[0025]
[Example 2]
In preparing <br/> Example 1 of the silica-coated gold particles (B), except that the SiO 2 concentration of 3% by weight of the acidic silicic acid solution 3g was added in 30 minutes in the same manner as in Example 1, silica-coated gold particles ( B) A dispersion and silica-coated gold fine particles (B) were prepared. The resulting silica-coated gold fine particles (B) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1.
[0026]
[Example 3]
In preparing <br/> Example 1 of the silica-coated gold particles (C), except that the SiO 2 concentration of 3% by weight of the acidic silicic acid solution 24g was added in 30 minutes in the same manner as in Example 1, silica-coated gold particles ( C) A dispersion and silica-coated gold fine particles (C) were prepared. The resulting silica-coated gold fine particles (C) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1.
[0027]
[Example 4]
Preparation of silica-coated gold fine particles (D) In Example 1, silica sol (manufactured by Catalytic Chemical Industry Co., Ltd .: SI-550, average particle size 5 nm, SiO 2 concentration 48 wt%) instead of acidic silicic acid solution Silica-coated gold fine particles (D) were prepared in the same manner as in Example 1 except that 3.0 g was added at a time. The silica-coated gold fine particles (D) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1. However, the silica-coated gold fine particles (D) easily settled and the reflectance could not be measured.
[0028]
[Example 5]
Preparation of silica-coated gold fine particles (E) In Example 4, 5.5 g of silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 48% by weight) was added at a time. Except for the addition, silica-coated gold fine particles (E) were prepared in the same manner as in Example 1. The silica-coated gold fine particles (E) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1. However, the silica-coated gold fine particles (E) easily settled and the reflectance could not be measured.
[0029]
[Example 6]
Preparation of silica-coated gold fine particles (F) In Example 4, 9.9 g of silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: SI-550, average particle diameter of 5 nm, SiO 2 concentration of 48 wt%) was temporarily added. Except for the addition, silica-coated gold fine particles (F) were prepared in the same manner as in Example 1. The silica-coated gold fine particles (F) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1. However, the silica-coated gold fine particles (F) easily settled, and the reflectance could not be measured.
[0030]
[Example 7]
Preparation of silica-coated gold fine particles (G) In Example 2, a cationic surfactant was coordinated (adsorbed) on the surface of the gold fine particles in the same manner as in Example 2 except that 2820 g of distilled water was used. A gold fine particle dispersion was prepared. The average particle diameter of the gold fine particles at this time was measured, and the results are shown in Table 1.
Subsequently, a silica-coated gold fine particle (G) dispersion and a silica-coated gold fine particle (G) were prepared in the same manner as in Example 1. The silica-coated gold fine particles (G) were evaluated for redness, reflectance, heat resistance and dispersibility, and the results are shown in Table 1.
[0031]
[Comparative Example 1]
Preparation of gold fine particles (H) In the same manner as in Example 1, a gold fine particle dispersion in which a cationic surfactant was coordinated (adsorbed) was prepared. Subsequently, this dispersion was dried at 120 ° C. to prepare gold fine particles (H). Table 1 shows the measured average particle diameter and the evaluation of redness, reflectance, heat resistance and dispersibility for the gold fine particles (H). The gold fine particle (H) dispersion had a clear color tone and a transparent red color.
[0032]
[Comparative Example 2]
Preparation of gold fine particles (I) In the same manner as in Example 7, a gold fine particle dispersion in which a cationic surfactant was coordinated (adsorbed) was prepared. Subsequently, it was dried at 120 ° C. to prepare gold fine particles (I). Table 1 shows the measured value of the average particle diameter and the evaluation of redness, reflectance, heat resistance and dispersibility for the gold fine particles (I). The gold fine particle (I) dispersion had a clear color tone and a transparent red color.
[0033]
[Table 1]
Figure 0004118085

Claims (4)

平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の表面を厚さが1〜50nmの範囲にあるシリカで被覆してなり、単分散状態にあることを特徴とするシリカ被覆金微粒子。Silica-coated gold, characterized in that the average particle diameter (D G) surface the thickness of the gold particles in the range of 2nm~50nm is coated with silica in the range of 1 to 50 nm, in a monodisperse state Fine particles. 平均粒子径(DP )が4nm〜150nmの範囲にある請求項1記載のシリカ被覆金微粒子。The silica-coated gold fine particles according to claim 1, wherein the average particle diameter (D P ) is in the range of 4 nm to 150 nm. 平均粒子径(DG )が2nm〜50nmの範囲にある金微粒子の水分散液または水と有機溶媒混合分散液に、界面活性剤添加し、ついで、アルカリを添加して分散液のpHを9〜12の範囲に調整し、必要に応じて加熱熟成し、酸性珪酸液またはシリカゾルを添加することを特徴とする請求項1または請求項2記載のシリカ被覆金微粒子の製造方法。A surfactant is added to an aqueous dispersion of gold fine particles having an average particle diameter (D G ) in the range of 2 nm to 50 nm or a mixed dispersion of water and an organic solvent, and then an alkali is added to adjust the pH of the dispersion to 9. The method for producing silica-coated gold fine particles according to claim 1, wherein the silica-coated gold fine particles are adjusted to a range of ˜12, heated and aged as necessary, and an acidic silicic acid solution or silica sol is added. 請求項1または請求項2記載のシリカ被覆金微粒子からなる赤色顔料。A red pigment comprising the silica-coated gold fine particles according to claim 1 or 2.
JP2002155268A 2002-05-29 2002-05-29 Silica-coated gold fine particles, method for producing the same, and red pigment Expired - Fee Related JP4118085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155268A JP4118085B2 (en) 2002-05-29 2002-05-29 Silica-coated gold fine particles, method for producing the same, and red pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155268A JP4118085B2 (en) 2002-05-29 2002-05-29 Silica-coated gold fine particles, method for producing the same, and red pigment

Publications (2)

Publication Number Publication Date
JP2003342496A JP2003342496A (en) 2003-12-03
JP4118085B2 true JP4118085B2 (en) 2008-07-16

Family

ID=29771832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155268A Expired - Fee Related JP4118085B2 (en) 2002-05-29 2002-05-29 Silica-coated gold fine particles, method for producing the same, and red pigment

Country Status (1)

Country Link
JP (1) JP4118085B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005366A1 (en) * 2004-02-03 2005-08-18 Eckart Gmbh & Co.Kg Cosmetic preparation containing a metal pigment
KR100732249B1 (en) * 2005-07-18 2007-06-27 한국생명공학연구원 Cosmetic Pigment Composition Containing Gold and/or Silver Nano-Particles
KR100776016B1 (en) * 2005-11-14 2007-11-15 미지테크주식회사 Admixture for cosmetics trifling article manufacture and manufacturing method thereof
DE06405325T1 (en) * 2006-07-31 2008-09-25 Rolex Sa pigmented ceramic body
JP5014895B2 (en) * 2007-06-27 2012-08-29 日揮触媒化成株式会社 Method for producing silica-coated gold colloidal particles and silica-coated gold colloidal particles
DE102009059102A1 (en) 2009-12-18 2011-06-22 Leibniz-Institut für Neue Materialien gemeinnützige GmbH, 66123 Process for the preparation of encapsulated metal colloids as inorganic color pigments
JP5782643B2 (en) * 2010-12-17 2015-09-24 国立研究開発法人産業技術総合研究所 Glass-coated gold nanoparticles and fluorescence-enhanced gold nanoparticles and methods for producing them
WO2014141742A1 (en) * 2013-03-13 2014-09-18 Dic株式会社 Core-shell nanoparticles and method for producing same
EP3467061B1 (en) * 2016-06-02 2021-12-08 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material

Also Published As

Publication number Publication date
JP2003342496A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
Lismont et al. A one-step short-time synthesis of Ag@ SiO2 core–shell nanoparticles
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP3909389B2 (en) Method for forming a functional glassy layer
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP5287038B2 (en) Silica-coated gold nanorod and method for producing the same
JP4118085B2 (en) Silica-coated gold fine particles, method for producing the same, and red pigment
JPH11507412A (en) Coated inorganic pigment, production method thereof and use thereof
JP2010275180A (en) Flaky powder utilizing plasmon phenomenon of fine metal particles, and method of regulating color tone thereof
JP2004281056A (en) Process for producing noble-metal-containing fine-particle dispersion and coating liquid for forming transparent conductive layer, as well as transparent conductive substrate and display device
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
JP5826688B2 (en) Metal fine particle dispersed composite and method for producing the same
JP4493320B2 (en) Method for producing silica sol and silica sol
JP2005038625A (en) Composition containing metal nano rod and metallic oxide powder, and application thereof
JP2000196287A (en) Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP6140634B2 (en) Alloy fine particle dispersion and method for producing the same
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
CN109983081A (en) Photoluminescent pigment, the composition containing pigment and the coated-body containing pigment
JP6675186B2 (en) Scale-like composite particles, resin composition and coated product containing the same, and method for producing scale-like composite particles
JP4837376B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JPH10245224A (en) Production of titanium oxide-tin oxide composite sol
DE112014000445T5 (en) A coating liquid for forming an alkali barrier and an article
TW570963B (en) Alcohol solution of noble metal or copper colloids, method of producing the same, and coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Ref document number: 4118085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees