JP4114445B2 - Casting machine mold - Google Patents

Casting machine mold Download PDF

Info

Publication number
JP4114445B2
JP4114445B2 JP2002265474A JP2002265474A JP4114445B2 JP 4114445 B2 JP4114445 B2 JP 4114445B2 JP 2002265474 A JP2002265474 A JP 2002265474A JP 2002265474 A JP2002265474 A JP 2002265474A JP 4114445 B2 JP4114445 B2 JP 4114445B2
Authority
JP
Japan
Prior art keywords
mold
casting machine
molten metal
cooling
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002265474A
Other languages
Japanese (ja)
Other versions
JP2004098145A (en
Inventor
竜二 堤
安志 福原
史直 土橋
秀行 鎌野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002265474A priority Critical patent/JP4114445B2/en
Publication of JP2004098145A publication Critical patent/JP2004098145A/en
Application granted granted Critical
Publication of JP4114445B2 publication Critical patent/JP4114445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳型を無限軌道状に連結し、溶融金属の受容から冷却、剥離を連続的に行う鋳造機に使用される鋳造機鋳型に関し、特に該鋳型の冷却効率の有利な向上を図ったものである。
【0002】
【従来の技術】
溶融金属を所定の形状に鋳込む場合、鋳型を無限軌道状に配置し、これを連続的に回転させながら溶融金属を注湯し、水冷等の冷却を行ったのち、凝固した金属を鋳型から剥離、排出する形式の鋳造機が使用される。かような鋳造機の代表的なものに、溶銑を凝固させて型銑とする鋳銑機がある。
【0003】
このような鋳造機の基本的構造を図1に示す。
この種の鋳造機では、鋳型1を無限軌道状に配置し、これを連続的に回転させ、溶融金属2は、その容器3を傾動させることにより、樋4を介して、鋳造機の鋳型1内に鋳込まれる仕組みになっている。鋳型1は、無限軌道の回転により運ばれる間に冷却され、鋳型内の溶融金属2は凝固していく。通常、移送の途中で鋳型1の上方から水冷ノズル5により冷却水6を散布し、冷却を強化して金属の凝固を促進させる。そして、無限軌道の端部において、鋳型1が無限軌道の下面へ廻る際に、鋳型内の凝固金属2′は鋳型から剥離し、下方に配置されたバッグ7等へ収納される。
その後、鋳型1は、無限軌道の下面を逆方向に移動し、乾燥バーナ8等によって乾燥されたのち、無限軌道の上面に廻り込んで、再度、溶融金属2の注湯を受ける。
【0004】
このような構造の鋳造機では、鋳型内へ鋳込まれた溶融金属は、鋳型への伝導伝熱による冷却と雰囲気中への放射、対流伝熱および散布冷却水の蒸発による抜熱などによって冷却され、凝固する。中でも、鋳型への伝導伝熱は、熱伝達係数が大きいので、重要な冷却手段である。
【0005】
ところで、かかる鋳造機では、1バッチの溶融金属を鋳造し終わるまでの間、鋳型には複数回にわたって溶融金属が注湯されるため、鋳型は注湯による昇温と冷却が繰り返されることになるが、そのサイクルの中で鋳型温度は徐々に高くなっていく。鋳型の温度が高くなると、溶融金属の冷却が遅くなるという問題があるが、それにもまして凝固金属が鋳型から剥離するときの鋳型温度が高くなると、剥離が難しくなるという問題が生じる。
【0006】
従って、鋳造中の鋳型の温度サイクルの中で、鋳型の冷却を強化することが望まれる。
例えば、鋳型の冷却を強化する目的で、鋳型の底部外面一帯に格子状の突起を配設した特殊な鋳型が提案されている(例えば特許文献1参照)。
この鋳型では、その底部外面に、複数の縦突起および横突起を格子状に配列し、特にその突起の肉厚をt、鋳型底部外面からの突出高さをhとした時、t/h=0.3 〜0.6 とし、また鋳型の肉厚Tと突起の肉厚tとの関係をT/t= 1.0〜2.5 とすることで、鋳型の重量、材料費ならびに熱歪および冷却効果に配慮している。
【0007】
しかしながら、この技術は、鋳型を軽量化して、突起の設置による表面積の増加とリブとしての効果を利用して溶融金属受容中における鋳型の冷却を促進し、かつ機械的な強度向上を図るものであり、突起の高さhが鋳型の底面の厚みTに対して 0.7〜3.3 倍という非常に高いものになるのが特徴である。
このため、鋳型の昇温・冷却に伴い突起部にかかる熱応力が大きく、また突起自体が格子状となっていることから格子の交差部にかかる熱応力も大きいため、突起部が変形する等の問題が生じるおそれが大きく、そのためこの技術は一般的には普及していない。
【0008】
【特許文献1】
特開昭52−53725 号公報(特許請求の範囲、図1〜3)
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、鋳型の昇温・冷却に伴う熱応力に起因した変形が生じるおそれなしに、鋳造中の温度サイクルの中で、鋳型の冷却効率を効果的に向上させることにより、凝固金属の鋳型からの剥離を容易ならしめた鋳造機鋳型を提案することを目的とする。
【0010】
【課題を解決するための手段】
すなわち、本発明は、鋳型を無限軌道状に連結し、この無限軌道を回転させる間に、溶融金属の受容から冷却、剥離を連続的に行う鋳造機に使用される鋳型であって、溶融金属を受容する鋳込み面の背面に、鋳型の長手方向に沿って波打つ表面凹凸を設けると共に、該鋳型の側面から延在させて側堰を設け、これら表面凹凸および側堰により冷却水の貯水用窪みを形成することを特徴とする鋳造機鋳型である。
【0011】
本発明において、上記した表面凹凸の高低差は10〜50mm程度とすることが好ましい。
【0012】
【発明の実施の態様】
以下、本発明を図面に従い具体的に説明する。
図2に、本発明に従う鋳造機鋳型の好適例を模式で示す。同図(a) は、鋳型の長手方向に沿う断面、また同図(b) は鋳型の幅方向に沿う断面を示したものであり、図中番号9が、鋳型の長手方向に沿って波状に形成された表面凹凸、そして10が鋳型の側面から延在させた側堰である。
【0013】
図示したとおり、本発明の鋳型では、鋳型の鋳込み面の背面に波状の表面凹凸を設けると共に、側堰を設けている。従って、鋳型から凝固金属が剥離した後に鋳銑機の無限軌道の下面に鋳型が移行した場合には、鋳型は反転した状態で、波状の表面凹凸および側堰が形成された裏面が上向きになった状態で移送されることになる。
【0014】
この時、鋳銑機上方に水冷ノズルが存在する区域を移送される間は、上方の鋳型の隙間を流下する冷却水がこの反転状態の鋳型の裏面上に流れ落ちるので、上記した波状の表面凹凸と側堰とで形成される窪みに冷却水が溜まることになる。鋳型の表面は、溶融金属を受容して冷却する間に溶融金属の顕熱を吸収して 400〜600 ℃程度まで温度が上昇しているので、この窪みに貯留された冷却水は沸騰しながら蒸発する。
【0015】
従来の背面が平らな鋳型では、上記した上方からの冷却水が流下する位置では冷却水の流下による鋳型背面の冷却が生じて鋳型の冷却に寄与していたが、鋳型が冷却水の流下区域から外れると鋳型背面の冷却水による抜熱は即座に停止していた。
これに対し、本発明では、鋳型の背面に波状の表面凹凸と側堰とで形成した窪みを設けてあるので、鋳型から凝固金属を剥離させた後に、上方からの冷却水が流下する区域を移動する間に、上記の窪みに冷却水が貯留され、上記の冷却水流下区域を過ぎた後もこの貯留された冷却水が蒸発することによって、鋳型の冷却を促進させることができる。
【0016】
この時、窪みに貯留される冷却水があまりに多いと、鋳型がさらに移送されて再度溶融金属を注湯する位置の下方まで移動した際に、鋳型から下方へ溶融金属が漏れて流下したような場合には、水蒸気爆発を起す危険性があるが、この点については、表面凹凸の高低差を10〜50mm程度としておくことで、鋳型の背面に貯留する水量を適量に制御することができるので、かような危険を回避することができる。
【0017】
上述したとおり、本発明では、波状の表面凹凸を鋳型の背面全体に設け、これと鋳型側面から延在させた側堰とで窪みを形成しているので、鋳型背面全体を均等に冷却することができる。
また、鋳型背面に格子状の突起を設けた従来鋳型では、鋳型が反転状態で移送される時に冷却水が流下してきた場合、鋳型の中央部のみに冷却水が貯留され、その周囲には冷却水が存在せず、またかかる突起の肉厚も比較的薄いため、鋳型背面に熱歪が生じ易かったが、本発明ではこのような鋳型背面での熱歪は生じにくく、鋳型全体として鋳型背面から鋳型表面への一方向の伝熱により鋳型の冷却ができるため、熱歪による変形を受け難い。
【0018】
【実施例】
図3に示す形状になる本発明に従う鋳型(波状の表面凹凸の高低差:40mm)および鋳型背面が平らな従来タイプの鋳型を用いて、溶銑鍋からの溶銑の受銑を行った。鋳銑機は全長25mで冷却水散水区域は12mであった。
上記の条件で鋳銑を行い、鋳型が3サイクル回転した後に、溶銑を注湯する直前の鋳型の鋳込み面の表面温度を赤外線温度計で測定した。
【0019】
その結果、従来の鋳型背面が平らな鋳型では、表面温度が87℃であったのに対し、本発明に従う背面構造になる鋳型では37℃と格段に低かった。
このため、従来の鋳型を用いた場合には、鋳銑機の剥離エリアで完全に剥離できず、鋳型が反転して戻る区間で鋳型から型銑が落下する量が 800kg程度あったのに対し、本発明の鋳型ではかような剥離不良の発生は皆無であった。
【0020】
【発明の効果】
かくして、本発明によれば、鋳造機鋳型の温度上昇を効果的に抑制して、凝固金属の剥離時における鋳型温度を低く抑えることができ、これによって凝固金属の鋳型からの剥離が容易となる。
また、本発明によれば、鋳型背面全体にわたって均等に冷却できるので、鋳型内の熱伝導が一方向となり、鋳型内部の熱歪が緩和される結果、鋳型の寿命を向上させることができる。
さらに、本発明によれば、鋳型背面の窪みの深さを適切に調整することによって、鋳型の冷却を好適に行うと共に、鋳型背面に冷却水が残存して水蒸気爆発が発生することを防止することができる。
【図面の簡単な説明】
【図1】 鋳造機の基本的構造を示す模式図である。
【図2】 本発明に従う鋳造機鋳型の好適例を示す模式図である。
【図3】 実施例に用いた本発明に従う鋳造機鋳型の形状を示す図である。
【符号の説明】
1 鋳型
2 溶融金属
3 容器
4 樋
5 水冷ノズル
6 冷却水
7 バッグ
8 乾燥バーナ
9 波状の表面凹凸
10 側堰
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a casting machine mold used for a casting machine in which casting molds are connected in an endless track shape and continuously cooled and peeled from receiving molten metal, and particularly, the cooling efficiency of the casting mold is advantageously improved. Is.
[0002]
[Prior art]
When casting molten metal into a predetermined shape, place the mold in an endless track, pour the molten metal while continuously rotating it, cool it with water, etc., then cool the solidified metal from the mold A casting machine that peels and discharges is used. A typical example of such a casting machine is a casting machine in which hot metal is solidified to form a mold.
[0003]
The basic structure of such a casting machine is shown in FIG.
In this type of casting machine, the mold 1 is arranged in an endless track shape, and this is continuously rotated, and the molten metal 2 tilts the container 3, so that the mold 1 of the casting machine is passed through the rod 4. It is structured to be cast inside. The mold 1 is cooled while being carried by the rotation of the endless track, and the molten metal 2 in the mold is solidified. Usually, cooling water 6 is sprayed from above the mold 1 by the water cooling nozzle 5 in the middle of transfer to enhance cooling and promote solidification of the metal. When the mold 1 moves to the lower surface of the endless track at the end of the endless track, the solidified metal 2 'in the mold is peeled off from the mold and stored in the bag 7 or the like disposed below.
After that, the mold 1 moves in the opposite direction on the lower surface of the endless track, and is dried by the drying burner 8 or the like, and then goes around the upper surface of the endless track and receives the molten metal 2 pouring again.
[0004]
In a casting machine having such a structure, the molten metal cast into the mold is cooled by cooling by conduction heat transfer to the mold and by radiation to the atmosphere, convection heat transfer and heat removal by evaporation of sprayed cooling water, etc. And solidify. Among them, the conduction heat transfer to the mold is an important cooling means because of its large heat transfer coefficient.
[0005]
By the way, in such a casting machine, since the molten metal is poured into the mold a plurality of times until one batch of molten metal is cast, the mold is repeatedly heated and cooled by pouring. However, the mold temperature gradually increases during the cycle. When the temperature of the mold becomes high, there is a problem that the cooling of the molten metal is slowed down. However, when the mold temperature when the solidified metal peels from the mold becomes high, there arises a problem that peeling becomes difficult.
[0006]
Accordingly, it is desirable to enhance mold cooling during the mold temperature cycle during casting.
For example, for the purpose of enhancing the cooling of the mold, a special mold is proposed in which grid-like protrusions are arranged on the entire outer surface of the bottom of the mold (see, for example, Patent Document 1).
In this mold, a plurality of vertical protrusions and horizontal protrusions are arranged in a lattice pattern on the outer surface of the bottom, and when the thickness of the protrusion is t and the protrusion height from the outer surface of the mold is h, t / h = By considering the relationship between the mold thickness T and the projection thickness t as T / t = 1.0 to 2.5, the mold weight, material cost, thermal strain and cooling effect are taken into consideration. .
[0007]
However, this technique reduces the weight of the mold, increases the surface area by installing protrusions, and promotes the cooling of the mold while receiving molten metal by utilizing the effect as a rib, and improves the mechanical strength. The height h of the projection is 0.7 to 3.3 times as high as the thickness T of the bottom surface of the mold.
For this reason, the thermal stress applied to the protrusions is large as the mold is heated and cooled, and since the protrusions themselves have a lattice shape, the thermal stress applied to the intersection of the lattices is also large, so that the protrusions are deformed, etc. This technology is generally not widely used.
[0008]
[Patent Document 1]
JP-A-52-53725 (Claims, FIGS. 1 to 3)
[0009]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems, and the cooling efficiency of the mold is effective in the temperature cycle during casting without the risk of deformation due to thermal stress accompanying the temperature rise and cooling of the mold. It is an object of the present invention to propose a casting machine mold in which the solidified metal is easily separated from the mold by improving the efficiency of the casting machine.
[0010]
[Means for Solving the Problems]
That is, the present invention relates to a mold used in a casting machine that continuously connects a mold in an endless track shape and continuously cools and peels off the molten metal while rotating the endless track. On the back side of the casting surface that accepts water, surface irregularities are provided that undulate along the longitudinal direction of the mold, and side weirs are provided extending from the side surfaces of the mold. Is a casting machine mold characterized by forming.
[0011]
In the present invention, the height difference of the surface irregularities described above is preferably about 10 to 50 mm.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 2 schematically shows a preferred example of a casting machine mold according to the present invention. FIG. 4A shows a cross section along the longitudinal direction of the mold, and FIG. 4B shows a cross section along the width direction of the mold. Reference numeral 9 in the figure is a wave shape along the longitudinal direction of the mold. The surface irregularities formed on the surface and 10 are side weirs extending from the side surface of the mold.
[0013]
As shown in the figure, in the mold of the present invention, a wavy surface irregularity is provided on the back surface of the casting surface of the mold, and a side weir is provided. Therefore, if the mold moves to the lower surface of the endless track of the casting machine after the solidified metal is peeled from the mold, the mold is inverted and the back surface on which the wavy surface irregularities and side weirs are formed faces upward. It will be transported in the state.
[0014]
At this time, while the water cooling nozzle is present in the upper part of the casting machine, the cooling water flowing down the upper mold gap flows down on the reverse side of the mold in the inverted state. Cooling water accumulates in a recess formed by the side weir. The surface of the mold absorbs the sensible heat of the molten metal while the molten metal is received and cooled, and the temperature rises to about 400 to 600 ° C. Therefore, the cooling water stored in this depression is boiling Evaporate.
[0015]
In conventional molds with a flat back surface, cooling of the mold back surface was caused by the flow of cooling water at the position where the cooling water flowed from above, which contributed to cooling of the mold. When removed from the mold, the heat removal by the cooling water on the back of the mold immediately stopped.
On the other hand, in the present invention, since the recess formed by the corrugated surface irregularities and the side weir is provided on the back surface of the mold, the area where the cooling water flows down from above after the solidified metal is peeled from the mold is provided. While moving, the cooling water is stored in the recess, and the stored cooling water evaporates even after passing the cooling water flow area, thereby promoting the cooling of the mold.
[0016]
At this time, if there is too much cooling water stored in the depression, the molten metal leaks downward from the mold and flows down when the mold is further transferred and moved below the position where the molten metal is poured again. In this case, there is a risk of causing a steam explosion, but in this respect, the amount of water stored on the back of the mold can be controlled to an appropriate amount by setting the difference in level of the surface unevenness to about 10 to 50 mm. , Can avoid such danger.
[0017]
As described above, in the present invention, the wavy surface irregularities are provided on the entire back surface of the mold, and the depression is formed by this and the side weir extending from the side surface of the mold. Can do.
In the case of a conventional mold having a grid-like projection on the back of the mold, if the cooling water flows down when the mold is transferred in an inverted state, the cooling water is stored only in the center of the mold, and the surrounding area is cooled. Since there is no water and the thickness of the protrusions is relatively thin, thermal strain was likely to occur on the back of the mold. Since the mold can be cooled by one-way heat transfer from the mold to the mold surface, it is not easily deformed by thermal strain.
[0018]
【Example】
The hot metal was received from the hot metal ladle using a mold according to the present invention having the shape shown in FIG. 3 (difference in level of wavy surface irregularities: 40 mm) and a conventional mold with a flat mold back surface. The casting machine was 25m long and the cooling water sprinkling area was 12m.
Casting was performed under the above conditions, and after the mold was rotated three cycles, the surface temperature of the casting surface of the mold immediately before pouring the molten iron was measured with an infrared thermometer.
[0019]
As a result, the conventional mold with a flat back surface had a surface temperature of 87 ° C., whereas the mold having the back structure according to the present invention was much lower at 37 ° C.
For this reason, when the conventional mold was used, it was not possible to completely peel off in the peeling area of the casting machine. In the mold of the present invention, no such peeling failure occurred.
[0020]
【The invention's effect】
Thus, according to the present invention, the temperature rise of the casting machine mold can be effectively suppressed, and the mold temperature at the time of peeling of the solidified metal can be kept low, which facilitates the peeling of the solidified metal from the mold. .
In addition, according to the present invention, since the entire mold back can be cooled uniformly, the heat conduction in the mold becomes one direction, and the thermal strain in the mold is alleviated. As a result, the life of the mold can be improved.
Furthermore, according to the present invention, by appropriately adjusting the depth of the recess on the back surface of the mold, the mold is suitably cooled, and the cooling water remains on the back surface of the mold and prevents a steam explosion from occurring. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a basic structure of a casting machine.
FIG. 2 is a schematic view showing a preferred example of a casting machine mold according to the present invention.
FIG. 3 is a view showing the shape of a casting machine mold according to the present invention used in Examples.
[Explanation of symbols]
1 Mold 2 Molten metal 3 Container 4 樋 5 Water-cooled nozzle 6 Cooling water 7 Bag 8 Dry burner 9 Wavy surface irregularities
10 side weir

Claims (2)

鋳型を無限軌道状に連結し、この無限軌道を回転させる間に、溶融金属の受容から冷却、剥離を連続的に行う鋳造機に使用される鋳型であって、溶融金属を受容する鋳込み面の背面に、鋳型の長手方向に沿って波打つ表面凹凸を設けると共に、該鋳型の側面から延在させて側堰を設け、これら表面凹凸および側堰により冷却水の貯水用窪みを形成することを特徴とする鋳造機鋳型。A mold used in a casting machine that continuously cools and peels molten metal from receiving a molten metal while the mold is connected in an endless track shape and rotating the endless track, and has a casting surface that receives the molten metal. The back surface is provided with surface irregularities that undulate along the longitudinal direction of the mold, and is provided with side weirs extending from the side surfaces of the mold, and these surface irregularities and side weirs form depressions for storing cooling water. And casting machine mold. 表面凹凸の高低差が10〜50mmであることを特徴とする請求項1記載の鋳造機鋳型。2. The casting machine mold according to claim 1, wherein the height difference of the surface irregularities is 10 to 50 mm.
JP2002265474A 2002-09-11 2002-09-11 Casting machine mold Expired - Fee Related JP4114445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265474A JP4114445B2 (en) 2002-09-11 2002-09-11 Casting machine mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265474A JP4114445B2 (en) 2002-09-11 2002-09-11 Casting machine mold

Publications (2)

Publication Number Publication Date
JP2004098145A JP2004098145A (en) 2004-04-02
JP4114445B2 true JP4114445B2 (en) 2008-07-09

Family

ID=32264606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265474A Expired - Fee Related JP4114445B2 (en) 2002-09-11 2002-09-11 Casting machine mold

Country Status (1)

Country Link
JP (1) JP4114445B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769552B (en) * 2014-01-06 2016-08-10 世林(漯河)冶金设备有限公司 Long-life safety reliable for pig machine forges pig mold and manufacture method thereof
CN113182498A (en) * 2021-01-29 2021-07-30 焦作市迈科冶金机械工程技术咨询有限公司 Granular rail type iron alloy molten iron casting equipment and ingot mold thereof

Also Published As

Publication number Publication date
JP2004098145A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US4969501A (en) Method and apparatus for use during casting
JP4114445B2 (en) Casting machine mold
JPH04356343A (en) Heating device for mold runner
US1493602A (en) Method and apparatus for casting steel ingots
US3485291A (en) Method of casting by directional solidification
RU80787U1 (en) FORMING FOR FILLING FERROALLOYS
CN105880533B (en) The directional freeze method of freckle in changes of section casting can be reduced
US4050668A (en) Ingot mold with heat reflecting cover
CN106282458B (en) The anti-floating type heat edge brick of uplift pile and its formative method
CN110293216A (en) It is a kind of for improve orientation or single crystal casting quality transition disc and consolidation furnace
CN211848207U (en) Guard plate felt structure for reducing defects of polycrystalline corner rods of cast ingots
JPH11197795A (en) Continuous type casting device for high temperature molten material
JP4273659B2 (en) Crystalline silicon production equipment
US1689174A (en) John ekbunstd perry
JPS5829546A (en) Production of large sized steel ingot having no segregation
RU2802700C1 (en) Tundish cover
EP0418182B1 (en) Installation for continuous casting thin metallic products between rolls
SU893400A1 (en) Casting mould
JPH0519163Y2 (en)
JPH0340450Y2 (en)
RU2116875C1 (en) Casting mould for aluminithermic welding of rails
SU1042882A1 (en) Apparatus for casting by oriented crystallization
CN201350505Y (en) Structure for heating shell mold by excess heat of cast product
US3477683A (en) Bottle top cap for ingot molds
JPS60141349A (en) Spraying method in die casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees