JP4113869B2 - Optical delay - Google Patents

Optical delay Download PDF

Info

Publication number
JP4113869B2
JP4113869B2 JP2004289943A JP2004289943A JP4113869B2 JP 4113869 B2 JP4113869 B2 JP 4113869B2 JP 2004289943 A JP2004289943 A JP 2004289943A JP 2004289943 A JP2004289943 A JP 2004289943A JP 4113869 B2 JP4113869 B2 JP 4113869B2
Authority
JP
Japan
Prior art keywords
reflected light
mirror
optical axis
order reflected
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004289943A
Other languages
Japanese (ja)
Other versions
JP2006106169A (en
Inventor
賢一 中村
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004289943A priority Critical patent/JP4113869B2/en
Publication of JP2006106169A publication Critical patent/JP2006106169A/en
Application granted granted Critical
Publication of JP4113869B2 publication Critical patent/JP4113869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Description

本発明は、光の遅延量(光路長)を連続的に変化させるための光遅延器に関する。   The present invention relates to an optical delay device for continuously changing a light delay amount (optical path length).

マイケルソン干渉計等に用いられる光遅延器としては、入射光軸と出射光軸が等しい状態で、遅延量を連続的に繰り返し変化させることが必要である。   As an optical delay device used in a Michelson interferometer or the like, it is necessary to continuously and repeatedly change the delay amount with the incident optical axis and the outgoing optical axis being equal.

この種の光遅延器として、次の特許文献1には、外周が対数螺旋形状のミラーを回転させて光の遅延量を変化させる構造のものが開示されている。   As this type of optical delay device, the following Patent Document 1 discloses a structure in which the amount of light delay is changed by rotating a logarithmic spiral mirror on the outer periphery.

特開2000−206425号公報JP 2000-206425 A

図10は、この光遅延器の概略構成を示すものであり、対数螺旋鏡1は、その原点(中心軸)に一致する主軸2を中心に矢印H1、H2方向に交互に回転できるようになっており、その主軸2に直交する光軸Laに沿って入射された光Saは、その光軸Laと対数螺旋鏡1の外周に形成された反射面1aとが交わる点Xaで反射するが、その反射方向は、入射光軸Laに対して常に一定角度αをなす方向となる性質がある。   FIG. 10 shows a schematic configuration of this optical delay device, and the logarithmic spiral mirror 1 can be rotated alternately in the directions of arrows H1 and H2 around the main axis 2 coinciding with the origin (center axis). The light Sa incident along the optical axis La perpendicular to the main axis 2 is reflected at a point Xa where the optical axis La and the reflecting surface 1a formed on the outer periphery of the logarithmic spiral mirror 1 intersect. The reflection direction has a property of always making a certain angle α with respect to the incident optical axis La.

したがって、図10に示しているように、平面ミラー3を、その反射面3aが対数螺旋鏡1からの1次反射光Sbの光軸Lbに対して直交するように配置することで、1次反射光Sbに対して反射面3aの点Xbから出射される2次反射光Scを光軸Lbに沿って対数螺旋鏡1の反射面1aに戻すことができる。   Therefore, as shown in FIG. 10, the planar mirror 3 is arranged so that the reflecting surface 3 a thereof is orthogonal to the optical axis Lb of the primary reflected light Sb from the logarithmic spiral mirror 1. The secondary reflected light Sc emitted from the point Xb on the reflecting surface 3a with respect to the reflected light Sb can be returned to the reflecting surface 1a of the logarithmic spiral mirror 1 along the optical axis Lb.

この2次反射光Scに対して対数螺旋鏡1の反射面1aの点Xaから出射される3次反射光Sdは、光軸Laに沿って入射光Saと逆方向に出射される。   The tertiary reflected light Sd emitted from the point Xa of the reflecting surface 1a of the logarithmic spiral mirror 1 with respect to the secondary reflected light Sc is emitted in the direction opposite to the incident light Sa along the optical axis La.

ここで、図10のように、対数螺旋鏡1が入射光軸Laに対して角θの位置にあるときの入射光軸La上の点Xから対数螺旋鏡1の反射面1aの点Xaまでの距離をA(θ)、対数螺旋鏡1の反射面1aの点Xaから平面ミラー3の反射面3aの点Xbまでの距離をB(θ)とすると、点Xから入力した光に対する3次反射光Scが点Xに戻ってくるまでの光路長P(θ)は、
P(θ)=2[A(θ)+B(θ)]
となる。
Here, as shown in FIG. 10, from the point X on the incident optical axis La when the logarithmic spiral mirror 1 is located at the angle θ to the incident optical axis La to the point Xa on the reflecting surface 1a of the logarithmic spiral mirror 1. Is a third order with respect to the light input from the point X, where A (θ) is the distance from the point Xa of the reflective surface 1a of the logarithmic spiral mirror 1 to the point Xb of the reflective surface 3a of the plane mirror 3 The optical path length P (θ) until the reflected light Sc returns to the point X is
P (θ) = 2 [A (θ) + B (θ)]
It becomes.

そして、対数螺旋鏡1が、図10の状態から、図11の(a)のように、H1方向に回転して角θaとなると、点X、Xa間の距離がA(θ)より長いA(θa)となり、点Xa、Xb間の距離がB(θ)より長いB(θa)となって、全体の光路長P(θa)も、図10の状態の光路長P(θ)より長くなる。   Then, when the logarithmic spiral mirror 1 is rotated from the state of FIG. 10 in the H1 direction to an angle θa as shown in FIG. 11A, the distance between the points X and Xa is longer than A (θ). (Θa), the distance between the points Xa and Xb is B (θa) longer than B (θ), and the entire optical path length P (θa) is also longer than the optical path length P (θ) in the state of FIG. Become.

逆に、対数螺旋鏡1が、図10の状態から、図11の(b)のように、H2方向に回転して角θbとなると、点X、Xa間の距離がA(θ)より短いA(θb)となり、点Xa、Xb間の距離がB(θ)より短いB(θb)となって、全体の光路長P(θb)も、図10の状態の光路長P(θ)より短くなる。   Conversely, when the logarithmic spiral mirror 1 is rotated from the state of FIG. 10 in the H2 direction to an angle θb as shown in FIG. 11B, the distance between the points X and Xa is shorter than A (θ). A (θb), the distance between the points Xa and Xb is B (θb) shorter than B (θ), and the entire optical path length P (θb) is also based on the optical path length P (θ) in the state of FIG. Shorter.

よって、この対数螺旋鏡1を所定の角度範囲内で往復回動させることで、光路長を所定の範囲で連続的に繰り返し変化させることができる。   Therefore, by rotating the logarithmic spiral mirror 1 back and forth within a predetermined angle range, the optical path length can be continuously and repeatedly changed within the predetermined range.

しかしながら、上記対数螺旋鏡1のように、原点から反射面1aまでの距離が対数状に変化する曲面構造のものは製造しにくく、高い精度を得るためにはコストが高くなる。   However, a curved surface structure in which the distance from the origin to the reflecting surface 1a varies in a logarithmic manner like the logarithmic spiral mirror 1 is difficult to manufacture, and the cost increases in order to obtain high accuracy.

また、反射面1aは曲面であるため、この反射面1aで2回反射して出射される光のビームは入射光に対して広がってしまい、ビーム広がりが問題となる場合のマイケルソン干渉計等には使用困難となり、用途が限定される。   Further, since the reflecting surface 1a is a curved surface, the light beam that is reflected twice by the reflecting surface 1a and emitted is spread with respect to the incident light, and a Michelson interferometer or the like when beam spreading becomes a problem It becomes difficult to use, and its application is limited.

また、上記のように対数螺旋鏡1を往復回動させる構造のものでは、必然的に対数螺旋鏡1が回転軸(主軸2)に対して非対称となり、高速に往復回動させたとき振動が発生し、この振動により装置が破壊しやすい。よって、振動が発生しない程度の低速動作(例えば数100Hz程度の往復動作)で使用しなければならない。   Further, in the structure in which the logarithmic spiral mirror 1 is reciprocally rotated as described above, the logarithmic spiral mirror 1 is inevitably asymmetric with respect to the rotation axis (main shaft 2), and vibration occurs when the logarithmic spiral mirror 1 is reciprocally rotated at high speed. This occurs and the device is easily destroyed by this vibration. Therefore, it must be used in a low-speed operation that does not generate vibration (for example, a reciprocating operation of about several hundred Hz).

本発明は、これらの問題を解決し、低コストで、出射光のビーム広がりが発生せず、光路長を高速に繰り返し可変できる光遅延器を提供することを目的としている。   An object of the present invention is to solve these problems, and to provide an optical delay device capable of repeatedly changing an optical path length at a high speed without causing a beam spread of emitted light at a low cost.

前記目的を達成するために、本発明の請求項1の光遅延器は、
一面側に反射面が形成された平板状のミラー本体(22)を有し、該ミラー本体をその反射面と平行な軸を中心に回動させるように構成され、前記軸に直交する平面に沿って入射される入射光(Sa)を前記反射面で受ける回動ミラー(21)と、
複数の平面状の反射面を有し、前記入射光に対して前記回動ミラーから出射される1次反射光(Sb)を受けて、該1次反射光の光軸と平行で且つ離間した光軸の2次反射光(Sc)を前記回動ミラーへ出射する第1の反射体(40)と、
前記2次反射光を受けた前記回動ミラーから前記入射光の光軸と平行な光軸で出射された3次反射光(Sd)を、該3次反射光の光軸と直交する平面状の反射面で受けて該3次反射光と一致する光軸の4次反射光(Se)を前記回動ミラーへ出射する第2の反射体(50)とを有し、
前記4次反射光を受けた前記回動ミラーから前記2次反射光と一致する光軸で前記第1の反射体へ5次反射光(Sf)を出射させ、該5次反射光を受けた前記第1の反射体から前記1次反射光と一致する光軸で前記回動ミラーへ6次反射光(Sg)を出射させて、該6次反射光を受けた前記回動ミラーから前記入射光と一致する光軸で7次反射光(Sh)を出射させるとともに、前記入射光に対して前記7次反射光が出射されるまでに至る光路長が、前記ミラー本体の回動により連続的に変化するように構成したことを特徴としている。
In order to achieve the above object, an optical delay device according to claim 1 of the present invention comprises:
It has a flat mirror body (22) having a reflecting surface formed on one surface side, and is configured to rotate the mirror body about an axis parallel to the reflecting surface, on a plane orthogonal to the axis. A rotating mirror (21) that receives incident light (Sa) incident along the reflecting surface,
It has a plurality of planar reflecting surfaces, receives primary reflected light (Sb) emitted from the rotating mirror with respect to the incident light, and is parallel to and spaced from the optical axis of the primary reflected light A first reflector (40) for emitting secondary reflected light (Sc) of the optical axis to the rotating mirror;
The third-order reflected light (Sd) emitted from the rotating mirror that has received the second-order reflected light with an optical axis parallel to the optical axis of the incident light is a planar shape orthogonal to the optical axis of the third-order reflected light. And a second reflector (50) for emitting the fourth-order reflected light (Se) having an optical axis that coincides with the third-order reflected light to the rotating mirror.
The fifth-order reflected light (Sf) is emitted from the rotating mirror that has received the fourth-order reflected light to the first reflector with an optical axis that matches the second-order reflected light, and the fifth-order reflected light is received. A sixth-order reflected light (Sg) is emitted from the first reflector to the rotating mirror with an optical axis coinciding with the first-order reflected light, and the incident light enters the rotating mirror that has received the sixth-order reflected light. The seventh-order reflected light (Sh) is emitted with an optical axis that coincides with the incident light, and the optical path length until the seventh-order reflected light is emitted with respect to the incident light is continuously increased by the rotation of the mirror body. It is characterized by being configured to change.

また、本発明の請求項2の光遅延器は、請求項1記載の光遅延器において、
前記回動ミラーは、
前記ミラー本体(22)と、固定基板(24、25)と、前記固定基板の縁部と前記ミラー本体の外縁との間を連結し且つ長さ方向に捩れ変形して、前記ミラー本体を回動自在に支持する軸(23)と、前記ミラー本体と前記軸とで決まる固有振動数に対応した周波数の駆動信号により前記ミラー本体に力を与えて、前記ミラー本体を前記固有振動で往復回動させる回動駆動手段(30、31、35)とを有していることを特徴としている。
The optical delay device according to claim 2 of the present invention is the optical delay device according to claim 1,
The rotating mirror is
The mirror body (22), the fixed substrate (24, 25), the edge of the fixed substrate and the outer edge of the mirror body are connected and twisted in the length direction to deform the mirror body. A force is applied to the mirror body by a drive signal having a frequency corresponding to a natural frequency determined by the shaft (23) that is movably supported and the mirror body and the shaft, and the mirror body is reciprocated by the natural vibration. It has the rotation drive means (30, 31, 35) to move.

また、本発明の請求項3の光遅延器は、請求項1または請求項2記載の光遅延器において、
前記第1の反射体は、コーナーミラー、コーナープリズム、直角ミラーまたは直角プリズムのいずれかであることを特徴としている。
The optical delay device according to claim 3 of the present invention is the optical delay device according to claim 1 or 2,
The first reflector is any one of a corner mirror, a corner prism, a right angle mirror, and a right angle prism.

このように本発明の光遅延器は、第1の反射体および第2の反射体が平面状の反射面で光を反射する構造であり、回動ミラーを含め製造が容易で、低コストに構成でき、しかも、ビーム広がりが発生しないので、前記したマイケルソン干渉計等に用いても問題なく、用途が広い。   As described above, the optical delay device of the present invention has a structure in which the first reflector and the second reflector reflect light on the planar reflecting surface, and is easy to manufacture including a rotating mirror, at low cost. Since it can be configured, and no beam divergence occurs, there is no problem even if it is used in the Michelson interferometer or the like, and the application is wide.

また、平板構造のミラー本体を往復回動させて、光路長を可変する構造であるので、対称構造にでき光路長を高速に変化させることができる。   In addition, since the optical path length is variable by reciprocatingly rotating the flat mirror body, the optical path length can be changed at high speed.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した実施形態の光遅延器20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an optical delay device 20 according to an embodiment to which the present invention is applied.

図1に示しているように、この光遅延器20は、回動ミラー21、第1の反射体40および第2の反射体50を有している。   As shown in FIG. 1, the optical delay device 20 includes a rotating mirror 21, a first reflector 40, and a second reflector 50.

回動ミラー21は、一面側に光を反射するための反射面22aが形成されている平板状のミラー本体22を有し、このミラー本体22を反射面22aと平行な軸23を中心に往復回動させるように構成されている。   The rotating mirror 21 has a flat mirror body 22 having a reflecting surface 22a for reflecting light on one surface side, and the mirror body 22 reciprocates around an axis 23 parallel to the reflecting surface 22a. It is comprised so that it may rotate.

回動ミラー21は、所謂MEMS(Micro Electro Mechanical
System)技術により形成され、半導体基板のエッチング技術を利用して小型に且つ高い寸法精度で構成されている。
The rotating mirror 21 is a so-called MEMS (Micro Electro Mechanical).
System) technology, and is configured in a small size and with high dimensional accuracy using a semiconductor substrate etching technology.

図2は、回動ミラー21の具体的な構成例を示したものである。図2において、ミラー本体22は横長矩形の平板状に形成され、その一面側に反射面22aが形成されている。ミラー本体22の上下には、横長矩形の固定基板24、25が平行に配置されている。   FIG. 2 shows a specific configuration example of the rotating mirror 21. In FIG. 2, the mirror main body 22 is formed in a horizontally-long rectangular flat plate shape, and a reflection surface 22a is formed on one surface side thereof. Horizontally-long rectangular fixed substrates 24 and 25 are arranged in parallel above and below the mirror body 22.

上側の固定基板24の下縁中央とミラー本体22の上縁中央の間および下側の固定基板25の上縁中央とミラー本体22の下縁中央の間は、互いに一直線状に並んだ軸23、23によって連結されている。   Between the lower edge center of the upper fixed substrate 24 and the upper edge center of the mirror body 22, and between the upper edge center of the lower fixed substrate 25 and the lower edge center of the mirror body 22, the shafts 23 are aligned with each other. , 23.

この軸23の幅および厚さは、長さ方向に所望の回動角度範囲において捩れ変形し、またその変形状態から復帰できるように設定されており、この上下一対の軸23の捩れ変形により、ミラー本体22は、固定基板24、25に対してその軸23を中心に往復回動できるようになっている。ただし、軸23の厚さは、ミラー本体22、固定基板24、25の厚さと共通である。   The width and thickness of the shaft 23 are set so as to be torsionally deformed in a desired rotational angle range in the length direction and to return from the deformed state. By the torsional deformation of the pair of upper and lower shafts 23, The mirror main body 22 can reciprocate around the axis 23 with respect to the fixed substrates 24 and 25. However, the thickness of the shaft 23 is the same as the thickness of the mirror main body 22 and the fixed substrates 24 and 25.

また、このようにミラー本体22、固定基板24、25および軸23で一体的に形成されたブロックは、回転駆動力を静電的に与えるために導電性を有している。   Further, the block formed integrally with the mirror main body 22, the fixed substrates 24 and 25 and the shaft 23 in this way has conductivity in order to electrostatically apply a rotational driving force.

なお、ここでは2つの互いに分離した固定基板24、25を用いているが、この固定基板24、25の両端間を連結して枠状に形成した一つの固定基板の内側に、2本の軸23を介してミラー本体22を回動自在に支持する構造であってもよい。   Here, two fixed substrates 24 and 25 separated from each other are used. However, two shafts are formed inside one fixed substrate formed in a frame shape by connecting both ends of the fixed substrates 24 and 25. A structure in which the mirror main body 22 is rotatably supported via 23 may be used.

固定基板24、25は、絶縁性を有する支持基板26の一面側に互いに平行に設けられたスペーサ27、28の上に重なり合うように固定されている。また、支持基板26の一面側で、ミラー本体22の背面の両端に対向する位置には、電極板30、31が固定されている。   The fixed substrates 24 and 25 are fixed so as to overlap on spacers 27 and 28 provided in parallel to each other on one surface side of the supporting substrate 26 having an insulating property. In addition, electrode plates 30 and 31 are fixed at positions facing one end of the back surface of the mirror body 22 on one side of the support substrate 26.

そして、この一対の電極板30、31と、ミラー本体22を含むブロックの間には、駆動信号発生器35から図3の(a)、(b)のように、互いに電圧レベルが反転する駆動信号Va、Vbが印加される。   Then, between the pair of electrode plates 30 and 31 and the block including the mirror main body 22, the drive signal generator 35 drives the voltage levels to be inverted as shown in FIGS. 3A and 3B. Signals Va and Vb are applied.

この駆動信号Va、Vbにより、電極板30、31とミラー本体22の背面両端との間に、静電的な吸引力が交互に生じ、ミラー本体22が往復回動する。   Due to the drive signals Va and Vb, electrostatic attraction force is alternately generated between the electrode plates 30 and 31 and both ends of the back surface of the mirror body 22, and the mirror body 22 reciprocates.

なお、駆動信号Va、Vbの周波数は、ミラー本体22の形状や重さ、軸23のバネ定数などで決まるミラー本体22の固有振動数に対応した値に設定されているので、少ない駆動電力で大きな回動振幅が得られる。   The frequencies of the drive signals Va and Vb are set to values corresponding to the natural frequency of the mirror main body 22 determined by the shape and weight of the mirror main body 22, the spring constant of the shaft 23, and the like. A large rotation amplitude is obtained.

また、前記したように、この回動ミラー21は、MEMS技術によりミラー本体22を含めて全体的に非常に小型且つ軽量に形成され、しかも、ミラー本体22の形状を限定する要素はないので、この例のように軸23に対して左右対称に形成できる。   Further, as described above, the rotating mirror 21 is formed to be very small and lightweight as a whole including the mirror main body 22 by the MEMS technology, and there is no element that limits the shape of the mirror main body 22. As in this example, it can be formed symmetrically with respect to the axis 23.

したがって、振動を生じることなく、ミラー本体22を数100Hz〜数10kHzで高速に往復回動させることができる。   Therefore, the mirror main body 22 can be reciprocated at a high speed at several hundred Hz to several tens of kHz without generating vibration.

また、ここでは光路長を連続的に繰り返し可変するために、回動ミラー21を連続的に往復回動させているが、回動ミラー21を任意の角度に停止できるように制御してもよく、その場合には、駆動信号発生器35からいずれか一方の電極板に一定電圧を印加すればよい。   Here, in order to continuously and repeatedly vary the optical path length, the rotating mirror 21 is continuously reciprocally rotated. However, the rotating mirror 21 may be controlled so as to be stopped at an arbitrary angle. In that case, a constant voltage may be applied from the drive signal generator 35 to any one of the electrode plates.

なお、回動ミラー21の構造は、上記のものに限定されるものではなく、種々の形状変更が可能であり、また、駆動方式も前記した静電的な力だけでなく、磁石やコイルを用いて得られる磁気的な力を用いてもよい。また、圧電素子等を用いて機械的な力を与えてもよい。   The structure of the rotating mirror 21 is not limited to the above-described one, and various shapes can be changed. The driving system is not limited to the electrostatic force described above, but includes a magnet and a coil. You may use the magnetic force obtained by using. Further, a mechanical force may be applied using a piezoelectric element or the like.

この回動ミラー21のミラー本体22の反射面22aの端には、図1に示しているように、軸23に直交する平面と平行な光軸Laの光Saが入射される。   As shown in FIG. 1, light Sa having an optical axis La parallel to a plane orthogonal to the axis 23 is incident on the end of the reflecting surface 22 a of the mirror body 22 of the rotating mirror 21.

この入射光Saを受けた回動ミラー21から出射される1次反射光Sbは、第1の反射体40に入射される。   The primary reflected light Sb emitted from the rotating mirror 21 that has received the incident light Sa is incident on the first reflector 40.

第1の反射体40は、入射光Saに対して回動ミラー21から出射される1次反射光Sbを受けて、その1次反射光Sbの光軸Lbと平行で且つ離間した光軸Lcの2次反射光Scを回動ミラー21へ出射するためのものであり、この実施形態では、第1の反射体40として、図4に示すように、外形が直角2等辺三角形で所定の厚さを有する直角プリズムを用いている。   The first reflector 40 receives the primary reflected light Sb emitted from the rotating mirror 21 with respect to the incident light Sa, and the optical axis Lc parallel to and spaced from the optical axis Lb of the primary reflected light Sb. The secondary reflected light Sc is emitted to the rotating mirror 21. In this embodiment, as shown in FIG. 4, the outer shape of the first reflector 40 is a right isosceles triangle and has a predetermined thickness. A right angle prism having a thickness is used.

この直角プリズムの互いに直交する2つの端面40a、40bは、その直角の対辺に沿った端面40c側から所定範囲の角度で内部に入射する光に対して全反射する性質を有しており、このような角度範囲の状態では、2つの端面40a、40bが反射面をなすので、以下の説明では、この2つの直交する端面を反射面40a、40bと表記する。   The two end faces 40a and 40b orthogonal to each other of the right-angle prism have a property of totally reflecting light incident on the inside at a predetermined range angle from the end face 40c side along the opposite side of the right angle. In the state of such an angle range, the two end surfaces 40a and 40b form a reflecting surface. Therefore, in the following description, these two orthogonal end surfaces are referred to as reflecting surfaces 40a and 40b.

なお、より確実な反射特性を得るために、直角プリズムの反射面40a、40bに反射材をコーティングしてもよい。   In order to obtain more reliable reflection characteristics, a reflecting material may be coated on the reflecting surfaces 40a and 40b of the right-angle prism.

第1の反射体40から2次反射光Scを受けた回動ミラー21からは、入射光Saの光軸Laと平行な光軸Ldの3次反射光Sdが第2の反射体50へ向かって出射される。   From the rotating mirror 21 that has received the secondary reflected light Sc from the first reflector 40, the tertiary reflected light Sd of the optical axis Ld parallel to the optical axis La of the incident light Sa travels toward the second reflector 50. Are emitted.

第2の反射体50は、例えば平面ミラーからなり、3次反射光Sdをその光軸Ldと直交する平面状の反射面50aで受けて、4次反射光Seを3次反射光Sdと一致する光軸Ldで回動ミラー21へ戻す。   The second reflector 50 is made of, for example, a plane mirror, and receives the third-order reflected light Sd by a planar reflecting surface 50a orthogonal to the optical axis Ld, and matches the fourth-order reflected light Se with the third-order reflected light Sd. The optical axis Ld is returned to the rotating mirror 21.

したがって、この4次反射光Seを受けた回動ミラー21からは、2次反射光Scと一致する光軸Lcで第1の反射体40へ向かって5次反射光Sfが出射され、この5次反射光Sfを受けた第1の反射体40からは、1次反射光Sbと一致する光軸Lbで回動ミラー21へ向かって6次反射光Sgが出射され、その6次反射光Sgを受けた回動ミラー21からは、入射光Saと一致する光軸Laで7次反射光Shが出射されることになる。   Accordingly, the rotating mirror 21 that has received the fourth-order reflected light Se emits the fifth-order reflected light Sf toward the first reflector 40 along the optical axis Lc that coincides with the second-order reflected light Sc. From the first reflector 40 that has received the secondary reflected light Sf, the sixth reflected light Sg is emitted toward the rotating mirror 21 along the optical axis Lb that coincides with the primary reflected light Sb, and the sixth reflected light Sg. The seventh-order reflected light Sh is emitted from the rotating mirror 21 that has received the light with the optical axis La coinciding with the incident light Sa.

ここで、光軸La、Ldは、第1の反射体40の端面40cと平行で、回動ミラー21のミラー本体22は、図1に示しているように、その反射面22aと光軸La、Ldのなす角度が所定値θ(例えば41°)を中心にして数度(例えば±3°)の範囲を往復回動するものとする。   Here, the optical axes La and Ld are parallel to the end surface 40c of the first reflector 40, and the mirror main body 22 of the rotating mirror 21 has its reflecting surface 22a and the optical axis La as shown in FIG. , Ld is reciprocally rotated within a range of several degrees (eg, ± 3 °) around a predetermined value θ (eg, 41 °).

また、この実施形態では、各光軸La〜Ldが同一平面内に含まれるものとするが、第1の反射体40の構造によっては、光軸La、Lbが含まれる平面と、光軸Lc、Ldが含まれる平面との間に段差が生じる場合もある。   In this embodiment, the optical axes La to Ld are included in the same plane. However, depending on the structure of the first reflector 40, the plane including the optical axes La and Lb and the optical axis Lc are included. , There may be a step between the plane including Ld.

上記構成の光遅延器20の場合、ミラー本体22の反射面22aが、光軸Laに対して角θをなしている状態において、光軸La上の点Xから入射した光Saに対する7次反射光Shが点Xまで戻ってくるまでの全体の光路長P(θ)は、
P(θ)=2[A(θ)+B(θ)+C(θ)+D(θ)+Q(θ)]
と表すことができる。
In the case of the optical delay device 20 having the above configuration, the seventh-order reflection with respect to the light Sa incident from the point X on the optical axis La in a state where the reflection surface 22a of the mirror body 22 forms an angle θ with respect to the optical axis La. The total optical path length P (θ) until the light Sh returns to the point X is
P (θ) = 2 [A (θ) + B (θ) + C (θ) + D (θ) + Q (θ)]
It can be expressed as.

ここで、光路長A(θ)は、光軸La上の点Xから、ミラー本体22の反射面22aと光軸Laとが交わる点Xaまでの距離、光路長B(θ)は、点Xaから光軸Lbと第1の反射体40の端面40cとが交わる点Xbまでの距離、光路長C(θ)は、光軸Lcと第1の反射体40の端面40cとが交わる点Xcから、光軸Lcとミラー本体22の反射面22aとが交わる点Xdまでの距離、光路長D(θ)は、点Xdから、光軸Ldと第2の反射体50の反射面50aとが交わる点Xeまでの距離である。   Here, the optical path length A (θ) is the distance from the point X on the optical axis La to the point Xa where the reflecting surface 22a of the mirror body 22 and the optical axis La intersect, and the optical path length B (θ) is the point Xa. The optical path length C (θ) from the point Xc where the optical axis Lb and the end surface 40c of the first reflector 40 intersect is the distance from the point Xb where the optical axis Lb and the end surface 40c of the first reflector 40 intersect. The distance to the point Xd where the optical axis Lc and the reflecting surface 22a of the mirror body 22 intersect, and the optical path length D (θ), from the point Xd, the optical axis Ld and the reflecting surface 50a of the second reflector 50 intersect. This is the distance to the point Xe.

また、光路長Q(θ)は、第1の反射体40内で、点Xbから反射面40a、40bを経て点Xcに至る光路長の総和である。   Further, the optical path length Q (θ) is the sum of the optical path lengths from the point Xb to the point Xc through the reflecting surfaces 40a and 40b in the first reflector 40.

ここでは上記の光路長の詳細式は示さないが、光路長P(θ)は、θに関する正弦関数におおよそ近似され、上記各光路のうち光路長A(θ)の変化分が支配的であることが分かっている。   Although the detailed equation of the optical path length is not shown here, the optical path length P (θ) is approximately approximated by a sine function relating to θ, and the change in the optical path length A (θ) is dominant among the optical paths. I know that.

したがって、例えば図1に示した状態から、ミラー本体22が、図5の(a)のように、角度θaまで時計回りに回転したとき、光路長A(θa)は光路長A(θ)より短くなるので、全体の光路長P(θa)も光路長P(θ)より短くなる。   Therefore, for example, when the mirror main body 22 rotates clockwise from the state shown in FIG. 1 to the angle θa as shown in FIG. 5A, the optical path length A (θa) is greater than the optical path length A (θ). Since it becomes shorter, the entire optical path length P (θa) is also shorter than the optical path length P (θ).

また、逆に、ミラー本体22が、図5の(b)のように、角度θbまで反時計回りに回転したとき、光路長A(θb)は光路長A(θ)より長くなるので、全体の光路長P(θb)も光路長P(θ)より長くなる。   Conversely, when the mirror body 22 rotates counterclockwise to the angle θb as shown in FIG. 5B, the optical path length A (θb) becomes longer than the optical path length A (θ). The optical path length P (θb) is longer than the optical path length P (θ).

図6は、θを±3°の範囲で変化させたときの光路長P(θ)の変化特性(−3°の光路長を基準としている)を示している。この図6から明らかなように、θを±3°の範囲で変化させたとき、1mm以上の光路長P(θ)の変化が得られる。   FIG. 6 shows a change characteristic of the optical path length P (θ) when θ is changed in a range of ± 3 ° (based on an optical path length of −3 °). As is apparent from FIG. 6, when θ is changed in a range of ± 3 °, a change in the optical path length P (θ) of 1 mm or more can be obtained.

なお、回動ミラー21の初期位置や第1の反射体40に対する相対位置を設定することによって、光路長の変化特性を、例えばθが0°のときに光路長が最大になる等、所望の形にすることができる。   By setting the initial position of the rotating mirror 21 and the relative position with respect to the first reflector 40, the change characteristic of the optical path length can be set as desired, for example, when the optical path length is maximized when θ is 0 °. Can be shaped.

このように実施形態の光遅延器20は、平板構造のミラー本体22に対して光を折り返すための第1の反射体40および第2の反射体50が、平面状の反射面で光を反射する構造であるので、回動ミラー20を含め製造が容易で、低コストに構成でき、しかも、ビーム広がりが発生しないので、マイケルソン干渉計等に用いても問題なく、用途が広い。   As described above, in the optical delay device 20 according to the embodiment, the first reflector 40 and the second reflector 50 for returning light to the mirror body 22 having a flat structure reflect the light on the planar reflection surface. Therefore, since the rotating mirror 20 is easily manufactured and can be configured at low cost, and there is no beam divergence, there is no problem even if it is used for a Michelson interferometer or the like, and the application is wide.

また、平板構造のミラー本体22を往復回動させて光路長を可変する構造であるので、回動軸に対してミラー本体を対称構造にでき、振動を発生させることなく、光路長を高速に変化させることができる。   In addition, since the optical path length is variable by reciprocatingly rotating the flat mirror body 22, the mirror body can be symmetrical with respect to the rotation axis, and the optical path length can be increased at high speed without generating vibration. Can be changed.

上記した光遅延器20では、第1の反射体40として直角プリズムを用いていたが、第1の反射体40としては、複数の平面状の反射面を有し、入射光Saに対して回動ミラー21から出射される1次反射光Sbを受けて、その1次反射光Sbの光軸Lbと平行で且つ離間した光軸Lcの2次反射光Scを回動ミラー21へ出射できるものであれば、その構造は任意である。   In the optical delay device 20 described above, a right-angle prism is used as the first reflector 40. However, the first reflector 40 has a plurality of planar reflecting surfaces, and rotates with respect to the incident light Sa. The primary reflected light Sb emitted from the moving mirror 21 can be received, and the secondary reflected light Sc of the optical axis Lc parallel to and separated from the optical axis Lb of the primary reflected light Sb can be emitted to the rotating mirror 21. If so, the structure is arbitrary.

例えば、第1の反射体40として、図7に示すように2つの互いに直交する反射面40a′、40b′を有する直角ミラーを用い、光遅延器20を図8のように構成してもよい。   For example, as the first reflector 40, a right angle mirror having two mutually orthogonal reflecting surfaces 40a 'and 40b' as shown in FIG. 7 may be used, and the optical delay device 20 may be configured as shown in FIG. .

また、第1の反射体40として、図9の(a)に示すように、互いに直交する3つの平面状の反射面40d、40e、40fを有するコーナープリズム、あるいは図9の(b)に示すように、互いに直交する3つの平面状の反射面40d′、40e′、40f′を有するコーナーミラーを用いることもでき、4つ以上の平面状の反射面を有す反射体を用いてもよい。   As the first reflector 40, as shown in FIG. 9A, a corner prism having three planar reflecting surfaces 40d, 40e, and 40f orthogonal to each other, or shown in FIG. 9B. As described above, a corner mirror having three planar reflecting surfaces 40d ', 40e', and 40f 'orthogonal to each other can be used, and a reflector having four or more planar reflecting surfaces can be used. .

また、上記説明では、入射光Saをミラー本体22の反射面22aの第1の反射体40から遠い方の端に入射し、その反対の端までのほぼ全域を用いて2次反射光や4次反射光を受けているが、逆に、入射光Saをミラー本体22の反射面22aの第1の反射体40に近い方の端に入射し、その反対の端までのほぼ全域を用いて2次反射光や4次反射光を受けてもよい。また、ミラー本体22の反射面22aの半分の領域だけを用いてもよい。   Further, in the above description, the incident light Sa is incident on the end of the reflecting surface 22a of the mirror body 22 far from the first reflector 40, and the secondary reflected light or 4 is used using almost the entire area up to the opposite end. The next reflected light is received, but conversely, the incident light Sa is incident on the end of the reflecting surface 22a of the mirror body 22 that is closer to the first reflector 40, and the almost entire area up to the opposite end is used. You may receive secondary reflected light and quaternary reflected light. Further, only a half region of the reflection surface 22a of the mirror body 22 may be used.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 本発明の実施形態の要部の構成例を示す図The figure which shows the structural example of the principal part of embodiment of this invention. 本発明の実施形態の要部の駆動信号図Drive signal diagram of main part of embodiment of the present invention 本発明の実施形態の要部の斜視図The perspective view of the principal part of embodiment of this invention 本発明の実施形態の動作説明図Operation explanatory diagram of the embodiment of the present invention 本発明の実施形態のミラー角度に対する光路長の変化特性を示す図The figure which shows the change characteristic of the optical path length with respect to the mirror angle of embodiment of this invention 本発明の第1の反射体として使用可能な直角ミラーの斜視図The perspective view of the right angle mirror which can be used as the 1st reflector of this invention 第1の反射体として直角ミラーを用いた光遅延器を示す図The figure which shows the optical delay device which used the right-angle mirror as a 1st reflector. 第1の反射体として使用可能なコーナープリズム、コーナーミラーの斜視図Perspective view of corner prism and corner mirror usable as first reflector 従来装置の概略構成図Schematic configuration diagram of conventional equipment 従来装置の動作説明図Operation explanatory diagram of conventional equipment

符号の説明Explanation of symbols

20……光遅延器、21……回動ミラー、22……ミラー本体、22a……反射面、23……軸、24、25……固定基板、26……支持基板、27、28……スペーサ、30、31……電極板、35……駆動信号発生器、40……第1の反射体、40a、40b……反射面、50……第2の反射体、50a……反射面   20 …… Optical delay device, 21 …… Rotating mirror, 22 …… Mirror body, 22a …… Reflective surface, 23 …… Axis, 24, 25 …… Fixed substrate, 26 …… Support substrate, 27, 28 …… Spacer, 30, 31 ... Electrode plate, 35 ... Drive signal generator, 40 ... First reflector, 40a, 40b ... Reflective surface, 50 ... Second reflector, 50a ... Reflective surface

Claims (3)

一面側に反射面が形成された平板状のミラー本体(22)を有し、該ミラー本体をその反射面と平行な軸を中心に回動させるように構成され、前記軸に直交する平面に沿って入射される入射光(Sa)を前記反射面で受ける回動ミラー(21)と、
複数の平面状の反射面を有し、前記入射光に対して前記回動ミラーから出射される1次反射光(Sb)を受けて、該1次反射光の光軸と平行で且つ離間した光軸の2次反射光(Sc)を前記回動ミラーへ出射する第1の反射体(40)と、
前記2次反射光を受けた前記回動ミラーから前記入射光の光軸と平行な光軸で出射された3次反射光(Sd)を、該3次反射光の光軸と直交する平面状の反射面で受けて該3次反射光と一致する光軸の4次反射光(Se)を前記回動ミラーへ出射する第2の反射体(50)とを有し、
前記4次反射光を受けた前記回動ミラーから前記2次反射光と一致する光軸で前記第1の反射体へ5次反射光(Sf)を出射させ、該5次反射光を受けた前記第1の反射体から前記1次反射光と一致する光軸で前記回動ミラーへ6次反射光(Sg)を出射させて、該6次反射光を受けた前記回動ミラーから前記入射光と一致する光軸で7次反射光(Sh)を出射させるとともに、前記入射光に対して前記7次反射光が出射されるまでに至る光路長が、前記ミラー本体の回動により連続的に変化するように構成したことを特徴とする光遅延器。
It has a flat mirror body (22) having a reflecting surface formed on one surface side, and is configured to rotate the mirror body about an axis parallel to the reflecting surface, on a plane orthogonal to the axis. A rotating mirror (21) that receives incident light (Sa) incident along the reflecting surface,
It has a plurality of planar reflecting surfaces, receives primary reflected light (Sb) emitted from the rotating mirror with respect to the incident light, and is parallel to and spaced from the optical axis of the primary reflected light A first reflector (40) for emitting secondary reflected light (Sc) of the optical axis to the rotating mirror;
The third-order reflected light (Sd) emitted from the rotating mirror that has received the second-order reflected light with an optical axis parallel to the optical axis of the incident light is a planar shape orthogonal to the optical axis of the third-order reflected light. And a second reflector (50) for emitting the fourth-order reflected light (Se) having an optical axis that coincides with the third-order reflected light to the rotating mirror.
The fifth-order reflected light (Sf) is emitted from the rotating mirror that has received the fourth-order reflected light to the first reflector with an optical axis that matches the second-order reflected light, and the fifth-order reflected light is received. A sixth-order reflected light (Sg) is emitted from the first reflector to the rotating mirror with an optical axis coinciding with the first-order reflected light, and the incident light enters the rotating mirror that has received the sixth-order reflected light. The seventh-order reflected light (Sh) is emitted with an optical axis that coincides with the incident light, and the optical path length until the seventh-order reflected light is emitted with respect to the incident light is continuously increased by the rotation of the mirror body. An optical delay device configured to change to
前記回動ミラーは、
前記ミラー本体(22)と、固定基板(24、25)と、前記固定基板の縁部と前記ミラー本体の外縁との間を連結し且つ長さ方向に捩れ変形して、前記ミラー本体を回動自在に支持する軸(23)と、前記ミラー本体と前記軸とで決まる固有振動数に対応した周波数の駆動信号により前記ミラー本体に力を与えて、前記ミラー本体を前記固有振動で往復回動させる回動駆動手段(30、31、35)とを有していることを特徴とする請求項1記載の光遅延器。
The rotating mirror is
The mirror body (22), the fixed substrate (24, 25), the edge of the fixed substrate and the outer edge of the mirror body are connected and twisted in the length direction to deform the mirror body. A force is applied to the mirror body by a drive signal having a frequency corresponding to a natural frequency determined by the shaft (23) that is movably supported and the mirror body and the shaft, and the mirror body is reciprocated by the natural vibration. 2. An optical delay device according to claim 1, further comprising a rotation drive means (30, 31, 35) for moving the optical delay device.
前記第1の反射体は、コーナーミラー、コーナープリズム、直角ミラーまたは直角プリズムのいずれかであることを特徴とする請求項1または請求項2記載の光遅延器。   3. The optical delay device according to claim 1, wherein the first reflector is any one of a corner mirror, a corner prism, a right-angle mirror, and a right-angle prism.
JP2004289943A 2004-10-01 2004-10-01 Optical delay Expired - Fee Related JP4113869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289943A JP4113869B2 (en) 2004-10-01 2004-10-01 Optical delay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289943A JP4113869B2 (en) 2004-10-01 2004-10-01 Optical delay

Publications (2)

Publication Number Publication Date
JP2006106169A JP2006106169A (en) 2006-04-20
JP4113869B2 true JP4113869B2 (en) 2008-07-09

Family

ID=36376008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289943A Expired - Fee Related JP4113869B2 (en) 2004-10-01 2004-10-01 Optical delay

Country Status (1)

Country Link
JP (1) JP4113869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341546B2 (en) * 2016-02-24 2018-06-13 Necプラットフォームズ株式会社 Light energy time division distribution device, plant factory, building, light energy time division distribution method and rotating cylinder

Also Published As

Publication number Publication date
JP2006106169A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4073886B2 (en) Variable wavelength light source
KR20170099829A (en) Actuator
JP6733709B2 (en) MEMS reflector system
CN110312944B (en) MEMS scanning module for optical scanner
JP4385938B2 (en) Actuator
US10746982B2 (en) Electrostatically actuated oscillating structure with oscillation starting phase control, and manufacturing and driving method thereof
EP2869110A1 (en) Optical scanner, image display device, head mount display, and head-up display
KR100586967B1 (en) Actuator and attenuator motivated by rotational type comb
US9772490B2 (en) Optical scanner, image display device, head mount display, and heads-up display
WO2005109076A1 (en) Electrostatic drive type mems mirror scanner
US8238011B1 (en) MEMS device with off-axis actuator
JPWO2008044470A1 (en) Optical scanning device
US20150116806A1 (en) Optical scanner, image display device, head mount display, and heads-up display
CN104272166A (en) Optical reflection element
JP2012058527A (en) Light deflector, optical scanner, image forming device, and image projection device
JP2009204818A (en) Optical scanner
JP4113869B2 (en) Optical delay
JP2005033989A (en) Multiple-degree-of-freedoms oscillatory actuator
CN108061966A (en) A kind of micro mirror for having both translation and rotation work pattern
JP2004354719A (en) Scanner
JP3968359B2 (en) Optical delay
JP2001264676A (en) Optical scanner
JP2022032538A (en) Optical deflection device, optical scanning device and optical scanning type distance measurement device
JPH03150733A (en) Rotary mirror device
EP3841423B1 (en) Reduced nonlinearities for resonant deflection of a scanning mirror

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees