JPH03150733A - Rotary mirror device - Google Patents

Rotary mirror device

Info

Publication number
JPH03150733A
JPH03150733A JP28818889A JP28818889A JPH03150733A JP H03150733 A JPH03150733 A JP H03150733A JP 28818889 A JP28818889 A JP 28818889A JP 28818889 A JP28818889 A JP 28818889A JP H03150733 A JPH03150733 A JP H03150733A
Authority
JP
Japan
Prior art keywords
mirror
mode
leaf spring
frequency
vibration mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28818889A
Other languages
Japanese (ja)
Inventor
Junichi Ichihara
市原 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28818889A priority Critical patent/JPH03150733A/en
Publication of JPH03150733A publication Critical patent/JPH03150733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To attain the stable control of the rotational vibrations of a mirror by deforming previously a leaf spring supporting the mirror into a form of a vibration mode of a secondary or more degrees. CONSTITUTION:Each of two leaf springs 47 and 49 is deformed into a form of a secondary deformation mode and fixed to a fixing stage 46 at one of both ends with the other end fixed to a holder 42 respectively. When a drive coil 44 is energized, the torque is produced by an electromagnetic driving mechanism 45 and a mirror 41 is revolved attending on the deformation of both springs 47 and 49 which are caused in a secondary vibration mode. In such a rotary mirror device 40, the resonance peak of the primary mode is secured at about 90Hz and no peak emerges in any area of a frequency higher than 90Hz. Thus a control hand area is increased without deteriorating the stability when the device 40 is used as a tracking actuator of an optical disk device. The same effect is also ensured with the deformation into the vibration modes of a secondary or more degrees.

Description

【発明の詳細な説明】 〔概要〕 光デイスク装置のトラッキングアクチュエータ等に適用
しつる回転鏡装置に関し、 n次と(n+1)次の振動モードの周波数の差が高次に
なるにつれて大となることに着目して、鏡の回転振動の
安定な制御を可能とすることを目的とし、 一端を固定されその自由端側に鏡を支持する平面状の板
ばねと、lII御信号に基づいて眼鏡にトルクを付与す
る駆動機構とよりなり、腰板ばねを撓ませつつ上記鏡を
回転振動させる回転鏡装置において、上記板ばねを、上
記回転鏡装置における上記平面状板ばねの二次以上の振
動モードの形状として組込んで構成する。
[Detailed Description of the Invention] [Summary] Regarding a rotating mirror device applied to a tracking actuator of an optical disk device, etc., the difference in frequency between the n-th and (n+1)th-order vibration modes increases as the order increases. With the aim of enabling stable control of the rotational vibration of the mirror, we developed a planar leaf spring that is fixed at one end and supports the mirror at its free end, and a flat spring that supports the mirror on its free end. In a rotating mirror device that includes a drive mechanism that applies torque and rotates and vibrates the mirror while deflecting a waist plate spring, the plate spring is driven by a vibration mode of the second or higher order of the planar plate spring in the rotating mirror device. Incorporate and configure as a shape.

〔産業上の利用分野〕[Industrial application field]

本発明は、光デイスク装置のトラフ1ングアクチユエー
タ等に適用しうる回転鏡装置に関する。
The present invention relates to a rotating mirror device that can be applied to a troughing actuator or the like of an optical disk device.

この種の装置は、1.+1wJの安定性が良好であり、
且つ制御帯域が広いことが望ましい。
This type of device is: 1. +1wJ stability is good,
Moreover, it is desirable that the control band be wide.

〔従来の技術〕[Conventional technology]

第13図は従来例を示す。1は鏡であり、一端側を、十
字形状に配された板ばね2,3及びホルダ4を介して支
持されている。
FIG. 13 shows a conventional example. Reference numeral 1 denotes a mirror, one end of which is supported via leaf springs 2, 3 arranged in a cross shape and a holder 4.

鏡1の自由端側には、1に固定された永久磁石片5と、
これを囲む固定コイル6とよりなり、矢印A+ 、A2
方向のトルクを付与する′IFi磁駆lJ機構7が設け
である。
On the free end side of the mirror 1, there is a permanent magnet piece 5 fixed to the mirror 1,
This is surrounded by a fixed coil 6, and arrows A+ and A2
An 'IFi magnetic drive lJ mechanism 7 is provided which applies a torque in the direction.

コイル6にトラッキングi、II御信号に基づく制御電
流が供給されると、電磁駆動機構7によりトルクが発生
し、!I!1は板ばね2.3を撓ませつつ往復回動(回
転振動)される。
When a control current based on the tracking i, II control signals is supplied to the coil 6, torque is generated by the electromagnetic drive mechanism 7, and! I! 1 is rotated back and forth (rotational vibration) while bending the leaf spring 2.3.

上記の構成を概略的に示すと第14図に示す如くになる
The above configuration is schematically shown in FIG. 14.

10は一枚の板ばねであり、上記の十字形状の板ばね構
造に対応する。
Reference numeral 10 indicates a single leaf spring, which corresponds to the above-mentioned cross-shaped leaf spring structure.

読1は板ばね10を撓ませつつ矢印A+ 、A2方°向
に回動し、半導体レーザ11より出射し、ここで反射し
て対物レンズ12を通って光ディスク13に集光される
レーザビーム14が矢印B++B2方向に振られ、トラ
ッキング制御される。
Reading 1 rotates in the directions of arrows A+ and A2 while bending the leaf spring 10, and a laser beam 14 is emitted from the semiconductor laser 11, reflected there, passes through the objective lens 12, and is focused on the optical disk 13. is swung in the direction of arrow B++B2 and tracking control is performed.

t*1の回転振動の周波数を徐々に上昇させたときに、
板ばね10はまず第15図に示すように一次の振動モー
ドで振動し、次いで、第16図に示す二次の振動モード
で振動し、更には第17図に示す三次の振動モードで振
動する。
When the frequency of rotational vibration at t*1 is gradually increased,
The leaf spring 10 first vibrates in a primary vibration mode as shown in FIG. 15, then in a secondary vibration mode as shown in FIG. 16, and then in a tertiary vibration mode as shown in FIG. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第18図は、駆動トルク当りのFAlの回転角(Q/T
)と鏡1の回転振動の周波数fとの関係を示す。
Figure 18 shows the rotation angle of FAl per driving torque (Q/T
) and the frequency f of the rotational vibration of the mirror 1.

、同図中、20は板ばね10の一次の振動モードによる
ピーク、21は二次の振動モードによるピーク、22は
三次の振動モードによるピークである。
, in the figure, 20 is a peak due to the primary vibration mode of the leaf spring 10, 21 is a peak due to the secondary vibration mode, and 22 is a peak due to the tertiary vibration mode.

第19図は鏡1の回転角と駆動トルク間の位相角中と、
111の回転振動の周波数fとの関係を示す。
Figure 19 shows the phase angle between the rotation angle of mirror 1 and the driving torque,
111 shows the relationship between rotational vibration frequency f of No. 111.

同図より、上記二次の振動モードによるピーク21に対
応する破線円23で囲んだ部分及び三次の振動モードに
よるピーク22に対応する破線円24で囲んだ部分で位
相の回りが生じており、回りの程度は前者が特に大きい
ことが分かる。
From the figure, the phase rotation occurs in the part surrounded by the broken line circle 23 corresponding to the peak 21 due to the second-order vibration mode and the part surrounded by the broken line circle 24 corresponding to the peak 22 due to the third-order vibration mode, It can be seen that the degree of rotation is particularly large in the former case.

また、三次の振動モードの周波数f3は、−次の振動モ
ードの周波数f+の数百倍であり、数千Hzと高いのに
対し、二次の振動モードの周波数f2は、周波数f1の
10倍程度であり、数100Hzと低い。
Furthermore, the frequency f3 of the third-order vibration mode is several hundred times higher than the frequency f+ of the -th-order vibration mode, which is as high as several thousand Hz, whereas the frequency f2 of the second-order vibration mode is 10 times the frequency f1. It is about 100 Hz, which is low.

このため、三次振動モードの振動は制御上の障害となり
にくいけれども、二次振動モードの振動がv4il上の
障害となり、鏡の振動の安定な1tiIIIIl、即ち
トラッキングの安定な制御が困難であった。
For this reason, although the vibration in the tertiary vibration mode is unlikely to become an obstacle in control, the vibration in the secondary vibration mode becomes an obstacle in v4il, making it difficult to control the mirror vibration stably 1tiIIII, that is, tracking stably.

本発明はn次と(n+1)次の振動モードの周波数の差
が高次になるにつれて大となることに着目して、鏡の回
転振動の安定なtilIIOを可能とした回転鏡装置を
提供することを目的とする。
The present invention focuses on the fact that the difference in frequency between the n-th and (n+1)th-order vibration modes increases as the order increases, and provides a rotating mirror device that enables stable tilIIO of rotational vibration of a mirror. The purpose is to

(課題を解決するための手段) 第1図は本発明の原理構成を示す。同図中、第14図に
示す構成部分と対応する部分には同一符号を付す。
(Means for Solving the Problems) FIG. 1 shows the basic configuration of the present invention. In the figure, parts corresponding to those shown in FIG. 14 are given the same reference numerals.

30は板ばねであり、第16図に示す二次の振動モード
の形状に対応した形状に組立時に変形されている。
Reference numeral 30 denotes a leaf spring, which is deformed during assembly into a shape corresponding to the shape of the secondary vibration mode shown in FIG.

〔作用〕[Effect]

電磁駆動機構7により矢印A+ 、A2方向のトルクが
゛作用し、鏡IG、i板ばね30を撓ませつつ回転駆動
される。
Torques in the directions of arrows A+ and A2 are applied by the electromagnetic drive mechanism 7, and the mirror IG and the i-plate spring 30 are rotated while being bent.

板ばね30が上記のような形状となっているため、−次
の振動モードは、第2図に示すようになり、第14図の
装置における二次の振動モードとなる。二次の振動モー
ドは、第3図に示すようになり、第14図の装置におけ
る三次の@動モードとなる。
Since the leaf spring 30 has the above-described shape, the -th vibration mode becomes as shown in FIG. 2, which is the second vibration mode in the device shown in FIG. 14. The second-order vibration mode becomes as shown in FIG. 3, and becomes the third-order vibration mode in the apparatus shown in FIG. 14.

このため、駆動トルク当りの11の回転角(θ/T)と
tlllの回転振動の周波数fとの関係は、第4図に示
す如くになる。
Therefore, the relationship between the rotational angle (θ/T) of 11 per drive torque and the frequency f of the rotational vibration of tllll is as shown in FIG.

31は一次の変形モードによるピークであり、その周波
数f+8は約100Hzである。
31 is a peak due to the first-order deformation mode, and its frequency f+8 is approximately 100 Hz.

32は二次の変形モードによるピークであり、その周波
数f2aは数1,000Hzと相当に高い。
32 is a peak due to the second-order deformation mode, and its frequency f2a is quite high at several 1,000 Hz.

従って、駆動トルクに体する周波数特性は、第4図に示
すように、数100Hzの低い周波数f’+aで−のピ
ーク31を有し、それ以上の周波数でこれに近い周波数
帯域では何らピークを有さすになだらかとなり、相当高
い周波数f2aで小さいピーク32を有するものとなる
。即ち、高次モードの共振が一次モードの共振の近くに
現われるということが無くなる。
Therefore, as shown in Fig. 4, the frequency characteristic associated with the driving torque has a negative peak 31 at a low frequency f'+a of several 100 Hz, and no peak at higher frequencies in a frequency band close to this. The curve becomes gradually smoother, and has a small peak 32 at a fairly high frequency f2a. That is, the higher-order mode resonance does not appear near the first-order mode resonance.

即ち、高次モードの共振が一次モードの共振の近くに現
われるということが無くなる。
That is, the higher-order mode resonance does not appear near the first-order mode resonance.

これにより、鏡1の回転角と駆動トルク間の位相角φと
、111の回転振動の周波数rとの関係は、第5図に示
すようになり、位相の回りがf、aに対応する周波数で
生じるが、それ以上の周波数では生ぜず、相当高い周波
数f2aに対応する周波数で小さい位相の回りが生ずる
程度である。
As a result, the relationship between the phase angle φ between the rotation angle of the mirror 1 and the driving torque and the frequency r of the rotational vibration of the mirror 111 becomes as shown in FIG. However, it does not occur at higher frequencies, and only a small phase rotation occurs at frequencies corresponding to the considerably high frequency f2a.

これにより、上記の回転鏡装置を光デイスク装置のトラ
ッキング7クチユエータとして用いた場合に、安定性を
損なうことなく制御帯域を広くとることができ、優れた
高速性を有する。
As a result, when the above-mentioned rotating mirror device is used as a tracking 7 controller of an optical disk device, the control band can be widened without impairing stability, and it has excellent high-speed performance.

〔実施例〕〔Example〕

第6図及び第7図は本発明の一実施例になる回転鏡袋M
40を示す。
Figures 6 and 7 show a rotating mirror bag M which is an embodiment of the present invention.
40 is shown.

41は鏡であり、板状のホルダ42上に固定しである。Reference numeral 41 denotes a mirror, which is fixed on a plate-shaped holder 42.

43は永久磁G片であり、ホルダ42の一端側に固定し
である。44は固定側に設置された固定駆動コイルであ
り、永久11石片43を囲繞している。この永久磁石片
43と固定駆動コイル44とが、電磁駆動機構45を構
成し、矢印A+ 、A2h向のトルクを発生させる。
43 is a permanent magnetic G piece, which is fixed to one end side of the holder 42. A fixed drive coil 44 is installed on the fixed side and surrounds the permanent 11 stone piece 43. This permanent magnet piece 43 and fixed drive coil 44 constitute an electromagnetic drive mechanism 45, which generates torque in the directions of arrows A+ and A2h.

46は固定台である。46 is a fixed base.

47は二叉状の第1の板ばねであり、第1図に示す板ば
ね10のように二次の変形モードの形状に対応する形状
に変形されて、ピン48により一端を固定台46に固定
され、他端をホルダ42の下面に固定されている。
Reference numeral 47 designates a bifurcated first leaf spring, which is deformed into a shape corresponding to the shape of the secondary deformation mode, like the leaf spring 10 shown in FIG. The other end is fixed to the lower surface of the holder 42.

49は第2の板ばねであり、上記の第1の板ばね47と
同じく変形されて、固定台46とホルダ42とに固定し
である。
A second leaf spring 49 is deformed in the same manner as the first leaf spring 47 and is fixed to the fixing base 46 and the holder 42.

第1の板ばね47の一対の腕部47a、47bの幅はW
、第2の板ばね48の幅は2xwである。
The width of the pair of arm portions 47a and 47b of the first leaf spring 47 is W.
, the width of the second leaf spring 48 is 2xw.

第1.第2の板ばね47.49とは、十字状にクロスし
である。
1st. The second leaf springs 47 and 49 are cross-shaped.

また、上記第1.第2の板ばね47.49は、第8図に
示すように、金属板材50.51の間にシリコンゴム系
の粘弾性制振材52をサンドイッチした構造である。
In addition, the above 1. As shown in FIG. 8, the second leaf spring 47.49 has a structure in which a viscoelastic damping material 52 made of silicone rubber is sandwiched between metal plate members 50.51.

駆動コイル44が通電されると、電磁駆動機構45によ
り、トルクが発生し、鏡41は、第9図(A)、(B)
に示すように、板ばね47.49の変形を伴って回転さ
れる。板ばね47.49の変形は、二次の振動モードに
従って生じている。
When the drive coil 44 is energized, torque is generated by the electromagnetic drive mechanism 45, and the mirror 41 moves as shown in FIGS. 9(A) and 9(B).
As shown in FIG. 4, the leaf springs 47 and 49 are rotated with deformation. The deformation of the leaf springs 47, 49 occurs according to the second-order vibration mode.

第10図は上記実施例の回転鏡装置40の、駆動トルク
当りの鏡41の回転角(θ/[)と鏡41の回転の周波
数fとの関係の測定結果を示す。
FIG. 10 shows the measurement results of the relationship between the rotation angle (θ/[) of the mirror 41 per driving torque and the rotation frequency f of the mirror 41 in the rotating mirror device 40 of the above embodiment.

同図より分かるように、装置40の一次モードの共振に
よるピークが約90Hzに現われているが、それ以上の
高周波領域では何らピークが現われていない。
As can be seen from the figure, a peak due to resonance of the primary mode of the device 40 appears at approximately 90 Hz, but no peak appears in a higher frequency range.

5A置40の二次モード及び三次モードの共振によるピ
ークが抑圧されているのは、上記板ばね47.49自身
によるl/I振効果によるものである。
The reason why the peaks due to the resonance of the secondary mode and the tertiary mode of the 5A position 40 are suppressed is due to the l/I vibration effect of the leaf spring 47, 49 itself.

第11図は上記の回転鏡装置40における、鏡41の回
転角と駆動トルク間の位相角φと、鏡41の回転の周波
数との関係の測定結果である。
FIG. 11 shows the measurement results of the relationship between the phase angle φ between the rotation angle of the mirror 41 and the driving torque and the frequency of rotation of the mirror 41 in the rotating mirror device 40 described above.

同図より、位相の遅れが、第10図中のピークに対応す
る部位で生じ、それ以上の周波数ではその位相遅れの状
態に保たれていることが分かる、。
It can be seen from the figure that a phase lag occurs at a portion corresponding to the peak in FIG. 10, and that phase lag is maintained at frequencies higher than that.

これにより、上記の回転鏡装置40を光ディスク装賃の
トラッキング7クチユエータとして用いた場合に、安定
性を損うことなく制御帯域を広くとることができ、優れ
た高速性を有する。
As a result, when the rotating mirror device 40 described above is used as a tracking unit for an optical disk, the control band can be widened without sacrificing stability, and excellent high speed performance can be achieved.

第12図は本発明の別の実施例になる回転鏡袋2ff6
0を示す。同図中、第6図及び第7図に示す構成部分と
実質上対応する部分には同一符号を付し、その説明は省
略する。
FIG. 12 shows a rotating mirror bag 2ff6 which is another embodiment of the present invention.
Indicates 0. In the figure, the same reference numerals are given to the parts that substantially correspond to the constituent parts shown in FIGS. 6 and 7, and the explanation thereof will be omitted.

61は板ばねであり、その長手方向上中央をクランプ板
62とピン63とにより固定台46上に固定してあり、
両側に延出する板ばね部61a。
Reference numeral 61 denotes a leaf spring, whose upper center in the longitudinal direction is fixed on the fixed base 46 by a clamp plate 62 and a pin 63;
A plate spring portion 61a extends to both sides.

61bが共に二次の変形モードに予め変形された状態で
、その先端をホルダ42の下面にビン64により固定さ
れている。
61b are both previously deformed into the secondary deformation mode, and their tips are fixed to the lower surface of the holder 42 by the pin 64.

この回転鏡装置60も、第7図に示す回転鏡装置40と
同様に特性を有する。
This rotating mirror device 60 also has characteristics similar to the rotating mirror device 40 shown in FIG.

また、板ばねを三次の変形モードの形状に対応する形状
として組み込んだ構成としてもよい。
Alternatively, a configuration may be adopted in which the leaf spring is incorporated in a shape corresponding to the shape of the tertiary deformation mode.

更に、板ばねは平板状のものを撓ませて二次以上の変形
モードに対応する形状とする他に、予めプレス等により
上記の形状とし、これをそのまま組み付けた構成でもよ
い。
Further, the leaf spring may be formed into a shape corresponding to secondary or higher deformation modes by bending a flat plate, or may be formed into the above shape by pressing or the like in advance and then assembled as is.

〔発明の効果) 叙上の如く、本発明によれば、−次の撮動モードが予め
定めである変形モードに対応する次数であって従来例の
装置での次数のモードとなり、これより一つ高次の共振
周波数は上記−次の振動モードの周波数より相当高い周
波数となり、上記−次の振動モードの周波数の付近に別
の共振周波数が存在しなくなる。これにより、周波数特
性が安定化し、安定性を損なうことなくυJllli)
域を広くとることができ、優れた高速性を達成し得る。
[Effects of the Invention] As described above, according to the present invention, - the next imaging mode is the order corresponding to the predetermined deformation mode and becomes the mode of the order in the conventional device; The resonance frequency of the next higher order is considerably higher than the frequency of the above-mentioned -order vibration mode, and there is no other resonance frequency near the frequency of the -order vibration mode. This stabilizes the frequency characteristics without compromising stability.
It can cover a wide range and achieve excellent high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、 第2図は第1図の回転鏡装置の一次の振動モードを示す
図、 第3図は第1図の回転鏡装置の二次の振動モードを示す
図、 第4図は第1図の回転鏡装置の駆動トルク当りの回転角
の周波数特性を示す図、 第5図は第1図の回転鏡装置の位相の周波数特性を示す
図、 第6図は本発明の一実施例の分解斜視図、第7図は本発
明の一実施例の正面図、 第8図は板ばねの構造を示す図、 第9図は第7図の回転鏡装置の回転振動状態を示す図、 第10図は第7図の装置の駆動トルク当りの回転角の周
波数特性を示す図、 第11図は第7図の装置の位相の周波数特性を示す図、 第12図は本発明の別の実施例を示す図、第13図は従
来例を示す図、 第14図は第13図の5A置の概略構成を示す図、第1
5図は第14図の装置の一次振動モードを示す図、 第16図は第14図の装置の二次振動モードを示す図、 第17図は第14図の装置の三次振動モードを示す図、 第18図は第14図の装置の回転角の周波数特性を示す
図、 第19図は第14図の装置の位相の周波数特性を示す図
である。 図において、 1.41は鏡、 7.45は′Pi磁駆動駆動機 構0.47.49.61は板ばね、 40.60は回転鏡装置、 50.51は金属板材、 52は粘弾性制振材、 61a、61bGL板ばね部 を示す。
Figure 1 is a diagram showing the principle configuration of the present invention. Figure 2 is a diagram showing the primary vibration mode of the rotating mirror device in Figure 1. Figure 3 is a diagram showing the secondary vibration mode of the rotating mirror device in Figure 1. Figure 4 is a diagram showing the frequency characteristics of the rotation angle per drive torque of the rotating mirror device in Figure 1, Figure 5 is a diagram showing the frequency characteristics of the phase of the rotating mirror device in Figure 1, and Figure 6 is a diagram showing the frequency characteristics of the rotation angle per drive torque of the rotating mirror device in Figure 1. is an exploded perspective view of one embodiment of the present invention, FIG. 7 is a front view of one embodiment of the present invention, FIG. 8 is a diagram showing the structure of a leaf spring, and FIG. 9 is a view of the rotating mirror device of FIG. 7. 10 is a diagram showing the frequency characteristics of the rotation angle per drive torque of the device in FIG. 7, FIG. 11 is a diagram showing the frequency characteristics of the phase of the device in FIG. 7, and 12 is a diagram showing the rotational vibration state. 13 is a diagram showing a conventional example; FIG. 14 is a diagram showing a schematic configuration of the 5A position in FIG. 13;
Fig. 5 is a diagram showing the primary vibration mode of the device in Fig. 14, Fig. 16 is a diagram showing the secondary vibration mode of the device in Fig. 14, and Fig. 17 is a diagram showing the tertiary vibration mode of the device in Fig. 14. , FIG. 18 is a diagram showing the rotation angle frequency characteristic of the device shown in FIG. 14, and FIG. 19 is a diagram showing the phase frequency characteristic of the device shown in FIG. 14. In the figure, 1.41 is a mirror, 7.45 is a 'Pi magnetic drive drive mechanism, 0.47.49.61 is a leaf spring, 40.60 is a rotating mirror device, 50.51 is a metal plate, and 52 is a viscoelastic control. The vibration material, 61a, 61b GL leaf spring portion is shown.

Claims (1)

【特許請求の範囲】  一端で固定されその自由端側に鏡(1)を支持する平
面状の板ばね(30)と、制御信号に基づいて該鏡にト
ルクを付与する駆動機構(7)とよりなり、該板ばねを
撓ませつつ上記鏡を回転振動させる回転鏡装置において
、 上記板ばねが、上記回転鏡装置における上記平面状板ば
ねの二次以上の振動モードの形状とされて組込まれてな
る構成としたことを特徴とする回転鏡装置。
[Claims] A planar leaf spring (30) fixed at one end and supporting a mirror (1) on its free end side, and a drive mechanism (7) that applies torque to the mirror based on a control signal. In a rotating mirror device that rotationally vibrates the mirror while bending the leaf spring, the leaf spring is incorporated in a shape of a second or higher vibration mode of the planar leaf spring in the rotating mirror device. A rotating mirror device characterized by having a configuration consisting of:
JP28818889A 1989-11-06 1989-11-06 Rotary mirror device Pending JPH03150733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28818889A JPH03150733A (en) 1989-11-06 1989-11-06 Rotary mirror device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28818889A JPH03150733A (en) 1989-11-06 1989-11-06 Rotary mirror device

Publications (1)

Publication Number Publication Date
JPH03150733A true JPH03150733A (en) 1991-06-27

Family

ID=17726949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28818889A Pending JPH03150733A (en) 1989-11-06 1989-11-06 Rotary mirror device

Country Status (1)

Country Link
JP (1) JPH03150733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515124U (en) * 1991-08-09 1993-02-26 アルプス電気株式会社 Galvano mirror
WO2002008818A1 (en) * 2000-07-24 2002-01-31 Nhk Spring Co., Ltd. Probe light scanning actuator
US6486995B2 (en) 2000-04-28 2002-11-26 Denso Corporation Vibration-resisting structure of optical scanner
GB2467841A (en) * 2009-02-17 2010-08-18 Prysm Inc Actuator suitable for scanning mirror and having flexure extensions that cross
US8582191B2 (en) 2011-01-28 2013-11-12 Prysm, Inc. Positioning sensing and position servo control
DE102018106012B3 (en) 2018-03-15 2019-03-07 Jenoptik Optical Systems Gmbh Adjustable mirror assembly with leaf spring element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515124U (en) * 1991-08-09 1993-02-26 アルプス電気株式会社 Galvano mirror
US6486995B2 (en) 2000-04-28 2002-11-26 Denso Corporation Vibration-resisting structure of optical scanner
WO2002008818A1 (en) * 2000-07-24 2002-01-31 Nhk Spring Co., Ltd. Probe light scanning actuator
GB2467841A (en) * 2009-02-17 2010-08-18 Prysm Inc Actuator suitable for scanning mirror and having flexure extensions that cross
US8130436B2 (en) 2009-02-17 2012-03-06 Prysm, Inc. Flexure actuator
GB2467841B (en) * 2009-02-17 2012-03-28 Prysm Inc Flexure actuator
US8582191B2 (en) 2011-01-28 2013-11-12 Prysm, Inc. Positioning sensing and position servo control
DE102018106012B3 (en) 2018-03-15 2019-03-07 Jenoptik Optical Systems Gmbh Adjustable mirror assembly with leaf spring element
US10989896B2 (en) 2018-03-15 2021-04-27 Jenoptik Optical Systems Gmbh Adjustable mirror assembly with leaf spring element

Similar Documents

Publication Publication Date Title
JP3003429B2 (en) Torsional vibrator and optical deflector
KR101050915B1 (en) Optical deflector and optical device using same
KR20070115681A (en) Optical deflector and optical instrument using the same
JP7102705B2 (en) Actuators, optics and projectors
US7548362B2 (en) Optical deflecting device and image forming apparatus using the same
JPH03150733A (en) Rotary mirror device
JP7035451B2 (en) Actuators, optics and projectors
JP4407046B2 (en) Optical scanner
JP2001264676A (en) Optical scanner
JPH05258325A (en) Objective lens driving device
JPH07304208A (en) Optical beam deflector
JPH0566832A (en) Biaxial driving actuator
JPS62210418A (en) Light beam deflection mirror
JPH0793783A (en) Mirror driving device
JP2531710Y2 (en) Aperture device
JPS6323793Y2 (en)
JPH03237627A (en) Objective lens driver
JP2024059146A (en) Oscillating device
JP2001006194A (en) Suspension mechanism
JPH04243029A (en) Turning mirror device for tracking
JPH08106642A (en) Optical pickup device
JP2581160Y2 (en) Laser pointer
JPH01144237A (en) Actuator for optical head
JPH05134155A (en) Optical parts supporting structure
JPH0359823A (en) Objective lens driving device