JP2012058527A - Light deflector, optical scanner, image forming device, and image projection device - Google Patents

Light deflector, optical scanner, image forming device, and image projection device Download PDF

Info

Publication number
JP2012058527A
JP2012058527A JP2010202194A JP2010202194A JP2012058527A JP 2012058527 A JP2012058527 A JP 2012058527A JP 2010202194 A JP2010202194 A JP 2010202194A JP 2010202194 A JP2010202194 A JP 2010202194A JP 2012058527 A JP2012058527 A JP 2012058527A
Authority
JP
Japan
Prior art keywords
elastic support
support member
vibrating
optical deflector
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202194A
Other languages
Japanese (ja)
Other versions
JP5500016B2 (en
Inventor
Mitsuyoshi Fujii
光美 藤井
Goichi Akanuma
悟一 赤沼
Tomofumi Kitazawa
智文 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010202194A priority Critical patent/JP5500016B2/en
Publication of JP2012058527A publication Critical patent/JP2012058527A/en
Application granted granted Critical
Publication of JP5500016B2 publication Critical patent/JP5500016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light deflector in which variation of resonant frequency due to environment temperature or the like can be adjusted.SOLUTION: A light deflector includes a fixed base 60, a mirror 10 having a light reflection surface, an elastic support member 20 for swingably supporting the mirror 10, and a pair of vibrating beams 50 in which one end is connected to the fixed base 60, the other end is connected to the elastic support member 20, and a piezoelectric member is fixed to a beam-like member. The vibrating beam 50 is composed of a driving beam 30 that generates a torsional deformation in the elastic support member 20 to make the mirror 10 rotationally vibrate in a desired resonant frequency, by being applied with an AC voltage; and a frequency adjusting beam 40 that adjusts the resonant frequency by applying stress to the elastic support member 20.

Description

本発明は、レーザ光等の光ビームを偏向・走査する光偏向器、詳しくは圧電力を用いた光偏向器に関し、さらに、この光偏向器を備えた光走査装置、この光走査装置を光書込みユニットとして備える画像形成装置、この光偏向器を投影面の走査ユニットとして備える画像投影装置に関する。   The present invention relates to an optical deflector that deflects and scans a light beam such as a laser beam, and more particularly to an optical deflector that uses a piezoelectric power. Further, the present invention relates to an optical scanning device including the optical deflector, The present invention relates to an image forming apparatus provided as a writing unit and an image projecting apparatus provided with the optical deflector as a projection unit scanning unit.

一対のトーションバネで支持されたミラー部材に可動電極を設け、この可動電極と固定電極との間の静電力を駆動力として、ミラー部材を、トーションバネを捻り回転軸として往復振動させる光偏向器が知られている(例えば特許文献1,2参照)。このような光偏向器は、ミラー部材の共振周波数に駆動周波数を一致させた場合に、ミラー部材の振れ角を最大にすることができる。   An optical deflector in which a movable member is provided on a mirror member supported by a pair of torsion springs, and the electrostatic force between the movable electrode and the fixed electrode is used as a driving force to reciprocally vibrate the mirror member using a torsion spring as a rotational axis Is known (see, for example, Patent Documents 1 and 2). Such an optical deflector can maximize the deflection angle of the mirror member when the drive frequency is matched with the resonance frequency of the mirror member.

特許文献1に記載されている光偏向器においては、ミラー部材に、レーザビームの照射により容易に割断可能な1つ又は複数の切片が設けられており、この切片の割断によってミラー部材の慣性モーメントを調節することにより共振周波数を調整可能である。   In the optical deflector described in Patent Document 1, the mirror member is provided with one or a plurality of pieces that can be easily cleaved by laser beam irradiation, and the moment of inertia of the mirror member is obtained by cleaving the pieces. By adjusting the resonance frequency, the resonance frequency can be adjusted.

特許文献2に記載されている光偏向器においては、ミラー部材(ステージ)の裏面に対向する基板面に設けられた平板状のチューニング電極、あるいは、ミラー部材の裏面に設けられた電極と噛み合うように基板面に設けられた櫛歯状のチューニング電極への印加電圧の調節によって共振周波数を調節可能である。   In the optical deflector described in Patent Document 2, the flat tuning electrode provided on the substrate surface facing the back surface of the mirror member (stage) or the electrode provided on the back surface of the mirror member is engaged. The resonance frequency can be adjusted by adjusting the voltage applied to the comb-shaped tuning electrode provided on the substrate surface.

一方、ミラー部材の駆動に圧電素子を用いる光偏向器も知られている。例えば特許文献3には、圧電素子が形成された2対の圧電ユニモルフ振動板をミラー部材に連結し、各対の圧電ユニモルフ振動板の圧電素子に逆位相の交流電圧を印加することにより、ミラー部材を、トーションバネを回転軸として往復振動させる光偏向器が記載されている。   On the other hand, an optical deflector using a piezoelectric element for driving a mirror member is also known. For example, in Patent Document 3, two pairs of piezoelectric unimorph diaphragms on which piezoelectric elements are formed are connected to a mirror member, and an AC voltage having an opposite phase is applied to the piezoelectric elements of each pair of piezoelectric unimorph diaphragms. An optical deflector that reciprocally vibrates a member about a torsion spring as a rotation axis is described.

さらに、以上に挙げた光偏向器とは振動系の構造及び挙動が異なるが、鏡面を持つ振動部と固定部とを弾性変形部(トーションバネ)を介して連結した振動子と、その固定部に弾性変形部に直交する方向の高周波振動を加える加振装置(例えば圧電素子)とを有し、振動子を共振振動させる光偏向器(光スキャン)が特許文献4に記載されている。この光偏向器においては、弾性変形部に設けた抵抗発熱素子又は圧電素子によって弾性変形部を加熱又は変形させ、弾性変形部のバネ定数を変化させることにより振動子の共振特性を調整可能である。   Furthermore, although the structure and behavior of the vibration system are different from those of the optical deflectors mentioned above, a vibrator in which a vibration part having a mirror surface and a fixed part are connected via an elastic deformation part (torsion spring), and its fixed part Patent Document 4 discloses an optical deflector (optical scan) that has a vibration device (for example, a piezoelectric element) that applies high-frequency vibration in a direction orthogonal to the elastically deforming portion to resonate and vibrate the vibrator. In this optical deflector, the resonance characteristics of the vibrator can be adjusted by heating or deforming the elastic deformation portion by a resistance heating element or a piezoelectric element provided in the elastic deformation portion and changing the spring constant of the elastic deformation portion. .

一対のトーションバネを捻り回転軸としてミラー部材を往復振動させるような光偏向器は、ミラー部材の共振周波数と駆動周波数とが一致したときにミラー部材の変位角が最大となる。しかしながら、製造工程におけるトーションバネやミラー部材の寸法のばらつき等によって共振周波数のばらつきが生じ、所望の駆動周波数が共振周波数帯域から外れるようなサンプルがある程度の割合で生じてしまう。しかも、この種の光偏向器は、環境温度によっても共振周波数が変動する。一般に環境温度が高くなるにつれて、共振周波数が低下する。   In an optical deflector that reciprocally vibrates a mirror member with a pair of torsion springs as a rotational axis, the displacement angle of the mirror member becomes maximum when the resonance frequency of the mirror member coincides with the drive frequency. However, the resonance frequency varies due to variations in the dimensions of the torsion spring and mirror member in the manufacturing process, and a sample in which a desired drive frequency deviates from the resonance frequency band is generated at a certain rate. Moreover, the resonance frequency of this type of optical deflector varies depending on the environmental temperature. In general, as the environmental temperature increases, the resonance frequency decreases.

特許文献1に記載されている光偏向器おいては、共振周波数を一度調整すると再調整できず、環境温度による共振周波数の変動に対応できない。また、特許文献2に記載されている光偏向器は、原理的にミラー部の駆動に圧電素子を用いる光偏向器には適用することができない。   In the optical deflector described in Patent Document 1, once the resonance frequency is adjusted, it cannot be readjusted, and it cannot cope with the fluctuation of the resonance frequency due to the environmental temperature. Further, the optical deflector described in Patent Document 2 cannot be applied to an optical deflector that uses a piezoelectric element in principle for driving the mirror section.

特許文献4に記載されている光偏向器においては、環境温度による共振周波数の変動にも対応可能であるが、弾性変形部に設けた圧電素子等によって弾性変形部を直接変形させる構成のため、共振周波数の調整範囲を広くすることができず、また、幅狭の弾性変形部に圧電素子等を設けなければならないため、製造が煩雑になる。   In the optical deflector described in Patent Document 4, although it is possible to cope with fluctuations in the resonance frequency due to the environmental temperature, because of the configuration in which the elastic deformation portion is directly deformed by a piezoelectric element or the like provided in the elastic deformation portion, Since the adjustment range of the resonance frequency cannot be widened, and a piezoelectric element or the like must be provided in the narrow elastic deformation portion, the manufacturing becomes complicated.

本発明は、ミラー部の駆動に圧電素子を用いる光偏向器において、環境温度などによる共振周波数の変動を広い範囲で調整可能な光偏向器を提供することにある。さらに、小型で駆動効率が良く、大きな回転振幅が得られる光偏向器を提供することにある。   It is an object of the present invention to provide an optical deflector that uses a piezoelectric element for driving a mirror portion, and that can adjust fluctuations in resonance frequency due to environmental temperature or the like over a wide range. Another object of the present invention is to provide an optical deflector that is small in size, has good driving efficiency, and can obtain a large rotational amplitude.

また、本発明は、かかる光偏向器を備えた光走査装置、この光走査装置を光書込みユニットとして備える画像形成装置、かかる光偏向器を投影面の走査ユニットとして備える画像投影装置を提供することにある。   The present invention also provides an optical scanning device provided with such an optical deflector, an image forming device provided with this optical scanning device as an optical writing unit, and an image projection device provided with such an optical deflector as a scanning unit for a projection surface. It is in.

本発明の光偏向器は、固定ベースと、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する弾性支持部材と、一端が前記固定ベースに接続され、他端が前記弾性支持部材に接続され、梁状部材に圧電部材が固着された振動梁とを有し、
前記振動梁は、交流電圧を印加することで、前記弾性支持部材に捻り変形を発生して、前記ミラー部を所望共振周波数で回転振動せしめる駆動梁と、直流電圧を印加することで、前記弾性支持部材に応力を与えて、前記共振周波数を調整する周波数調整梁とで構成されていることを特徴とする。
The optical deflector of the present invention includes a fixed base, a mirror portion having a light reflecting surface, an elastic support member that supports the mirror portion so as to be swingable, one end connected to the fixed base, and the other end elastically supported. A vibration beam connected to the support member and having a piezoelectric member fixed to the beam-shaped member;
The vibrating beam generates a torsional deformation in the elastic support member by applying an AC voltage, and rotates and vibrates the mirror portion at a desired resonance frequency, and the elastic beam by applying a DC voltage. It is comprised with the frequency adjustment beam which gives stress to a supporting member and adjusts the said resonant frequency.

また、本発明の光偏向器は、弾性支持部材の長手方向と振動梁の長手方向とが略直交して配置されて、両者が接続され、振動梁の他端が固定ベースに固定され、一対の振動梁で、ミラー部と一対の弾性支持部材とが固定ベースに対して片持ち支持されることを特徴とする。   In the optical deflector of the present invention, the longitudinal direction of the elastic support member and the longitudinal direction of the vibrating beam are arranged substantially orthogonally to each other, and the other end of the vibrating beam is fixed to the fixed base. The mirror beam and the pair of elastic support members are cantilevered with respect to the fixed base.

また、本発明の光偏向器は、可動枠と、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する一対の第1の弾性支持部材と、一端が前記可動枠に接続され、他端が前記第1の弾性支持部材に接続され、梁状部材に圧電部材が固着された第1の振動梁とを有し、
さらに、固定ベースと、前記可動枠を揺動可能に支持する一対の第2の弾性支持部材と、一端が前記固定ベースに接続され、他端が前記第2の弾性支持部材に接続され、梁状部材に圧電部材が固着された複数の第2の振動梁とを有し、
前記第1の振動梁は、交流電圧を印加することで、前記第1の弾性支持部材に捻り変形を発生して、前記ミラー部を第1の所望共振周波数で第1の方向に回転振動せしめる第1の駆動梁と、直流電圧を印加することで、前記第1の弾性支持部材に応力を与えて前記共振周波数を調整する第1の周波数調整梁とで構成され、
前記第2の振動梁は、交流電圧を印加することで、前記第2の弾性支持部材に捻り変形を発生して、前記可動枠を第2の所望共振周波数で回転振動させ、前記ミラー部を第2の方向に回転振動せしめる第2の駆動梁と、直流電圧を印加することで、前記第2の弾性支持部材に応力を与えて前記共振周波数を調整する第2の周波数調整梁とで構成されることを特徴とする。また、周波数調整梁は、第1の周波数調整梁あるいは第2の周波数調整梁のいずれか一方のみとすることを特徴とする。
The optical deflector of the present invention includes a movable frame, a mirror portion having a light reflecting surface, a pair of first elastic support members that swingably support the mirror portion, and one end connected to the movable frame. A first vibrating beam having the other end connected to the first elastic support member and having a piezoelectric member fixed to the beam-shaped member,
Furthermore, a fixed base, a pair of second elastic support members that swingably support the movable frame, one end connected to the fixed base, the other end connected to the second elastic support member, and a beam A plurality of second vibrating beams each having a piezoelectric member fixed to the shaped member,
The first vibrating beam generates an torsional deformation in the first elastic support member by applying an alternating voltage, and causes the mirror portion to rotate and vibrate in a first direction at a first desired resonance frequency. A first drive beam and a first frequency adjusting beam that adjusts the resonance frequency by applying stress to the first elastic support member by applying a DC voltage;
The second vibrating beam generates an torsional deformation in the second elastic support member by applying an AC voltage, rotationally vibrates the movable frame at a second desired resonance frequency, and A second drive beam that is rotated and vibrated in a second direction, and a second frequency adjustment beam that adjusts the resonance frequency by applying a DC voltage to apply stress to the second elastic support member. It is characterized by being. Further, the frequency adjusting beam is characterized by only one of the first frequency adjusting beam and the second frequency adjusting beam.

また、本発明の光走査装置は、光源と、光源からの光ビームを偏向させる上記構成の光偏向器と、偏向された光ビームを被走査面にスポット状に結像する結像光学系とを備えることを特徴とする。   Further, an optical scanning device of the present invention includes a light source, an optical deflector configured as described above that deflects a light beam from the light source, and an imaging optical system that forms an image of the deflected light beam in a spot shape on a scanning surface. It is characterized by providing.

また、本発明の光走査装置は、上記構成の光走査装置と、光ビームの走査により潜像を形成する感光体と、潜像をトナーで顕像化する現像手段と、トナー像を記録紙に転写する転写手段とを有することを特徴とする。   The optical scanning device of the present invention includes an optical scanning device having the above-described configuration, a photosensitive member that forms a latent image by scanning a light beam, a developing unit that visualizes the latent image with toner, and a toner image that is recorded on recording paper. And transfer means for transferring to the surface.

また、本発明の画像形成装置は、光源と、前記光源からの光ビームを画像信号に応じて変調する変調器と、前記光ビームを略平行光とするコリメート光学系と、前記略平行光とされた光ビームを偏向して投影面に投射する上記構成の光偏向器とを有することを特徴とする画像投影装置。   The image forming apparatus of the present invention includes a light source, a modulator that modulates a light beam from the light source according to an image signal, a collimating optical system that makes the light beam substantially parallel light, and the substantially parallel light. And an optical deflector configured as described above to deflect the projected light beam and project it onto the projection surface.

本発明の光偏向器によれば、駆動梁と一体的に周波数調整梁を設け、該周波数調整梁により弾性支持部材に応力を作用させることで、共振周波数の変動を広い範囲で調整することが可能になる。また、駆動梁は周波数調整梁と共に、ミラー部と該ミラー部を揺動可能に支持する一対の弾性支持部材を固定ベースに対して片持ち支持することで、小型で、効率よくミラー部を回転させ、大きな回転振幅を得ることができ。   According to the optical deflector of the present invention, the frequency adjustment beam is provided integrally with the drive beam, and the stress is applied to the elastic support member by the frequency adjustment beam, whereby the resonance frequency fluctuation can be adjusted in a wide range. It becomes possible. In addition to the frequency adjustment beam, the drive beam cantileverly supports the mirror part and a pair of elastic support members that swingably support the mirror part with respect to the fixed base. Let you get a large rotation amplitude.

したがって、本発明の光偏向器を用いることで、特性の良い安定した光走査装置を提供でき、該光走査装置を光書込みユニットに用いることで、性能の良い画像形成装置を提供することができる。さらに、本発明の光偏向器を用いて、消費電力が小さく、広画角投影が可能な画像投影装置を提供することができる。
なお、本発明の光偏向器のさらなる構成・作用効果は、後述の実施の形態の説明で明らかになる。
Therefore, by using the optical deflector of the present invention, a stable optical scanning device with good characteristics can be provided, and by using the optical scanning device for an optical writing unit, an image forming device with good performance can be provided. . Furthermore, it is possible to provide an image projection apparatus that uses the optical deflector according to the present invention and has low power consumption and capable of wide angle projection.
In addition, the further structure and effect of the optical deflector of this invention will become clear by description of embodiment mentioned later.

本発明の実施例1の光偏向器の斜視図である。It is a perspective view of the optical deflector of Example 1 of this invention. 図1の光偏向器の平面図である。It is a top view of the optical deflector of FIG. 図1の光偏向器の駆動梁の構成を説明する図である。It is a figure explaining the structure of the drive beam of the optical deflector of FIG. 図1の光偏向器のミラー部の回転振幅の周波数応答特性を示す図である。It is a figure which shows the frequency response characteristic of the rotation amplitude of the mirror part of the optical deflector of FIG. 図1の光偏向器のミラー部の2種類の固有振動モード形状を示す図である。It is a figure which shows two types of natural vibration mode shapes of the mirror part of the optical deflector of FIG. 実施例1の等価モデルを示す図である。3 is a diagram illustrating an equivalent model of Example 1. FIG. 実施例1の複数サンプルの共振周波数ばらつきを示す図である。It is a figure which shows the resonant frequency dispersion | variation of the some sample of Example 1. FIG. 実施例1の環境温度と共振周波数の関係を示す図である。It is a figure which shows the relationship between the environmental temperature of Example 1, and a resonant frequency. 実施例1における周波数調整梁の働きを説明する図である。It is a figure explaining the function of the frequency adjustment beam in Example 1. FIG. 同じく実施例1における周波数調整梁の働きを説明する図である。It is a figure explaining the function of the frequency adjustment beam in Example 1 similarly. 実施例1の簡略化したモデルを示す図である。2 is a diagram illustrating a simplified model of Example 1. FIG. 弾性支持部材に作用する応力と共振周波数の関係を示す図である。It is a figure which shows the relationship between the stress which acts on an elastic support member, and a resonant frequency. 実施例1における共振周波数調整の具体例を示す図である。It is a figure which shows the specific example of the resonance frequency adjustment in Example 1. FIG. 本発明の実施例2の光偏向器の斜視図である。It is a perspective view of the optical deflector of Example 2 of this invention. 図14の光偏向器の平面図である。It is a top view of the optical deflector of FIG. 図14の光偏向器のミラー部の回転振幅の周波数応答特性を示す図である。It is a figure which shows the frequency response characteristic of the rotation amplitude of the mirror part of the optical deflector of FIG. 図14の光偏向器のミラー部の2種類の固有振動モード形状を示す図である。It is a figure which shows two types of natural vibration mode shapes of the mirror part of the optical deflector of FIG. 図14の光偏向器の駆動梁の撓み変形とミラー部の回転の関係を説明する図である。It is a figure explaining the relationship between the bending deformation of the drive beam of the optical deflector of FIG. 14, and rotation of a mirror part. 本発明の実施例3の光偏向器の斜視図である。It is a perspective view of the optical deflector of Example 3 of this invention. 実施例3における第2の周波数調整梁の働きを説明する図である。It is a figure explaining the function of the 2nd frequency adjustment beam in Example 3. FIG. 同じく実施例3における第2の周波数調整梁の働きを説明する図である。It is a figure explaining the function of the 2nd frequency adjustment beam in Example 3 similarly. 本発明の光偏向器を用いた光走査装置の一例の全体構成図である。It is a whole block diagram of an example of the optical scanning device using the optical deflector of this invention. 図22の光装置の光偏向器と駆動手段の接続を示す図である。It is a figure which shows the connection of the optical deflector and drive means of the optical apparatus of FIG. 図22の光走査装置を光書込みユニットとして実装した画像形成装置の一例の全体構成図である。It is a whole block diagram of an example of the image forming apparatus which mounted the optical scanning device of FIG. 22 as an optical writing unit. 本発明の光偏向器を用いた画像形成装置の一例の全体斜視図である。1 is an overall perspective view of an example of an image forming apparatus using an optical deflector of the present invention. 図25の画像投影装置を駆動系も含めて示した概略構成図である。FIG. 26 is a schematic configuration diagram illustrating the image projection apparatus of FIG. 25 including a drive system.

以下、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の光偏向器の実施例1の全体斜視図、図2に平面図を示す。図1,図2において、10は光を反射させる反射面を有するミラー部であり、このミラー部10の両端には、該ミラー部を揺動可能に支持する一対の弾性支持部材(トーションバースプリング)20が接続されている。この一対の弾性支持部材20のミラー部10と反対側の端部には、それぞれ該弾性支持部材20の長手方向と略直交する向きを長手方向とする一対の梁状部材31が接続され、該梁状部材31の他端は固定ベース60に接続されている。   FIG. 1 is an overall perspective view of a first embodiment of an optical deflector according to the present invention, and FIG. 2 is a plan view thereof. 1 and 2, reference numeral 10 denotes a mirror portion having a reflecting surface for reflecting light, and a pair of elastic support members (torsion bar springs) that support the mirror portion in a swingable manner at both ends of the mirror portion 10. ) 20 is connected. A pair of beam-like members 31 whose longitudinal direction is substantially perpendicular to the longitudinal direction of the elastic support member 20 are connected to the ends of the pair of elastic support members 20 opposite to the mirror portion 10, respectively. The other end of the beam-shaped member 31 is connected to the fixed base 60.

一対の梁状部材31は、それぞれ固定ベース60から同一方向に突出し、各弾性支持部材20の片側にのみ配置されており、この一対の梁状部材31でミラー部10と一対の弾性支持20とを固定ベース60に対して片持ち支持した構成となっている。   The pair of beam-like members 31 protrude from the fixed base 60 in the same direction, and are disposed only on one side of each elastic support member 20. The pair of beam-like members 31, the mirror portion 10, and the pair of elastic supports 20 Is cantilevered with respect to the fixed base 60.

各梁状部材31の片面に、それぞれ圧電材料32が積層され、梁状部材31と圧電材料32とで、平板短柵状のユニモルフ構造の駆動梁30を形成している。さらに、各梁状部材31と一体に、それぞれ弾性支持部材20とは接続されないように梁状部材41が伸延して設けられ、該梁状部材41の片面に、同様に圧電材料42が積層され、梁状部材41と圧電部材42とで、平状短柵状のユニモルフ構造の周波数調整梁40を形成している。   Piezoelectric materials 32 are laminated on one surface of each beam-shaped member 31, and the beam-shaped member 31 and the piezoelectric material 32 form a driving beam 30 having a unimorph structure with a flat plate-like short rail shape. Further, a beam-like member 41 is extended and provided integrally with each beam-like member 31 so as not to be connected to the elastic support member 20, and a piezoelectric material 42 is similarly laminated on one surface of the beam-like member 41. The beam-shaped member 41 and the piezoelectric member 42 form a frequency adjusting beam 40 having a flat short rail-like unimorph structure.

ここで、駆動梁30と周波数調整梁40とを一緒にした構成を振動梁50と称す。すなわち、振動梁50は、弾性支持部材20に接続されている駆動梁30の部分と弾性支持部材20に接続されていない周波数調整梁40の部分とからなる。   Here, a configuration in which the driving beam 30 and the frequency adjusting beam 40 are combined is referred to as a vibrating beam 50. That is, the vibrating beam 50 includes a portion of the driving beam 30 connected to the elastic support member 20 and a portion of the frequency adjustment beam 40 not connected to the elastic support member 20.

例えば、MEMS(micro electro mechanical systems)プロセスによって加工することで、ミラー部10、弾性支持部材20、駆動梁30、周波数調整梁40などを一体で形成する。ミラー部10は、シリコン基板の表面にアルミニウムや金などの金属の薄膜を形成することによって反射面を形成する。   For example, the mirror part 10, the elastic support member 20, the drive beam 30, the frequency adjustment beam 40, etc. are integrally formed by processing by a MEMS (micro electro mechanical systems) process. The mirror unit 10 forms a reflective surface by forming a thin film of metal such as aluminum or gold on the surface of a silicon substrate.

ここで、図3により駆動梁30の詳細な構成を説明する。図3は、駆動梁30とその近傍の固定ベース60を拡大して示した模式図で、(a)は絶縁層で覆う前の平面図、(b)は絶縁層で覆った後の平面図、(c)は(b)のA−A’線部分の断面図である。なお、周波数調整梁40も同様の構成であるので、図示は省略する。   Here, a detailed configuration of the drive beam 30 will be described with reference to FIG. 3A and 3B are schematic views showing the driving beam 30 and the fixed base 60 in the vicinity thereof in an enlarged manner. FIG. 3A is a plan view before being covered with an insulating layer, and FIG. 3B is a plan view after being covered with an insulating layer. (C) is sectional drawing of the AA 'line | wire part of (b). Since the frequency adjustment beam 40 has the same configuration, the illustration is omitted.

図3に示すように、駆動梁30は、固定ベース60から突出して形成された梁状部材31の上に、接着層33、下部電極35、圧電材料(圧電部材)32、上部電極34、絶縁層36の順でスパッタにより成膜し積層して構成され、ランド部37,38などの必要な部分だけが残るようにエッチング加工されている。接着層33の材料はチタン(Ti)、上部電極34、下部電極35は白金(Pt)、圧電材料32はチタン酸ジルコン酸鉛(PZT)などが使用される。   As shown in FIG. 3, the drive beam 30 is formed on the beam-shaped member 31 that protrudes from the fixed base 60, on the adhesive layer 33, the lower electrode 35, the piezoelectric material (piezoelectric member) 32, the upper electrode 34, and the insulation. The layers 36 are formed by sputtering and stacked in this order, and are etched so that only necessary portions such as land portions 37 and 38 remain. The material of the adhesive layer 33 is titanium (Ti), the upper electrode 34 and the lower electrode 35 are platinum (Pt), and the piezoelectric material 32 is lead zirconate titanate (PZT).

ランド部37,38から配線を引き出し、上部電極34と下部電極35の間に電圧を印加すると、圧電材料32は、その電歪特性により、梁状部材31表面の面内方向に伸縮することで、駆動梁30全体が反って、曲げ変形する。各駆動梁30について、それぞれ圧電部材32に同相の電圧を印加することで、各駆動梁30が、同一方向に曲げ変形する。各駆動梁30の圧電部材32に印加する電圧の波形は、パルス波や正弦波などのいずれでもよい。   When wiring is drawn from the land portions 37 and 38 and a voltage is applied between the upper electrode 34 and the lower electrode 35, the piezoelectric material 32 expands and contracts in the in-plane direction on the surface of the beam-shaped member 31 due to its electrostrictive characteristics. The drive beam 30 as a whole is bent and deformed. For each drive beam 30, each drive beam 30 is bent and deformed in the same direction by applying an in-phase voltage to the piezoelectric member 32. The waveform of the voltage applied to the piezoelectric member 32 of each drive beam 30 may be either a pulse wave or a sine wave.

図1、図2に戻り、一対の弾性支持部材(トーションバースプリング)20と一対の駆動梁30の長手方向が略直交して配置されて接続されていることにより、駆動梁30の曲げ振動による該駆動梁30の先端の上下振動が弾性支持部材20の捻り中心軸に対して垂直に働くため、駆動梁30の曲げ振動が弾性支持部材20の回転振動(捻り振動)に効率よく変換され、ミラー部10が大きく回転振動する。また、一対の駆動梁30は一対の弾性支持部材20とミラー部10を片持ちした構成となっているため、各駆動梁30の先端は自由に振動することができ、ミラー部10はより大きな角度振動を得ることができる。さらに、梁状部材31は、弾性支持部材20の片側にのみ配置されているため、小型化が可能である。なお、周波数調整梁40の働きについては後述する。   Returning to FIG. 1 and FIG. 2, the longitudinal directions of the pair of elastic support members (torsion bar springs) 20 and the pair of drive beams 30 are arranged so as to be substantially orthogonal to each other. Since the vertical vibration at the tip of the driving beam 30 works perpendicularly to the torsional central axis of the elastic support member 20, the bending vibration of the driving beam 30 is efficiently converted into rotational vibration (torsional vibration) of the elastic support member 20, The mirror unit 10 is greatly rotated and vibrated. In addition, since the pair of drive beams 30 has a configuration in which the pair of elastic support members 20 and the mirror unit 10 are cantilevered, the tips of the drive beams 30 can freely vibrate, and the mirror unit 10 is larger. Angular vibration can be obtained. Furthermore, since the beam-shaped member 31 is disposed only on one side of the elastic support member 20, it can be reduced in size. The function of the frequency adjustment beam 40 will be described later.

図4に、本実施例の光偏向器における駆動梁30の圧電部材32への印加電圧に対するミラー部10の回転角度の振幅の周波数応答特性を示す。図4において、イとロはそれぞれ共振点であるが、イとロとでは、ミラー部10はそれぞれ異なる固有振動モード形状を示す。ここでは、イの共振点での固有振動モード形状をモード1、ロの共振点での固有振動モードをモード2と称す。   FIG. 4 shows frequency response characteristics of the amplitude of the rotation angle of the mirror unit 10 with respect to the voltage applied to the piezoelectric member 32 of the drive beam 30 in the optical deflector of the present embodiment. In FIG. 4, a and b are resonance points, but the mirror unit 10 shows different natural vibration mode shapes in a and b. Here, the natural vibration mode shape at the resonance point a is referred to as mode 1, and the natural vibration mode at the resonance point b is referred to as mode 2.

図5は、図4の周波数応答特性中の共振点イ、ロにおけるミラー部10の固有振動モード形状(モード1、モード2)を示したものである。図5(a)に示すように、モード1では、弾性支持部材20の曲げ変形が発生し、ミラー部10全体が図中Z方向に変動する。一方、モード2では、図5(b)に示すように、弾性支持部材20の曲げ変形がほとんどなく、弾性支持部材20が大きく捩じれて、ミラー部10はミラー中心近傍で大きく回転する。光偏向器では、ミラー部全体のZ方向の変動を阻止し、ミラー部10の中心近傍で回転させる必要があるため、モード2の固有振動モードでの周波数を使用すればよいことが分かる。   FIG. 5 shows the natural vibration mode shapes (mode 1 and mode 2) of the mirror unit 10 at the resonance points a and b in the frequency response characteristics of FIG. As shown in FIG. 5A, in mode 1, bending deformation of the elastic support member 20 occurs, and the entire mirror portion 10 changes in the Z direction in the drawing. On the other hand, in mode 2, as shown in FIG. 5 (b), there is almost no bending deformation of the elastic support member 20, the elastic support member 20 is largely twisted, and the mirror portion 10 rotates greatly in the vicinity of the mirror center. In the optical deflector, it is necessary to use the frequency in the natural vibration mode of mode 2 because it is necessary to prevent fluctuation in the Z direction of the entire mirror unit and rotate it near the center of the mirror unit 10.

このように、モード2の固有周波数で、駆動梁30の圧電部材32へ印加電圧を与えることによって、ミラー部10は大きな角度振幅を得ることができ、かつ、ミラー部10全体のZ方向の変動を阻止することができる。具体的には、ミラー部形状(質量)と共振周波数から、弾性支持部材20の形状を決定し、駆動梁30の一次の曲げ変形のモードの固有周波数が、弾性支持部材20の一次の捻り変形のモードの固有周波数に略一致するように設定する。こうすることで、ミラー部10は大きな角度振幅で振動し、かつ、Z方向の変動の発生が阻止される。   Thus, by applying an applied voltage to the piezoelectric member 32 of the drive beam 30 at the natural frequency of mode 2, the mirror unit 10 can obtain a large angular amplitude, and the entire mirror unit 10 varies in the Z direction. Can be prevented. Specifically, the shape of the elastic support member 20 is determined from the mirror part shape (mass) and the resonance frequency, and the natural frequency of the primary bending deformation mode of the drive beam 30 is the primary torsional deformation of the elastic support member 20. It is set so as to substantially match the natural frequency of the mode. By doing so, the mirror unit 10 vibrates with a large angular amplitude, and the occurrence of fluctuations in the Z direction is prevented.

なお、先に述べたように、各駆動梁30の圧電部材32への印加電圧の波形は、パルス波形でも、正弦波などの波状のいずれでもよく、その周波数がモード1の固有周波数近傍であればよい。   As described above, the waveform of the voltage applied to the piezoelectric member 32 of each drive beam 30 may be either a pulse waveform or a wave shape such as a sine wave, and the frequency may be in the vicinity of the natural frequency of mode 1. That's fine.

また、本実施例では、下部電極、上部電極と共に、スパッタにより圧電材料を成膜した構成を示したが(図3)、圧電材料はバルク材料を所定のサイズに切断したものを接着剤により貼り付けても良いし、またエアロゾルデポジション法(AD法)で形成しても良い。また、駆動梁は、梁状部材の片面に圧電材料が配置されたユニモルフ構造としたが、梁状部材の両面に圧電材料を配置したバイモルフ構造としてもよい。これは、以後の各実施例においても同様である。   In this embodiment, the piezoelectric material is formed by sputtering together with the lower electrode and the upper electrode (FIG. 3). The piezoelectric material is a bulk material cut into a predetermined size and attached with an adhesive. It may be attached, or may be formed by an aerosol deposition method (AD method). The drive beam has a unimorph structure in which the piezoelectric material is arranged on one side of the beam-like member, but may have a bimorph structure in which the piezoelectric material is arranged on both sides of the beam-like member. This is the same in the following embodiments.

次に、周波数調整梁40の働きについて詳述する。初めに、共振周波数の変動要因について説明する。共振周波数の変動要因には主に寸法のばらつきと環境温度変化の二つが考えられる。   Next, the function of the frequency adjusting beam 40 will be described in detail. First, the fluctuation factors of the resonance frequency will be described. There are two main causes of fluctuations in the resonance frequency: dimensional variation and environmental temperature change.

まず、寸法のばらつきについて考察する。一般に製造プロセスの影響により、寸法にばらつきが発生する。図6は、図1の実施例1の光偏向器の等価モデルを示した図である。いま、図6のように、一対の弾性支持部材20とミラー部10から構成される共振振動体を考えた場合、近似的に共振周波数fは   First, the dimensional variation will be considered. In general, variations in dimensions occur due to the influence of the manufacturing process. FIG. 6 is a diagram showing an equivalent model of the optical deflector of the first embodiment shown in FIG. Now, as shown in FIG. 6, when a resonant vibrating body composed of a pair of elastic support members 20 and a mirror portion 10 is considered, the resonant frequency f is approximately

で与えられる。ここで、Kは弾性支持部材バネ定数、Iはミラー慣性モーメントである。バネ定数Kは、弾性支持部材20の寸法によって大きく変化する。これにより、共振周波数fが大きくばらつくことになる。 Given in. Here, K is the elastic support member spring constant, and I is the mirror moment of inertia. The spring constant K varies greatly depending on the dimensions of the elastic support member 20. As a result, the resonance frequency f varies greatly.

図7に、いくつかのサンプルについて、環境温度を一定して共振周波数を測定した結果
示す。図7より、サンプルにより共振周波数がばらつくことが分かる。
FIG. 7 shows the result of measuring the resonance frequency at a constant environmental temperature for several samples. FIG. 7 shows that the resonance frequency varies depending on the sample.

次に、環境温度変化について考察する。ここでも、図6に示したように、一対の弾性支持部材20とミラー部10から構成される共振振動体を考える。
いま、E0を温度0°におけるヤング率、αをヤング率温度係数とすると、温度fにおけるヤング率Eは、式(2)で与えられる。
E=E0(1−αt) (2)
また、バネ定数Kは、バネ形状によって定まる定数K′とヤング率の積Eで、式(3)のように与えられる。
K=K′*E (3)
式(2),(3)により、温度tの時のバネ定数Kは、式(4)のようになる。
=K′*E=K′*E0(1−αt) (4)
したがって、温度tにおける共振周波数ftは、式(1),(4)より
Next, the environmental temperature change will be considered. Here, as shown in FIG. 6, a resonant vibrating body composed of a pair of elastic support members 20 and a mirror unit 10 is considered.
Now, if E 0 is the Young's modulus at a temperature of 0 ° and α is the Young's modulus temperature coefficient, the Young's modulus E at the temperature f is given by equation (2).
E = E 0 (1-αt) (2)
The spring constant K is a product E of a constant K ′ determined by the spring shape and Young's modulus, and is given by the following equation (3).
K = K '* E (3)
From the equations (2) and (3), the spring constant K t at the temperature t is as shown in the equation (4).
K t = K ′ * E = K ′ * E 0 (1-αt) (4)
Therefore, the resonance frequency ft at the temperature t is obtained from the equations (1) and (4).

で与えられる。式(5)より、温度が高くなるにつれて、共振周波数は低下する。 Given in. From equation (5), the resonance frequency decreases as the temperature increases.

図8は、図1の光偏向器について、環境温度を変えて共振周波数を測定した結果を示したものである。図8により、環境温度が高くなるにつれて、共振周波数が低下していることが分かる。   FIG. 8 shows the result of measuring the resonance frequency of the optical deflector of FIG. 1 while changing the environmental temperature. FIG. 8 shows that the resonance frequency decreases as the environmental temperature increases.

図1に戻り、各周波数調整梁40は、その圧電部材42に対して正又は負の直流電圧を印加して、一対の弾性支持部材20に引張り又は圧縮の応力を作用させることで、共振周波数を調整する働きをする。以下、周波数調整梁40の働きについて詳しく説明する。   Returning to FIG. 1, each frequency adjusting beam 40 applies a positive or negative DC voltage to the piezoelectric member 42 to apply a tensile or compressive stress to the pair of elastic support members 20, thereby causing a resonance frequency. It works to adjust. Hereinafter, the function of the frequency adjusting beam 40 will be described in detail.

図9は、図1の構成において、周波数調整梁40の圧電部材42に正の電圧を印加した場合の動作説明図である。圧電部材42は矢印1方向に分極されているとする。この圧電部材42に正の電圧を印加した場合、該圧電部材42は矢印2の方向に延びる。これにより、周波数調整梁40の梁状部材41は矢印3の方向に変形する。この時、周波数調整梁40の端部に発生する力をF、該周波数調整梁40の近似的な曲げ中心からの距離をLとすると、弾性支持部材20に作用する曲げモーメントMは、
M=F*L (6)
で与えられる。この曲げモーメントMにより、弾性支持部材20には圧縮応力が作用する。
FIG. 9 is an operation explanatory diagram when a positive voltage is applied to the piezoelectric member 42 of the frequency adjusting beam 40 in the configuration of FIG. It is assumed that the piezoelectric member 42 is polarized in the arrow 1 direction. When a positive voltage is applied to the piezoelectric member 42, the piezoelectric member 42 extends in the direction of the arrow 2. Thereby, the beam-like member 41 of the frequency adjusting beam 40 is deformed in the direction of the arrow 3. At this time, if the force generated at the end of the frequency adjusting beam 40 is F, and the distance from the approximate bending center of the frequency adjusting beam 40 is L, the bending moment M acting on the elastic support member 20 is
M = F * L (6)
Given in. Due to this bending moment M, a compressive stress acts on the elastic support member 20.

図10は、図1の構成において、周波数調整梁40の圧電部材42に負の電圧を印加した場合の動作説明図である。圧電部材42に負の電圧を印加した場合、該圧電部材42は矢印4の方向に縮む。これにより、周波数調整梁40の梁状部材41には、矢印5の方向の反りが発生する。この時、周波数調整梁40の端部に発生する力をF′、該周波数調整梁40の近似的な曲げ中心からの距離をLとすると、弾性支持部材20に作用する曲げモーメントM′は
M′=F′*L (7)
で与えられる。この曲げモーメントM′により、弾性支持部材20には引張り応力が作用する。
FIG. 10 is an operation explanatory diagram when a negative voltage is applied to the piezoelectric member 42 of the frequency adjusting beam 40 in the configuration of FIG. When a negative voltage is applied to the piezoelectric member 42, the piezoelectric member 42 contracts in the direction of the arrow 4. As a result, the beam-shaped member 41 of the frequency adjusting beam 40 is warped in the direction of the arrow 5. At this time, if the force generated at the end of the frequency adjusting beam 40 is F ′ and the distance from the approximate bending center of the frequency adjusting beam 40 is L, the bending moment M ′ acting on the elastic support member 20 is
M '= F' * L (7)
Given in. Due to this bending moment M ′, a tensile stress acts on the elastic support member 20.

弾性支持部材20に作用する応力と共振周波数との関係は、以下のようになる。図11に示すように、弾性支持部材20は両端固定とし、長手方向に一様な初期応力が作用するとして、該弾性支持部材20に圧縮応力と引張り応力を作用させたときの共振周波数変化についてシミュレーションを行った。図12はシミュレーション結果である。図12により、弾性支持部材20に引張り応力が作用する時、その作用する応力に比例して共振周波数が増加することが分かる。一方、弾性支持部材20に圧縮応力が作用する時、その作用する応力に比例して共振周波数が減少することが分かる。このように、弾性支持部材20に応力を発生させることにより、共振周波数を変化させることができる。   The relationship between the stress acting on the elastic support member 20 and the resonance frequency is as follows. As shown in FIG. 11, the elastic support member 20 is fixed at both ends, and assuming that uniform initial stress acts in the longitudinal direction, the change in the resonance frequency when compressive stress and tensile stress are applied to the elastic support member 20. A simulation was performed. FIG. 12 shows the simulation result. FIG. 12 shows that when a tensile stress acts on the elastic support member 20, the resonance frequency increases in proportion to the acting stress. On the other hand, when compressive stress acts on the elastic support member 20, it can be seen that the resonance frequency decreases in proportion to the acting stress. In this way, the resonance frequency can be changed by generating a stress in the elastic support member 20.

この弾性支持部材20に作用する応力と共振周波数の関係を利用し、周波数調整梁40を構成する圧電部材42に正又は負の直流電圧を印加して、弾性支持部材20に圧縮又は引張りの応力を発生させて共振周波数を調整する。   By utilizing the relationship between the stress acting on the elastic support member 20 and the resonance frequency, a positive or negative DC voltage is applied to the piezoelectric member 42 constituting the frequency adjusting beam 40, and the elastic support member 20 is subjected to compression or tension stress. To adjust the resonance frequency.

図13に、共振周波数調整の具体例を示す。図13において、イは必要とする周波数特性を示し、その共振周波数は28.5KHzとする。ロは、この共振周波数28.5KHzに対して、共振周波数が−10Hzずれたサンプルの周波数特性を示している。一方、ハは、同じく共振周波数28.5KHzに対して、共振周波数が+10Hzずれたサンプルの周波数数特性を示している。この2つのサンプルに対して、周波数調整梁40の圧電部材42に直流電圧を印加し、駆動梁30の圧電部材32には交流電圧を印加し、該圧電部材32に印加する交流電圧の周波数を変えて周波数特性を測定した。ロ′は、ロのサンプルに対して、−50vの直流電圧を印加した場合の周波数特性を示したもので、共振周波数が増加することが分かる。一方、ハ′は、ハのサンプルに対して、+50Vの直流電圧を印加した場合の周波数特性示したもので、共振周波数が減少することが分かる。これにより、ロ,ハいずれのサンプルにおいても、周波数調整梁40の圧電部材に印加する直流電圧を変えることで、イの周波数特性に近づけることができるようになる。   FIG. 13 shows a specific example of resonance frequency adjustment. In FIG. 13, A indicates the required frequency characteristics, and the resonance frequency is 28.5 KHz. B shows the frequency characteristics of a sample in which the resonance frequency is shifted by -10 Hz with respect to this resonance frequency of 28.5 KHz. On the other hand, C shows the frequency characteristic of a sample in which the resonance frequency is shifted by +10 Hz with respect to the resonance frequency of 28.5 KHz. For these two samples, a DC voltage is applied to the piezoelectric member 42 of the frequency adjusting beam 40, an AC voltage is applied to the piezoelectric member 32 of the drive beam 30, and the frequency of the AC voltage applied to the piezoelectric member 32 is set. The frequency characteristics were measured while changing. B ′ shows the frequency characteristics when a −50 V DC voltage is applied to the B sample, and it can be seen that the resonance frequency increases. On the other hand, C 'shows the frequency characteristics when + 50V DC voltage is applied to sample C, and it can be seen that the resonance frequency decreases. As a result, in both samples (b) and (c), by changing the DC voltage applied to the piezoelectric member of the frequency adjusting beam 40, it becomes possible to approximate the frequency characteristics of A.

図14に本発明の光偏向器の実施例2の全体斜視図、図15に平面図を示す。図14、図15において、図1及び図2と同一部分には同一の符号が付与されている。   FIG. 14 is an overall perspective view of a second embodiment of the optical deflector of the present invention, and FIG. 15 is a plan view. 14 and 15, the same parts as those in FIGS. 1 and 2 are given the same reference numerals.

図1、図2の実施例1では、ミラー部10の中心(重心)は、一対の弾性支持部材20の中心軸に対して一致するようにしたが、本実施例では、図15に示すように、ミラー部10の中心(重心)が、一対の弾性支持部材20に対して、振動梁50と固定ベース60との接続部に近接する方向に距離ΔSだけオフセットされている。こうすることで、先の実施例1の場合と比較して、一対の駆動梁40のたわみ変形を利用してミラー部10をさらに大きく回転振動させることができる。その他の構成、作用、効果は実施例1と同様である。   1 and FIG. 2, the center (center of gravity) of the mirror portion 10 is made to coincide with the central axis of the pair of elastic support members 20, but in this embodiment, as shown in FIG. Further, the center (center of gravity) of the mirror portion 10 is offset by a distance ΔS with respect to the pair of elastic support members 20 in a direction approaching the connection portion between the vibrating beam 50 and the fixed base 60. By doing so, compared to the case of the first embodiment, the mirror unit 10 can be further rotationally oscillated using the deflection deformation of the pair of drive beams 40. Other configurations, operations, and effects are the same as those in the first embodiment.

図16に、本実施例のミラー部10の重心をオフセットさせた構成の場合における、駆動梁30の圧電部材31の印加電圧に対するミラー部10の回転角度振幅の周波数応答特性を示す(周波数調整梁40は不動作)。また、図17に、図16の周波数応答特性中の共振点イ、ロにおけるミラー部10の固有振動モード形状(モード1,モード2)を示す。   FIG. 16 shows the frequency response characteristics of the rotation angle amplitude of the mirror unit 10 with respect to the voltage applied to the piezoelectric member 31 of the driving beam 30 in the case where the center of gravity of the mirror unit 10 of this embodiment is offset (frequency adjusting beam). 40 is inoperative). FIG. 17 shows the natural vibration mode shapes (mode 1 and mode 2) of the mirror unit 10 at the resonance points a and b in the frequency response characteristics of FIG.

本実施例においても、モード2の固有周波数で、駆動梁30bの圧電部材31へ印加電圧を与えることによって、ミラー部10は大きな角度振幅を得ることができ、かつ、ミラー部10全体のZ方向の変動を阻止することができる。しかも、先の実施例1の場合と比較して、ミラー部10は、より大きな角度振幅を得ることができる。   Also in this embodiment, by applying an applied voltage to the piezoelectric member 31 of the drive beam 30b at the natural frequency of mode 2, the mirror unit 10 can obtain a large angular amplitude, and the entire mirror unit 10 has a Z direction. Fluctuations can be prevented. Moreover, compared to the case of the first embodiment, the mirror unit 10 can obtain a larger angular amplitude.

図18は、本実施例のモード2の場合の駆動梁の撓み変形とミラー部の回転の関係を示したものである。弾性支持部材20が捩じれるモード2において、該弾性支持部材20の接続部aとミラー部10の回転中心bとの距離ΔS、ミラー部10の回転角度をθとしたとき、駆動梁30のミラー反射面と垂直方向(Z方向)の撓み変形分cがΔS・sinθとなるように設定することで、ミラー部10が回転する際に、ミラー部10の回転中心bがZ方向に変動しない構成とすることができる。また、ミラー部10の回転中心がミラー部10の重心Oに近くなるため、慣性モーメントが小さくなり、固有周波数を高くすることが可能となる。すなわち、より高速駆動が可能になる。   FIG. 18 shows the relationship between the bending deformation of the driving beam and the rotation of the mirror part in the mode 2 of this embodiment. In mode 2 in which the elastic support member 20 is twisted, when the distance ΔS between the connection part a of the elastic support member 20 and the rotation center b of the mirror part 10 and the rotation angle of the mirror part 10 are θ, the mirror of the drive beam 30 A configuration in which the rotation center b of the mirror unit 10 does not change in the Z direction when the mirror unit 10 rotates by setting the deflection deformation c in the direction perpendicular to the reflecting surface (Z direction) to be ΔS · sin θ. It can be. Further, since the center of rotation of the mirror unit 10 is close to the center of gravity O of the mirror unit 10, the moment of inertia is reduced and the natural frequency can be increased. That is, higher speed driving is possible.

なお、ミラー部10の重心とは、一対の弾性支持部材20で支持されている回転部全体の重心であり、ミラー裏面のリブ構造なども含めて重心をオフセットしてもよい。   The center of gravity of the mirror unit 10 is the center of gravity of the entire rotating unit supported by the pair of elastic support members 20, and the center of gravity may be offset including the rib structure on the back surface of the mirror.

図19に、本発明の光偏向器の実施例3の全体斜視図を示す。先の実施例1,2は1軸方向に光を偏向する構成(1軸駆動)であったが、本実施例は2軸方向に光を偏向する構成(2軸駆動)に拡張したものである。   FIG. 19 shows an overall perspective view of Embodiment 3 of the optical deflector of the present invention. The previous embodiments 1 and 2 were configured to deflect light in one axis direction (single axis drive), but this embodiment was extended to a configuration that deflects light in two axes direction (two axis drive). is there.

図19において、10は光を反射させる反射面を有するミラー部であり、このミラー部10の両側には、該ミラー部10を揺動可能に支持する一対の第1の弾性支持部材120が接続されている。この一対の第1の弾性支持部材120のミラー部10と反対側の端部には、それぞれ、該第1の弾性支持部材120の長手方向と略直交する向きを長手方向として第1の振動梁150が接続されている。そして、この一対の第1の振動梁150の他端は、中央に穴が開いている枠状の可動枠に固定されている。すなわち、一対の第1の振動梁150は、可動枠160の内側の一辺から同一方向に突出するようにして第1の弾性支持部材120にそれぞれ接続され、一対の第1の弾性支持部材120の片側にのみ配置され、該一対の第1の振動梁150で、ミラー部10と一対の第1の弾性支持部材120とを可動枠160に対して片持ち支持した構成となっている。   In FIG. 19, reference numeral 10 denotes a mirror part having a reflecting surface for reflecting light, and a pair of first elastic support members 120 that support the mirror part 10 so as to be swingable are connected to both sides of the mirror part 10. Has been. At the ends of the pair of first elastic support members 120 opposite to the mirror portion 10, the first vibrating beam is set with the direction substantially perpendicular to the longitudinal direction of the first elastic support member 120 as the longitudinal direction. 150 is connected. The other ends of the pair of first vibrating beams 150 are fixed to a frame-shaped movable frame having a hole in the center. That is, the pair of first vibrating beams 150 are respectively connected to the first elastic support members 120 so as to protrude in the same direction from one side inside the movable frame 160, and the pair of first elastic support members 120. The mirror unit 10 and the pair of first elastic support members 120 are cantilevered with respect to the movable frame 160 with the pair of first vibrating beams 150 disposed only on one side.

この一対の第1の振動梁150は、それぞれ、第1の弾性支持部材120に接続されている駆動梁130の部分と第1の弾性支持部材120に接続されていない周波数調整梁140の部分からなる。各駆動梁130は、梁状部材の片面に圧電材料が積層され、平板短冊状のユニモルフ構造を形成している。各周波数調整梁140も、同様に梁状部材の片面に圧電材料が積層され、平板短冊状のユニモルフ構成を形成している。これらの構成は実施例1と同じである。   The pair of first vibrating beams 150 includes a portion of the driving beam 130 connected to the first elastic support member 120 and a portion of the frequency adjustment beam 140 not connected to the first elastic support member 120, respectively. Become. Each drive beam 130 is formed by laminating a piezoelectric material on one surface of a beam-like member to form a flat strip-like unimorph structure. Similarly, each frequency adjusting beam 140 is formed by laminating a piezoelectric material on one side of the beam-like member to form a flat strip-like unimorph structure. These configurations are the same as those in the first embodiment.

さらに、図19では、可動枠160の両側には、一対の第1の弾性支持部材120と直交して該可動枠160を揺動可能に支持する一対の第2の弾性支持部材220が接続されている。そして、この一対の第2の弾性支持部材220の可動枠160と反対側の端部には、それぞれ、該第2の弾性支持部材220の長手方向と略直交する向きを長手方向として2組の第2の駆動梁250a,250bが接続され、これら第2の駆動梁250a,250の他端が固定ベース260に接続されている。   Further, in FIG. 19, a pair of second elastic support members 220 are connected to both sides of the movable frame 160 so as to be orthogonal to the pair of first elastic support members 120 and swingably support the movable frame 160. ing. Two ends of the pair of second elastic support members 220 on the side opposite to the movable frame 160 are set to have a longitudinal direction that is substantially perpendicular to the longitudinal direction of the second elastic support member 220. The second drive beams 250 a and 250 b are connected, and the other ends of the second drive beams 250 a and 250 are connected to the fixed base 260.

第2の振動梁250a,250bも、それぞれ、第2の弾性支持部材220に接続されている第2の駆動梁230a,230bの部分と第2の弾性支持部材220に接続されていない第2の周波数調整梁230a,230bの部分からなる。第2の駆動梁230a,230bは、それぞれ、第2の弾性支持部材220に対して略直交し、且つ、対称に配置され、一端が第2の弾性支持部材220に接続されて他端が固定ベース260に接続された一対の梁部材の片面に圧電材料が積層され、平板短冊状のユニモルフ構造を形成している。この第2の駆動梁230a,230bをブリッジ駆動梁と称す。第2の周波数調整梁240a,240bは、それぞれ第2の駆動梁230a,230bと第2の弾性支持部材220との接続点近傍で該第2の駆動梁230a,230bに対して直交方向に延びる連結部材270a,270bを設け、該連結部材270a,270bに一端が接続され他端が固定ベースに接続された複数の梁部材の片面にそれぞれ圧電材料が積層され、同じく平板短冊状のユニモルフ構造を形成している。さらに、一対の第2の弾性支持部材220は、それぞれ、第2の駆動梁230a,230bとの結合点から直交方向に延伸されて固定ベース260に接続されている。   The second vibrating beams 250 a and 250 b are also connected to the second elastic support member 220 and the second drive beams 230 a and 230 b are connected to the second elastic support member 220 and the second elastic support member 220 is not connected to the second elastic support member 220. It consists of the frequency adjusting beams 230a and 230b. The second drive beams 230a and 230b are arranged substantially orthogonally and symmetrically with respect to the second elastic support member 220, respectively, one end is connected to the second elastic support member 220, and the other end is fixed. A piezoelectric material is laminated on one side of a pair of beam members connected to the base 260 to form a flat strip-like unimorph structure. The second drive beams 230a and 230b are referred to as bridge drive beams. The second frequency adjusting beams 240a and 240b extend in a direction orthogonal to the second driving beams 230a and 230b in the vicinity of the connection point between the second driving beams 230a and 230b and the second elastic support member 220, respectively. Connecting members 270a and 270b are provided, and a piezoelectric material is laminated on one side of a plurality of beam members, one end of which is connected to the connecting members 270a and 270b and the other end is connected to a fixed base. Forming. Further, the pair of second elastic support members 220 are connected to the fixed base 260 by extending in the orthogonal direction from the coupling points with the second drive beams 230a and 230b, respectively.

本実施例では、第1の駆動梁130で第1の弾性支持部材120に振動を与えることで、ミラー部10を該第1の弾性支持部材120の軸周りに回転させ、第2の駆動梁(ブリッジ駆動梁)230a,230bで第2の弾性支持部材220に振動を与えることで、可動枠160を該第2の弾性支持部材220の軸周りに回転させる。ここで、第1の弾性支持部材120の軸周りの第1の回転方向と第2の弾性支持部材220の軸周りの第2の回転方向の振動モードの固有周波数を異ならせておき、それぞれの周波数で第1の駆動梁130と第2の駆動梁(ブリッジ駆動梁)230a,230bを駆動することで、ミラー部10を2軸方向に大きく回転させることができる。第2の駆動梁230a,230bはブリッジ駆動梁を形成し、さらに、第2の弾性支持部材220は該ブリッジ駆動梁との結合点から直交方向に延伸されて固定ベース260に接続されているため、2軸方向の振動を安定させることができる。   In the present embodiment, the first drive beam 130 vibrates the first elastic support member 120 to rotate the mirror portion 10 around the axis of the first elastic support member 120, and the second drive beam 130. (Bridge driving beam) The movable frame 160 is rotated around the axis of the second elastic support member 220 by applying vibration to the second elastic support member 220 by the bridge driving beams 230a and 230b. Here, the natural frequencies of the vibration modes in the first rotation direction around the axis of the first elastic support member 120 and the second rotation direction around the axis of the second elastic support member 220 are made different from each other. By driving the first driving beam 130 and the second driving beams (bridge driving beams) 230a and 230b at a frequency, the mirror unit 10 can be rotated greatly in the biaxial direction. The second drive beams 230a and 230b form a bridge drive beam, and the second elastic support member 220 is connected to the fixed base 260 by extending in the orthogonal direction from the connection point with the bridge drive beam. Biaxial vibration can be stabilized.

なお、第1の弾性支持部材120の軸周りの第1の回転方向と第2の弾性支持部材220の軸周りの第2の回転方向の振動モードの固有周波数を異ならせ、それぞれの周波数成分を含んだ信号で第1の駆動梁130と第2の駆動梁(ブリッジ駆動梁)230a,230bを駆動することでも、ミラー部10を2軸方向に大きく回転させることができる。   The natural frequencies of the vibration modes in the first rotation direction around the axis of the first elastic support member 120 and the second rotation direction around the axis of the second elastic support member 220 are made different from each other, and the respective frequency components are changed. By driving the first driving beam 130 and the second driving beams (bridge driving beams) 230a and 230b with the included signal, the mirror unit 10 can be greatly rotated in the biaxial direction.

以下に、第2の周波数調整梁240a,240bによる第2の弾性支持部材220の軸周りの第2の回転方向における共振周波数調整について説明する。なお、第1の周波数調整梁140による第1の弾性支持部材120の軸周りの第1の回転方向における共振周波数調整は実施例1と同様であるので、説明を省略する。
第2の駆動梁(ブリッジ駆動梁)230a,230bには所定周波数の交流電圧が印加されるが、第2の周波数調整梁240a,240bには直流電圧が印加される。
Hereinafter, the resonance frequency adjustment in the second rotation direction around the axis of the second elastic support member 220 by the second frequency adjustment beams 240a and 240b will be described. The resonance frequency adjustment in the first rotation direction around the axis of the first elastic support member 120 by the first frequency adjustment beam 140 is the same as that in the first embodiment, and thus the description thereof is omitted.
An AC voltage having a predetermined frequency is applied to the second drive beams (bridge drive beams) 230a and 230b, but a DC voltage is applied to the second frequency adjustment beams 240a and 240b.

図20は、図19の構成において、第2の周波数調整梁240a,240bに正の電圧を印加した場合の動作説明図である。第2の周波数調整梁240a,240bに正の電圧を印加した場合、その圧電部材はそれぞれ矢印1の方向に延びる。これにより、第2の周波数調整梁240a,240bはそれぞれ矢印2の方向に変形する。この時、第2の周波数調整梁240a,240bの端部に発生する力をそれぞれF、該第2の周波数調整梁240a,240bの近似的な曲げ中心からの距離をLとすると、第2の弾性支持部材220に作用する曲げモーメントMは、
M=F*L (8)
で与えられる。この曲げモーメントMは矢印3の方向に発生し、第2の弾性支持部材220は矢印4の方向に縮む。すなわち、曲げモーメントMにより、第2の弾性支持部材220には圧縮応力が作用する。
FIG. 20 is an operation explanatory diagram when a positive voltage is applied to the second frequency adjustment beams 240a and 240b in the configuration of FIG. When a positive voltage is applied to the second frequency adjusting beams 240a and 240b, the piezoelectric members extend in the direction of arrow 1, respectively. As a result, the second frequency adjustment beams 240a and 240b are deformed in the direction of the arrow 2, respectively. At this time, when the force generated at the ends of the second frequency adjusting beams 240a and 240b is F and the distance from the approximate bending center of the second frequency adjusting beams 240a and 240b is L, the second The bending moment M acting on the elastic support member 220 is
M = F * L (8)
Given in. This bending moment M is generated in the direction of arrow 3, and the second elastic support member 220 is contracted in the direction of arrow 4. That is, due to the bending moment M, compressive stress acts on the second elastic support member 220.

図21は、図19の構成において、第2の周波数調整梁240a,240bに負の電圧を印加した場合の動作説明図である。第2の周波数調整梁240a,240bに負の電圧を印加した場合、その圧電部材はそれぞれ矢印5の方向に縮む。これにより、第2の周波数調整梁240a,240bはそれぞれ矢印6の方向に反り変形する。この時、第2の周波数調整梁240a,240bの端部に発生する力をそれぞれF′、該第2の周波数調整梁240a,240bの近似的な曲げ中心からの距離をLとすると、第2の弾性支持部材220に作用する曲げモーメントM′は、
M′=F′*L (9)
で与えられる。この曲げモーメントM′は矢印7の方向に発生し、第2の弾性支持部材220は矢印8の方向に延びる。すなわち、曲げモーメントM′により、第2の弾性支持部材220には引張り応力が作用する。
FIG. 21 is an operation explanatory diagram when a negative voltage is applied to the second frequency adjustment beams 240a and 240b in the configuration of FIG. When a negative voltage is applied to the second frequency adjustment beams 240a and 240b, the piezoelectric members contract in the direction of arrow 5, respectively. As a result, the second frequency adjustment beams 240a and 240b are warped and deformed in the direction of the arrow 6, respectively. At this time, if the force generated at the ends of the second frequency adjusting beams 240a and 240b is F ′, and the distance from the approximate bending center of the second frequency adjusting beams 240a and 240b is L, the second The bending moment M ′ acting on the elastic support member 220 is
M '= F' * L (9)
Given in. This bending moment M ′ is generated in the direction of arrow 7, and the second elastic support member 220 extends in the direction of arrow 8. That is, a tensile stress acts on the second elastic support member 220 due to the bending moment M ′.

先の図12の共振周波数と応力の関係より、第2の弾性支持部材220に引張り応力が作用する時、その作用する応力に比例して共振周波数が増加し、一方、該第2の弾性支持部材220に圧縮応力が作用する時、その作用する応力に比例して共振周波数が減少する。すなわち、第2の弾性支持部材220に応力を発生させることにより、該第2の弾性支持部材220の軸周りの第2の回転方向における共振周波数を調整することができる。具体的には、図13に示したように、第2の周波数調整梁240a,240bに負の直流電圧を印加すれば、共振周波数を増加することができ、正の直流電圧を印加すれば、共振周波数を減少させることができる。   From the relationship between the resonance frequency and the stress shown in FIG. 12, when a tensile stress acts on the second elastic support member 220, the resonance frequency increases in proportion to the acting stress. When compressive stress acts on the member 220, the resonance frequency decreases in proportion to the acting stress. That is, by generating a stress in the second elastic support member 220, the resonance frequency in the second rotation direction around the axis of the second elastic support member 220 can be adjusted. Specifically, as shown in FIG. 13, if a negative DC voltage is applied to the second frequency adjustment beams 240a and 240b, the resonance frequency can be increased, and if a positive DC voltage is applied, The resonance frequency can be reduced.

以上説明したように、図19の構成とすることで、ミラー部10を2軸方向に大きく回転させることができ、同時に、該2軸方向の共振周波数をそれぞれ調整することが可能となる。   As described above, with the configuration shown in FIG. 19, the mirror unit 10 can be greatly rotated in the biaxial direction, and at the same time, the resonant frequencies in the biaxial direction can be adjusted.

なお、図19の構成において、周波数調整梁は第1の周波数調整梁140あるいは第2の周波数調整梁240a,240bのいずれか一方のみとすることでもよい。例えば、共振周波数のずれが第1の弾性支持部材120の軸周りの第1の回転方向のみの場合には、周波数調整梁は第1の周波数調整梁140だけで良い。また、共振周波数のずれが第2の弾性支持部材220の軸周りの第2の回転方向のみの場合には、周波数調整梁は第2の周波数調整梁240a,240bだけでよい。これにより、2軸駆動光偏向器の構成が図19の構成に比べて簡単になる。   In the configuration of FIG. 19, the frequency adjustment beam may be only one of the first frequency adjustment beam 140 or the second frequency adjustment beams 240a and 240b. For example, when the resonance frequency shift is only in the first rotation direction around the axis of the first elastic support member 120, the frequency adjustment beam may be only the first frequency adjustment beam 140. When the resonance frequency shift is only in the second rotation direction around the axis of the second elastic support member 220, the frequency adjustment beams need only be the second frequency adjustment beams 240a and 240b. This simplifies the configuration of the biaxial drive light deflector compared to the configuration of FIG.

さらに、図19の構成を変更し、複数の第1の振動梁150を、第2の振動梁250と同様に、それぞれ第1の弾性支持部材120に対して略直交し、且つ、対称に配置して、第1の駆動梁130をブリッジ駆動梁とすることでもよい。また、先の実施例1や2の1軸駆動の光偏向器においても、複数の振動梁50を、それぞれ弾性支持部材20に対して略直交し、且つ、対称に配置して、駆動梁30をブリッジ駆動梁とすることも可能である。周波数調整梁の構成も同様とする。本発明の光偏向器には、このような構成のものも含まれる。   Further, the configuration of FIG. 19 is changed, and the plurality of first vibrating beams 150 are arranged substantially orthogonally and symmetrically with respect to the first elastic support member 120 in the same manner as the second vibrating beam 250. Thus, the first drive beam 130 may be a bridge drive beam. Also in the uniaxially driven optical deflectors of the first and second embodiments, the plurality of vibrating beams 50 are arranged substantially orthogonally and symmetrically with respect to the elastic support member 20, respectively. Can be a bridge drive beam. The configuration of the frequency adjustment beam is the same. The optical deflector of the present invention includes such a configuration.

本実施例は、実施例1や2の1軸方向に光を偏向する光偏向器を用いて画像形成装置の光書き込みユニットとしての光走査装置を提供するものである。   This embodiment provides an optical scanning device as an optical writing unit of an image forming apparatus using an optical deflector that deflects light in one axial direction of the first and second embodiments.

図22に本実施例の光走査装置の全体構成図、図23に該光走査装置に用いる光偏向器と駆動手段の接続図を示す。   FIG. 22 is an overall configuration diagram of the optical scanning device of the present embodiment, and FIG. 23 is a connection diagram of an optical deflector used in the optical scanning device and driving means.

図22において、レーザ素子1020からのレーザ光は、コリメータレンズ系1021を経た後、光偏向器1022により偏向される。この光偏向器1022として、実施例1〜5のいずれかの構成の光偏向器が用いられる。光偏向器1022で偏向されたレーザ光は、その後、第一レンズ1023aと第二レンズ1023b、反射ミラー1023cからなる走査光学系1023を経て感光ドラム等のビーム走査面1022に照射される。   In FIG. 22, the laser light from the laser element 1020 passes through the collimator lens system 1021 and is then deflected by the optical deflector 1022. As this optical deflector 1022, the optical deflector having any one of the configurations of the first to fifth embodiments is used. The laser beam deflected by the optical deflector 1022 is then applied to a beam scanning surface 1022 such as a photosensitive drum through a scanning optical system 1023 including a first lens 1023a, a second lens 1023b, and a reflection mirror 1023c.

図23に示すように、光偏向器1022は駆動手段1024と電気的に連結されている。この駆動手段1024が、光偏向器1022の下部電極と上部電極間に駆動電圧を印加する。これにより、光偏向器1022のミラー部が回転してレーザ光が偏向され、ビーム走査面1022上が光走査される。   As shown in FIG. 23, the optical deflector 1022 is electrically connected to the driving means 1024. The driving unit 1024 applies a driving voltage between the lower electrode and the upper electrode of the optical deflector 1022. As a result, the mirror portion of the optical deflector 1022 rotates to deflect the laser light, and the beam scanning surface 1022 is optically scanned.

このように、本発明の光偏向器を利用した光走査装置は写真印刷方式のプリンタや複写機などの画像形成装置のための光書込ユニットの構成部材として最適である。   As described above, the optical scanning device using the optical deflector according to the present invention is optimal as a constituent member of an optical writing unit for an image forming apparatus such as a photographic printing type printer or a copying machine.

本実施例は、実施例4の光走査装置を光書込みユニットの構成部材として実装した画像形成装置を提供するものである。   This embodiment provides an image forming apparatus in which the optical scanning device according to the fourth embodiment is mounted as a constituent member of an optical writing unit.

図24に本実施例の画像形成装置の一例の全体構成図を示す。図24において、1001が光書込みユニットであり、レーザビームを被走査面に出射して画像を書き込む。1002は光書込みユニット1001による走査対象としての被走査面を提供する像担持体としての感光体ドラムである。   FIG. 24 shows an overall configuration diagram of an example of the image forming apparatus of this embodiment. In FIG. 24, reference numeral 1001 denotes an optical writing unit, which emits a laser beam to a surface to be scanned and writes an image. Reference numeral 1002 denotes a photosensitive drum as an image carrier that provides a surface to be scanned as an object to be scanned by the optical writing unit 1001.

光書込みユニット1001は、記録信号によって変調された1本又は複数本のレーザビームで感光体ドラム1002の表面(被走査面)を同ドラムの軸方向に走査する。感光体ドラム1002は矢印1003方向に回転駆動され、帯電手段1004により帯電された表面に、光書込みユニット1001により光走査されることによって、静電潜像が形成される。この静電潜像は現像手段1005でトナー像に顕像化され、このトナー像は転写手段1006で記録紙1007に転写される。転写されたトナー像は定着手段1008によって記録紙1007に定着される。感光体ドラム1002の転写手段1006対向部を通過した感光体ドラムの表面部分はクリーニング部1009で残留トナーを除去される。   The optical writing unit 1001 scans the surface (scanned surface) of the photosensitive drum 1002 in the axial direction of the photosensitive drum 1002 with one or a plurality of laser beams modulated by the recording signal. The photosensitive drum 1002 is rotationally driven in the direction of an arrow 1003, and an optical latent image is formed on the surface charged by the charging unit 1004 by optical scanning by the optical writing unit 1001. The electrostatic latent image is visualized as a toner image by the developing unit 1005, and the toner image is transferred to the recording paper 1007 by the transfer unit 1006. The transferred toner image is fixed on the recording paper 1007 by the fixing unit 1008. Residual toner is removed by the cleaning unit 1009 from the surface portion of the photosensitive drum that has passed the transfer unit 1006 facing portion of the photosensitive drum 1002.

なお、感光体ドラム1002に代えてベルト状の感光体を用いる構成も可能である。また、トナー像を記録紙以外の転写媒体に一旦転写し、この転写媒体からトナー像を記録紙に転写して定着させる構成とすることも可能である。   A configuration using a belt-like photoconductor in place of the photoconductor drum 1002 is also possible. Further, the toner image may be temporarily transferred to a transfer medium other than the recording paper, and the toner image may be transferred from the transfer medium to the recording paper and fixed.

光書込みユニット1001は記録信号によって変調された1本又は複数本のレーザビームを発するレーザ素子としての光源部1020と、レーザビームを変調する光源駆動手段1500と、これまで説明した本発明の1軸方向にレーザビームを偏向する光偏向器1002と、この光偏向器1022のミラー基板のミラー面に光源部1020からの、記録信号によって変調されたレーザビーム(光ビーム)を結像させるための結像光学系1021と、ミラー面で反射・偏向された1本又は複数本のレーザビームを感光体ドラム1002の表面(被走査面)に結像させるための手段である走査光学系1023などから構成される。光偏向器1022は、その駆動のための集積回路(駆動手段)1024とともに回路基板1025に実装された形で光書込みユニット1001に組み込まれている。   The optical writing unit 1001 includes a light source unit 1020 as a laser element that emits one or a plurality of laser beams modulated by a recording signal, a light source driving unit 1500 that modulates a laser beam, and the uniaxial of the present invention described so far. An optical deflector 1002 that deflects the laser beam in the direction, and a connection for imaging the laser beam (light beam) modulated by the recording signal from the light source unit 1020 on the mirror surface of the mirror substrate of the optical deflector 1022. An image optical system 1021 and a scanning optical system 1023 that is a means for forming an image of one or a plurality of laser beams reflected and deflected by a mirror surface on the surface (scanned surface) of the photosensitive drum 1002 Is done. The optical deflector 1022 is incorporated in the optical writing unit 1001 in a form mounted on a circuit board 1025 together with an integrated circuit (driving means) 1024 for driving the optical deflector 1022.

光偏向器1022は、従来の回転多面鏡に比べ駆動のための消費電力が小さいため、画像形成装置の省電力化に有利である。また、光偏向器1022のミラー基板の振動時の風切り音は回転多面鏡に比べ小さいため、画像形成装置の静粛性の改善に有利である。さらに、光偏向器1022は、回転多面鏡に比べ設置スペースが圧倒的に少なくて済み、また、発熱量もわずかであるため、小型化が容易であり、したがって画像形成装置の小型化に有利である。   The optical deflector 1022 consumes less power for driving than the conventional rotary polygon mirror, which is advantageous for power saving of the image forming apparatus. Further, since the wind noise during vibration of the mirror substrate of the optical deflector 1022 is smaller than that of the rotary polygon mirror, it is advantageous for improving the quietness of the image forming apparatus. Furthermore, the optical deflector 1022 requires much less installation space than the rotary polygon mirror, and also has a small amount of heat generation, so that it can be easily downsized, and therefore advantageous for downsizing the image forming apparatus. is there.

なお、記録紙1007の搬送機構、感光体ドラム1002の駆動機構、現像手段1005、転写手段1006などの制御手段、光源部1020の駆動系などは、従来の画像形成装置と同様でよいため図23では省略されている。   Note that the conveyance mechanism of the recording paper 1007, the driving mechanism of the photosensitive drum 1002, the control means such as the developing means 1005 and the transfer means 1006, the driving system of the light source unit 1020, and the like may be the same as those in the conventional image forming apparatus. Is omitted.

本実施例は、実施例3のような2軸方向に光を偏向する光偏向器を実装した画像投影装置を提供するものである。   The present embodiment provides an image projection apparatus equipped with an optical deflector that deflects light in the biaxial direction as in the third embodiment.

図25に本実施例の画像投影装置の全体構成図を示す。図25において、筐体2000に赤(R)、緑(G)、青(B)の異なる3波長のレーザ光を出射するレーザ光源2001−R,2001−G,2001−Bが取り付けられ、これらレーザ光源2001−R,2001−G,2001−Bの出射端近傍には、該レーザ光源2001−R,2001−G,2001−Bからの出射光を略平行光に集光する集光レンズ2002−R,2002−,002−Bが配置されている。集光レンズ2002−R,2002−,002−Bで略平行になったR,G,Bのレーザ光は、ミラー2003やハーフミラー2004を経て、合成プリズム2005によって合成され、光偏向器2006のミラー面に入射される。光偏向器2006には、実施例7や8のような2軸方向に光を偏向する構成の光偏向器(二次元反射角度可変ミラー)が使用される。光偏向器2006のミラー面に入射した合成レーザ光は、光偏向器2006によって二次元偏向走査されて投影面に投射され、画像を投影する。   FIG. 25 shows an overall configuration diagram of the image projection apparatus of the present embodiment. In FIG. 25, laser light sources 2001-R, 2001-G, and 2001-B that emit laser beams having three different wavelengths of red (R), green (G), and blue (B) are attached to a housing 2000. In the vicinity of the emission ends of the laser light sources 2001-R, 2001-G, 2001-B, a condenser lens 2002 that condenses the emitted light from the laser light sources 2001-R, 2001-G, 2001-B into substantially parallel light. -R, 2002, 002-B are arranged. The R, G, and B laser beams that are substantially parallel by the condenser lenses 2002-R, 2002, and 002-B pass through the mirror 2003 and the half mirror 2004, and are combined by the combining prism 2005. Incident on the mirror surface. As the optical deflector 2006, an optical deflector (two-dimensional reflection angle variable mirror) configured to deflect light in two-axis directions as in the seventh and eighth embodiments is used. The combined laser light incident on the mirror surface of the optical deflector 2006 is two-dimensionally deflected and scanned by the optical deflector 2006 and projected onto the projection surface to project an image.

図26は、本実施例の画像投影装置の制御系も含めた概略構成図である。なお、図26では、3波長のレーザ光源や集光レンズは一つにまとめて示し、また、ミラー、ハーフミラー、合成プリズムは省略してある。   FIG. 26 is a schematic configuration diagram including the control system of the image projection apparatus of the present embodiment. In FIG. 26, the three-wavelength laser light source and the condenser lens are shown together, and the mirror, the half mirror, and the combining prism are omitted.

画像情報に応じて画像生成部2011で画像信号を生成し、この画像信号が変調器2012を介して光源駆動回路2013に送られると共に、スキャナ駆動回路2014に画像同期信号が送られる。スキャナ駆動回路2014は、画像同期信号に応じて駆動信号を光偏向器2006に与える。この駆動信号によって、光偏向器2006のミラー部10は、直交した2つの方向に所定角度(例えば10deg程度)の振幅で共振振動し、入射したレーザ光が二次元偏向走査される。一方、レーザ光源2001から出射されるレーザ光は、光源駆動回路2013により、光偏向器2006の二次元偏向走査のタイミングに合わせて強度変調されており、これによって、投影面2007に二次元の画像情報が投影される。強度変調はパルス幅を変調してもよいし、振幅を変調してもよい。変調器2012は画像信号をパルス幅変調あるいは振幅変調し、この変調された信号を光源駆動回路2013によりレーザ光源2001を駆動できる電流に変調してレーザ光源2001を駆動する。   The image generation unit 2011 generates an image signal according to the image information, and the image signal is sent to the light source drive circuit 2013 via the modulator 2012, and the image synchronization signal is sent to the scanner drive circuit 2014. The scanner drive circuit 2014 supplies a drive signal to the optical deflector 2006 according to the image synchronization signal. By this drive signal, the mirror unit 10 of the optical deflector 2006 resonates and vibrates in two orthogonal directions with an amplitude of a predetermined angle (for example, about 10 deg), and the incident laser light is two-dimensionally deflected and scanned. On the other hand, the intensity of the laser light emitted from the laser light source 2001 is modulated by the light source driving circuit 2013 in accordance with the timing of the two-dimensional deflection scanning of the optical deflector 2006, and thereby a two-dimensional image is projected on the projection surface 2007. Information is projected. Intensity modulation may modulate the pulse width or the amplitude. The modulator 2012 performs pulse width modulation or amplitude modulation on the image signal, and modulates the modulated signal into a current that can drive the laser light source 2001 by the light source driving circuit 2013 to drive the laser light source 2001.

ここで、光偏向手段には、ポリゴンミラーなどの回転走査ミラーを使用することもできるが、本発明の実施例7、8の構成の光偏向器(二次元反射角度可変ミラー)2006は、回転走査ミラーに比べ駆動のための消費電力が小さいため、画像投影装置の省電力に有利である。また、光偏向器2006のミラー基板の振動時の風切り音は回転走査ミラーに比べて小さいため、画像投影装置の静粛性の改善に有利である。さらに光偏向器2006は、回転走査ミラーに比べ設置スペースが圧倒的に少なくて済み、また、発熱量もわずかであるため、小型化が容易であり、したがって、画像投影装置の小型化に有利である。   Here, a rotating scanning mirror such as a polygon mirror can be used as the light deflecting unit, but the optical deflector (two-dimensional reflection angle variable mirror) 2006 having the configuration of the seventh and eighth embodiments of the present invention is rotated. Since power consumption for driving is smaller than that of the scanning mirror, it is advantageous for power saving of the image projection apparatus. Further, since the wind noise during vibration of the mirror substrate of the optical deflector 2006 is smaller than that of the rotating scanning mirror, it is advantageous for improving the quietness of the image projection apparatus. Furthermore, the optical deflector 2006 requires much less installation space than the rotary scanning mirror and has a small amount of heat generation, so it can be easily downsized, and is therefore advantageous for downsizing the image projection apparatus. is there.

10 ミラー部
20 弾性支持部材
30 駆動梁
31 梁状部材
32 圧電部材
40 周波数調整梁
41 梁状部材
42 圧電部材
50 振動梁
60 固定ベース
120 第1の弾性支持部材
130 第1の駆動梁
140 第1の周波数調整梁
150 第1の振動梁
160 可動枠
220 第2の弾性支持部材
230a,230b 第2の駆動梁(ブリッジ駆動梁)
240a,240b 第2の周波数調整梁
250a,250b 第2の振動梁
260 固定ベース
270a,270b 連結部材
DESCRIPTION OF SYMBOLS 10 Mirror part 20 Elastic support member 30 Driving beam 31 Beam-shaped member 32 Piezoelectric member 40 Frequency adjustment beam 41 Beam-shaped member 42 Piezoelectric member 50 Vibrating beam 60 Fixed base 120 First elastic supporting member 130 First driving beam 140 First Frequency adjusting beam 150 first vibrating beam 160 movable frame 220 second elastic support member 230a, 230b second driving beam (bridge driving beam)
240a, 240b Second frequency adjusting beam 250a, 250b Second vibrating beam 260 Fixed base 270a, 270b Connecting member

特開2003− 84226号公報JP 2003-84226 A 特開2005−128551号公報JP 2005-128551 A 特開2005−128147号公報JP 2005-128147 A 特許第2981600号公報Japanese Patent No. 2981600

Claims (12)

固定ベースと、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する弾性支持部材と、一端が前記固定ベースに接続され、他端が前記弾性支持部材に接続され、梁状部材に圧電部材が固着された振動梁とを有し、
前記振動梁は、交流電圧を印加することで、前記弾性支持部材に捻り変形を発生して、前記ミラー部を所望共振周波数で回転振動せしめる駆動梁と、直流電圧を印加することで、前記弾性支持部材に応力を与えて、前記共振周波数を調整する周波数調整梁とで構成されていることを特徴とする光偏向器。
A fixed base, a mirror portion having a light reflecting surface, an elastic support member that supports the mirror portion in a swingable manner, one end connected to the fixed base, and the other end connected to the elastic support member. A vibrating beam having a piezoelectric member fixed to the member;
The vibrating beam generates a torsional deformation in the elastic support member by applying an AC voltage, and rotates and vibrates the mirror portion at a desired resonance frequency, and the elastic beam by applying a DC voltage. An optical deflector comprising: a frequency adjusting beam that applies stress to a supporting member to adjust the resonance frequency.
振動梁において、駆動梁は梁状部材が弾性支持部材と接続されている部分で構成され、周波数調整梁は、梁状部材が弾性支持部材と接続されていない部分で構成されていることを特徴とする請求項1に記載の光偏向器。   In the vibrating beam, the drive beam is configured by a portion where the beam-shaped member is connected to the elastic support member, and the frequency adjusting beam is configured by a portion where the beam-shaped member is not connected to the elastic support member. The optical deflector according to claim 1. 弾性支持部材の長手方向と振動梁の長手方向とが略直交して配置されて、両者が接続され、振動梁の他端が固定ベースに固定され、一対の振動梁で、ミラー部と一対の弾性支持部材とが固定ベースに対して片持ち支持されることを特徴とする請求項1又は2に記載の光偏向器。   The longitudinal direction of the elastic support member and the longitudinal direction of the vibrating beam are arranged substantially orthogonal to each other, both are connected, and the other end of the vibrating beam is fixed to the fixed base. The optical deflector according to claim 1 or 2, wherein the elastic support member is cantilevered with respect to the fixed base. ミラー部の重心が、弾性支持部材の中心軸に対して、振動梁と固定ベースとの接続部側に近接する方向にオフセットされていることを特徴とする請求項3に記載の光偏向器。   4. The optical deflector according to claim 3, wherein the center of gravity of the mirror portion is offset in a direction approaching the connecting portion side between the vibrating beam and the fixed base with respect to the central axis of the elastic support member. 可動枠と、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する一対の第1の弾性支持部材と、一端が前記可動枠に接続され、他端が前記第1の弾性支持部材に接続され、梁状部材に圧電部材が固着された第1の振動梁とを有し、
さらに、固定ベースと、前記可動枠を揺動可能に支持する一対の第2の弾性支持部材と、一端が前記固定ベースに接続され、他端が前記第2の弾性支持部材に接続され、梁状部材に圧電部材が固着された複数の第2の振動梁とを有し、
前記第1の振動梁は、交流電圧を印加することで、前記第1の弾性支持部材に捻り変形を発生して、前記ミラー部を第1の所望共振周波数で第1の方向に回転振動せしめる第1の駆動梁と、直流電圧を印加することで、前記第1の弾性支持部材に応力を与えて前記共振周波数を調整する第1の周波数調整梁とで構成され、
前記第2の振動梁は、交流電圧を印加することで、前記第2の弾性支持部材に捻り変形を発生して、前記可動枠を第2の所望共振周波数で回転振動させ、前記ミラー部を第2の方向に回転振動せしめる第2の駆動梁と、直流電圧を印加することで、前記第2の弾性支持部材に応力を与えて前記共振周波数を調整する第2の周波数調整梁とで構成される、
ことを特徴とする光偏向器。
A movable frame, a mirror portion having a light reflecting surface, a pair of first elastic support members that support the mirror portion so as to be swingable, one end connected to the movable frame, and the other end the first elastic A first vibrating beam connected to the support member and having a piezoelectric member fixed to the beam-shaped member;
Furthermore, a fixed base, a pair of second elastic support members that swingably support the movable frame, one end connected to the fixed base, the other end connected to the second elastic support member, and a beam A plurality of second vibrating beams each having a piezoelectric member fixed to the shaped member,
The first vibrating beam generates an torsional deformation in the first elastic support member by applying an alternating voltage, and causes the mirror portion to rotate and vibrate in a first direction at a first desired resonance frequency. A first drive beam and a first frequency adjusting beam that adjusts the resonance frequency by applying stress to the first elastic support member by applying a DC voltage;
The second vibrating beam generates an torsional deformation in the second elastic support member by applying an AC voltage, rotationally vibrates the movable frame at a second desired resonance frequency, and A second drive beam that is rotated and vibrated in a second direction, and a second frequency adjustment beam that adjusts the resonance frequency by applying a DC voltage to apply stress to the second elastic support member. To be
An optical deflector characterized by that.
可動枠と、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する一対の第1の弾性支持部材と、一端が前記可動枠に接続され、他端が前記第1の弾性支持部材に接続され、梁状部材に圧電部材が固着された第1の振動梁とを有し、
さらに、固定ベースと、前記可動枠を揺動可能に支持する一対の第2の弾性支持部材と、一端が前記固定ベースに接続され、他端が前記第2の弾性支持部材に接続され、梁状部材に圧電部材が固着された複数の第2の振動梁とを有し、
前記第1の振動梁は、交流電圧を印加することで、前記第1の弾性支持部材に捻り変形を発生して、前記ミラー部を第1の所望共振周波数で第1の方向に回転振動せしめる第1の駆動梁と、直流電圧を印加することで、前記第1の弾性支持部材に応力を与えて前記共振周波数を調整する周波数調整梁とで構成され、
前記第2の振動梁は、交流電圧を印加することで、前記第2の弾性支持部材に捻り変形を発生して、前記可動枠を第2の所望共振周波数で回転振動させ、前記ミラー部を第2の方向に回転振動せしめる第2の駆動梁で構成される、
ことを特徴とする光偏向器。
A movable frame, a mirror portion having a light reflecting surface, a pair of first elastic support members that support the mirror portion so as to be swingable, one end connected to the movable frame, and the other end the first elastic A first vibrating beam connected to the support member and having a piezoelectric member fixed to the beam-shaped member;
Furthermore, a fixed base, a pair of second elastic support members that swingably support the movable frame, one end connected to the fixed base, the other end connected to the second elastic support member, and a beam A plurality of second vibrating beams each having a piezoelectric member fixed to the shaped member,
The first vibrating beam generates an torsional deformation in the first elastic support member by applying an alternating voltage, and causes the mirror portion to rotate and vibrate in a first direction at a first desired resonance frequency. A first driving beam and a frequency adjusting beam that adjusts the resonance frequency by applying a DC voltage to apply stress to the first elastic support member;
The second vibrating beam generates an torsional deformation in the second elastic support member by applying an AC voltage, rotationally vibrates the movable frame at a second desired resonance frequency, and Consists of a second drive beam that oscillates in the second direction.
An optical deflector characterized by that.
可動枠と、光反射面を有するミラー部と、前記ミラー部を揺動可能に支持する一対の第1の弾性支持部材と、一端が前記可動枠に接続され、他端が前記第1の弾性支持部材に接続され、梁状部材に圧電部材が固着された第1の振動梁とを有し、
さらに、固定ベースと、前記可動枠を揺動可能に支持する一対の第2の弾性支持部材と、一端が前記固定ベースに接続され、他端が前記第2の弾性支持部材に接続され、梁状部材に圧電部材が固着された複数の第2の振動梁とを有し、
前記第1の振動梁は、交流電圧を印加することで、前記第1の弾性支持部材に捻り変形を発生して、前記ミラー部を第1の所望共振周波数で第1の方向に回転振動せしめる第1の駆動梁で構成され、
前記第2の振動梁は、交流電圧を印加することで、前記第2の弾性支持部材に捻り変形を発生して、前記可動枠を第2の所望共振周波数で回転振動させ、前記ミラー部を第2の方向に回転振動せしめる第2の駆動梁と、直流電圧を印加することで、前記第2の弾性支持部材に応力を与えて前記共振周波数を調整する周波数調整梁とで構成される、
ことを特徴とする光偏向器。
A movable frame, a mirror portion having a light reflecting surface, a pair of first elastic support members that support the mirror portion so as to be swingable, one end connected to the movable frame, and the other end the first elastic A first vibrating beam connected to the support member and having a piezoelectric member fixed to the beam-shaped member;
Furthermore, a fixed base, a pair of second elastic support members that swingably support the movable frame, one end connected to the fixed base, the other end connected to the second elastic support member, and a beam A plurality of second vibrating beams each having a piezoelectric member fixed to the shaped member,
The first vibrating beam generates an torsional deformation in the first elastic support member by applying an alternating voltage, and causes the mirror portion to rotate and vibrate in a first direction at a first desired resonance frequency. Composed of a first drive beam,
The second vibrating beam generates an torsional deformation in the second elastic support member by applying an AC voltage, rotationally vibrates the movable frame at a second desired resonance frequency, and A second driving beam that is rotated and vibrated in a second direction; and a frequency adjustment beam that adjusts the resonance frequency by applying a DC voltage to apply stress to the second elastic support member.
An optical deflector characterized by that.
第2の振動梁は、第2の弾性支持部材に対して略直交し、且つ、対称に配置され、一端が固定ベースに接続され、他端が前記第2の弾性支持部材に接続されて、ブリッジ駆動梁を構成する第2の駆動梁と、前記ブリッジ駆動梁と前記第2の弾性支持部材との接続点近傍で、該ブリッジ駆動梁に直交方向に延びる連結部材に、一端が接続され、他端が固定ベースに接続された周波数調整梁とで構成されることを特徴とする請求項5又は7に記載の光偏向器。   The second vibrating beam is substantially orthogonal to the second elastic support member and symmetrically arranged, one end is connected to the fixed base, and the other end is connected to the second elastic support member. One end is connected to a second driving beam constituting the bridge driving beam, and a connecting member extending in a direction orthogonal to the bridge driving beam in the vicinity of a connection point between the bridge driving beam and the second elastic support member, 8. The optical deflector according to claim 5, wherein the other end is composed of a frequency adjusting beam connected to a fixed base. 前記第2の弾性支持部材は延伸されて固定ベースに接続されていることを特徴とする請求項5乃至8のいずれか1項に記載の光偏向器。   The optical deflector according to any one of claims 5 to 8, wherein the second elastic support member is extended and connected to a fixed base. 光源と、光源からの光ビームを偏向させる請求項1乃至4のいずれか1項記載の光偏向器と、偏向された光ビームを被走査面にスポット状に結像する結像光学系とを備えることを特徴とする光走査装置。   5. A light source, an optical deflector according to claim 1 for deflecting a light beam from the light source, and an imaging optical system for imaging the deflected light beam in a spot shape on a surface to be scanned. An optical scanning device comprising: 請求項10記載の光走査装置と、光ビームの走査により潜像を形成する感光体と、潜像をトナーで顕像化する現像手段と、トナー像を記録紙に転写する転写手段とを有することを特徴とする画像形成装置。   11. An optical scanning device according to claim 10, a photosensitive member that forms a latent image by scanning with a light beam, a developing unit that visualizes the latent image with toner, and a transfer unit that transfers the toner image to recording paper. An image forming apparatus. 光源と、
前記光源からの光ビームを画像信号に応じて変調する変調器と、
前記光ビームを略平行光とするコリメート光学系と、
前記略平行光とされた光ビームを偏向して投影面に投射する請求項1乃至9のいずれか1項記載の光偏向器とを有することを特徴とする画像投影装置。
A light source;
A modulator that modulates a light beam from the light source according to an image signal;
A collimating optical system in which the light beam is substantially parallel light;
An image projection apparatus comprising: the light deflector according to claim 1, wherein the light beam that has been converted into substantially parallel light is deflected and projected onto a projection surface.
JP2010202194A 2010-09-09 2010-09-09 Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus Active JP5500016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202194A JP5500016B2 (en) 2010-09-09 2010-09-09 Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202194A JP5500016B2 (en) 2010-09-09 2010-09-09 Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus

Publications (2)

Publication Number Publication Date
JP2012058527A true JP2012058527A (en) 2012-03-22
JP5500016B2 JP5500016B2 (en) 2014-05-21

Family

ID=46055679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202194A Active JP5500016B2 (en) 2010-09-09 2010-09-09 Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus

Country Status (1)

Country Link
JP (1) JP5500016B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050894A (en) * 2012-09-05 2014-03-20 Ricoh Co Ltd Mems device, light deflector, optical scanner, image formation device, and image projection device
JP2014089252A (en) * 2012-10-29 2014-05-15 Denso Corp Optical scanner
JP2014115612A (en) * 2012-11-15 2014-06-26 Ricoh Co Ltd Light deflecting device and image forming apparatus
JP2014240911A (en) * 2013-06-12 2014-12-25 セイコーエプソン株式会社 Optical device, optical scanner, and image display apparatus
EP2851733A3 (en) * 2013-08-28 2015-05-27 Ricoh Company Ltd. Optical deflection device and image forming apparatus
JP2015132762A (en) * 2014-01-15 2015-07-23 株式会社リコー Optical deflector, image forming apparatus, and image projection device
JP2015176052A (en) * 2014-03-17 2015-10-05 株式会社リコー Optical deflector, optical scanning device, image forming device, and image projection device
EP3012678A1 (en) * 2014-10-24 2016-04-27 Ricoh Company, Ltd. Light-deflection element, light-deflector, two-dimensional imaging display, optical scanning device, and image forming device
CN111610629A (en) * 2020-07-06 2020-09-01 上海亨临光电科技有限公司 Moving oscillating mirror mechanism with adjustable mass center and corresponding adjusting method thereof
EP3919436A1 (en) * 2020-06-03 2021-12-08 Funai Electric Co., Ltd. Vibrating element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532749A (en) * 1998-12-16 2002-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micro oscillating mirror
JP2005148459A (en) * 2003-11-17 2005-06-09 Stanley Electric Co Ltd Two dimensional optical scanner and optical device
JP2007256862A (en) * 2006-03-24 2007-10-04 Matsushita Electric Works Ltd Movable structure and method of controlling same
JP2008070863A (en) * 2006-08-14 2008-03-27 Ricoh Co Ltd Vibrating mirror, light writing device, and image forming apparatus
WO2008041585A1 (en) * 2006-09-27 2008-04-10 National Institute Of Advanced Industrial Science And Technology Optical sanning device
JP2010237492A (en) * 2009-03-31 2010-10-21 Stanley Electric Co Ltd Actuator device for optical deflector
WO2011058884A1 (en) * 2009-11-16 2011-05-19 日本電気株式会社 Optical scanning device
WO2012014666A1 (en) * 2010-07-29 2012-02-02 日本電気株式会社 Optical scanning device and image display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532749A (en) * 1998-12-16 2002-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micro oscillating mirror
JP2005148459A (en) * 2003-11-17 2005-06-09 Stanley Electric Co Ltd Two dimensional optical scanner and optical device
JP2007256862A (en) * 2006-03-24 2007-10-04 Matsushita Electric Works Ltd Movable structure and method of controlling same
JP2008070863A (en) * 2006-08-14 2008-03-27 Ricoh Co Ltd Vibrating mirror, light writing device, and image forming apparatus
WO2008041585A1 (en) * 2006-09-27 2008-04-10 National Institute Of Advanced Industrial Science And Technology Optical sanning device
JP2010237492A (en) * 2009-03-31 2010-10-21 Stanley Electric Co Ltd Actuator device for optical deflector
WO2011058884A1 (en) * 2009-11-16 2011-05-19 日本電気株式会社 Optical scanning device
WO2012014666A1 (en) * 2010-07-29 2012-02-02 日本電気株式会社 Optical scanning device and image display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050894A (en) * 2012-09-05 2014-03-20 Ricoh Co Ltd Mems device, light deflector, optical scanner, image formation device, and image projection device
JP2014089252A (en) * 2012-10-29 2014-05-15 Denso Corp Optical scanner
US9448402B2 (en) 2012-11-15 2016-09-20 Ricoh Company, Ltd. Optical deflection device and image forming apparatus
JP2014115612A (en) * 2012-11-15 2014-06-26 Ricoh Co Ltd Light deflecting device and image forming apparatus
US20150062683A1 (en) * 2012-11-15 2015-03-05 Goichi Akanuma Optical deflection device and image forming apparatus
JP2014240911A (en) * 2013-06-12 2014-12-25 セイコーエプソン株式会社 Optical device, optical scanner, and image display apparatus
US9681015B2 (en) 2013-06-12 2017-06-13 Seiko Epson Corporation Optical device, optical scanner, and image display apparatus
EP2851733A3 (en) * 2013-08-28 2015-05-27 Ricoh Company Ltd. Optical deflection device and image forming apparatus
JP2015132762A (en) * 2014-01-15 2015-07-23 株式会社リコー Optical deflector, image forming apparatus, and image projection device
JP2015176052A (en) * 2014-03-17 2015-10-05 株式会社リコー Optical deflector, optical scanning device, image forming device, and image projection device
EP3012678A1 (en) * 2014-10-24 2016-04-27 Ricoh Company, Ltd. Light-deflection element, light-deflector, two-dimensional imaging display, optical scanning device, and image forming device
EP3919436A1 (en) * 2020-06-03 2021-12-08 Funai Electric Co., Ltd. Vibrating element
US11921283B2 (en) 2020-06-03 2024-03-05 Funai Electric Co., Ltd. Vibrating element
CN111610629A (en) * 2020-07-06 2020-09-01 上海亨临光电科技有限公司 Moving oscillating mirror mechanism with adjustable mass center and corresponding adjusting method thereof
CN111610629B (en) * 2020-07-06 2024-02-13 上海亨临光电科技有限公司 Motion swing mirror mechanism with adjustable mass center and corresponding adjusting method thereof

Also Published As

Publication number Publication date
JP5500016B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5500016B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP5728823B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP5229704B2 (en) Optical scanning device
JP2007322466A (en) Optical deflector and optical equipment using the same
JP2014115612A (en) Light deflecting device and image forming apparatus
JP5400925B2 (en) Oscillator device, optical deflector, and optical apparatus using the same
JP2012198298A (en) Optical deflection device, and optical scanning device, image projection device, image reading device and image forming device provided with the same
JP6614276B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
KR20070117487A (en) Oscillator device, optical deflector and optical instrument using the same
JP6743353B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, and head-up display
US8681408B2 (en) Optical scanning device, image forming apparatus, and image projection device
JP6682774B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, head-up display device, and radar device
KR100939499B1 (en) Oscillating device, light deflector, and image forming apparatus using the light deflector
US20100302612A1 (en) Oscillating structure and oscillator device using the same
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP2009122293A (en) Oscillating body apparatus, optical deflector, and optical equipment using the same
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP2009031643A (en) Rocking body device, light deflector and image forming apparatus using it
JP2012093431A (en) Light deflector, optical scanner, image forming apparatus, and image projection device
JP6442844B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP7028271B2 (en) Light deflector, light scanning device, image forming device, image projection device, head-up display device, and radar device
JP2010054652A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R151 Written notification of patent or utility model registration

Ref document number: 5500016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151