JP6003529B2 - Piezoelectric light deflector, optical scanning device, image forming device, and image projection device - Google Patents

Piezoelectric light deflector, optical scanning device, image forming device, and image projection device Download PDF

Info

Publication number
JP6003529B2
JP6003529B2 JP2012235001A JP2012235001A JP6003529B2 JP 6003529 B2 JP6003529 B2 JP 6003529B2 JP 2012235001 A JP2012235001 A JP 2012235001A JP 2012235001 A JP2012235001 A JP 2012235001A JP 6003529 B2 JP6003529 B2 JP 6003529B2
Authority
JP
Japan
Prior art keywords
piezoelectric
light
elastic support
drive
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012235001A
Other languages
Japanese (ja)
Other versions
JP2014085547A (en
Inventor
中川 淳
淳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50788646&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6003529(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012235001A priority Critical patent/JP6003529B2/en
Publication of JP2014085547A publication Critical patent/JP2014085547A/en
Application granted granted Critical
Publication of JP6003529B2 publication Critical patent/JP6003529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本発明は、レーザ光等の光ビームを偏向・走査する光偏向器に関し、特に圧電力を用いた圧電光偏向器に関する。さらに、本発明は、この圧電光偏向器を備えた光走査装置、この光走査装置を光書込みユニットとして備える画像形成装置、及び、圧電光偏向器を投影面の走査ユニットとして備える画像投影装置に関する。   The present invention relates to an optical deflector that deflects and scans a light beam such as a laser beam, and more particularly to a piezoelectric optical deflector that uses piezoelectric power. Furthermore, the present invention relates to an optical scanning device including the piezoelectric optical deflector, an image forming apparatus including the optical scanning device as an optical writing unit, and an image projecting device including the piezoelectric optical deflector as a scanning unit for a projection surface. .

レーザ光等の光ビームを偏向・走査する光偏向器は、複写機等の画像形成装置、画像投影装置、さらには、レーザビームプリンタ、バーコードスキャナなどに広く用いられている。従来、この種の光偏向器として、静電力を用いたもの、電磁力を用いたもの、圧電力を用いたものなどが知られている。   An optical deflector that deflects and scans a light beam such as a laser beam is widely used in an image forming apparatus such as a copying machine, an image projection apparatus, a laser beam printer, a barcode scanner, and the like. Conventionally, as this type of optical deflector, one using an electrostatic force, one using an electromagnetic force, one using a piezoelectric force, and the like are known.

静電力を用いた光偏向器は、電極の形状が平行平板型と櫛歯型のものがあり、櫛歯型の電極では近年の微細加工技術の向上によって比較的大きな駆動力を発生できるようにはなったが、十分な光ビームの偏向角が得られないため、駆動電圧を大きくして補うしかない。しかし、駆動電圧を大きくしようとすると、電源系の部品が大きくなり、全体として大型化したり、コストが増加することとなる。   There are two types of optical deflectors using electrostatic force, parallel plate type and comb type, so that the comb type electrode can generate a relatively large driving force by the recent improvement of microfabrication technology. However, since a sufficient deflection angle of the light beam cannot be obtained, the drive voltage must be increased to compensate. However, if the drive voltage is increased, the power supply system components become larger, resulting in an increase in size as a whole and an increase in cost.

電磁力を用いた光偏向器は、外に永久磁石を配置するため、構造が複雑により、生産性が悪いと共に小型化が困難である。小型化のため磁歪膜などを用いたものも検討されているが、磁性体としての特性が劣るため、十分な偏向角が得られない問題がある。また、コイルに電流を流すと余分な熱が発生し、消費電力が大きくなってしまう。   Since an optical deflector using electromagnetic force has a permanent magnet disposed outside, the structure is complicated, the productivity is low, and the size reduction is difficult. Although the use of a magnetostrictive film or the like has been studied for miniaturization, there is a problem that a sufficient deflection angle cannot be obtained due to inferior characteristics as a magnetic material. In addition, if a current is passed through the coil, extra heat is generated and power consumption increases.

一方、圧電力を用いた場合は、比較的大きな駆動電圧が必要ではあるが、小さな電力で大きな力を発生させることが可能である。また、圧電材料を梁状弾性部材に張り合わせてユニモルフ構造、バイモルフ構造とすることで、圧電力による面内方向のわずかな歪みを反りに変えることで大きな変形を得ることも可能である。この圧電力を用いた光偏向器(以下、圧電光偏向器という)としては、圧電駆動部を片持ち梁構造とすることで、小型化で駆動効率がよく、より大きな回転振幅を得るようにしたものも提案されている(特許文献1)。   On the other hand, when the piezoelectric power is used, a relatively large driving voltage is required, but a large force can be generated with a small power. In addition, it is possible to obtain a large deformation by changing a slight distortion in the in-plane direction due to the piezoelectric force into a warp by bonding the piezoelectric material to the beam-like elastic member to form a unimorph structure or a bimorph structure. As an optical deflector (hereinafter referred to as a piezoelectric optical deflector) using this piezoelectric power, the piezoelectric drive unit has a cantilever structure, so that it is small in size and has good drive efficiency and a larger rotational amplitude. This has also been proposed (Patent Document 1).

ところで、光偏向器は、その使用環境によっては小型化に加えて薄型化が要求されることがある。圧電光偏向器を薄型化するためには、圧電部材を薄膜化にすればよいが、そうすると、圧電部材の上下電極間の距離が近くなるため、該上下電極に駆動電圧を印加した際に、上下電極の端部から放電がおこり、電極間が短絡(沿面放電)する可能性が生じる。圧電部材の上下電極間が短絡すると、圧電光偏向器の動作は不安定になり、動作不能に陥ることにもなる。   By the way, depending on the usage environment, the optical deflector may be required to be thin in addition to being miniaturized. In order to reduce the thickness of the piezoelectric light deflector, the piezoelectric member may be thinned. However, since the distance between the upper and lower electrodes of the piezoelectric member is reduced, when a driving voltage is applied to the upper and lower electrodes, There is a possibility that electric discharge occurs from the ends of the upper and lower electrodes, and the electrodes are short-circuited (creeping discharge). When the upper and lower electrodes of the piezoelectric member are short-circuited, the operation of the piezoelectric light deflector becomes unstable and becomes inoperable.

従来、圧電アクチュエータや圧電光偏向器などにおいて、圧電部材の上下電極間の短絡を防止するために、圧電部材及び上下電極の側面等を絶縁膜で覆うことが知られている(例えば、特許文献2)。しかしながら、上下電極に駆動電圧を印加して圧電部材を駆動すると、圧電部材と共に絶縁膜も伸縮する。この結果、長時間の駆動中には絶縁膜にクラックや膜欠陥(絶縁破壊)が生じ、絶縁耐力が低下して、沿面放電を引き起こしかねない。そのため、高い信頼性が求められるデバイスに用いられる圧電光偏向器では、信頼性の面でさらなる対策が不可欠である。   2. Description of the Related Art Conventionally, in piezoelectric actuators, piezoelectric light deflectors, and the like, it is known to cover the piezoelectric member and side surfaces of the upper and lower electrodes with an insulating film in order to prevent a short circuit between the upper and lower electrodes of the piezoelectric member (for example, Patent Literature 2). However, when the piezoelectric member is driven by applying a driving voltage to the upper and lower electrodes, the insulating film expands and contracts together with the piezoelectric member. As a result, cracks and film defects (dielectric breakdown) occur in the insulating film during long-time driving, and the dielectric strength is reduced, which can cause creeping discharge. Therefore, further measures are indispensable in terms of reliability in piezoelectric optical deflectors used in devices that require high reliability.

本発明の課題は、圧電光偏向器において、圧電部材を薄膜化にした場合でも、長時間駆動等の経時劣化による沿面放電の防止を可能にして、薄膜型圧電光偏向器の駆動耐久性の向上を図ることにある。   The object of the present invention is to prevent creeping discharge due to deterioration over time, such as long-time driving, even when the piezoelectric member is made thin, in the piezoelectric optical deflector, and to improve the driving durability of the thin-film piezoelectric optical deflector. The goal is to improve.

本発明は、固定ベースと、光反射面を有する可動部と、前記可動部を回転可能に支持する弾性支持部材と、前記可動部材及び前記弾性支持部材を前記固定ベースに対して支持する駆動梁とを有し、前記駆動梁は、梁状部材と該梁状部材上に設けられた圧電部材とからなり、前記圧電部材は上部電極及び下部電極を有し、前記上部電極及び前記下部電極に電圧を印加し、前記駆動梁が曲げ変形することで、前記弾性支持部材に捻り変形が発生して、前記可動部が回転する圧電光偏向器において、前記圧電部材の前記上部電極と前記下部電極の少なくとも一方の電極の先端角が円弧形状又はテーパー形状になっていることを主要な特徴とする。 The present invention relates to a fixed base, a movable part having a light reflecting surface, an elastic support member that rotatably supports the movable part, and a drive beam that supports the movable member and the elastic support member with respect to the fixed base. The drive beam comprises a beam-like member and a piezoelectric member provided on the beam-like member, the piezoelectric member having an upper electrode and a lower electrode, and the upper electrode and the lower electrode In the piezoelectric optical deflector in which a torsional deformation occurs in the elastic support member by applying a voltage and the driving beam is bent and deformed, and the movable portion rotates, the upper electrode and the lower electrode of the piezoelectric member The main feature is that the corner of the tip of at least one of the electrodes has an arc shape or a tapered shape .

本発明の圧電光偏向器によれば、圧電部材を薄膜化した場合でも、上下電極間の沿面放電を防止することが可能になる。   According to the piezoelectric optical deflector of the present invention, it is possible to prevent creeping discharge between the upper and lower electrodes even when the piezoelectric member is thinned.

本発明の実施例1の圧電光偏向器の斜視図である。It is a perspective view of the piezoelectric light deflector of Example 1 of the present invention. 図1の圧電光偏向器の平面図である。It is a top view of the piezoelectric light deflector of FIG. 図1の圧電光偏向器の駆動梁の構成を説明する図である。It is a figure explaining the structure of the drive beam of the piezoelectric optical deflector of FIG. 本発明の実施例2の圧電光偏向器の平面図である。It is a top view of the piezoelectric light deflector of Example 2 of the present invention. 本発明の実施例3の圧電光偏向器の平面図である。It is a top view of the piezoelectric light deflector of Example 3 of the present invention. 本発明の実施例4の2軸圧電光偏向器の斜視図である。It is a perspective view of the biaxial piezoelectric light deflector of Example 4 of the present invention. 本発明の圧電光偏向器を用いた光走査装置の一例の全体構成図である。It is a whole block diagram of an example of the optical scanning device using the piezoelectric optical deflector of this invention. 図7の光走査装置の圧電光偏向器と駆動手段の接続を示した図である。It is the figure which showed the connection of the piezoelectric light deflector and drive means of the optical scanning device of FIG. 図7の光走査装置を光書込みユニットとして実装した画像形成装置の一例の概略構成図である。It is a schematic block diagram of an example of the image forming apparatus which mounted the optical scanning device of FIG. 7 as an optical writing unit. 本発明の圧電光偏向器を用いた画像投影装置の一例の概略構成図である。It is a schematic block diagram of an example of the image projection apparatus using the piezoelectric light deflector of this invention.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下では、特許文献1に記載のような圧電駆動部を片持ち梁構造とした圧電光偏向器を対象とするが、勿論、本発明はこのような圧電光偏向器に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, a piezoelectric light deflector having a piezoelectric drive unit as described in Patent Document 1 having a cantilever structure is an object, but of course, the present invention is limited to such a piezoelectric light deflector. is not.

図1に、実施例1に係る圧電光偏向器の斜視図、図2に平面図を示す。図1,図2において、10は可動部であり、レーザ光等を反射させる光反射面としてのミラー部15を有している。可動部10の両端は、該可動部10を回転可能に支持する一対の弾性支持部材としてのトーションバー20a,20bが接続されている。このトーションバー20a,20bの可動部10と反対側の端部は、該トーションバー20a,20bの長手方向と直交する向きを長手方向とした一対の梁状部材31a,31bの一端と接続されている。梁状部材31a,31bの他端は固定ベース40に接続されている。   FIG. 1 is a perspective view of the piezoelectric light deflector according to the first embodiment, and FIG. 2 is a plan view. 1 and 2, reference numeral 10 denotes a movable part, which has a mirror part 15 as a light reflecting surface for reflecting laser light or the like. Both ends of the movable part 10 are connected to torsion bars 20a, 20b as a pair of elastic support members that rotatably support the movable part 10. The ends of the torsion bars 20a, 20b opposite to the movable part 10 are connected to one ends of a pair of beam members 31a, 31b whose longitudinal direction is perpendicular to the longitudinal direction of the torsion bars 20a, 20b. Yes. The other ends of the beam members 31 a and 31 b are connected to the fixed base 40.

梁状部材31a,31bは、トーションバー20a,20bの片側にのみ有し、該梁状部材31a,31bで可動部10とトーションバー20a,20bとを固定ベース40に対して片持ち支持した構成となっている。この梁状部材31a,31bの片面に、圧電部材32a,32bが積層され、梁状部材31aと圧電部材32aとで、また、梁状部材31bと圧電部材32bとで、駆動梁30a,30bを形成している。   The beam members 31a and 31b are provided only on one side of the torsion bars 20a and 20b, and the movable part 10 and the torsion bars 20a and 20b are cantilevered with respect to the fixed base 40 by the beam members 31a and 31b. It has become. Piezoelectric members 32a and 32b are laminated on one side of the beam-like members 31a and 31b, and the driving beams 30a and 30b are formed by the beam-like member 31a and the piezoelectric member 32a, and the beam-like member 31b and the piezoelectric member 32b. Forming.

圧電部材32a,32bは、それぞれ上部電極及び下部電極を有しているが、図1及び図2には上部電極34a,34bのみが示されている。ここで、上部電極34a,34bの先端角(駆動梁30a,30bの自由端側の先端角)は、円弧形状の鈍角状になっている。後述するように、これにより圧電部材32a,32bを薄膜化しても沿面放電を抑制することが可能になる。   The piezoelectric members 32a and 32b have an upper electrode and a lower electrode, respectively, but only the upper electrodes 34a and 34b are shown in FIGS. Here, the tip angles of the upper electrodes 34a and 34b (tip angles on the free ends of the drive beams 30a and 30b) are arcuate obtuse angles. As will be described later, this makes it possible to suppress creeping discharge even if the piezoelectric members 32a and 32b are thinned.

なお、駆動梁30a,30b全体は絶縁層(絶縁膜)で覆われているが、図1及び図2では省略してある。   Although the drive beams 30a and 30b are entirely covered with an insulating layer (insulating film), they are omitted in FIGS.

図3は、駆動梁30aとその近傍の固定ベース40を拡大して示した模式図で、(a)は駆動梁30aを絶縁層で覆う前の平面図、(b)は絶縁層で覆った後の平面図、(c)は(b)のA−A’線の断面図である。なお、駆動梁30bも同様の構成であるので、図示は省略する。   FIG. 3 is an enlarged schematic view showing the driving beam 30a and the fixed base 40 in the vicinity thereof. (A) is a plan view before the driving beam 30a is covered with an insulating layer, and (b) is covered with an insulating layer. A later plan view, (c) is a cross-sectional view taken along line AA ′ of (b). Since the drive beam 30b has the same configuration, the illustration is omitted.

図3に示すように、駆動梁30aは、固定ベース40から突出して形成された梁状部材31a上に、接着層33a、下部電極35a、圧電部材32a、上部電極34a、絶縁層36aの順でスパッタにより成膜し積層して構成される。上部電極34aの先端の両角は円弧形状(鈍角状)に形成する(図31a(a))。上部電極34a及び下部電極35aは、それぞれ配線を通してランド部37a,38aに接続され、ランド部37a,38aは外部の駆動回路(不図)と接続される。なお、ランド部37a,38aや配線も、上部電極34a及び下部電極35aと同様にスパッタにより成膜して形成される。   As shown in FIG. 3, the driving beam 30a is formed on the beam-shaped member 31a formed to protrude from the fixed base 40 in the order of an adhesive layer 33a, a lower electrode 35a, a piezoelectric member 32a, an upper electrode 34a, and an insulating layer 36a. A film is formed by sputtering and laminated. Both corners at the tip of the upper electrode 34a are formed in an arc shape (obtuse angle) (FIG. 31a (a)). The upper electrode 34a and the lower electrode 35a are connected to the land portions 37a and 38a through wirings, respectively, and the land portions 37a and 38a are connected to an external drive circuit (not shown). The land portions 37a and 38a and the wiring are also formed by sputtering in the same manner as the upper electrode 34a and the lower electrode 35a.

固定ベース40はシリコン(Si)、接着層33aはチタン(Ti)、上部電極34a及び下部電極35aは白金(Pt)、圧電部材32aはチタン酸ジルコ酸鉛(PZT)などが使用される。薄膜型圧電光偏向器の場合、圧電部材32a,32bのPZTの厚さは、およそ2μm程度である。   The fixed base 40 is made of silicon (Si), the adhesive layer 33a is made of titanium (Ti), the upper electrode 34a and the lower electrode 35a are made of platinum (Pt), and the piezoelectric member 32a is made of lead zirconate titanate (PZT). In the case of a thin film type piezoelectric optical deflector, the PZT thickness of the piezoelectric members 32a and 32b is about 2 μm.

図1に戻り、圧電部材32a,32bの上部電極と下部電極の間に、電圧を印加すると、圧電部材32a,32bが、その電歪特性によって梁状部材31a,31b表面の面内方向に伸縮し、その結果、駆動梁30a,30bが反って曲げ変形する。駆動梁30a,30bが曲げ変形することで、弾性支持部材としてのトーションバー20a,20bに捻り変形が発生し、可動部10が回転する。   Returning to FIG. 1, when a voltage is applied between the upper and lower electrodes of the piezoelectric members 32a and 32b, the piezoelectric members 32a and 32b expand and contract in the in-plane direction on the surfaces of the beam-like members 31a and 31b due to their electrostrictive characteristics. As a result, the drive beams 30a and 30b are bent and deformed. When the driving beams 30a and 30b are bent and deformed, torsional deformation occurs in the torsion bars 20a and 20b as elastic support members, and the movable portion 10 rotates.

具体的には、上部/下部電極に印加する電圧はパルス波や正弦波であり、駆動梁30a,30bは曲げ振動する。この駆動梁30a,30bの曲げ振動がトーションバー20a,20bで回転振動(捻り振動)に変換され、可動部10が回転振動する。   Specifically, the voltage applied to the upper / lower electrodes is a pulse wave or a sine wave, and the drive beams 30a and 30b bend and vibrate. The bending vibrations of the drive beams 30a and 30b are converted into rotational vibrations (torsional vibrations) by the torsion bars 20a and 20b, and the movable part 10 is rotationally vibrated.

図1の構造の圧電光偏向器の場合、トーションバー20a,20bと駆動梁30a,30bの長手方向が直交して配置されているため、駆動梁30a,30bの曲げ振動がトーションバー20a,20bの回転振動(捻り振動)に効率よく変換され、可動部10が大きく回転振動する。また、駆動梁30a,30bはトーションバー20a,20bと可動部10を片持ちした構成となっているため、駆動梁30a,30bの先端は自由に振動することができ、可動部10ではより大きな角度振幅を得ることができる。さらに、駆動部30a,30bは、トーションバー20a,20bの片側にのみ配置されているため、小型化が可能である。   In the case of the piezoelectric light deflector having the structure shown in FIG. 1, the longitudinal directions of the torsion bars 20a and 20b and the drive beams 30a and 30b are orthogonal to each other, so that the bending vibration of the drive beams 30a and 30b is caused by the torsion bars 20a and 20b. Is efficiently converted to rotational vibration (torsional vibration), and the movable part 10 is largely rotationally oscillated. In addition, since the driving beams 30a and 30b have a configuration in which the torsion bars 20a and 20b and the movable portion 10 are cantilevered, the distal ends of the driving beams 30a and 30b can freely vibrate. Angular amplitude can be obtained. Furthermore, since the drive parts 30a and 30b are arrange | positioned only at the one side of the torsion bars 20a and 20b, size reduction is possible.

ところで、駆動梁30a,30bを駆動すると、圧電部材32a,32bと共に駆動梁30a,30bを覆っている絶縁層(絶縁膜)も伸縮し、長時間の駆動中に絶縁膜の欠陥やクラックを引き起こし、絶縁耐力が低下する。特に、図1のように、駆動梁30a,30bがトーションバー20a,20bと可動部10を片持ちした構成の場合、駆動梁30a,30bの自由端で変位量が大きくなり、該自由端で絶縁破壊を起こしやすい。   By the way, when the driving beams 30a and 30b are driven, the insulating layers (insulating films) covering the driving beams 30a and 30b together with the piezoelectric members 32a and 32b also expand and contract, causing defects and cracks in the insulating film during long-time driving. As a result, the dielectric strength decreases. In particular, as shown in FIG. 1, when the drive beams 30a and 30b have a configuration in which the torsion bars 20a and 20b and the movable portion 10 are cantilevered, the amount of displacement increases at the free ends of the drive beams 30a and 30b. Prone to dielectric breakdown.

駆動梁30a,30bを覆っている絶縁層に、絶縁膜の欠陥やクラックが起きて、絶縁耐力が低下すると、圧電部材32a,32bの上下電極間で沿面放電を誘発する。そして、圧電部材32a,32bが薄膜になればなるほど、沿面放電が誘発しやすくなる。   When defects or cracks in the insulating film occur in the insulating layers covering the drive beams 30a and 30b and the dielectric strength decreases, creeping discharge is induced between the upper and lower electrodes of the piezoelectric members 32a and 32b. The creeping discharge is more easily induced as the piezoelectric members 32a and 32b become thinner.

ここで、電極の先端形状が角であるほど、電極先端に電気力線が集中し、沿面放電が起きやすくなる。すなわち、電気力線は等電位面に対して垂直に入るため、電極の先端形状が角の場合、電極先端に電界が集中し、沿面放電が発生しやすくなる。逆に、電極の先端形状を円弧形状(鈍角状)にすれば、電極先端に電界が集中するのを防止でき、沿面放電の発生を抑制することが可能になる。 Here, the more the tip shape sharp angle of the electrode, concentrated lines of electric force to the electrode tip, creeping discharge is likely to occur. That is, since the electric line of force entering perpendicular to the equipotential surfaces, when the tip shape is sharp angles of the electrodes, the electric field is concentrated on the electrode tips, creeping discharge is easily generated. On the contrary, if the tip shape of the electrode is an arc shape (obtuse angle), it is possible to prevent the electric field from concentrating on the tip of the electrode and to suppress the occurrence of creeping discharge.

特に、図1に示すように、圧電駆動部が片持ち梁構成の圧電光偏向器の場合、上部電極31a,34bの先端角(駆動梁30a,30bの自由端側の先端角)を円弧形状(鈍角状)とすることで、該上部電極34a,34bの先端に電界が集中するのを防止でき、長時間駆動等で駆動梁30a,30bの自由端で絶縁破壊が起きても、沿面放電を抑制することが可能になる。   In particular, as shown in FIG. 1, when the piezoelectric drive unit is a cantilevered piezoelectric light deflector, the tip angles of the upper electrodes 31a and 34b (tip angles on the free ends of the drive beams 30a and 30b) are arcuate. (Oblique) makes it possible to prevent the electric field from concentrating on the tips of the upper electrodes 34a and 34b, and even if dielectric breakdown occurs at the free ends of the driving beams 30a and 30b due to long-time driving or the like, creeping discharge Can be suppressed.

実際に、圧電駆動部が片持ち梁構成の圧電光偏向器について(圧電部材の厚さは2μm)、駆動電圧10V、駆動周波数20KHzの正弦波で1000時間駆動して耐久試験を行い、駆動梁近辺を光学顕微鏡で観察した。上部電極の先端形状が直角の場合、電極先端で沿面放電の形跡が見られ、また、駆動梁の自由端で絶縁破壊の形跡も見られた。そして、可動部は不安定に動作した。一方、本実施例のように、上部電極の先端角の形状を円弧形状にした場合、沿面放電の形跡は見られず、可動部の回転振動も良好の結果が得られた。   Actually, for a piezoelectric optical deflector having a piezoelectric drive unit with a cantilever structure (the thickness of the piezoelectric member is 2 μm), a durability test was performed by driving it for 1000 hours with a sine wave having a drive voltage of 10 V and a drive frequency of 20 kHz. The vicinity was observed with an optical microscope. When the tip shape of the upper electrode was a right angle, there was evidence of creeping discharge at the tip of the electrode, and there was evidence of dielectric breakdown at the free end of the drive beam. And the movable part operated unstable. On the other hand, when the shape of the tip angle of the upper electrode was an arc shape as in this example, no evidence of creeping discharge was observed, and good results were obtained for the rotational vibration of the movable part.

なお、図1乃至図3では、上部電極の先端角を円弧形状とする例を示したが、下部電極の先端角あるいは上部/下部電極の先端角を円弧形状(鈍角状)にすることでもよい。   1 to 3 show an example in which the tip angle of the upper electrode is an arc shape, but the tip angle of the lower electrode or the tip angle of the upper / lower electrode may be an arc shape (obtuse angle). .

図4に、実施例2に係る圧電光偏向器の平面図を示す。図4において、図2と同一部分には同一の符号が付されている。全体の構成は実施例1と基本的に同じであるが、本実施例では、駆動梁30a,30bとトーションバー20a,20bの接続部分に切り込み40a,40bが形成されている。詳しくは、駆動梁30a,30bの可動部10側の端部が、トーションバー20a,20bの可動部10と反対側の端部よりも可動部10側に近接するように、駆動梁30a,30bとトーションバー20a,20bの接続部分に切り込み40a,40bが形成されている。   FIG. 4 is a plan view of the piezoelectric light deflector according to the second embodiment. 4, the same parts as those in FIG. 2 are denoted by the same reference numerals. Although the overall configuration is basically the same as that of the first embodiment, in this embodiment, cuts 40a and 40b are formed at the connecting portions of the drive beams 30a and 30b and the torsion bars 20a and 20b. Specifically, the driving beams 30a and 30b are arranged so that the end portions on the movable portion 10 side of the driving beams 30a and 30b are closer to the movable portion 10 side than the end portions on the opposite side to the movable portion 10 of the torsion bars 20a and 20b. Incisions 40a and 40b are formed in the connecting portions of the torsion bars 20a and 20b.

トーションバー20a,20bはバネの特性として非線形性が大きいが、長さが短くなるほど非線形が大きくなり設計が難しくなる。また、トーションバー20a,20bが長いほど、許容変位角度が大きくなる。   The torsion bars 20a and 20b have a large non-linearity as a spring characteristic. However, as the length becomes shorter, the non-linearity increases and the design becomes difficult. Further, the longer the torsion bars 20a and 20b, the larger the allowable displacement angle.

本実施例は、トーションバー20a,20bの長さを所望範囲に維持しつつ、スペースが空いた部分に駆動梁30a,30bが配置されることにより、すなわち、駆動梁30a,30bが内側にオフセットされることにより、圧電光偏向器全体を更に小型化できる。これにより、圧電光偏向器をMEMSプロセスで製作する場合、一枚のウエハにおけるとり数が増加するため、低コスト化も可能である。   In the present embodiment, the length of the torsion bars 20a and 20b is maintained within a desired range, and the drive beams 30a and 30b are arranged in the space-exposed portions, that is, the drive beams 30a and 30b are offset inward. As a result, the entire piezoelectric optical deflector can be further reduced in size. As a result, when the piezoelectric light deflector is manufactured by the MEMS process, the number of wafers in a single wafer increases, so that the cost can be reduced.

本実施例においても、上部電極34a,34bの先端角の形状を円弧形状とすることで、電極先端に電界が集中するのを防止でき、沿面放電を抑制することが可能になる。なお、下部電極あるいは上部/下部電極の先端角を円弧形状にしても同様である。   Also in the present embodiment, by making the tip corners of the upper electrodes 34a and 34b arc-shaped, it is possible to prevent the electric field from concentrating on the tip of the electrode and to suppress creeping discharge. The same applies when the tip angle of the lower electrode or the upper / lower electrode is circular.

図5に、実施例3に係る圧電光偏向器の平面図を示す。図5において、図2や図4と同一部分には同一の符号が付されている。本実施例は、上部電極34a,34bの先端角の形状を円弧形状にかえてテーパー形状(すみ切りを入れる)にしたものである。   FIG. 5 is a plan view of the piezoelectric light deflector according to the third embodiment. In FIG. 5, the same parts as those in FIGS. 2 and 4 are denoted by the same reference numerals. In the present embodiment, the shape of the tip angle of the upper electrodes 34a and 34b is changed to an arc shape to be a tapered shape.

図5に示すように、上部電極34a,34bの先端角の形状をテーパー形状としても、沿面放電を抑制することが可能である。ただし、実験によれば、10V以上の高い駆動電圧が必要な場合には、電極の先端角が円弧形状の方が、より電界集中の抑制を期待できることが確かめられた。したがって、高い駆動動作を必要とする場合には、電極の先端角は円弧形状とするのが好ましい。   As shown in FIG. 5, creeping discharge can be suppressed even when the tip end corners of the upper electrodes 34a and 34b are tapered. However, according to experiments, when a high driving voltage of 10 V or more is required, it was confirmed that the electric field concentration can be further suppressed when the tip end angle of the electrode is an arc shape. Therefore, when a high driving operation is required, the tip angle of the electrode is preferably an arc shape.

なお、図5では、実施例2の構成の圧電光偏向器において、上部電極の先端角の形状をテーパー形状にした例を示したが、実施例1の構成の圧電光偏向器について、同様に上部電極の先端角の形状をテーパー形状にすることでもよい。また、下部電極あるいは上部/下部電極の先端角をテーパー形状とすることでもよい。   5 shows an example in which the shape of the tip angle of the upper electrode is tapered in the piezoelectric light deflector having the configuration of the second embodiment, the same applies to the piezoelectric light deflector having the configuration of the first embodiment. The tip angle of the upper electrode may be tapered. Also, the tip angle of the lower electrode or the upper / lower electrode may be tapered.

図6に、実施例4に係る圧電光偏向器の全体斜視図を示す。これまで説明した圧電光偏向器は、いずれも1軸方向に光を偏向するものであったが、本実施例は2軸方向に光を偏向する構成としたものである。   FIG. 6 is an overall perspective view of the piezoelectric optical deflector according to the fourth embodiment. The piezoelectric light deflectors described so far all deflect light in the uniaxial direction, but this embodiment is configured to deflect light in the biaxial direction.

図6において、10は光を反射させる光反射面としてのミラー部を有する可動部であり、この可動部10の両側には、該可動部10を回転可能に支持する一対の第1の弾性支持部材としての第1のトーションバー120a,120bが接続されている。この第1のトーションバー120a,120bの可動部10と反対側の端部は、該第1のトーションバー120a,120bの長手方向と略直交する向きを長手方向として一対の第1の駆動梁130a,130bが接続されている。第1の駆動梁130a,130bは、梁状部材の片面に圧電部材が積層され、平板短冊状のユニモルフ構造を形成している。この第1の駆動梁130a,130bは、中央に穴が開いている枠状の可動枠140の内側の一辺から同一方向に突出するように配置されて、可動枠140と接続されている。そして、この第1の駆動梁130a,130bは、第1のトーションバー120a,120bの片側にのみ配置され、該駆動梁130a,130bで可動部10と第1のトーションバー120a,120bを可動枠140に対して片持ち支持した構成となっている。   In FIG. 6, reference numeral 10 denotes a movable part having a mirror part as a light reflecting surface for reflecting light, and a pair of first elastic supports for rotatably supporting the movable part 10 on both sides of the movable part 10. First torsion bars 120a and 120b as members are connected. The ends of the first torsion bars 120a and 120b opposite to the movable part 10 have a pair of first drive beams 130a with the direction substantially perpendicular to the longitudinal direction of the first torsion bars 120a and 120b as the longitudinal direction. , 130b are connected. The first driving beams 130a and 130b are formed by laminating piezoelectric members on one side of the beam-like member to form a flat strip-like unimorph structure. The first drive beams 130 a and 130 b are arranged so as to protrude in the same direction from one side inside the frame-like movable frame 140 having a hole in the center, and are connected to the movable frame 140. The first drive beams 130a and 130b are disposed only on one side of the first torsion bars 120a and 120b, and the drive beams 130a and 130b connect the movable portion 10 and the first torsion bars 120a and 120b to the movable frame. 140 is cantilever-supported.

第1の駆動梁130a,130bは、それぞれ上部電極及び下部電極を有しているが、図6では上部電極134a,134bのみを示す。ここで、上部電極134a,134bの先端角(駆動梁130a,130bの自由端側の先端角)は、円弧形状の鈍角状になっている。   The first driving beams 130a and 130b each have an upper electrode and a lower electrode, but only the upper electrodes 134a and 134b are shown in FIG. Here, the tip angles of the upper electrodes 134a, 134b (tip angles on the free ends of the drive beams 130a, 130b) are arcuate obtuse angles.

可動枠140の両側には、該可動枠140を回転可能に支持する一対の第2の弾性支持部材としてのトーションバー220a,220bが接続されている。第2のトーションバー220a,220bの可動枠140と反対側の端部は、第2のトーションバー220a,220bの長手方向と略直交する向きを長手方向として一対の第2の駆動梁230a,230bが接続されている。第2の駆動梁230a,230bも梁状部材の片面に圧電材料が積層され、平板短冊状のユニモルフ構造を形成している。この第2の駆動梁230a,230bは、固定ベース240から同一方向に突出するように配置されて、固定ベース240と接続されている。この第2の駆動梁230a,230bも、第2のトーションバー220a,220bの片側にのみ配置されており、該第2の駆動梁230a,230bで、可動枠140と第2のトーションバー220a,220bを固定ベース240に対して片持ち支持した構成となっている。第2の駆動梁230a,230bもそれぞれ上部電極及び下部電極を有しているが、図6では省略している。   To both sides of the movable frame 140, a pair of torsion bars 220a and 220b as second elastic support members that rotatably support the movable frame 140 are connected. The ends of the second torsion bars 220a and 220b opposite to the movable frame 140 have a pair of second drive beams 230a and 230b with the direction substantially perpendicular to the longitudinal direction of the second torsion bars 220a and 220b as the longitudinal direction. Is connected. The second drive beams 230a and 230b are also laminated with a piezoelectric material on one side of the beam-like member to form a flat strip-like unimorph structure. The second drive beams 230 a and 230 b are arranged so as to protrude from the fixed base 240 in the same direction, and are connected to the fixed base 240. The second drive beams 230a and 230b are also arranged only on one side of the second torsion bars 220a and 220b. With the second drive beams 230a and 230b, the movable frame 140 and the second torsion bar 220a, 220b is cantilevered with respect to the fixed base 240. The second drive beams 230a and 230b also have an upper electrode and a lower electrode, respectively, but are omitted in FIG.

本実施例では、第1の駆動梁130a,130bの圧電部材の上部電極及び下部電極に電圧を印加し、該第1の駆動梁130a,130bが曲げ変形することで、第1のトーションバー(第1の弾性支持部材)120a,120bに捻り変形が発生して、可動部10が該第1のトーションバー120a,120bの軸周りの第1の方向に回転する。また、第2の駆動梁230a,230bの圧電部材の上部電極及び下部電極に電圧を印加し、該第2の駆動梁230a,230bが曲げ変形することで、第2のトーションバー220a,220bに捻り変形が発生して、可動枠140が該第2のトーションバー220a,220bの軸周りに回転し、可動部10が第2の方向に回転する。ここで、第1のトーションバー120a,120bの軸周りの第1の回転方向と第2のトーションバー220a,220bの軸周りの第2の回転方向の振動モードの固有周波数を異ならせておき、それぞれの周波数で第1の駆動梁130a,130bと第2の駆動梁220a,220bを駆動することで、可動部10を2軸方向に大きく回転させることができる。   In the present embodiment, a voltage is applied to the upper and lower electrodes of the piezoelectric members of the first drive beams 130a and 130b, and the first drive beams 130a and 130b are bent and deformed, whereby the first torsion bar ( The first elastic support members 120a and 120b are twisted and the movable part 10 rotates in the first direction around the axis of the first torsion bars 120a and 120b. Further, a voltage is applied to the upper and lower electrodes of the piezoelectric members of the second drive beams 230a and 230b, and the second drive beams 230a and 230b are bent and deformed, whereby the second torsion bars 220a and 220b are deformed. Torsional deformation occurs, the movable frame 140 rotates around the axes of the second torsion bars 220a and 220b, and the movable unit 10 rotates in the second direction. Here, the natural frequencies of the vibration modes in the first rotation direction around the axis of the first torsion bars 120a and 120b and the second rotation direction around the axis of the second torsion bars 220a and 220b are differentiated, By driving the first drive beams 130a and 130b and the second drive beams 220a and 220b at the respective frequencies, the movable portion 10 can be greatly rotated in the biaxial direction.

一般に、この種の2軸圧電光偏向器は、二次元画像等について、第1の駆動梁130a,130bを駆動して水平方向(X方向)に走査し、第2の駆動梁220a,220bを駆動して垂直方向(Y方向)に走査するような使われ方をする。したがって、第1の駆動梁130a,130bの駆動周波数が、第2の駆動梁220a,220bの駆動周波数より格段に高く設定されるため、第1の駆動梁130a,130bの自由端で絶縁破壊が起きやすくなる。   In general, this type of biaxial piezoelectric optical deflector drives the first driving beams 130a and 130b to scan in the horizontal direction (X direction) and scans the second driving beams 220a and 220b for a two-dimensional image or the like. It is used in such a way that it is driven to scan in the vertical direction (Y direction). Therefore, since the driving frequency of the first driving beams 130a and 130b is set to be much higher than the driving frequency of the second driving beams 220a and 220b, dielectric breakdown occurs at the free ends of the first driving beams 130a and 130b. It becomes easy to get up.

そこで、本実施例では、特に第1の駆動梁130a,130bの上部電極134a,134bについて、該第1の駆動梁130a,130bの自由端側の先端角を円弧形状(鈍角状)に形成する。これにより、長時間使用等で第1の駆動梁130a,130bの自由端で絶縁破壊が起きても沿面放電が抑制され、恒久的に正常な動作が維持される。   Therefore, in the present embodiment, the tip angles on the free ends of the first drive beams 130a and 130b are formed in an arc shape (obtuse angle shape), particularly with respect to the upper electrodes 134a and 134b of the first drive beams 130a and 130b. . Thereby, even if dielectric breakdown occurs at the free ends of the first drive beams 130a and 130b due to long-time use or the like, creeping discharge is suppressed and normal operation is permanently maintained.

なお、本実施例では、第1の駆動梁130a,130bの上部電極134a,134bについてのみ、その先端角を円弧形状としたが、第2の駆動梁203a,230bの上部電極についても、その先端角(駆動梁230a,230bの自由端側の先端角)を円弧形状とすることでもよい。また、下部電極あるいは上部/下部電極の先端角を円弧形状にすることでもよい。さらに、先端角の電極形状はテーパー形状としてもよい。   In the present embodiment, only the upper electrodes 134a and 134b of the first drive beams 130a and 130b have arc-shaped tip angles, but the upper electrodes of the second drive beams 203a and 230b also have their tips. The corners (tip angles on the free ends of the drive beams 230a and 230b) may be arcuate. The tip angle of the lower electrode or the upper / lower electrode may be an arc shape. Furthermore, the electrode shape at the tip angle may be a tapered shape.

本実施例は、実施例1乃至3の1軸方向に光を偏向する圧電光偏向器を用いて画像形成装置の光書き込みユニットとしての光走査装置を提供するものである。   The present embodiment provides an optical scanning device as an optical writing unit of an image forming apparatus using the piezoelectric optical deflector that deflects light in one axial direction of the first to third embodiments.

図7に本実施例の光走査装置の全体構成図、図8に該光走査装置に用いる圧電光偏向器と駆動手段の接続図を示す。   FIG. 7 is an overall configuration diagram of the optical scanning device of the present embodiment, and FIG. 8 is a connection diagram of a piezoelectric optical deflector used in the optical scanning device and driving means.

図7において、レーザ素子としての光源部1020からのレーザ光(光ビーム)は、結像光学系(コリメータレンズ系)1021を経た後、圧電光偏向器1022により偏向される。この圧電光偏向器1022として、実施例1乃至3のいずれかの構成の圧電光偏向器が用いられる。圧電光偏向器1022で偏向されたレーザ光は、その後、第一レンズ1023aと第二レンズ1023b、反射ミラー1023cからなる走査光学系1023を経て感光体ドラム1002等の被走査面にスポット状に照射され結像される。   In FIG. 7, a laser beam (light beam) from a light source unit 1020 serving as a laser element passes through an imaging optical system (collimator lens system) 1021 and is then deflected by a piezoelectric light deflector 1022. As the piezoelectric light deflector 1022, the piezoelectric light deflector having any one of the configurations of the first to third embodiments is used. The laser beam deflected by the piezoelectric light deflector 1022 is then irradiated in a spot shape on the surface to be scanned such as the photosensitive drum 1002 through the scanning optical system 1023 including the first lens 1023a, the second lens 1023b, and the reflection mirror 1023c. And imaged.

図8に示すように、圧電光偏向器1022はパッケージ部材1030に収容されている。パッケージ部材1030には、樹脂やセラミック材料が用いられる。パッケージ部材1030に収容された圧電光偏向器1022は駆動手段1024と電気的に連結されている。この駆動手段1024が、圧電光偏向器1022の構成要素である駆動梁の下部電極と上部電極間に駆動電圧を印加する。これにより、圧電光偏向器1022の可動部(ミラー部)が回転してレーザ光が偏向され、被走査面上が光走査される。   As shown in FIG. 8, the piezoelectric light deflector 1022 is accommodated in a package member 1030. The package member 1030 is made of resin or ceramic material. The piezoelectric light deflector 1022 accommodated in the package member 1030 is electrically connected to the driving means 1024. The driving means 1024 applies a driving voltage between the lower electrode and the upper electrode of the driving beam that is a component of the piezoelectric light deflector 1022. As a result, the movable portion (mirror portion) of the piezoelectric light deflector 1022 rotates to deflect the laser light, and the surface to be scanned is optically scanned.

本発明の圧電光偏向器を利用した光走査装置は、写真印刷方式のプリンタや複写機などの画像形成装置のための光書込ユニットの構成部材として最適である。   The optical scanning device using the piezoelectric optical deflector of the present invention is optimal as a constituent member of an optical writing unit for an image forming apparatus such as a photographic printing printer or a copying machine.

本実施例は、実施例5の光走査装置を光書込みユニットの構成部材として実装した画像形成装置を提供するものである。   This embodiment provides an image forming apparatus in which the optical scanning device of the fifth embodiment is mounted as a constituent member of an optical writing unit.

図9に本実施例の画像形成装置の一例の全体構成図を示す。図9において、1001が光書込みユニットであり、レーザビームを被走査面に出射して画像を書き込む。1002は光書込みユニット1001による走査対象としての被走査面を提供する像担持体としての感光体ドラムである。   FIG. 9 shows an overall configuration diagram of an example of the image forming apparatus of this embodiment. In FIG. 9, reference numeral 1001 denotes an optical writing unit which emits a laser beam to a surface to be scanned and writes an image. Reference numeral 1002 denotes a photosensitive drum as an image carrier that provides a surface to be scanned as an object to be scanned by the optical writing unit 1001.

光書込みユニット1001は、記録信号によって変調された1本又は複数本のレーザビームで感光体としての感光体ドラム1002の表面(被走査面)を同ドラムの軸方向に走査する。感光体ドラム1002は矢印1003方向に回転駆動され、帯電手段1004により帯電された表面に、光書込みユニット1001により光走査されることによって、静電潜像(潜像)が形成される。この静電潜像は現像手段1005でトナー像に顕像化され、このトナー像は転写手段1006で記録紙1007に転写される。転写されたトナー像は定着手段1008によって記録紙1007に定着される。感光体ドラム1002の転写手段1006対向部を通過した感光体ドラムの表面部分はクリーニング部1009で残留トナーを除去される。   The optical writing unit 1001 scans the surface (scanned surface) of a photosensitive drum 1002 as a photosensitive member in the axial direction of the drum with one or a plurality of laser beams modulated by a recording signal. The photosensitive drum 1002 is rotationally driven in the direction of an arrow 1003, and an optical latent image (latent image) is formed on the surface charged by the charging unit 1004 by optical scanning by the optical writing unit 1001. The electrostatic latent image is visualized as a toner image by the developing unit 1005, and the toner image is transferred to the recording paper 1007 by the transfer unit 1006. The transferred toner image is fixed on the recording paper 1007 by the fixing unit 1008. Residual toner is removed by the cleaning unit 1009 from the surface portion of the photosensitive drum that has passed the transfer unit 1006 facing portion of the photosensitive drum 1002.

なお、感光体ドラム1002に代えてベルト状の感光体を用いる構成も可能である。また、トナー像を記録紙以外の転写媒体に一旦転写し、この転写媒体からトナー像を記録紙に転写して定着させる構成とすることも可能である。   A configuration using a belt-like photoconductor in place of the photoconductor drum 1002 is also possible. Further, the toner image may be temporarily transferred to a transfer medium other than the recording paper, and the toner image may be transferred from the transfer medium to the recording paper and fixed.

光書込みユニット1001は、記録信号によって変調された1本又は複数本のレーザビームを発するレーザ素子としての光源部1020と、レーザビームを変調する光源駆動手段1500と、本発明の1軸方向にレーザビームを偏向する圧電光偏向器1022と、この圧電光偏向器1022の可動部のミラー面に光源部1020からの、記録信号によって変調されたレーザビーム(光ビーム)を結像させるための結像光学系1021と、ミラー面で反射・偏向された1本又は複数本のレーザビームを感光体ドラム1002の表面(被走査面)に結像させるための手段である走査光学系1023などから構成される。圧電光偏向器1022は、その駆動のための集積回路(駆動手段)1024とともに回路基板1025に実装された形で光書込みユニット1001に組み込まれている。なお、圧電光偏向器1022は、実際には図8に示したように、パッケージ部材1030に収容されている。   The optical writing unit 1001 includes a light source unit 1020 as a laser element that emits one or a plurality of laser beams modulated by a recording signal, a light source driving unit 1500 that modulates a laser beam, and a laser in one axial direction of the present invention. Piezoelectric light deflector 1022 for deflecting the beam, and image formation for forming an image of a laser beam (light beam) modulated by the recording signal from the light source unit 1020 on the mirror surface of the movable part of the piezoelectric light deflector 1022 An optical system 1021 and a scanning optical system 1023 that is a means for forming an image of one or a plurality of laser beams reflected and deflected by a mirror surface on the surface (scanned surface) of the photosensitive drum 1002 are included. The The piezoelectric optical deflector 1022 is incorporated in the optical writing unit 1001 in a form mounted on a circuit board 1025 together with an integrated circuit (driving means) 1024 for driving the piezoelectric optical deflector 1022. The piezoelectric light deflector 1022 is actually housed in the package member 1030 as shown in FIG.

圧電光偏向器1022は、従来の回転多面鏡に比べ駆動のための消費電力が小さいため、画像形成装置の省電力化に有利である。また、圧電光偏向器1022の可動部の振動時の風切り音は回転多面鏡に比べ小さいため、画像形成装置の静粛性の改善に有利である。さらに、圧電光偏向器1022は、回転多面鏡に比べ設置スペースが圧倒的に少なくて済み、また、発熱量もわずかであるため、小型化が容易であり、したがって画像形成装置の小型化に有利である。   Since the piezoelectric light deflector 1022 consumes less power for driving than the conventional rotary polygon mirror, it is advantageous for power saving of the image forming apparatus. Further, since the wind noise during vibration of the movable part of the piezoelectric light deflector 1022 is smaller than that of the rotary polygon mirror, it is advantageous for improving the quietness of the image forming apparatus. Further, the piezoelectric light deflector 1022 requires much less installation space than the rotary polygon mirror, and also has a small amount of heat generation, so that it can be easily downsized, and therefore advantageous for downsizing of the image forming apparatus. It is.

なお、記録紙1007の搬送機構、感光体ドラム1002の駆動機構、現像手段1005、転写手段1006などの制御手段、光源部1020の駆動系などは、従来の画像形成装置と同様でよいため図9では省略されている。   Note that the transport mechanism for the recording paper 1007, the drive mechanism for the photosensitive drum 1002, the control means such as the developing means 1005 and the transfer means 1006, the drive system for the light source unit 1020, and the like may be the same as those in the conventional image forming apparatus. Is omitted.

本実施例は、実施例4で説明した2軸方向に光を偏向する圧電光偏向器を実装した画像投影装置を提供するものである。   The present embodiment provides an image projection apparatus on which the piezoelectric light deflector that deflects light in the biaxial direction described in the fourth embodiment is mounted.

図10に、本実施例の画像投影装置の一例の全体構成図を示す。図10において、2001−Rは赤色(R)のレーザ光を出射するレーザ光源、2001−Gは緑色(G)のレーザ光を出射するレーザ光源、2001−Bは青色(B)のレーザ光を出射するレーザ光源である。これらレーザ光源2001−R,2001−G,2001−Bから出射されたR,G,Bのレーザ光はクロスダイクロイックプリズム2002によって合成され、2軸用圧電光偏向器2003の反射面に入射される。2軸用圧電光偏向器2003は反射面に入力した合成レーザ光を2軸方向(主走査/副走査方向)に偏向・走査して投影面(スクリーン)2004に投影する。レーザ光源2001−R,2001−G,2001−Bから出射されるR,G,Bのレーザ光は、図示しない光源駆動手段により、表示画像の各色成分について、2軸用圧電光偏向器2003の二次元偏向走査のタイミングに合わせて強度変調(パルス幅変調、振幅変調等)されている。これにより、投影面2004に二次元の画像情報が投影される。   FIG. 10 shows an overall configuration diagram of an example of the image projection apparatus of the present embodiment. In FIG. 10, 2001-R is a laser light source that emits red (R) laser light, 2001-G is a laser light source that emits green (G) laser light, and 2001-B is blue (B) laser light. A laser light source that emits light. The R, G, and B laser beams emitted from the laser light sources 2001-R, 2001-G, and 2001-B are combined by a cross dichroic prism 2002 and are incident on the reflecting surface of the biaxial piezoelectric optical deflector 2003. . The biaxial piezoelectric optical deflector 2003 deflects and scans the combined laser light input to the reflecting surface in the biaxial direction (main scanning / sub-scanning direction) and projects it onto the projection surface (screen) 2004. The R, G, and B laser beams emitted from the laser light sources 2001-R, 2001-G, and 2001-B are output from the two-axis piezoelectric light deflector 2003 for each color component of the display image by a light source driving unit (not shown). Intensity modulation (pulse width modulation, amplitude modulation, etc.) is performed in accordance with the timing of two-dimensional deflection scanning. As a result, two-dimensional image information is projected on the projection surface 2004.

ここで、2軸用圧電光偏向器2003は、図6に示したような構成である。X方向(主走査方向)は、第1の駆動梁103a,130bを共振周波数で駆動して、共振特性を利用して可動部10を高速に回転振幅させる。一方、Y方向(副走査方向)は、第2の駆動梁230a,230bを共振周波数より低い周波数で駆動して、可動枠140を低速に回転振幅させる。すなわち、X方向振動とY方向駆動の周波数の差が十分に大きくなるようにする。これにより、X軸方向とY軸方向で大きな速度差が得られるようになる。したがって、2軸用圧電光偏向器2003により2次元的に光ビームを走査し、投射面(スクリーン)2004上に2次元的に画像を投影することができる。   Here, the biaxial piezoelectric optical deflector 2003 has a configuration as shown in FIG. In the X direction (main scanning direction), the first drive beams 103a and 130b are driven at the resonance frequency, and the movable unit 10 is rotated and amplified at high speed using the resonance characteristics. On the other hand, in the Y direction (sub-scanning direction), the second drive beams 230a and 230b are driven at a frequency lower than the resonance frequency to cause the movable frame 140 to rotate at a low speed. That is, the difference between the X direction vibration and the Y direction drive frequency is made sufficiently large. Thereby, a large speed difference can be obtained between the X-axis direction and the Y-axis direction. Therefore, the two-axis piezoelectric light deflector 2003 can scan the light beam two-dimensionally and project an image on the projection surface (screen) 2004 two-dimensionally.

画像投影装置においても、光偏向手段には、ポリゴンミラーなどの回転走査ミラーを使用することもできるが、2軸用圧電光偏向器2003は、回転走査ミラーに比べ駆動のための消費電力が小さいため、画像投影装置の省電力に有利である。また、2軸用圧電光偏向器2003の可動部の振動時の風切り音は回転走査ミラーに比べて小さいため、画像投影装置の静粛性の改善に有利である。さらに2軸用圧電光偏向器2003は、回転走査ミラーに比べ設置スペースが圧倒的に少なくて済み、また、発熱量もわずかであるため、小型化が容易であり、したがって、画像投影装置の小型化に有利である。   Also in the image projection apparatus, a rotary scanning mirror such as a polygon mirror can be used as the light deflecting unit, but the biaxial piezoelectric optical deflector 2003 consumes less power for driving than the rotary scanning mirror. Therefore, it is advantageous for power saving of the image projection apparatus. Further, since the wind noise during vibration of the movable part of the biaxial piezoelectric optical deflector 2003 is smaller than that of the rotary scanning mirror, it is advantageous for improving the quietness of the image projection apparatus. Further, the two-axis piezoelectric optical deflector 2003 requires much less installation space than the rotary scanning mirror and has a small amount of heat generation, so that it can be easily downsized. It is advantageous to make.

なお、図10では、カラー画像を投影する構成例を示したが、レーザ光源を一つとすることで、白黒の画像を投影する場合にも適応可能である。   Although FIG. 10 shows a configuration example in which a color image is projected, the present invention can be applied to a case where a monochrome image is projected by using one laser light source.

10 可動部
15 ミラー部
20a,20b トーションバー(弾性支持部材)
30a,30b 駆動梁
31a,31b 梁状部材
32a,32b 圧電部材
34a,34b 上部電極
35a 下部電極
36a 絶縁層(絶縁膜)
40 固定ベース
120a,120b 第1のトーションバー(第1の弾性支持部材)
130a,130b 第1の駆動梁
140 可動枠
220a,220b 第2のトーションバー(第2の弾性支持部材)
230a,230b 第2の駆動梁
134a,134b 上部電極
240 固定ベース
DESCRIPTION OF SYMBOLS 10 Movable part 15 Mirror part 20a, 20b Torsion bar (elastic support member)
30a, 30b Driving beam 31a, 31b Beam-like member 32a, 32b Piezoelectric member 34a, 34b Upper electrode 35a Lower electrode 36a Insulating layer (insulating film)
40 Fixed base 120a, 120b First torsion bar (first elastic support member)
130a, 130b first drive beam 140 movable frame 220a, 220b second torsion bar (second elastic support member)
230a, 230b Second drive beam 134a, 134b Upper electrode 240 Fixed base

特開2011−018026号公報JP 2011-018026 A 特開2011−209362号公報JP 2011-209362 A

Claims (6)

固定ベースと、光反射面を有する可動部と、前記可動部を回転可能に支持する弾性支持部材と、前記可動部及び前記弾性支持部材を前記固定ベースに対して支持する駆動梁とを有し、
前記駆動梁は、梁状部材と該梁状部材上に設けられた圧電部材とからなり、前記圧電部材は上部電極及び下部電極を有し、
前記上部電極及び前記下部電極に電圧を印加し、前記駆動梁が曲げ変形することで、前記弾性支持部材に捻り変形が発生して、前記可動部が回転する圧電光偏向器において、
前記圧電部材の前記上部電極と前記下部電極の少なくとも一方の電極の先端角が円弧形状又はテーパー形状になっていることを特徴とする圧電光偏向器。
A fixed base; a movable part having a light reflecting surface; an elastic support member that rotatably supports the movable part; and a drive beam that supports the movable part and the elastic support member with respect to the fixed base. ,
The driving beam includes a beam-shaped member and a piezoelectric member provided on the beam-shaped member, and the piezoelectric member has an upper electrode and a lower electrode,
In the piezoelectric optical deflector in which a voltage is applied to the upper electrode and the lower electrode, and the driving beam is bent and deformed, torsional deformation occurs in the elastic support member, and the movable part rotates.
A piezoelectric light deflector, wherein a corner of a tip of at least one of the upper electrode and the lower electrode of the piezoelectric member has an arc shape or a taper shape .
一対の駆動梁により、前記可動部及び前記弾性支持部が前記固定ベースに対して片持ち支持され、
前記電極の前記駆動梁の自由端側の先端角が円弧形状又はテーパー形状になっていることを特徴とする請求項1に記載の圧電光偏向器。
By a pair of drive beams, the movable portion and the elastic support member is cantilevered with respect to the fixed base,
2. The piezoelectric optical deflector according to claim 1, wherein an angle of a tip of the electrode on a free end side of the drive beam is an arc shape or a taper shape .
可動枠と、光反射面を有する可動部と、前記可動部を回転可能に支持する第1の弾性支持部材と、前記可動部及び前記第1の弾性支持部材を前記可動枠に対して支持する第1の駆動梁と、
固定ベースと、前記可動枠を回転可能に支持する第2の弾性支持部材と、前記可動枠及び前記第2の弾性支持部材を前記固定ベースに対して支持する第2の駆動梁とを有し、
前記第1の駆動梁及び前記第2の駆動梁は、各々、梁状部材と該梁状部材上に設けられた圧電部材とからなり、前記圧電部材は上部電極及び下部電極を有し、
前記第1の駆動梁の圧電部材の前記上部電極及び下部電極に電圧を印加し、前記第1の駆動梁が曲げ変形することで、前記第1の弾性支持部材に捻り変形が発生して、前記可動部が第1の方向に回転し、
前記第2の駆動梁の圧電部材の前記上部電極及び下部電極に電圧を印加し、前記第2の駆動梁が曲げ変形することで、前記第2の弾性支持部材に捻り変形が発生して、前記可動枠が回転して、前記可動部が第2の方向に回転する圧電光偏向器において、
少なくとも前記第1の駆動梁における前記圧電部材の前記上部電極と下部電極の少なくとも一方の電極の先端角が円弧形状又はテーパー形状になっていることを特徴とする圧電光偏向器。
A movable frame, a movable part having a light reflecting surface, a first elastic support member that rotatably supports the movable part, and the movable part and the first elastic support member are supported with respect to the movable frame. A first drive beam;
A fixed base; a second elastic support member that rotatably supports the movable frame; and a second drive beam that supports the movable frame and the second elastic support member with respect to the fixed base. ,
Each of the first drive beam and the second drive beam includes a beam-shaped member and a piezoelectric member provided on the beam-shaped member, and the piezoelectric member has an upper electrode and a lower electrode,
A voltage is applied to the upper electrode and the lower electrode of the piezoelectric member of the first driving beam, and the first driving beam is bent and deformed, whereby torsional deformation occurs in the first elastic support member, The movable part rotates in a first direction;
A voltage is applied to the upper electrode and the lower electrode of the piezoelectric member of the second drive beam, and the second drive beam is bent and deformed, whereby torsional deformation occurs in the second elastic support member, In the piezoelectric optical deflector in which the movable frame rotates and the movable portion rotates in the second direction,
A piezoelectric light deflector characterized in that at least a corner of a tip of at least one of the upper electrode and the lower electrode of the piezoelectric member in the first driving beam has an arc shape or a taper shape .
光源と、光源からの光ビームを偏向走査させる請求項1又は2に記載の圧電光偏向器と、該圧電光偏向器で偏向走査された光ビームを被走査面にスポット状に結像する走査光学系とを備えることを特徴とする光走査装置。 3. A light source, a piezoelectric light deflector according to claim 1 for deflecting and scanning a light beam from the light source, and scanning for imaging a light beam deflected and scanned by the piezoelectric light deflector in a spot shape on a surface to be scanned. An optical scanning device comprising an optical system. 請求項4に記載の光走査装置と、光ビームの走査により潜像を形成する感光体と、潜像をトナーで顕像化する現像手段と、トナー像を記録紙に転写する転写手段とを有することを特徴とする画像形成装置。 5. The optical scanning device according to claim 4, a photosensitive member that forms a latent image by scanning with a light beam, a developing unit that visualizes the latent image with toner, and a transfer unit that transfers the toner image to recording paper. An image forming apparatus comprising: 請求項に記載の圧電光偏向器を有し、該圧電光偏向器により光ビームを偏向・走査して、投影面に画像を投影することを特徴とする画像投影装置。 An image projection apparatus comprising: the piezoelectric light deflector according to claim 3 , wherein the piezoelectric light deflector deflects and scans a light beam to project an image on a projection surface.
JP2012235001A 2012-10-24 2012-10-24 Piezoelectric light deflector, optical scanning device, image forming device, and image projection device Active JP6003529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235001A JP6003529B2 (en) 2012-10-24 2012-10-24 Piezoelectric light deflector, optical scanning device, image forming device, and image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235001A JP6003529B2 (en) 2012-10-24 2012-10-24 Piezoelectric light deflector, optical scanning device, image forming device, and image projection device

Publications (2)

Publication Number Publication Date
JP2014085547A JP2014085547A (en) 2014-05-12
JP6003529B2 true JP6003529B2 (en) 2016-10-05

Family

ID=50788646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235001A Active JP6003529B2 (en) 2012-10-24 2012-10-24 Piezoelectric light deflector, optical scanning device, image forming device, and image projection device

Country Status (1)

Country Link
JP (1) JP6003529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344266B2 (en) * 2015-03-03 2018-06-20 株式会社デンソー Semiconductor device and manufacturing method thereof
JP6460406B2 (en) * 2015-06-09 2019-01-30 第一精工株式会社 Movable reflective element and two-dimensional scanning device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832137A (en) * 1994-07-20 1996-02-02 晃 ▲徳▼島 Piezoelectric vibrator
JPH08274381A (en) * 1995-03-31 1996-10-18 Chichibu Onoda Cement Corp Stacked piezoelectric actuator and its manufacture
JP3470994B2 (en) * 1997-06-12 2003-11-25 株式会社豊田中央研究所 Piezoelectric ceramic element
JP2001230463A (en) * 1999-12-06 2001-08-24 Matsushita Electric Ind Co Ltd Laminated piezoelectric actuator
JP4092283B2 (en) * 2003-11-17 2008-05-28 スタンレー電気株式会社 Two-dimensional optical scanner and optical device
JP5728823B2 (en) * 2009-06-09 2015-06-03 株式会社リコー Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP5282753B2 (en) * 2010-03-29 2013-09-04 ブラザー工業株式会社 Piezoelectric actuator, optical scanner, optical scanning image display device, image forming apparatus

Also Published As

Publication number Publication date
JP2014085547A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5728823B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
US9766450B2 (en) Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP6614276B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP6988062B2 (en) Light deflectors, light scanning devices, image projection devices, image forming devices, and moving objects
JP5500016B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP2005128147A (en) Optical deflector and optical apparatus using the same
JP2012198298A (en) Optical deflection device, and optical scanning device, image projection device, image reading device and image forming device provided with the same
JP6743353B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, and head-up display
US8681408B2 (en) Optical scanning device, image forming apparatus, and image projection device
JP6311314B2 (en) Optical deflection apparatus, optical scanning apparatus, image display apparatus, and image forming apparatus
JP6682774B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, head-up display device, and radar device
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
JP2013020124A (en) Optical deflector, optical scanner, image forming device, and image projection device
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP6069970B2 (en) MEMS device, optical deflector, optical scanning device, image forming apparatus, and image projection apparatus
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP6442844B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP2011013621A (en) Light deflector, image forming apparatus and image projector
JP2012093431A (en) Light deflector, optical scanner, image forming apparatus, and image projection device
JP7028271B2 (en) Light deflector, light scanning device, image forming device, image projection device, head-up display device, and radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157