JP4113851B2 - Concentration measuring method and concentration measuring apparatus - Google Patents

Concentration measuring method and concentration measuring apparatus Download PDF

Info

Publication number
JP4113851B2
JP4113851B2 JP2004084899A JP2004084899A JP4113851B2 JP 4113851 B2 JP4113851 B2 JP 4113851B2 JP 2004084899 A JP2004084899 A JP 2004084899A JP 2004084899 A JP2004084899 A JP 2004084899A JP 4113851 B2 JP4113851 B2 JP 4113851B2
Authority
JP
Japan
Prior art keywords
liquid
concentration
treated
organic compound
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084899A
Other languages
Japanese (ja)
Other versions
JP2005274215A (en
Inventor
元信 塩見
忠玄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Kurashiki Spinning Co Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Kurashiki Spinning Co Ltd filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2004084899A priority Critical patent/JP4113851B2/en
Publication of JP2005274215A publication Critical patent/JP2005274215A/en
Application granted granted Critical
Publication of JP4113851B2 publication Critical patent/JP4113851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、液中のダイオキシン類などの難分解性有機化合物の処理技術において、難分解性有機化合物の濃度を測定する方法及び装置並びに、難分解性有機化合物の有機化合物の分解装置及び方法に関する。   The present invention relates to a method and apparatus for measuring the concentration of a hardly decomposable organic compound in a treatment technique for a hardly decomposable organic compound such as dioxins in a liquid, and a decomposition apparatus and method for an organic compound of a hardly decomposable organic compound. .

産業排水、下水、廃棄物埋立地からの浸出水等には、種々な難分解性有機化合物が含有されており、これが処理不十分のまま排出されると水環境の汚染の原因となり得る。このような難分解性有害汚染物質の代表的なものとしては、例えば、農薬、ダイオキシン類等の有機塩素化合物、フタル酸エステルやビスフェノールA等のプラスチック添加物、等がよく知られている。   Industrial wastewater, sewage, leachate from waste landfills, and the like contain various persistent organic compounds, which can cause pollution of the water environment if discharged with insufficient treatment. Typical examples of such hardly decomposable harmful pollutants are well known, for example, agricultural chemicals, organic chlorine compounds such as dioxins, plastic additives such as phthalate esters and bisphenol A, and the like.

これらのなかでも、ダイオキシン類、フタル酸エステル等は、内分泌撹乱物質といわれており、極微量(極低濃度)でも生物や生態系に悪影響を及ぼすことが懸念されている。したがって、外界への排出水に対しては、かかる難分解性有害汚染物質の含有濃度がppt(一兆分の1)からppq(千兆分の1)レベルの極低レベルとなるような処理水質が要求される場合がある。   Among these, dioxins, phthalates and the like are said to be endocrine disrupting substances, and there is concern that even a trace amount (very low concentration) may adversely affect organisms and ecosystems. Therefore, for the discharged water to the outside world, the treatment is such that the concentration of the hardly decomposable harmful pollutant is extremely low from ppt (1 trillionth) to ppq (1 trillionth). Water quality may be required.

これらの液中に含まれる難分解性有機化合物を処理する従来技術としては、被処理液中にオゾンガスを吹き込むと共に紫外線を照射して抗化学的反応あるいは化学反応によってヒドロキシラジカルのような活性酸素を発生させる方法である促進酸化法(以下、AOP法と略記する。)が知られている。   As a conventional technique for processing the hardly decomposable organic compounds contained in these liquids, ozone gas is blown into the liquid to be treated and ultraviolet rays are irradiated to generate active oxygen such as hydroxy radicals by an antichemical reaction or a chemical reaction. An accelerated oxidation method (hereinafter abbreviated as AOP method), which is a method of generating, is known.

ところで、ダイオキシンなどの難分解性有機化合物は、排水中に単独で存在しているのではなく、共存する他の有機化合物と共に液中に存在する。また、非特許文献1に記載されているグラフ(このグラフを図7に示す。)のように、液中に存在する難分解性有機化合物(ダイオキシン)及び共存有機化合物との合計である総有機化合物(COD)と、難分解性有機化合物(ダイオキシン)量の間には相関関係は見られない。すなわち、排水中の総有機化合物量(COD)が多いからといって、必ずしも難分解性有機化合物が多く含まれているとは限らず、被処理液がどのような設備から排出されたものであるのかなどの種々の要因によってその組成は大きく異なることが通常である。   By the way, a hardly decomposable organic compound such as dioxin is not present alone in the waste water, but is present in the liquid together with other organic compounds that coexist. In addition, as shown in the graph described in Non-Patent Document 1 (this graph is shown in FIG. 7), the total organic compound is the total of the persistent organic compound (dioxin) and the coexisting organic compound present in the liquid. There is no correlation between the compound (COD) and the amount of the hardly decomposable organic compound (dioxin). That is, just because the total amount of organic compounds (COD) in the wastewater is large, it does not necessarily contain a lot of persistent organic compounds. The composition is usually greatly different depending on various factors such as the existence.

ダイオキシンなどの難分解性有機化合物と共存有機化合物を含む排水をAOP法により処理を行う場合、共存有機化合物が紫外線を遮蔽して、紫外線が十分に排水に浸透しないという問題がある。その結果、難分解性有機化合物の処理が不十分になりやすい。また、AOP法による分解を行う場合、排出基準になるダイオキシンの大部分が分解されるためには、長時間にわたってAOP法を行う必要があり、ランニングコスト及び処理時間が長くなるという問題がある。   When wastewater containing a hardly decomposable organic compound such as dioxin and a coexisting organic compound is treated by the AOP method, there is a problem that the coexisting organic compound shields the ultraviolet rays and the ultraviolet rays do not sufficiently penetrate into the wastewater. As a result, the treatment of the hardly decomposable organic compound tends to be insufficient. Further, when the decomposition by the AOP method is performed, in order to decompose most of the dioxins that become the emission standard, it is necessary to perform the AOP method for a long time, and there is a problem that the running cost and the processing time become long.

特許文献1は、この問題に鑑みCOD成分に含まれる有機化合物が有機塩素化合物(ダイオキシン)の分解を阻害するという問題を解決するために、酸化剤としてのオゾンを注入してCOD成分などを酸化分解すると共に、活性炭などの吸着媒体と接触させて大部分のCOD成分を除去した後、AOP処理を施すことにより排水中に含まれるダイオキシンなどの有機性塩素化合物の酸化分解を行う技術が開示されている。すなわち、共存有機化合物を大量に含む排水を紫外線照射によるAOP法により処理するとしても、紫外線が十分に排水に浸透せず、紫外線ランプから遠い部分では、ダイオキシンなどの難分解性有機化合物が処理されずそのまま排出されるため、予めオゾンなどの酸化剤で分解可能な物質を分解すると共に、酸化剤で分解されなかった有機化合物の大部分を吸着除去させたのち、さらに残った微量のダイオキシンなどの有機性塩素化合物をAOP法により処理しようとするものである。   In order to solve the problem that the organic compound contained in the COD component inhibits the decomposition of the organic chlorine compound (dioxin) in view of this problem, Patent Document 1 oxidizes the COD component and the like by injecting ozone as an oxidizing agent. Disclosed is a technology that decomposes organic chlorine compounds such as dioxin contained in wastewater by performing AOP treatment after contacting with an adsorbing medium such as activated carbon to remove most COD components. ing. That is, even if wastewater containing a large amount of coexisting organic compounds is treated by the AOP method using ultraviolet irradiation, the ultraviolet rays do not sufficiently penetrate into the wastewater, and dioxins and other difficult-to-decompose organic compounds are treated in areas far from the ultraviolet lamp. Since it is discharged as it is, after decomposing substances that can be decomposed with an oxidizing agent such as ozone in advance, and removing most of the organic compounds that were not decomposed with the oxidizing agent, the remaining trace amount of dioxins, etc. An organic chlorine compound is to be treated by the AOP method.

一方、これらの排水をAOP法により分解した場合、図8に示すように、排水中の難分解性有機化合物と総有機化合物は、必ずしも一定の比率で分解されるわけではなく、両者の分解率は、共存有機化合物の種類や処理方法などの様々な要因に影響を受けて処理ごとに変化する。したがって、この被処理液を直接AOP法により分解したとしても、その処理後の液中には、総有機化合物中の難分解性有機化合物が締める割合は不明確であり、難分解性有機化合物と総有機化合物の濃度とを相関づけることはできない。   On the other hand, when these wastewaters are decomposed by the AOP method, as shown in FIG. 8, the hardly-decomposable organic compounds and the total organic compounds in the wastewater are not necessarily decomposed at a fixed ratio, and the decomposition rate of both Changes from treatment to treatment under the influence of various factors such as the type of coexisting organic compound and the treatment method. Therefore, even if this liquid to be treated is directly decomposed by the AOP method, the ratio of the hard-to-decompose organic compound in the total organic compound is unclear in the liquid after the treatment. The total organic compound concentration cannot be correlated.

また、排水中の難分解性有機化合物の濃度の測定においては、共存有機化合物の影響を受けるため可視光又は紫外線吸光度で直接測定することは困難である。しかし、排水中のダイオキシン濃度が外部に廃液可能なレベルにあるかについて濃度測定することは極めて重要である。これらの問題を解決するために、特許文献2には、オゾンにより排水をAOP処理する場合に、排水中の溶存オゾン濃度を測定し、当該溶存オゾン濃度を測定することにより溶存オゾン濃度を代替指標としてダイオキシンなどの有害物質の濃度の推定を行うことが開示されている。
特開2003−47980号公報 特開2003−24958号公報 環境庁ホームページ、”「ダイオキシン類対策特別措置法に基づく廃棄物の最終処分場の維持管理基準の設定等について」に係る中央環境審議会の答申について”[online] 平成11年12月10日、[平成16年1月検索]、インターネット<URL:http://www.env.go.jp/press/file_view.php3?serial=1394&hou_id=1900 >、P.36−37(4.ダイオキシン類と他の物質との相関について) 中川創太ら、株式会社技術情報センター主催技術セミナーテキスト「促進酸化法(AOP)による水中有機物及び微量有害物質の効果的処理法」平成15年2月20日、P.8−9
Moreover, in the measurement of the density | concentration of the hardly decomposable organic compound in waste_water | drain, since it receives to the influence of a coexisting organic compound, it is difficult to measure directly with visible light or an ultraviolet light absorbency. However, it is extremely important to measure the concentration of dioxin in the wastewater to determine whether it is at a level that allows waste liquid to be discharged to the outside. In order to solve these problems, in Patent Document 2, when the wastewater is AOP treated with ozone, the dissolved ozone concentration is measured by measuring the dissolved ozone concentration in the wastewater, and the dissolved ozone concentration is measured as an alternative index. It is disclosed that the concentration of harmful substances such as dioxin is estimated.
JP 2003-47980 A JP 2003-24958 A About the report of the Central Environment Council concerning the “Environment and Maintenance Standards for Waste Disposal Sites Based on the Act on Special Measures against Dioxins” on the Environment Agency website [online] December 10, 1999 [Search January 2004], Internet <URL: http://www.env.go.jp/press/file_view.php3?serial=1394&hou_id=1900>, P.36-37 (4. Dioxins and others) Correlation with other substances) Sota Nakagawa et al., Technical Information Center Co., Ltd. Technical Seminar Text “Effective Treatment of Organic and Trace Hazardous Substances in Water by Accelerated Oxidation Method (AOP)” February 20, 2003, p. 8-9

しかし、引用文献1の技術は、ダイオキシンなどの有害物質の大部分が活性炭などの吸着物質に吸着されて分解されないため、活性炭などに吸着されたダイオキシンなどの処理が必要でコストがかかるという問題がある。また、処理排水中のダイオキシンなどの難分解性物質の濃度を測定するためには、上記のように吸光度測定によっては正確な濃度の推定を行うことができないため、濃度を常時モニタリングすることが困難であり、AOP法による処理の終点をオンラインで見出すことが困難である。また、AOP法はオゾンを添加しながら紫外線の照射を行うため、ランニングコストが高く、処理の終点が不明確になることにより不要な長時間にわたる処理を続けると、不要なコストがかさむ原因となる。   However, the technique of the cited document 1 has a problem that a large amount of harmful substances such as dioxin is adsorbed by an adsorbing substance such as activated carbon and is not decomposed, so that treatment of dioxin adsorbed on activated carbon or the like is necessary and costly. is there. In addition, in order to measure the concentration of difficult-to-decompose substances such as dioxin in treated wastewater, it is difficult to estimate the concentration accurately by absorbance measurement as described above, so it is difficult to constantly monitor the concentration. Therefore, it is difficult to find the end point of processing by the AOP method online. In addition, since the AOP method irradiates ultraviolet rays while adding ozone, the running cost is high, and the end point of the processing becomes unclear. If the processing is continued for an unnecessarily long time, unnecessary costs are increased. .

また、引用文献2の技術は、高価な溶存オゾン計を用いるため、装置のコストがかさみ、また、直接的に難分解性有機化合物の濃度を測定せず、オゾン濃度を代替指標とするものであるため、その測定値に高い精度を求めることは困難である。また、難分解性有機化合物(微量有害物質)の分解率と共存する他の有機化合物の分解率は例えば1対1などの一定の関係にあることを前提としているものであるが、実際は、AOP法において酸化剤として機能するOHラジカルとの反応速度は化学物質によって大きく異なるため、その被処理液中に含まれる化学物質によってその比率は異なる。したがって、この技術では推定濃度の誤差が大きく、高精度の濃度測定を行うことが困難である。   In addition, since the technique of the cited document 2 uses an expensive dissolved ozone meter, the cost of the apparatus is high, and the concentration of the hardly decomposable organic compound is not directly measured, and the ozone concentration is used as an alternative index. Therefore, it is difficult to obtain high accuracy for the measured value. In addition, it is assumed that the decomposition rate of other organic compounds coexisting with the decomposition rate of a hardly decomposable organic compound (a trace amount of harmful substances) is assumed to have a certain relationship, for example, one-to-one. Since the reaction rate with the OH radical that functions as an oxidant in the method varies greatly depending on the chemical substance, the ratio varies depending on the chemical substance contained in the liquid to be treated. Therefore, this technique has a large error in estimated density, and it is difficult to perform highly accurate density measurement.

また、液中にオゾンガスを供給した状態において、オゾン濃度を測定する必要があるため、供給されるオゾンガスの量などの影響を受けやすく、終点の検出の基準にばらつきが生じやすいという問題もある。   Further, since it is necessary to measure the ozone concentration in a state where ozone gas is supplied in the liquid, there is also a problem that it is easily influenced by the amount of supplied ozone gas, and the detection standard of the end point tends to vary.

さらに、排水中にオゾンを添加して有機化合物を分解処理する場合、非特許文献2に開示のように、オゾンは処理液中の水と反応して自己分解し、HOラジカルを発生し、当該HOラジカルがオゾンと反応してOHラジカルと酸素に分解する。そして、発生したOHラジカルが有機化合物を酸化分解する。しかし、このOHラジカルは、オゾンとも反応してHOラジカルと酸素とを生成するため、処理液中に溶存オゾン濃度が増加するのは、発生したHOラジカル及びOHラジカルによって分解しきれないほどの量のオゾンが液中に溶存している場合となる。よって、オゾンを難分解性有機化合物としての代替指標とし、さらにオゾン濃度を反応終点の検知として利用することは、化学的見地からみて高精度の結果を期待できない。 Furthermore, when ozone is added to the wastewater to decompose the organic compound, as disclosed in Non-Patent Document 2, ozone reacts with water in the processing liquid to self-decompose, generating HO 2 radicals, decomposed into OH radicals and oxygen the HO 2 radicals react with ozone. The generated OH radical oxidizes and decomposes the organic compound. However, since this OH radical reacts with ozone to generate HO 2 radical and oxygen, the concentration of dissolved ozone in the treatment liquid increases so that it cannot be decomposed by the generated HO 2 radical and OH radical. The amount of ozone is dissolved in the liquid. Therefore, using ozone as an alternative index as a hardly decomposable organic compound and using the ozone concentration as a reaction end point detection cannot be expected from a chemical standpoint.

したがって、本発明が解決しようとする技術的課題は、直接的に難分解性有機化合物の濃度を高精度に測定可能な低コストの難分解性有機化合物の濃度測定方法を提供することである。   Therefore, the technical problem to be solved by the present invention is to provide a low-cost method for measuring the concentration of a hardly-decomposable organic compound that can directly measure the concentration of the hardly-decomposable organic compound with high accuracy.

本発明者は、オゾンにより分解可能な易分解性有機化学物質とオゾンにより分解されない難分解性有機化合物とを含む被処理液について、吸光度測定を用いて難分解性有機化合物の濃度測定した場合に、易分解性有機化学物質が吸光度の値に影響を及ぼすという問題に鑑みて、当該被処理液中の易分解性有機化合物を除去・分解すると処理後の液の吸光度は難分解性有機化合物と相関するという知見を得た。そして、易分解性有機化合物を除去・分解できたことを検知するために、オゾン処理で容易に分解する有機化合物が処理液中に無くなってくると、被処理液中に過酸化水素が発生し始めるということに着目し、本発明を完成するに至った。すなわち、被処理液の液分解性有機化合物の大部分が分解除去されたことを検知する手段として、被処理液中の過酸化水素濃度が基準値以上となることを特徴としたものである。   The present inventor has measured the concentration of a hardly decomposable organic compound using absorbance measurement for a liquid to be treated containing an easily decomposable organic chemical that can be decomposed by ozone and a hardly decomposable organic compound that is not decomposed by ozone. In view of the problem that easily decomposable organic chemicals affect the absorbance value, when the easily decomposable organic compound in the liquid to be treated is removed and decomposed, the absorbance of the liquid after the treatment is different from that of the hardly decomposable organic compound. The knowledge that it correlates was obtained. In order to detect that the readily decomposable organic compound has been removed and decomposed, hydrogen peroxide is generated in the liquid to be treated when there is no organic compound in the liquid that can be easily decomposed by ozone treatment. Focusing on starting, the present invention has been completed. That is, as a means for detecting that most of the liquid-decomposable organic compound in the liquid to be treated has been decomposed and removed, the hydrogen peroxide concentration in the liquid to be treated is equal to or higher than a reference value.

すなわち、本発明は、オゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを含む被処理液中の難分解性有機化合物の濃度測定方法であって、
オゾンガスを前記被処理液内に供給して易分解性有機化合物の分解を開始するとともに過酸化水素の濃度測定を行い、前記被処理液内の過酸化水素濃度が前記易分解性有機化合物の分解が略終了したことを示す基準値以上になるまで滞留させた後、吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定する濃度測定方法を提供する。
That is, the present invention is a method for measuring the concentration of a hardly decomposable organic compound in a liquid to be treated, comprising a hardly decomposable organic compound that is not decomposed by ozone and a readily decomposable organic compound that can be decomposed by ozone,
The ozone gas is supplied to the liquid to be treated within perform concentration measurement of hydrogen peroxide starts the decomposition of easily decomposable organic compounds, decompose hydrogen peroxide concentration of the liquid to be treated inside of the easily decomposable organic compound And a concentration measuring method for measuring the concentration of the hardly decomposable organic compound in the liquid to be treated by measuring absorbance after the sample is retained until it reaches a reference value indicating that the process is substantially completed.

また、本発明は、オゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを含む被処理液中の難分解性有機化合物の濃度測定装置であって、
前記被処理液を蓄積するオゾン処理槽と前記処理槽に蓄積された被処理液にオゾンを供給するオゾン供給装置を備えたオゾン分解処理装置と、
前記オゾン分解処理装置に蓄積された前記被処理液中の過酸化水素濃度を測定する第1の濃度測定装置と、
前記第1の濃度測定装置により測定された前記過酸化水素を前記易分解性有機化合物の分解が略終了したことを示す基準値以上含む被処理液を排出する処理液排出管と、
前記処理液排出管から排出された処理液を吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定する第2の濃度測定装置と、を備える濃度測定装置を提供する。
Further, the present invention is an apparatus for measuring the concentration of a hardly decomposable organic compound in a liquid to be treated, comprising a hardly decomposable organic compound that is not decomposed by ozone and a readily decomposable organic compound that can be decomposed by ozone,
An ozone decomposition treatment apparatus comprising an ozone treatment tank for accumulating the liquid to be treated and an ozone supply device for supplying ozone to the liquid to be treated accumulated in the treatment tank;
A first concentration measuring device for measuring a hydrogen peroxide concentration in the liquid to be treated accumulated in the ozonolysis treatment device;
A treatment liquid discharge pipe that discharges a liquid to be treated that contains the hydrogen peroxide measured by the first concentration measuring apparatus above a reference value indicating that the decomposition of the readily decomposable organic compound is substantially completed;
There is provided a concentration measuring device comprising: a second concentration measuring device that measures the concentration of the hardly decomposable organic compound in the liquid to be treated by measuring absorbance of the processing liquid discharged from the processing liquid discharge pipe.

本発明によれば、難分解性有機化合物と易分解性有機化合物を含む被処理液にオゾンガスを供給し、易分解性有機化合物を酸化・分解する。このとき分解の機構はオゾンガスがオゾニドを経由して易分解性有機化合物を脂肪酸に分解するかもしくは自己分解してOHラジカルを生成し、これが有機化合物を攻撃して易分解性有機化合物を分解する。このときの被処理液の酸化分解反応は連続式であってもよいし、回分式であってもよい。また、処理槽に一度排出したのち、再度処理槽に供給するような循環式であってもよい。本発明における易分解性有機化合物は、オゾンガスを液中に吹き込んで溶存させた状態で、オゾンによるオゾニドを中間体として分解する直接的分解反応、オゾンの自己分解によって発生したOHラジカルによる間接的分解反応の反応速度が大きく、オゾンを添加することにより比較的容易に分解する有機化合物を意味し、具体的にはフェノール類、多環式芳香族炭化水素類などが例示される。易分解性有機化合物の分解がある程度まで進行し、オゾンの自己分解によって生成するOHラジカルの攻撃対象が少なくなってくると、OHラジカルが被処理液中に過剰な状態となる。OHラジカルは、OHラジカル同士の反応により過酸化水素Hを発生し、また、OHラジカルとオゾンとが反応して生成するHOラジカル同士も反応して過酸化水素を発生するため、OHラジカルが被処理液中に過剰になると過酸化水素が増大する。 According to the present invention, ozone gas is supplied to a liquid to be treated containing a hardly decomposable organic compound and a readily decomposable organic compound, and the easily decomposable organic compound is oxidized and decomposed. At this time, the decomposition mechanism is that ozone gas decomposes easily decomposable organic compounds into fatty acids via ozonides or self-decomposes to generate OH radicals, which attack organic compounds and decompose easily decomposable organic compounds. . The oxidative decomposition reaction of the liquid to be treated at this time may be a continuous type or a batch type. Further, a circulation type may be used in which the material is once discharged into the processing tank and then supplied to the processing tank again. The readily decomposable organic compound in the present invention is a direct decomposition reaction in which ozone gas is dissolved in a solution and dissolved in ozone, and an indirect decomposition by OH radicals generated by ozone self-decomposition. It means an organic compound that has a high reaction rate and can be decomposed relatively easily by adding ozone. Specific examples thereof include phenols and polycyclic aromatic hydrocarbons. When the decomposition of the readily decomposable organic compound proceeds to a certain extent and the attack target of the OH radical generated by the self-decomposition of ozone decreases, the OH radical becomes excessive in the liquid to be treated. OH radicals generate hydrogen peroxide H 2 O 2 by reaction between OH radicals, and HO 2 radicals generated by reaction of OH radicals and ozone also react to generate hydrogen peroxide. When OH radicals become excessive in the liquid to be treated, hydrogen peroxide increases.

すなわち、被処理液中に過酸化水素が易分解性有機化合物の分解が略終了したことを示す基準値以上に発生したことが検知されれば、易分解性有機化合物の大部分が分解され、被処理液中に残存する有機化合物の大部分はオゾンによって分解されない難分解性有機化合物ということとなる。この易分解性有機化合物の分解が略終了したことを示す基準値は、被処理液中に含まれる易分解性有機化合物の濃度によって異なり、例えば、過酸化水素が発生して蓄積し始めたとき、過酸化水素濃度が基準値以上となったときなどとすることができ、これ以外に発生して蓄積し始めたとき又は基準値以上となった後所定時間が経過したときなどとすることができる。なお、本発明における難分解性有機化合物は、オゾンガスを液中に吹き込んで溶存させた場合の直接的分解反応及び間接的分解反応の反応速度が比較的遅く、この方法により分解しにくい有機化合物をいい、具体的にはダイオキシン類、PCBなどの有機塩素化合物、フミン質、フタル酸ジエチルなどが例示される。これらは、液中にオゾンを添加して紫外線を照射するAOP法によって分解可能な物質である。   That is, if it is detected that hydrogen peroxide is generated in the liquid to be treated above a reference value indicating that the decomposition of the easily decomposable organic compound is almost completed, most of the easily decomposable organic compound is decomposed, Most of the organic compounds remaining in the liquid to be treated are hardly decomposable organic compounds that are not decomposed by ozone. The reference value indicating that the decomposition of the readily decomposable organic compound is almost completed depends on the concentration of the easily decomposable organic compound contained in the liquid to be treated. For example, when hydrogen peroxide starts to be generated and accumulated When the hydrogen peroxide concentration exceeds the reference value, etc., or when it begins to accumulate other than this, or when a predetermined time elapses after it exceeds the reference value, etc. it can. In addition, the hardly decomposable organic compound in the present invention is an organic compound which has a relatively slow reaction rate of direct decomposition reaction and indirect decomposition reaction when ozone gas is blown into the liquid and dissolved, and is difficult to decompose by this method. Specifically, dioxins, organochlorine compounds such as PCB, humic substances, diethyl phthalate and the like are exemplified. These are substances that can be decomposed by the AOP method in which ozone is added to the liquid and irradiated with ultraviolet rays.

このように、被処理液中に過酸化水素が基準値以上に検出された場合は、被処理液中に存在する有機化合物は、その大部分がオゾン処理により分解されにくい難分解性有機化合物であるから、これを吸光度測定により測定することによって、易分解性有機化合物の影響を受けることなく難分解性有機化合物の濃度を測定することが可能となる。   Thus, when hydrogen peroxide is detected in the liquid to be treated above the reference value, most of the organic compounds present in the liquid to be treated are hardly decomposable organic compounds that are difficult to decompose by ozone treatment. Therefore, by measuring this by measuring the absorbance, the concentration of the hardly decomposable organic compound can be measured without being affected by the easily decomposable organic compound.

難分解性有機化合物を吸光度測定により測定する場合、用いる測定波長は、難分解性有機化合物の場合は、測定波長は230〜300nmとし、オゾンの紫外線吸収スペクトルがピークを呈する範囲内の少なくとも3点の吸光度の情報を用いて測定することが好ましい。   When measuring a hardly decomposable organic compound by absorbance measurement, the measurement wavelength used is, in the case of a hardly decomposable organic compound, the measurement wavelength is 230 to 300 nm, and at least three points within the range where the ultraviolet absorption spectrum of ozone exhibits a peak. It is preferable to measure using the information of the light absorbency.

なお、被処理液中の過酸化水素が基準値以上になったかどうかを検出するためには、滴定法や吸光度測定により行うことができる。吸光度測定を用いて測定する場合の過酸化水素が基準値以上になったかどうか判断は、吸光度の値をそのまま用いて行うことができる。過酸化水素は180nmに吸収波長を有するため、過酸化水素を含む被処理液は概ね180〜230nmの波長で吸光度の影響を受けることとなる。ここで、200nmまでの波長は空気の吸収が強く分光器での濃度測定に与える影響が大きい。よって、測定波長を例えば230nmとすれば吸光度測定で過酸化水素の濃度を検出することができる。   In addition, in order to detect whether the hydrogen peroxide in a to-be-processed liquid became more than a reference value, it can carry out by a titration method or an absorbance measurement. The determination as to whether or not the hydrogen peroxide in the measurement using the absorbance measurement has exceeded the reference value can be made using the absorbance value as it is. Since hydrogen peroxide has an absorption wavelength at 180 nm, the liquid to be treated containing hydrogen peroxide is affected by absorbance at a wavelength of approximately 180 to 230 nm. Here, the wavelength up to 200 nm is strongly absorbed by air and has a great influence on the concentration measurement by the spectrometer. Therefore, if the measurement wavelength is 230 nm, for example, the concentration of hydrogen peroxide can be detected by absorbance measurement.

また、過酸化水素を予め除去することにより、難分解性有機化合物の濃度測定において、過酸化水素の影響をなくすことができるため、難分解性有機化合物の濃度測定の精度を向上させることができる。過酸化水素を除去するためには、被処理液に紫外線を照射するか過酸化水素の除去酵素を添加すればよい。   In addition, by removing hydrogen peroxide in advance, the influence of hydrogen peroxide can be eliminated in the measurement of the concentration of the hardly decomposable organic compound, so that the accuracy of the concentration measurement of the hardly decomposable organic compound can be improved. . In order to remove hydrogen peroxide, the liquid to be treated may be irradiated with ultraviolet rays or an enzyme for removing hydrogen peroxide may be added.

また、本発明は、被処理液中に含まれるオゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを酸化分解処理する有機化合物分解装置であって、前記被処理液を供給する供給管と、前記供給管から供給された前記被処理液を蓄積するオゾン処理槽と、前記オゾン処理槽に蓄積された被処理液にオゾンを供給するオゾン供給装置を備えたオゾン分解処理装置と、
前記オゾン分解処理装置に蓄積された前記被処理液中の過酸化水素濃度を測定する第1の濃度測定装置と、
前記第1の濃度測定装置により測定された前記過酸化水素を前記易分解性有機化合物の分解が略終了したことを示す基準値以上含む被処理液を排出する第1の処理液排出管と、
前記処理液排出管から供給された前記被処理液を蓄積する紫外線処理槽と前記処理槽に蓄積された前記被処理液に紫外線を照射する紫外線照射装置とを備え、前記紫外線処理槽に蓄積された被処理液にオゾンを供給可能な促進酸化処理装置と、
前記紫外線処理槽に蓄積された被処理液中を吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定する第2の濃度測定装置と、
前記第2の濃度測定装置の吸光度が基準値以下となった場合に前記被処理液を外部に排出する第2の処理液排出管と、を備える有機化合物分解装置を提供する。
Further, the present invention is an organic compound decomposition apparatus that oxidatively decomposes a hardly decomposable organic compound that is not decomposed by ozone contained in a liquid to be treated and an easily decomposable organic compound that can be decomposed by ozone, Ozone provided with a supply pipe for supplying a liquid, an ozone treatment tank for accumulating the liquid to be treated supplied from the supply pipe, and an ozone supply device for supplying ozone to the liquid to be treated accumulated in the ozone treatment tank A decomposition processing device;
A first concentration measuring device for measuring a hydrogen peroxide concentration in the liquid to be treated accumulated in the ozonolysis treatment device;
A first treatment liquid discharge pipe for discharging a liquid to be treated that contains the hydrogen peroxide measured by the first concentration measuring apparatus above a reference value indicating that the decomposition of the readily decomposable organic compound is substantially completed;
An ultraviolet treatment tank for accumulating the liquid to be treated supplied from the treatment liquid discharge pipe, and an ultraviolet irradiation device for irradiating the liquid to be treated accumulated in the treatment tank with ultraviolet rays, and accumulated in the ultraviolet treatment tank. An accelerated oxidation treatment apparatus capable of supplying ozone to the liquid to be treated;
A second concentration measuring device for measuring the concentration of the hardly decomposable organic compound in the liquid to be treated by measuring the absorbance in the liquid to be treated accumulated in the ultraviolet treatment tank;
An organic compound decomposing apparatus comprising: a second processing liquid discharge pipe for discharging the liquid to be processed to the outside when the absorbance of the second concentration measuring apparatus becomes a reference value or less.

本発明によれば、オゾン処理槽においては、難分解性有機化合物と易分解性有機化合物を含む被処理液にオゾンガスを供給し、易分解性有機化合物を分解する。オゾン処理槽の処理方式は、連続式、回分式、循環式のいずれであってもよい。易分解性有機化合物の分解がある程度まで進行し、オゾンの自己分解によるOHラジカルの攻撃対象が少なくなってくると、OHラジカルが被処理液中に過剰な状態となる。第1の濃度測定装置により被処理液中の過酸化水素濃度が基準値以上であることが判明した場合は、第1の処理液排出管を経由して被処理液を紫外線処理槽に蓄積する。   According to the present invention, in the ozone treatment tank, ozone gas is supplied to the liquid to be treated containing the hardly decomposable organic compound and the easily decomposable organic compound to decompose the easily decomposable organic compound. The treatment method of the ozone treatment tank may be any of continuous type, batch type, and circulation type. When the decomposition of the readily decomposable organic compound proceeds to a certain extent and the attack target of OH radicals due to ozone self-decomposition decreases, the OH radicals become excessive in the liquid to be treated. If the first concentration measuring device finds that the hydrogen peroxide concentration in the liquid to be treated is equal to or higher than the reference value, the liquid to be treated is accumulated in the ultraviolet treatment tank via the first treatment liquid discharge pipe. .

紫外線処理槽においては、オゾンガスを供給しつつ紫外線照射してAOP法により難分解性有機化合物を分解する。上述のように過酸化水素濃度が基準値以上であって、オゾン処理槽から排出された被処理液中には、易分解性有機化合物はほとんど含まれておらず、紫外線処理槽に照射される紫外線は、遮蔽されることなく難分解性有機化合物に到達し、AOP法が高効率に進行する。紫外線処理槽の処理方式は、連続式、回分式、循環式のいずれであってもよい。紫外線処理槽中の被処理液の難分解性有機化合物の濃度は、第2の濃度測定装置によって吸光度測定により測定される。上記のように紫外線処理槽中の被処理液には易分解性有機化合物がほとんど存在せず、易分解性有機化合物による吸光度の影響をほとんど受けることがない。   In the ultraviolet treatment tank, ultraviolet light is irradiated while ozone gas is supplied to decompose the hardly decomposable organic compound by the AOP method. As described above, the hydrogen peroxide concentration is higher than the reference value, and the liquid to be treated discharged from the ozone treatment tank contains almost no easily decomposable organic compound and is irradiated to the ultraviolet treatment tank. Ultraviolet rays reach a hardly decomposable organic compound without being shielded, and the AOP method proceeds with high efficiency. The treatment method of the ultraviolet treatment tank may be any of continuous type, batch type, and circulation type. The concentration of the hardly decomposable organic compound in the liquid to be treated in the ultraviolet treatment tank is measured by absorbance measurement using a second concentration measuring device. As described above, the liquid to be treated in the ultraviolet treatment tank contains almost no easily decomposable organic compound and is hardly affected by the absorbance of the easily decomposable organic compound.

第2の濃度測定装置により被処理液の吸光度が基準値以下となった場合に、第2の処理液排出管を通って被処理液は外部に排出される。このときの基準値は、難分解性有機化合物を外部に排出可能なレベルや、生物や生態系に悪影響を及ぼさないレベルなど所望の値とすることができる。   When the absorbance of the liquid to be processed is equal to or lower than the reference value by the second concentration measuring device, the liquid to be processed is discharged to the outside through the second processing liquid discharge pipe. The reference value at this time can be set to a desired value such as a level at which the hardly decomposable organic compound can be discharged to the outside or a level that does not adversely affect living organisms and ecosystems.

このように、被処理液中に過酸化水素が基準値以上に検出された場合は、被処理液中に存在する有機化合物は大部分が難分解性有機化合物であるから、これを紫外線処理槽によってAOP処理した場合に、紫外線が易分解性有機化合物により遮蔽されることなく、難分解性有機化合物に到達し、AOPの分解効率を高めることができるとともに、外部に排出される難分解性有機化合物の濃度測定の精度を高くすることができる。   Thus, when hydrogen peroxide is detected in the liquid to be treated above the reference value, the organic compounds present in the liquid to be treated are mostly hardly decomposable organic compounds. In the case of AOP treatment by UV, ultraviolet rays reach the hardly-decomposable organic compound without being blocked by the easily-decomposable organic compound, and can improve the decomposition efficiency of AOP. The accuracy of compound concentration measurement can be increased.

また、本発明は、オゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを含む被処理液をオゾン供給と紫外線照射とを同時に行って促進酸化分解処理する有機化合物分解方法であって、
オゾンガスを前記被処理液内に供給して易分解性有機化合物の分解を開始し、前記被処理液内の過酸化水素が前記易分解性有機化合物の分解が略終了したことを示す基準値以上になるまで滞留させた被処理液を直接前記促進酸化分解処理する有機化合物分解方法を提供する。
In addition, the present invention provides an organic compound that is subjected to accelerated oxidative decomposition treatment by simultaneously performing ozone supply and ultraviolet irradiation on a liquid to be treated containing a hardly decomposable organic compound that is not decomposed by ozone and an easily decomposable organic compound that can be decomposed by ozone. A decomposition method,
Ozone gas is supplied into the liquid to be treated to start decomposing the easily decomposable organic compound, and hydrogen peroxide in the liquid to be treated is equal to or higher than a reference value indicating that the decomposition of the easily decomposable organic compound is almost completed. There is provided an organic compound decomposition method in which the liquid to be treated which has been retained until becomes an accelerated oxidative decomposition treatment directly.

本発明にかかる濃度測定方法、濃度測定装置によれば、易分解性有機化合物の影響を受けることなく難分解性有機化合物の吸光度測定による濃度測定が可能であるため、常時モニタリングが可能となり、また濃度測定の精度を向上させることができる。また、濃度測定のために、安価な吸光濃度計を使用することができ、低コストとすることができる。また、易分解性有機化合物の大部分が分解されたことの指標として過酸化水素濃度を用いることにより、高精度で迅速に判断することができ、長時間にわたる不要なオゾン処理を行うことがなく、ランニングコストを抑えることができる。   According to the concentration measuring method and the concentration measuring apparatus according to the present invention, it is possible to measure the concentration by measuring the absorbance of the hardly-decomposable organic compound without being affected by the easily-decomposable organic compound, and therefore it is possible to monitor constantly. The accuracy of concentration measurement can be improved. Further, an inexpensive absorption densitometer can be used for concentration measurement, and the cost can be reduced. In addition, by using the hydrogen peroxide concentration as an indicator that most of the readily decomposable organic compounds have been decomposed, it is possible to make a high-precision and quick determination, without performing unnecessary ozone treatment for a long time. , Running costs can be reduced.

また、本発明にかかる有機化合物分解装置及び方法によれば、AOP法に影響を与える易分解性有機化合物の除去の終点を被処理液中の過酸化水素の量に基づいて判断するため、迅速かつ高精度にこれを判断することができ、オゾン処理による前処理が過不足になることがない。したがって、オゾン処理と紫外線を用いたAOP処理との間に不要な工程を行うことなく、十分な易分解性有機化合物の分解除去が可能であり、装置のランニングコストを抑えることができる。また、吸光度測定により難分解性有機化合物の排出指標を測定することができるため、連続モニタリングにより濃度を測定することができ、連続式及び循環式による処理が可能となる。   Further, according to the organic compound decomposition apparatus and method of the present invention, the end point of the removal of the easily decomposable organic compound that affects the AOP method is determined based on the amount of hydrogen peroxide in the liquid to be treated. Moreover, this can be determined with high accuracy, and pretreatment by ozone treatment does not become excessive or insufficient. Therefore, it is possible to decompose and remove a sufficiently easily decomposable organic compound without performing an unnecessary process between the ozone treatment and the AOP treatment using ultraviolet rays, and the running cost of the apparatus can be suppressed. Moreover, since the discharge | emission parameter | index of a hardly decomposable organic compound can be measured by an absorbance measurement, a density | concentration can be measured by continuous monitoring and the process by a continuous type and a circulation type is attained.

(第1実施形態)
以下、本発明の具体的構成例について、図面を参照しながら説明する。図1は、循環式の処理槽を有する本発明の濃度測定装置の概略構成を示すブロック図である。濃度測定装置1は、被処理液を供給する被処理液供給管LIと連通するオゾン処理槽2と、オゾン処理槽2中に貯留された被処理液にオゾンガスを供給するオゾン供給装置5と、オゾン処理槽2中の被処理液を排出する処理液排出管L1に設けられた第1濃度計と、第1濃度計の下流側に設けられ被処理液を外部に排出する外部排出管LOに送るか、オゾン処理槽に戻す循環配管L2に戻すかを切り替える切替弁6とを備える。
(First embodiment)
Hereinafter, specific configuration examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a concentration measuring apparatus of the present invention having a circulation type processing tank. The concentration measuring apparatus 1 includes an ozone treatment tank 2 that communicates with a treatment liquid supply pipe LI that supplies a treatment liquid, an ozone supply apparatus 5 that supplies ozone gas to the treatment liquid stored in the ozone treatment tank 2, and A first concentration meter provided in the treatment liquid discharge pipe L1 for discharging the treatment liquid in the ozone treatment tank 2 and an external discharge pipe LO provided on the downstream side of the first concentration meter for discharging the treatment liquid to the outside. A switching valve 6 is provided for switching between sending or returning to the circulation pipe L2 for returning to the ozone treatment tank.

オゾン供給装置5はオゾナイザ10とオゾナイザ10によって生成したオゾンガスを被処理液100に供給するノズル11とを備える。オゾン供給装置5によって、オゾン処理槽2中の被処理液には、オゾン処理槽2の底面に設けられたノズル11からオゾンガスが供給され、被処理液中にオゾンガスが溶解する。オゾン処理槽2から処理液排出管L1を通って排出された被処理液は、第1濃度計3によって過酸化水素濃度が測定され、過酸化水素濃度が基準値以下である場合は、循環配管L2を通ってオゾン処理槽2にもどり、オゾン処理槽2と処理液排出管L1との間を循環する。   The ozone supply device 5 includes an ozonizer 10 and a nozzle 11 that supplies ozone gas generated by the ozonizer 10 to the liquid 100 to be processed. Ozone gas is supplied from the nozzle 11 provided on the bottom surface of the ozone treatment tank 2 to the liquid to be treated in the ozone treatment tank 2 by the ozone supply device 5, and the ozone gas is dissolved in the liquid to be treated. The liquid to be treated discharged from the ozone treatment tank 2 through the treatment liquid discharge pipe L1 is measured for the hydrogen peroxide concentration by the first concentration meter 3. If the hydrogen peroxide concentration is below the reference value, the circulation pipe It returns to the ozone treatment tank 2 through L2, and circulates between the ozone treatment tank 2 and the treatment liquid discharge pipe L1.

被処理液には、ダイオキシンを含む廃液であり、オゾンにより分解困難な難分解性有機化合物であるダイオキシン類の他にフェノール類などのオゾンにより容易に分解する易分解性有機化合物との双方を含んでいる。オゾン処理槽2においてオゾンガスが供給されることにより、易分解性有機化合物はオゾンにより酸化・分解される。このときの酸化・分解反応は、オゾンによるオゾニドを形成し有機物と反応して低級脂肪酸に分解する直接的分解反応及び、オゾンの自己分解反応の過程において生成されるHOラジカルやOHラジカルの酸化力による間接的分解反応である。間接的分解反応は、以下の化学式(1)〜(7)の通りであり、易分解性有機化合物及び直接的分解反応により生成された低級脂肪酸を分解する。 The liquid to be treated is a waste liquid containing dioxin and contains both dioxins that are difficult to decompose by ozone and easily decomposed organic compounds such as phenols that are easily decomposed by ozone. It is out. By supplying ozone gas in the ozone treatment tank 2, the easily decomposable organic compound is oxidized and decomposed by ozone. Oxidation / decomposition reaction at this time includes direct decomposition reaction in which ozonide is formed by ozone and decomposes into lower fatty acids by reacting with organic substances, and oxidation of HO 2 radical and OH radical generated in the process of ozone self-decomposition reaction. It is an indirect decomposition reaction by force. The indirect decomposition reaction is represented by the following chemical formulas (1) to (7), and decomposes an easily decomposable organic compound and a lower fatty acid produced by the direct decomposition reaction.

Figure 0004113851
Figure 0004113851

このように、オゾン処理槽2中において被処理液中の有機化合物がオゾンにより酸化・分解されると、オゾンの自己分解によるOHラジカルの攻撃対象が少なくなり、OHラジカルが被処理液中に過剰な状態となる(式(1)〜式(4)参照。)。OHラジカルは、式(7)に示すようにOHラジカル同士の反応により過酸化水素Hを発生し、また、式(5)に示すようにOHラジカルとオゾンとが反応して生成するHOラジカル同士も反応して過酸化水素を発生するため、OHラジカルが被処理液中に過剰になると過酸化水素が増大する。第1濃度計3は、上記機構により発生した被処理液中の過酸化水素濃度を測定する。 Thus, when the organic compound in the liquid to be treated is oxidized and decomposed by ozone in the ozone treatment tank 2, the number of OH radicals attacked by the self-decomposition of ozone decreases, and OH radicals are excessive in the liquid to be treated. (See formula (1) to formula (4)). OH radicals are generated by the reaction of OH radicals as shown in formula (7) to generate hydrogen peroxide H 2 O 2 , and the OH radicals and ozone react as shown in formula (5). Since HO 2 radicals also react with each other to generate hydrogen peroxide, hydrogen peroxide increases when OH radicals are excessive in the liquid to be treated. The first concentration meter 3 measures the concentration of hydrogen peroxide in the liquid to be treated generated by the mechanism.

第1濃度計3は、吸光度測定により過酸化水素を測定する濃度計である。第1濃度計3によって被処理液中の過酸化水素の濃度及び有機化合物(COD成分)の濃度を同時に測定する。第1濃度計3においておこなわれる過酸化水素の濃度及び有機化合物(COD成分)の濃度測定は、特願2003−074091号(本願出願時において未公開)の濃度測定方法を用いるものである。   The first concentration meter 3 is a concentration meter that measures hydrogen peroxide by measuring absorbance. The first concentration meter 3 simultaneously measures the concentration of hydrogen peroxide and the concentration of organic compound (COD component) in the liquid to be treated. The concentration measurement method disclosed in Japanese Patent Application No. 2003-074091 (not disclosed at the time of filing this application) is used for the measurement of the concentration of hydrogen peroxide and the concentration of the organic compound (COD component) performed in the first concentration meter 3.

第1濃度計3は、以下のようにして過酸化水素濃度及び有機化合物(COD成分)の濃度を測定する。   The first concentration meter 3 measures the hydrogen peroxide concentration and the organic compound (COD component) concentration as follows.

第1濃度計は、230nm,260nm,290nmの測定波長を用い、これらの吸光度の値より、以下に示す方法により過酸化水素濃度および有機化合物の濃度について同時に測定する。なお、吸光度測定に用いられるこれらの測定波長の光は、例えば、200〜300nmの波長の光をそれぞれ干渉フィルタを通すことによって選択することができる。   The first densitometer uses the measurement wavelengths of 230 nm, 260 nm, and 290 nm, and simultaneously measures the hydrogen peroxide concentration and the organic compound concentration from these absorbance values by the following method. In addition, the light of these measurement wavelengths used for an absorbance measurement can be selected by passing the light of a wavelength of 200-300 nm through an interference filter, for example.

第1濃度計は、被処理液の230,260,290nmの吸光度データをそれぞれ記憶し、それぞれ濃度既知の基準オゾンスペクトルと基準有機物(過酸化水素、有機化合物)スペクトルと比較して、以下の計算式により過酸化水素濃度及び有機化合物(COD)濃度を測定する。ここで、基準オゾンスペクトルは、オゾン濃度が既知でありかつ有機物を含まない基準の紫外線スペクトルを意味する。また、基準有機物スペクトルは、有機物(過酸化水素,有機化合物)濃度がそれぞれ一定値でありかつオゾンを含まない基準の紫外線スペクトルを意味する。   The first densitometer stores absorbance data at 230, 260, and 290 nm of the liquid to be treated, respectively, and compares the reference ozone spectrum with a known concentration and the reference organic substance (hydrogen peroxide, organic compound) spectrum, and calculates the following: The hydrogen peroxide concentration and the organic compound (COD) concentration are measured by the formula. Here, the reference ozone spectrum means a reference ultraviolet spectrum having a known ozone concentration and containing no organic matter. The reference organic matter spectrum means a reference ultraviolet spectrum in which the organic matter (hydrogen peroxide, organic compound) concentration is a constant value and does not contain ozone.

それぞれ測定された230,260,290nmの吸光度の値を、式(8)に代入し、まず、オゾン濃度が算出される。   The respective absorbance values measured at 230, 260, and 290 nm are substituted into Equation (8), and the ozone concentration is first calculated.

Figure 0004113851
式(8)中、DO3はオゾン濃度、A230,A260,A290は、それぞれ230,260,290nm近傍での吸光度、Pは係数を示す。
Figure 0004113851
In Equation (8), D O3 is the ozone concentration, A 230 , A 260 and A 290 are the absorbances near 230 , 260 and 290 nm, respectively, and P is a coefficient.

被処理液は、上述のように、オゾンを供給し有機化合物を分解するものであり、オゾン、過酸化水素、有機化合物を含んでいるため、吸光度による液体成分測定においては、ランベルト−ベールの法則が成立し、各成分を測定するときに他の成分の影響を除外する必要がある。すなわち、各波長での吸光度は、オゾン、有機化合物、過酸化水素の濃度のそれぞれに基づいて表される値の和として表される。   As described above, the liquid to be treated decomposes an organic compound by supplying ozone, and contains ozone, hydrogen peroxide, and an organic compound. Therefore, in liquid component measurement by absorbance, the Lambert-Beer law is used. Therefore, it is necessary to exclude the influence of other components when measuring each component. That is, the absorbance at each wavelength is expressed as the sum of values expressed based on the concentrations of ozone, organic compound, and hydrogen peroxide.

一方、オゾンが紫外線領域200〜300nmにおいて、254nmをピークとする吸収スペクトル(ハートレー帯)を有することを利用して、当該波長域において被処理液に与える吸光度の変化は、主にオゾンによるものであると推測することができる。すなわち、オゾンの紫外線スペクトルのハートレー帯におけるスペクトルの立ち上がりの波長域よりも外側に位置する波長である230、290nmの吸光度をベースラインとして用いることにより、オゾン濃度測定の妨害成分である過酸化水素及びCODの吸光度を排除して、オゾン濃度を測定することができる。係数Pについては、記憶部に記憶されている濃度既知の基準サンプルの紫外線スペクトルを元に、最小二乗法を用いることにより演算する。   On the other hand, using the fact that ozone has an absorption spectrum (Hartley band) peaking at 254 nm in the ultraviolet region of 200 to 300 nm, the change in absorbance given to the liquid to be treated in the wavelength range is mainly due to ozone. We can guess that there is. That is, by using the absorbance at 230 and 290 nm, which is a wavelength located outside the wavelength range of the rise of the spectrum in the Hartley band of the ozone ultraviolet spectrum, as a baseline, hydrogen peroxide and ozone interference measurement components The ozone concentration can be measured by eliminating the absorbance of COD. The coefficient P is calculated by using the least square method based on the ultraviolet spectrum of a reference sample with a known concentration stored in the storage unit.

また、オゾン濃度が導かれると、230,290nmの吸光度データを式(9)、(10)に代入し、それぞれ有機化合物の濃度及び過酸化水素の濃度を算出する。   When the ozone concentration is derived, the absorbance data at 230 and 290 nm are substituted into the equations (9) and (10), and the concentration of the organic compound and the concentration of hydrogen peroxide are calculated, respectively.

Figure 0004113851
式(9),(10)中、DCODは有機化合物濃度、DH2O2は過酸化水素濃度、Q,R,S,T,Uはそれぞれ係数を示す。
Figure 0004113851
In the formulas (9) and (10), D COD is an organic compound concentration, DH 2 O 2 is a hydrogen peroxide concentration, and Q, R, S, T, and U are coefficients.

なお、有機化合物の濃度は、一般的に、250〜260nmの波長において吸光度測定されるが、この被処理液においては、過酸化水素の吸光度が影響するため、290nmを使用して吸光度を測定する。   The concentration of the organic compound is generally measured for absorbance at a wavelength of 250 to 260 nm. In this liquid to be treated, the absorbance of hydrogen peroxide has an effect, so the absorbance is measured using 290 nm. .

また、係数Q,R,S,T,Uについては、濃度既知の基準サンプルの有機化合物及び過酸化水素の紫外線スペクトルを元に、最小二乗法を用いることにより演算する。なお、係数R,T,Uは、ランベルト−ベールの法則に基づいて負の値を持つ。   The coefficients Q, R, S, T, and U are calculated by using the least square method based on the organic compound of the reference sample having a known concentration and the ultraviolet spectrum of hydrogen peroxide. The coefficients R, T, and U have negative values based on the Lambert-Beer law.

本実施形態にかかる濃度測定装置によれば、被処理液の紫外線スペクトルを1回測定するだけで、過酸化水素濃度と有機物濃度とを同時に測定することができる。   According to the concentration measuring apparatus according to the present embodiment, the hydrogen peroxide concentration and the organic matter concentration can be measured simultaneously by measuring the ultraviolet spectrum of the liquid to be treated only once.

第1濃度計3によって、過酸化水素濃度が基準値以上であることが検出されると第1切替弁6が切り替わり、処理液排出管L1が外部排出管LOと連通する。このときの有機化合物の濃度は、上記のように、オゾン処理槽2中においてオゾンが供給されることにより、オゾンによって分解可能な易分解性有機化合物の大部分が分解されているため、第1濃度計3によって測定された有機化合物は、難分解性有機化合物であるダイオキシン類ということとなり、吸光度と有機化合物の濃度との間に相関関係を有することとなる。したがって、吸光度測定により、被処理液中のダイオキシン類の濃度を測定することができる。本実施形態では、上記のように過酸化水素濃度と有機化合物の濃度を同時に測定することができるため、過酸化水素が所定の量発生することが明確になった時点における有機化合物の濃度を用いて難分解性有機化合物の濃度の推定を行うことができる。   When the first concentration meter 3 detects that the hydrogen peroxide concentration is equal to or higher than the reference value, the first switching valve 6 is switched, and the processing liquid discharge pipe L1 communicates with the external discharge pipe LO. As described above, the concentration of the organic compound at this time is 1st because most of the readily decomposable organic compound that can be decomposed by ozone is decomposed by supplying ozone in the ozone treatment tank 2. The organic compound measured by the densitometer 3 is dioxins which are hardly decomposable organic compounds, and has a correlation between the absorbance and the concentration of the organic compound. Therefore, the concentration of dioxins in the liquid to be treated can be measured by measuring the absorbance. In this embodiment, since the hydrogen peroxide concentration and the organic compound concentration can be measured simultaneously as described above, the concentration of the organic compound at the time when it is clear that a predetermined amount of hydrogen peroxide is generated is used. Thus, the concentration of the hardly decomposable organic compound can be estimated.

(第2実施形態)
次に本発明の第2実施形態について図面を参照しながら説明する。図2は、循環式の処理槽を有する本発明の有機化合物分解装置の概略構成を示すブロック図である。有機化合物分解装置20は、被処理液を供給する被処理液供給管LIと連通するオゾン処理槽2と、被処理液にオゾンガスを供給するオゾン供給装置5と、オゾン処理槽2中の被処理液を排出する処理液排出管L1に設けられた第1濃度計と、第1濃度計の下流側に設けられ被処理液を被処理液を紫外線処理槽21に送るかオゾン処理槽に戻す循環配管L2に戻すかを切り替える第1の切替弁6と、被処理液101に紫外線照射してAOP法により酸化・分解する紫外線ランプ22を有する紫外線処理槽21と、紫外線処理槽21中の被処理液101を排出する処理液排出管L4に設けられた第2濃度計4と、第1濃度計の下流側に設けられ、被処理液を外部に排出する外部排出管LOに送るか紫外線処理槽21に戻す循環配管L5に戻すかを切り替える第2切替弁7とを備える。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing a schematic configuration of the organic compound decomposition apparatus of the present invention having a circulation type treatment tank. The organic compound decomposition apparatus 20 includes an ozone treatment tank 2 that communicates with a treatment liquid supply pipe LI that supplies a treatment liquid, an ozone supply apparatus 5 that supplies ozone gas to the treatment liquid, and a treatment in the ozone treatment tank 2. A first concentration meter provided in the treatment liquid discharge pipe L1 for discharging the liquid, and a circulation provided on the downstream side of the first concentration meter for sending the treatment liquid to the ultraviolet treatment tank 21 or returning it to the ozone treatment tank A first switching valve 6 that switches whether to return to the pipe L2, an ultraviolet treatment tank 21 having an ultraviolet lamp 22 that irradiates the treatment liquid 101 with ultraviolet rays and oxidizes and decomposes by the AOP method, and a treatment in the ultraviolet treatment tank 21 The second concentration meter 4 provided in the treatment liquid discharge pipe L4 for discharging the liquid 101, and an ultraviolet treatment tank provided on the downstream side of the first concentration meter and sent to an external discharge pipe LO for discharging the liquid to be processed to the outside Return to the circulation pipe L5 to return to 21 And a second switching valve 7 for switching.

オゾン供給装置5は、オゾナイザ10と、オゾナイザ10によって生成したオゾンガスをオゾン処理槽2中の被処理液100に供給するノズル11と、オゾンガスを紫外線処理槽21中の被処理液101に供給するノズル12とを備える。   The ozone supply device 5 includes an ozonizer 10, a nozzle 11 that supplies ozone gas generated by the ozonizer 10 to the liquid 100 to be processed in the ozone treatment tank 2, and a nozzle that supplies ozone gas to the liquid 101 to be processed in the ultraviolet treatment tank 21. 12.

オゾン供給装置5によって、オゾン処理槽2中の被処理液100には、オゾン処理槽2の底面に設けられたノズル11からオゾンガスが供給され、被処理液中にオゾンガスが溶解する。オゾン処理槽2から処理液排出管L1を通って排出された被処理液は、第1濃度計3によって過酸化水素濃度が測定され、過酸化水素濃度が基準値以下である場合は、循環配管L2を通ってオゾン処理槽にもどり、オゾン処理槽2と処理液排出管L1との間を循環する。   Ozone gas is supplied from the nozzle 11 provided on the bottom surface of the ozone treatment tank 2 to the liquid 100 to be treated in the ozone treatment tank 2 by the ozone supply device 5, and the ozone gas is dissolved in the liquid to be treated. The liquid to be treated discharged from the ozone treatment tank 2 through the treatment liquid discharge pipe L1 is measured for the hydrogen peroxide concentration by the first concentration meter 3. If the hydrogen peroxide concentration is below the reference value, the circulation pipe It returns to the ozone treatment tank through L2 and circulates between the ozone treatment tank 2 and the treatment liquid discharge pipe L1.

第1濃度計は、被処理液中の過酸化水素の量を測定するために吸光度を用いて濃度測定を行う。このときの測定波長は、180〜230nmとした。   The first densitometer performs concentration measurement using absorbance in order to measure the amount of hydrogen peroxide in the liquid to be treated. The measurement wavelength at this time was 180 to 230 nm.

第1濃度計の吸光度の値が所定値以上になった場合、すなわち過酸化水素濃度が基準値以上であることが検出されると第1切替弁6を切り替え、処理液排出管L1と紫外線処理槽用供給管L3と連通させ、被処理液を紫外線処理槽21に給送する。本実施形態では、過酸化水素が被処理液中に発生したこと検出されると、第1切替弁を切り替えることとした。このとき、紫外線処理槽用供給管L3において、被処理液中の過酸化水素を除去するために、過酸化水素を除去する消去酵素を添加する。消去酵素としては、ペルオキシターゼ、カタラーゼなどが例示される。カタラーゼは過酸化水素を水と酸素に分解する酵素である。これらの具体例としては、三菱ガス化学社製の過酸化水素分解酵素「アクアスーパー」(商品名)などを用いることができる。   When the absorbance value of the first concentration meter exceeds a predetermined value, that is, when it is detected that the hydrogen peroxide concentration is higher than the reference value, the first switching valve 6 is switched, and the treatment liquid discharge pipe L1 and the ultraviolet ray treatment are switched. The liquid to be processed is fed to the ultraviolet processing tank 21 by communicating with the tank supply pipe L3. In the present embodiment, the first switching valve is switched when it is detected that hydrogen peroxide is generated in the liquid to be treated. At this time, in order to remove hydrogen peroxide in the liquid to be treated, an erasing enzyme that removes hydrogen peroxide is added to the supply pipe L3 for the ultraviolet treatment tank. Examples of the erasing enzyme include peroxidase and catalase. Catalase is an enzyme that breaks down hydrogen peroxide into water and oxygen. Specific examples of these include hydrogen peroxide-degrading enzyme “Aqua Super” (trade name) manufactured by Mitsubishi Gas Chemical Company.

紫外線処理槽では、オゾナイザ10によって発生したオゾンがノズル12を経由して紫外線処理槽21中の被処理液101に供給されると共に、紫外線ランプ22によって紫外線が照射され、AOP法によって被処理液中の有機化合物が酸化・分解される。上記のように紫外線処理槽21中に含まれる有機化合物の大部分は難分解性有機化合物であるダイオキシン類であるため、易分解性有機化合物が紫外線を遮蔽してダイオキシン類のAOP処理を阻害することもなく、効率的にAOP処理をすることができる。   In the ultraviolet treatment tank, ozone generated by the ozonizer 10 is supplied to the liquid 101 in the ultraviolet treatment tank 21 via the nozzle 12 and irradiated with ultraviolet rays by the ultraviolet lamp 22, and is then treated in the liquid to be treated by the AOP method. The organic compounds are oxidized and decomposed. As described above, since most of the organic compounds contained in the ultraviolet treatment tank 21 are dioxins which are hardly decomposable organic compounds, the easily decomposable organic compounds block ultraviolet rays and inhibit the AOP treatment of dioxins. Therefore, AOP processing can be performed efficiently.

紫外線照射槽21中の被処理液101は、処理液排出管L4に設けられた第2濃度計4によって紫外線吸光度を測定することにより有機化合物の濃度が測定される。第2濃度計4による有機化合物の濃度測定は以下のように行われる。   The concentration of the organic compound in the liquid 101 to be treated in the ultraviolet irradiation tank 21 is measured by measuring the ultraviolet absorbance with the second densitometer 4 provided in the treatment liquid discharge pipe L4. The concentration measurement of the organic compound by the second densitometer 4 is performed as follows.

第2濃度計は、吸光度測定により被処理液中の有機化合物の濃度測定を行う。本実施形態では、測定波長は、260nmとした。260nmは、オゾン及び過酸化水素の吸収帯と共通するが、この影響をほとんど受けることがないと考えられる。オゾンについては、分解される有機化合物が分解されて少なくなった状態で、さらに継続的に供給した場合に濃度が増加するため、過酸化水素の量により処理の切り替えタイミングを判断するようにすれば、被処理液中のオゾン濃度が増大する前に測定することができ、有機化合物の吸光度測定に与える影響はほとんどない。また、過酸化水素については、上記の用に過酸化水素を除去する消去酵素を添加しているため、これにより分解され、有機化合物の吸光度測定に与える影響はほとんどないと考えられる。   The second densitometer measures the concentration of the organic compound in the liquid to be treated by measuring the absorbance. In the present embodiment, the measurement wavelength is 260 nm. Although 260 nm is in common with the absorption bands of ozone and hydrogen peroxide, it is considered that this effect is hardly affected. With regard to ozone, the concentration of organic compounds to be decomposed is reduced and the concentration increases when continuously supplied. Therefore, if the amount of hydrogen peroxide is used, the timing for switching between treatments can be determined. It can be measured before the ozone concentration in the liquid to be treated increases, and has almost no influence on the absorbance measurement of the organic compound. As for hydrogen peroxide, since an erasing enzyme for removing hydrogen peroxide is added for the above-mentioned purpose, it is considered that the hydrogen peroxide is decomposed and hardly affects the absorbance measurement of the organic compound.

第2濃度計によって吸光度が所定の値より低くなった場合、被処理液中の有機化合物、すなわち難分解性有機化合物であるダイオキシン類の濃度が排出可能な濃度になるまで分解された場合は、第2切替弁8が切り替わり、処理液排出管L1が外部排出管LOと連通し、被処理液が外部に排出される。   When the absorbance is lower than a predetermined value by the second densitometer, when the organic compound in the liquid to be treated, that is, the dioxins that are difficult-to-decompose organic compounds, is decomposed to a concentration that can be discharged, The second switching valve 8 is switched, the processing liquid discharge pipe L1 communicates with the external discharge pipe LO, and the liquid to be processed is discharged to the outside.

このように、本実施形態にかかる有機化合物分解装置は、AOP処理を行う被処理液中に含まれる有機化合物を難分解性有機化合物であるダイオキシン類とすることができ、紫外線処理槽から排出される被処理液中の有機化合物濃度を示す吸光度の値がダイオキシン濃度と相関を持つこととなり、吸光度測定により被処理液中のダイオキシン濃度を測定することができる。   As described above, the organic compound decomposition apparatus according to the present embodiment can convert the organic compound contained in the liquid to be treated to AOP treatment into dioxins that are hardly decomposable organic compounds and is discharged from the ultraviolet treatment tank. The absorbance value indicating the organic compound concentration in the liquid to be treated has a correlation with the dioxin concentration, and the dioxin concentration in the liquid to be treated can be measured by measuring the absorbance.

(実施例1)
図1に示す装置を用いて、以下の条件でダイオキシン類を含む排水を処理した。すなわち、貯留水量20Lのオゾン処理槽で167g/Nmの濃度のオゾンを0.3L/minで供給し、濃度計3被処理液の吸光度を測定した。測定波長260nmで処理中の有機化合物の濃度を測定するとともに、測定波長230nmの吸光度で過酸化水素の変化を評価した。また、処理液をサンプリングし試験紙(三菱ガス化学製、過酸化水素試験紙)を用いて過酸化水素濃度を測定し、パックテスト(共立理化学研究所製)を用いてCOD値を測定した。結果は表1及び図3の通りである。表中“over”は吸光度が5を越えていることを示し、“−”は測定していないことを示す。
(Example 1)
Using the apparatus shown in FIG. 1, wastewater containing dioxins was treated under the following conditions. That is, ozone having a concentration of 167 g / Nm 3 was supplied at 0.3 L / min in an ozone treatment tank having a storage water volume of 20 L, and the absorbance of the concentration meter 3 liquid to be treated was measured. While measuring the density | concentration of the organic compound in process with the measurement wavelength of 260 nm, the change of hydrogen peroxide was evaluated by the light absorbency of the measurement wavelength of 230 nm. Further, the treatment liquid was sampled, the hydrogen peroxide concentration was measured using a test paper (manufactured by Mitsubishi Gas Chemical Co., Ltd., hydrogen peroxide test paper), and the COD value was measured using a pack test (manufactured by Kyoritsu Riken). The results are as shown in Table 1 and FIG. In the table, “over” indicates that the absorbance exceeds 5, and “−” indicates that measurement is not performed.

処理が進むにつれて有機化合物濃度が減少しCODおよび260nmの吸光度も減少する。処理時間15分以降ではCODおよび吸光度が変化しなくなると共に過酸化水素濃度が上昇する。また、230nmの吸光度も処理と共に減少するが処理時間15分以降では過酸化水素の増加の影響で吸光度が上昇に転じる。この結果より230nmの吸光度変化が減少から増加に転じるポイントを終点とすることができる。   As processing proceeds, organic compound concentrations decrease and COD and absorbance at 260 nm also decrease. After the treatment time of 15 minutes, the COD and absorbance do not change and the hydrogen peroxide concentration increases. The absorbance at 230 nm also decreases with the treatment, but after the treatment time of 15 minutes, the absorbance starts to increase due to the increase in hydrogen peroxide. From this result, the point at which the change in absorbance at 230 nm starts from decreasing can be set as the end point.

Figure 0004113851
Figure 0004113851

(実施例2)
オゾン処理後の被処理液の有機化合物中のダイオキシン量を測定するために、以下の実験を行った。すなわち、図2に示す装置を用いてダイオキシン類を含む排水を処理した。貯留水量7mのオゾン処理槽で、150g/Nmの濃度のオゾンを10L/minで供給し、濃度計3により被処理液の吸光度を測定した。測定波長260nmで処理液中の有機化合物の濃度を測定するとともに、処理液をサンプリングし試験紙(三菱ガス化学製、過酸化水素試験紙)を用いて過酸化水素濃度を測定した。結果は表2及び図4の通りである。
(Example 2)
In order to measure the amount of dioxins in the organic compound of the liquid to be treated after the ozone treatment, the following experiment was conducted. That is, the waste water containing dioxins was processed using the apparatus shown in FIG. In an ozone treatment tank with a stored water amount of 7 m 3 , ozone having a concentration of 150 g / Nm 3 was supplied at 10 L / min, and the absorbance of the liquid to be treated was measured by the densitometer 3. The concentration of the organic compound in the treatment liquid was measured at a measurement wavelength of 260 nm, the treatment liquid was sampled, and the hydrogen peroxide concentration was measured using a test paper (hydrogen peroxide test paper manufactured by Mitsubishi Gas Chemical). The results are as shown in Table 2 and FIG.

Figure 0004113851
Figure 0004113851

処理が進むにつれて有機物濃度が減少し260nmの吸光度も減少する。処理時間24時間以降では吸光度が変化しなくなると共に過酸化水素濃度が上昇したため、オゾン処理を終了した。   As the process proceeds, the organic matter concentration decreases and the absorbance at 260 nm also decreases. After the treatment time of 24 hours, the absorbance no longer changed and the hydrogen peroxide concentration increased, so the ozone treatment was terminated.

続いて、AOP処理を行った。すなわち、図2に示す紫外線処理槽に被処理液を送り促進酸化処理を行った。貯留水量7mの紫外線処理槽で、150g/Nmの濃度のオゾンを10L/minで供給し、紫外線ランプ22を点灯し、濃度計4により被処理液の吸光度を測定した。測定波長260nmで処理液中の有機化合物の濃度を測定するとともに、処理液をサンプリングしダイオキシン濃度を測定した。(環境テクノ(株)迅速分析法により測定)。結果は表3及び図5の通りである。なお、同様の実験を再度行い、結果を表4に示した。 Subsequently, AOP treatment was performed. That is, the liquid to be treated was sent to the ultraviolet treatment tank shown in FIG. 2 to perform accelerated oxidation treatment. In an ultraviolet treatment tank having a reserved water amount of 7 m 3 , ozone having a concentration of 150 g / Nm 3 was supplied at 10 L / min, the ultraviolet lamp 22 was turned on, and the absorbance of the liquid to be treated was measured by the densitometer 4. While measuring the concentration of the organic compound in the treatment liquid at a measurement wavelength of 260 nm, the treatment liquid was sampled and the dioxin concentration was measured. (Measured by rapid analysis method of Environmental Techno Co., Ltd.) The results are as shown in Table 3 and FIG. A similar experiment was performed again, and the results are shown in Table 4.

Figure 0004113851
Figure 0004113851

Figure 0004113851
Figure 0004113851

上記結果のうち、表3の吸光度とダイオキシンの濃度との関係をグラフ化したものを図6に示す。図6から明らかなように吸光度とダイオキシン濃度との間には相関関係が見られ、吸光度を測定することによりダイオキシン濃度を推定することができることがわかる。   Of the above results, a graph showing the relationship between the absorbance in Table 3 and the dioxin concentration is shown in FIG. As apparent from FIG. 6, there is a correlation between the absorbance and the dioxin concentration, and it can be seen that the dioxin concentration can be estimated by measuring the absorbance.

以上説明したように、本発明にかかる濃度測定方法によれば、本来相関関係を持たない総有機化合物濃度と難分解性有機化合物濃度との間に相関関係を持たせることができ、吸光度測定によって被処理液中のダイオキシン類などの難分解性有機化合物の濃度を推定することができる。また、オゾン処理により分解可能な易分解性有機化合物の酸化・分解の終点を検知するために、被処理液中の過酸化水素量を用いることにより、終点のタイミングが明確となると共に、易分解性有機化合物の酸化・分解の過不足を生じることがなく、効率的な処理が可能となる。   As described above, according to the concentration measurement method of the present invention, it is possible to provide a correlation between the total organic compound concentration which does not originally have a correlation and the hardly decomposable organic compound concentration. The concentration of a hardly decomposable organic compound such as dioxins in the liquid to be treated can be estimated. In addition, in order to detect the end point of oxidation / decomposition of easily decomposable organic compounds that can be decomposed by ozone treatment, the timing of the end point is clarified by using the amount of hydrogen peroxide in the liquid to be treated. An efficient treatment is possible without causing excessive or insufficient oxidation / decomposition of the organic compound.

なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施可能である。例えば、上記実施形態ではいずれも循環式によりオゾン処理及び紫外線処理を行ったが、これに限定されるものではなく、回分式、連続式のいずれでも処理が可能である   In addition, this invention is not limited to the said embodiment, It can implement in another various aspect. For example, in the above embodiment, the ozone treatment and the ultraviolet treatment were performed by the circulation method, but the present invention is not limited to this, and any of a batch method and a continuous method can be performed.

本発明の第1実施形態にかかる濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the density | concentration measuring apparatus concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる有機化合物分解装置の構成を示すブロック図である。It is a block diagram which shows the structure of the organic compound decomposition | disassembly apparatus concerning 2nd Embodiment of this invention. 実施例1のオゾン処理における処理時間と吸光度及び過酸化水素濃度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change in the processing time in the ozone treatment of Example 1, an absorbance, and a hydrogen peroxide concentration. 実施例2のオゾン処理における処理時間と吸光度及び過酸化水素濃度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change in the processing time in the ozone processing of Example 2, and a light absorbency and hydrogen peroxide concentration. 実施例1のAOP処理における処理時間と吸光度及びダイオキシン濃度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change in the processing time in the AOP process of Example 1, and a light absorbency and a dioxin density | concentration. 実施例2のAOP処理における被処理液の有機化合物とダイオキシン類との濃度の関係を示すグラフである。It is a graph which shows the relationship of the density | concentration of the organic compound and dioxin of the to-be-processed liquid in the AOP process of Example 2. FIG. CODとダイオキシン類濃度の相関関係を示すグラフである。It is a graph which shows the correlation of COD and dioxin density | concentration. 被処理液中の易分解性有機化合物と難分解性有機化合物の酸化分解の比率を説明する図である。It is a figure explaining the ratio of the oxidative decomposition of the easily decomposable organic compound and the hardly decomposable organic compound in the liquid to be treated.

符号の説明Explanation of symbols

1 濃度測定装置
2 オゾン処理槽
3 第1濃度計
4 第2濃度計
5 オゾン供給装置
6,7 切替弁
10 オゾナイザ
11,12 ノズル
21 紫外線処理槽
22 紫外線ランプ
100,101 被処理液
DESCRIPTION OF SYMBOLS 1 Concentration measuring device 2 Ozone processing tank 3 1st concentration meter 4 2nd concentration meter 5 Ozone supply device 6,7 Switching valve 10 Ozonizer 11,12 Nozzle 21 Ultraviolet processing tank 22 Ultraviolet lamp 100,101 Processed liquid

Claims (15)

オゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを含む被処理液中の難分解性有機化合物の濃度測定方法であって、
オゾンガスを前記被処理液内に供給して易分解性有機化合物の分解を開始するとともに過酸化水素の濃度測定を行い、前記被処理液内の過酸化水素濃度が前記易分解性有機化合物の分解が略終了したことを示す基準値以上になるまで滞留させた後、吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定することを特徴とする、濃度測定方法。
A method for measuring the concentration of a hardly decomposable organic compound in a liquid to be treated, comprising a hardly decomposable organic compound not decomposed by ozone and an easily decomposable organic compound decomposable by ozone,
The ozone gas is supplied to the liquid to be treated within perform concentration measurement of hydrogen peroxide starts the decomposition of easily decomposable organic compounds, decompose hydrogen peroxide concentration of the liquid to be treated inside of the easily decomposable organic compound A concentration measuring method, wherein the concentration of the hardly decomposable organic compound in the liquid to be treated is measured by measuring the absorbance after the sample is retained until it reaches a reference value indicating that the liquid is substantially finished.
前記過酸化水素は、前記易分解性有機化合物の大部分が分解され、オゾンから発生した過剰なOHラジカルが互いに反応することによって生成されることを特徴とする、請求項1に記載の濃度測定方法。   2. The concentration measurement according to claim 1, wherein the hydrogen peroxide is generated when most of the readily decomposable organic compound is decomposed and excess OH radicals generated from ozone react with each other. Method. 難分解性有機化合物が、ダイオキシン類であることを特徴とする、請求項1又は2に記載の濃度測定方法。   The concentration measuring method according to claim 1, wherein the hardly decomposable organic compound is dioxins. さらに前記吸光度測定する前に前記被処理液内の過酸化水素を除去することを特徴とする、請求項3に記載の濃度測定方法。   The concentration measuring method according to claim 3, further comprising removing hydrogen peroxide in the liquid to be treated before measuring the absorbance. 前記難分解性有機化合物の吸光度測定に用いる測定波長は230〜300nmであり、オゾンの紫外線吸収スペクトルがピークを呈する範囲内の少なくとも3点の吸光度の情報を用いて測定することを特徴とする、請求項1から4のいずれか1つに記載の濃度測定方法。   The measurement wavelength used for measuring the absorbance of the hardly decomposable organic compound is 230 to 300 nm, and the measurement is performed using information on absorbance at least three points within a range where the ultraviolet absorption spectrum of ozone exhibits a peak, The density | concentration measuring method as described in any one of Claim 1 to 4. 記過酸化水素の濃度測定は、吸光度測定によって行われることを特徴とする、請求項1から5のいずれか1つに記載の濃度測定方法。 Concentration measurements before Symbol hydrogen peroxide is characterized by dividing lines by the absorbance measurement, concentration measurement method according to any one of claims 1 5. オゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを含む被処理液中の難分解性有機化合物の濃度測定装置であって、
前記被処理液を蓄積するオゾン処理槽と前記処理槽に蓄積された被処理液にオゾンを供給するオゾン供給装置を備えたオゾン分解処理装置と、
前記オゾン分解処理装置に蓄積された前記被処理液中の過酸化水素濃度を測定する第1の濃度測定装置と、
前記第1の濃度測定装置により測定された前記過酸化水素を前記易分解性有機化合物の分解が略終了したことを示す基準値以上含む被処理液を排出する処理液排出管と、
前記処理液排出管から排出された処理液を吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定する第2の濃度測定装置と、を備えることを特徴とする、濃度測定装置。
An apparatus for measuring the concentration of a hardly decomposable organic compound in a liquid to be treated, comprising a hardly decomposable organic compound that is not decomposed by ozone and a readily decomposable organic compound that can be decomposed by ozone,
An ozone decomposition treatment apparatus comprising an ozone treatment tank for accumulating the liquid to be treated and an ozone supply device for supplying ozone to the liquid to be treated accumulated in the treatment tank;
A first concentration measuring device for measuring a hydrogen peroxide concentration in the liquid to be treated accumulated in the ozonolysis treatment device;
A treatment liquid discharge pipe that discharges a liquid to be treated that contains the hydrogen peroxide measured by the first concentration measuring apparatus above a reference value indicating that the decomposition of the readily decomposable organic compound is substantially completed;
And a second concentration measuring device for measuring the concentration of the hardly decomposable organic compound in the liquid to be treated by measuring absorbance of the processing liquid discharged from the processing liquid discharge pipe. apparatus.
難分解性有機化合物が、ダイオキシン類であることを特徴とする、請求項7に記載の濃度測定装置。   The concentration measuring apparatus according to claim 7, wherein the hardly decomposable organic compound is dioxins. 前記第2の濃度測定装置の測定波長は230〜300nmであり、オゾンの紫外線吸収スペクトルがピークを呈する範囲内の少なくとも3点の吸光度の情報を用いて測定することを特徴とする、請求項8に記載の濃度測定装置。   The measurement wavelength of the second concentration measuring device is 230 to 300 nm, and measurement is performed using information on absorbance at least three points within a range in which the ultraviolet absorption spectrum of ozone exhibits a peak. The concentration measuring apparatus according to 1. さらに、前記処理液排出管の前記第2の濃度測定装置よりも上流側の位置に前記被処理液内の過酸化水素を除去する過酸化水素除去装置を備えることを特徴とする、請求項7から9のいずれか1つに記載の濃度測定装置。   8. The apparatus according to claim 7, further comprising a hydrogen peroxide removing device that removes hydrogen peroxide in the liquid to be treated at a position upstream of the second concentration measuring device of the treatment liquid discharge pipe. To 9. The concentration measuring device according to any one of 9 to 9. 前記過酸化水素除去装置は、前記被処理液に紫外線を照射する紫外線照射装置であることを特徴とする、請求項10に記載の濃度測定装置。   The concentration measurement apparatus according to claim 10, wherein the hydrogen peroxide removing apparatus is an ultraviolet irradiation apparatus that irradiates the liquid to be treated with ultraviolet rays. 前記過酸化水素除去装置は、前記被処理液に過酸化水素を除去する消去酵素を添加する消去酵素添加装置であることを特徴とする、請求項10に記載の濃度測定装置。   The concentration measuring apparatus according to claim 10, wherein the hydrogen peroxide removing apparatus is an erasing enzyme adding apparatus that adds an erasing enzyme that removes hydrogen peroxide to the liquid to be treated. 前記前記第1の濃度測定装置は、吸光度測定により濃度を測定する装置であることを特徴とする、請求項7から12のいずれか1つに記載の濃度測定装置。   The concentration measuring device according to claim 7, wherein the first concentration measuring device is a device that measures a concentration by measuring absorbance. 被処理液中に含まれるオゾンにより分解されない難分解性有機化合物とオゾンにより分解可能な易分解性有機化合物とを酸化分解処理する有機化合物分解装置であって、前記被処理液を供給する供給管と、前記供給管から供給された前記被処理液を蓄積するオゾン処理槽と、前記オゾン処理槽に蓄積された被処理液にオゾンを供給するオゾン供給装置を備えたオゾン分解処理装置と、
前記オゾン分解処理装置に蓄積された前記被処理液中の過酸化水素濃度を測定する第1の濃度測定装置と、
前記第1の濃度測定装置により測定された前記過酸化水素を前記易分解性有機化合物の分解が略終了したことを示す基準値以上含む被処理液を排出する第1の処理液排出管と、
前記処理液排出管から供給された前記被処理液を蓄積する紫外線処理槽と前記処理槽に蓄積された前記被処理液に紫外線を照射する紫外線照射装置とを備え、前記紫外線処理槽に蓄積された被処理液にオゾンを供給可能な促進酸化処理装置と、
前記紫外線処理槽に蓄積された被処理液中を吸光度測定により前記被処理液内の前記難分解性有機化合物の濃度を測定する第2の濃度測定装置と、
前記第2の濃度測定装置の吸光度が基準値以下となった場合に前記被処理液を外部に排出する第2の処理液排出管と、を備えることを特徴とする、有機化合物分解装置。
An organic compound decomposing apparatus that oxidizes and decomposes a hardly decomposable organic compound that is not decomposed by ozone contained in a liquid to be treated and an easily decomposable organic compound that can be decomposed by ozone, and supplies the liquid to be treated An ozone treatment tank that accumulates the liquid to be treated supplied from the supply pipe, and an ozone decomposition treatment apparatus that includes an ozone supply device that supplies ozone to the liquid to be treated accumulated in the ozone treatment tank;
A first concentration measuring device for measuring a hydrogen peroxide concentration in the liquid to be treated accumulated in the ozonolysis treatment device;
A first treatment liquid discharge pipe for discharging a liquid to be treated that contains the hydrogen peroxide measured by the first concentration measuring apparatus above a reference value indicating that the decomposition of the readily decomposable organic compound is substantially completed;
An ultraviolet treatment tank for accumulating the liquid to be treated supplied from the treatment liquid discharge pipe, and an ultraviolet irradiation device for irradiating the liquid to be treated accumulated in the treatment tank with ultraviolet rays, and accumulated in the ultraviolet treatment tank. An accelerated oxidation treatment apparatus capable of supplying ozone to the liquid to be treated;
A second concentration measuring device for measuring the concentration of the hardly decomposable organic compound in the liquid to be treated by measuring the absorbance in the liquid to be treated accumulated in the ultraviolet treatment tank;
An organic compound decomposing apparatus comprising: a second processing liquid discharge pipe that discharges the liquid to be processed to the outside when the absorbance of the second concentration measuring apparatus becomes a reference value or less.
さらに、前記第1の処理液排出管に前記被処理液内の過酸化水素を除去する過酸化水素除去装置を備えることを特徴とする、請求項14に記載の有機化合物分解装置。   The organic compound decomposing apparatus according to claim 14, further comprising a hydrogen peroxide removing device that removes hydrogen peroxide in the liquid to be treated in the first treatment liquid discharge pipe.
JP2004084899A 2004-03-23 2004-03-23 Concentration measuring method and concentration measuring apparatus Expired - Fee Related JP4113851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084899A JP4113851B2 (en) 2004-03-23 2004-03-23 Concentration measuring method and concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084899A JP4113851B2 (en) 2004-03-23 2004-03-23 Concentration measuring method and concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JP2005274215A JP2005274215A (en) 2005-10-06
JP4113851B2 true JP4113851B2 (en) 2008-07-09

Family

ID=35174064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084899A Expired - Fee Related JP4113851B2 (en) 2004-03-23 2004-03-23 Concentration measuring method and concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP4113851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8708461B2 (en) * 2010-07-23 2014-04-29 Hewlett-Packard Development Company, L.P. Thermal resistor fluid ejection assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024556B2 (en) * 2008-09-22 2012-09-12 株式会社日立プラントテクノロジー Simple measurement method and apparatus for organic halogen compounds
CN103118987A (en) * 2010-10-26 2013-05-22 英派尔科技开发有限公司 Water treatment apparatus and systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8708461B2 (en) * 2010-07-23 2014-04-29 Hewlett-Packard Development Company, L.P. Thermal resistor fluid ejection assembly

Also Published As

Publication number Publication date
JP2005274215A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Ince et al. UV/H2O2 degradation and toxicity reduction of textile azo dyes: Remazol Black-B, a case study
Soubh et al. The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes
JP2007083186A (en) Water treatment system
Wen et al. The reduction of waste lubricant oil distillate through the enhancement of organics degradation by ozonation with elevated temperature and stable pH for the zero discharge
Fang et al. Simultaneous removal of norfloxacin and chloramphenicol using cold atmospheric plasma jet (CAPJ): Enhanced performance, synergistic effect, plasma-activated water (PAW) contribution, mechanism and toxicity evaluation
Assadi et al. COMPARISON OF PHENOL PHOTODEGRADATION BY UV/H 2 O 2 AND PHOTO-FENTON PROCESSES.
JP4113851B2 (en) Concentration measuring method and concentration measuring apparatus
Fang et al. Enhanced photochemical degradation and transformation of ciprofloxacin in a UV/calcium peroxide system: pH effects, defluorination kinetics, and different components numerical analysis
JP2021535998A (en) Systems and methods for measuring water composition
JP2006271519A (en) Treatment method, apparatus and control system of pop or pop-containing oil
JPS63218293A (en) Treatment of waste water containing trichloroethylene
Li et al. Degradation of p-nitrophenol in soil by dielectric barrier discharge plasma
Affam et al. Solar photo-Fenton induced degradation of combined chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution
Alabdraba et al. Performance evaluation of combined O3/Fenton process on decolorization and COD removal of Disperse Blue 79 dye from aqueous solution.
KR101169877B1 (en) The method for settings of operation parameters in advanced oxidation processesAOPs
KR20030078623A (en) System for decomposing organic compound
Njoyim et al. Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory
Giri et al. Water matrix effect on UV photodegradation of perfluorooctanoic acid
JP2011161345A (en) Method and apparatus for treating chemical pollution
CA2254406C (en) Process for accelerating reaction of ozone with am catalyst
Pi et al. Pathway of the ozonation of 2, 4, 6-trichlorophenol in aqueous solution
WO2007058285A1 (en) Fluid cleaning method and fluid cleaning apparatus
Singh et al. Rapid Removal of PFAS from Investigation-derived Waste in a Pilot-scale Plasma Reactor
JP3549951B2 (en) Ultra-trace nitrogen component measurement device
JP4138618B2 (en) Accelerated oxidation treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370