JP4112307B2 - Conductive material having flame retardancy and method for producing the same - Google Patents

Conductive material having flame retardancy and method for producing the same Download PDF

Info

Publication number
JP4112307B2
JP4112307B2 JP2002232349A JP2002232349A JP4112307B2 JP 4112307 B2 JP4112307 B2 JP 4112307B2 JP 2002232349 A JP2002232349 A JP 2002232349A JP 2002232349 A JP2002232349 A JP 2002232349A JP 4112307 B2 JP4112307 B2 JP 4112307B2
Authority
JP
Japan
Prior art keywords
flame retardant
weight
composite sheet
open
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002232349A
Other languages
Japanese (ja)
Other versions
JP2003175565A (en
Inventor
進 高木
明秀 片山
徹 竹川
幸代 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2002232349A priority Critical patent/JP4112307B2/en
Publication of JP2003175565A publication Critical patent/JP2003175565A/en
Application granted granted Critical
Publication of JP4112307B2 publication Critical patent/JP4112307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主として電子機器より漏洩する電磁波を遮蔽する電磁波シールド用ガスケット材料に適した難燃性のある導電性材料及びその製造方法に関する。
【0002】
【従来の技術】
近年パソコン、テレビゲーム、携帯電話等の、所謂、エレクトロニクス機器が広く利用されるようになり、一般の家庭生活の中にも普及してきた。そしてこのような機器が工業用から一般の用途に拡大するにつれて、これらの機器から漏れる電磁波が他のエレクトロニクス機器に誤動作を起こさせたり、通信機器に電波障害を起こさせる等の問題が多発しマスコミにも大きく取り上げられるようになってきた。
【0003】
このような社会環境の中でエレクトロニクス工業関連分野においては該機器から漏洩する電磁波による種々の障害を防止すべく卓越した遮蔽効果を発揮する電磁波シールド材料が求められ、同時に難燃性をも要求されている。
そのような要求を満足するべく、再公表特許WO98/06247には、従来の電磁波シールドガスケット材料に比較しその煩雑な製造作業を解消し大量生産を可能とした安価で品質が均一で信頼性の高い電磁波シールドガスケット材料に用いられる導電性材料が提案されている。
しかしながら、再公表特許WO98/06247の導電性材料は、例えば、火災発生時に材料自体が燃焼してしまうという不具合があった。
【0004】
【発明が解決しようとする課題】
本発明はこのような現状に鑑みてなされたものであり、本発明の目的は、従来の電磁波シールドガスケット材料に比較しその煩雑な製造作業を解消し大量生産を可能とした安価で品質が均一で信頼性が高く、しかも優れた難燃性能を有するガスケット材料を与える導電性材料及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意検討の結果、以下の本発明を完成した。
【0006】
本発明は第1に、連続気泡性のフォームシートの少なくとも一方の面に布帛が積層一体化された複合体シートの全面にフォームの連続気泡性を損うことなく導電性金属皮膜が形成されて成る厚さが0.5mmから7mmの範囲にある導電性材料であって、該導電性金属皮膜上に臭素系難燃剤、リン系難燃剤及びアンチモン系難燃剤からなる難燃剤が付着されていることを特徴とする難燃性導電性材料である。
【0007】
本発明は第2に、臭素系難燃剤が芳香族ブロム化合物、リン系難燃剤がポリリン酸アンモニウム、アンチモン系難燃剤が三酸化アンチモンである上記の難燃性導電性材料である。
本発明は第3に、難燃剤がバインダー樹脂によって導電性金属皮膜上に付着されている上記の難燃性導電性材料である。
本発明は第4に、導電性金属皮膜をもつ複合体シートの重量に対し、バインダー樹脂が1〜10重量%、臭素系難燃剤が20〜65重量%、リン系難燃剤が2〜15重量%、アンチモン系難燃剤が2〜30重量%付着されている上記の難燃性導電性材料である。
【0008】
本発明は第5に、連続気泡性のフォームシートの一方又は両方の表面に布帛を積層一体化して複合体シートを製造し、該複合体シートにフォームの連続気泡性を維持するように導電性金属をメッキ処理によって付着し、得られた導電性金属皮膜を有する複合体シートに臭素系難燃剤、リン系難燃剤及びアンチモン系難燃剤からなる難燃剤を付与することを特徴とする難燃性導電性材料の製造方法である。
【0009】
本発明は第6に、連続気泡性のフォームシートと布帛との積層一体化が、連続気泡性のフォームシートの少なくとも一部を熱熔融するか又は接着剤による貼り合せによって行なわれることを特徴とする上記の製造方法である。
本発明は第7に、導電性金属皮膜を有する複合体シートへの難燃剤の付与が浸漬法によって行なわれることを特徴とする上記の製造方法である。
【0010】
【発明の実施の形態】
本発明の電磁波シールドガスケット材料として適する導電性材料の複合体シートの典型例は図1及び図2に示すような断面構造を有する。1は布帛であり、2は連続気泡性のフォームシートである。また、本発明においては、連続気泡性のフォームシートと布帛を予め積層一体化して得られた複合体シートに導電性金属皮膜を形成し、さらに得られた複合体シートに難燃剤を付与することにより、電磁波シールドガスケットとして適する、難燃性を有する導電性材料が形成される。
【0011】
本発明に使用する布帛は、有機繊維や無機繊維を用いて成る織物、編物、不織布等の繊維布帛が挙げられる。
有機繊維の例としては、合成繊維、半合成繊維、再生繊維等の化学繊維及び植物繊維、動物繊維等の天然繊維等を用いることができるが、特にナイロン6やナイロン66等のポリアミド繊維、ポリエチレンテレフタレート等のポリエステル繊維及びアクリル繊維等の合成繊維が好ましく、そのうちでも特にポリエチレンテレフタレート等のポリエステル繊維が好ましい。
【0012】
また、無機繊維としては、金属繊維、炭素繊維、ガラス繊維、等を用いることができるが、屈曲耐久性等の点で炭素繊維が好ましい。
しかし、上述の繊維の中で生産性、取り扱い性、コスト性を考慮すると、ポリエチレンテレフタレート等のポリエステル繊維が特に好ましい。
【0013】
ポリエステル繊維を用いる場合、単糸繊度が0.11〜5.6デシテックスであるマルチフィラメント糸がより好ましい。単糸繊度が0.11デシテックスより小さいと糸コストが高くなり、また、5.6デシテックスより大きいと、布帛が硬くなり、柔軟性が損なわれる虞がある。また、布帛の目付は10〜100g/m2 が好ましい。
【0014】
これらの布帛に対して形成される金属皮膜の定着を確実にするためには、予め該布帛の表面に付着している糊剤、油剤、ゴミ等の不純物を精練処理により完全に除去することが好ましい。
【0015】
次に、本発明に使用するフォームシートは連続気泡性のフォームシートであり、柔軟で、セル膜を実質上有しない、圧縮復元性に富む、連続気泡よりなる合成樹脂フォームシートが好ましい。これらの特性をもつフォームの例としては、ポリエチレンフォーム、ポリプロピレンフォーム、ポリ塩化ビニルフォーム、ポリウレタンフォーム、ポリイミドフォーム、ポリブタジエンフォーム、シリコーンフォーム等がある。
【0016】
本発明では変形容易で圧縮復元性に富むフォームが好ましいことから、例えばポリウレタンフォームのように軟質と硬質の両者が市販されているフォームでは軟質フォームを選択すべきである。本発明で用いるフォームは連続気泡性をもつものであることを要する、連続気泡含量は特に制限はなく、通常は10%以上、好ましくは30%以上、より好ましく50%以上、最も好ましくは80%以上の連続気泡含量をもつフォームが用いられる。本発明では複合体シートの内部、特にフォームの連続気泡の内壁にも導電性金属皮膜が形成されることを要する。そのためにはセル密度は20〜100個/インチのものが好ましい。セル密度が20個/インチより少ないと十分な電磁波遮蔽性が得られず、100個/インチより多いと金属皮膜の形成がフォームシートの内部まで十分に行われなかったり、フォームシートの強度に問題の発生する虞がある。
【0017】
次に、フォームシートと布帛を積層一体化して複合体を得る方法としては、フォームシート又は布帛のいずれかの表面に導電性の接着剤を塗布し他方を積層して接着させる方法や、フォームシートが熱熔融性である場合には、フォームシート表面の少なくとも一部を熱熔融させた後直ちに布帛を積層して接着させる、所謂、熔着法等の方法が挙げられる。得られる複合体シートに金属皮膜を形成した場合、フォームシートと布帛間の接着部分の導電性を充分確保させるためには熔着法が好ましい。熔着は、例えば、ポリウレタンフォームシート等のフォームシートの表面部をガスによる炎で直接熔融させた後、布帛と積層して接着させ複合体とすることができる。この場合、フォームシートの熔融は表面より0.3〜1mm程度であることが好ましい。0.3mm以下では十分な接着強度が得られず1mm以上では製造コストのアップにつながる。熔着法により製造した複合体シートに金属皮膜を形成した場合、布帛の内部、フォームシートの内部のみならず、フォームシートの熔融層部分の内部にも金属皮膜が形成されて、フォームシートと布帛間の接着部分の導電性が良好になる。
【0018】
次に、該複合体シートへの金属皮膜形成は、フォームの連続気泡特性が維持されるように外部表面だけでなく、連続気泡の内部壁にもできるだけ均一に薄層の金属皮膜を形成する必要がある点で通常メッキ法が用いられる。通常のメッキ処理に当たって行われる触媒の付与や活性化などの前処理を行った後、Ag、Ni、Cu、Au、等の所望の1種以上の金属を無電解メッキ処理、又は、無電解メッキ処理後、更に電気メッキ処理を施すことにより達成される。
【0019】
複合体シートに形成される金属皮膜の厚さは0.01〜2μmが好ましい。0.01μmより薄いと十分なシールド性が得られない虞があり、2μmより厚いとシールド性の更なる向上は望めないばかりか、柔軟性の損なわれる虞がある。
【0020】
金属皮膜が形成された複合体シートの厚さは、用途等によって異なるが、通常0.5〜7mmのものが用いられる。0.5mmより小さいと弾性が得られにくく、7mmより大きいと難燃性効果が劣り、またコストもかかる。
【0021】
更に、上述のように金属皮膜が形成された複合体シートに難燃剤を付与する。難燃剤はバインダー樹脂溶液の形で複合体シートに付与される。難燃剤の付与方法はスプレー法、ナイフコート法やスリットロール法等のコーティング法、難燃剤を添加した樹脂溶液に浸漬し、余分な樹脂を取り除く浸漬法等があるが、複合体シートに均一に付与させるには、浸漬法が特に好ましい。また、発泡前の多孔体形成用合成樹脂に難燃剤を添加してから発泡させたり、布帛を構成する繊維にあらかじめ難燃剤を練り込むことを組合せてもよい。難燃剤を複合体シート空隙に固着させるためのバインダー樹脂としては、水溶性樹脂又はエマルジョン樹脂が好ましく、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂等が挙げられる。
【0022】
使用する難燃剤としては臭素系難燃剤、リン系難燃剤、アンチモン系難燃剤の3種を組合せた複合難燃剤が用いられる。臭素系難燃剤としては、ビス(ペンタブロモフェニル)エタンやビス(トリブロモフェニル)エーテル、ビス(ペンタブロモフェニル)エーテル等の芳香族ブロム化合物が好ましく、リン系難燃剤としては、ポリリン酸アンモニウムが好ましく、アンチモン系難燃剤としては三酸化アンチモンが好ましい。これら難燃剤は、3種の難燃剤を併用することにより、相乗効果により優れた難燃性効果が得られる。難燃剤のバインダー樹脂に対する重量比は、臭素系難燃剤が200〜1600%、好ましくは500〜1500%、リン系難燃剤が3〜450%、好ましくは50〜400%、アンチモン系難燃剤が3〜450%、好ましくは50〜400%である。
【0023】
金属皮膜が形成された複合体シートに対する重量比は、複合体シートに対し、樹脂が1〜10%、好ましくは2〜8%、臭素系難燃剤が20〜65%、好ましくは30〜55%、リン系難燃剤が2〜15%、好ましくは3〜10%、アンチモン系難燃剤が2〜30%、好ましくは10〜20%である。
【0024】
【実施例】
次に実施例によって本発明を例証する。
実施例で用いた測定方法は次のとおりである。
1.表面抵抗値(Ω/□)
120mm×120mmの試料を縦方向、横方向それぞれ用意し、試料接触部分の大きさが10mm×100mmの電極クリップで電極間が100mmになるように挟みテスター(HIOKI製 3220 mΩ Hi TESTER)で抵抗値を読み取る。測定方法の概略を図3に示す。
2.体積抵抗値(mΩ)
100mm×100mmの試料を100mm×100mmの重さ100gの銅板電極で挟み30g/cm2 の荷重をかけた状態でテスター(HIOKI製 3220mΩ Hi TESTER)を用いて抵抗値を測定する。測定方法を図4に示す。
3.シールド性(dB)
中央に5mm×25mmの長方形の穴をあけた厚さ1mmの銅板(200mm×200mm)2板を用意し、中央部に試料片を取り付けKEC法によってシールド性を測定した。即ちシールドボックスの中の送信用と受信用のアンテナの間に取り付け試料片を設置し、受信した電界の強度を測定し、試験片の非存在時の強度との比から減衰率(dB)を式1より求める。
【0025】
【式1】

Figure 0004112307
4.難燃性
UL94 V−0法、UL94 HB法に基づく。
【0026】
[実施例1]
ポリエステル長繊維(単糸繊度2.2デシテックス)からなるスパンボンド不織布(目付40g/m2 )を、厚み1.6mm、セル密度40個/インチの連続気泡ポリウレタンフォームシートに熔着した複合体シートを得た。次にポリエステル繊維天竺編物(55.6デシテックス/24f、65コース/45ウェル、目付54g/m2 、厚み0.47mm)を該ポリウレタンフォームのもう一方の面に熔着して、3層構造の複合体シートを得た。
【0027】
次に、この複合体シートを十分に洗浄した後、塩化パラジウム0.3g/L、塩化第一スズ30g/L、36%塩酸300ml/Lを含む40℃水溶液に2分間浸漬後、水洗した。続いて10%硫酸に30℃で5分間浸漬後、水洗した。
さらに硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lからなる無電解銅メッキ液に、40℃で5分間浸漬後、水洗した。続いて硫酸ニッケル30g/L、次亜燐酸ソーダ20g/L、クエン酸アンモニウム50g/Lからなる無電解ニッケル液に45℃で10分間浸漬後、水洗した。繊維及びフォームのセル表面が均一にメッキされた目付233g/m2 、厚み1.4mmの複合体シートを得た。
得られた複合体シートに、固形分30%のポリエステル系樹脂(バイロナールMD1930:東洋紡績株式会社製)10重量%、難燃剤(ビス(ペンタブロモフェニル)エタン60重量%、ポリリン酸アンモニウム10重量%、三酸化アンチモン20重量%)60重量%を含む水溶液に浸漬し、マングルにより絞ったあと130℃で乾燥した。この時ピックアップは120%であった。複合体シートには、臭素系難燃剤が43重量%、リン系難燃剤が7重量%、アンチモン系難燃剤が14重量%付与され、難燃剤を含む樹脂の付着量は68重量%であった。その性能を表1に示す。
【0028】
[実施例2]
ポリエステル長繊維(単糸繊度2.2デシテックス)からなるスパンボンド不織布(目付40g/m2 )を、厚み1.6mm、密度40個/インチの連続気泡ポリウレタンフォームシートに熔着した複合体シートを得た。
次にポリエステル繊維から成る天竺編物(55.6デシテックス/24f、密度65コース/45ウェル、目付54g/m2 、厚み0.47mm)を該ポリウレタンフォームのもう一方の面に熔着して、3層構造の複合体シートを得た。
この複合体シートを実施例1同様に前処理、メッキし、繊維及びフォームのセル表面が均一にメッキされた、目付233g/m2 、厚み1.4mmの三層構造複合体シートを得た。
得られた複合体シートに、固形分45%のアクリル系樹脂(プライマルTR934HS:ローム・アンド・ハース・ジャパン株式会社製)10重量%、難燃剤(ビス(ペンタブロモフェニル)エタン50重量%、ポリリン酸アンモニウム5重量%、三酸化アンチモン20重量%)60重量%を含む水溶液に浸漬し、マングルで絞ったあと、130℃で乾燥した。この時ピックアップは130%であった。複合体シートには、臭素系難燃剤が39重量%、リン系難燃剤が4重量%、アンチモン系難燃剤が17重量%付与され、難燃剤を含む樹脂の付着量は64重量%であった。その性能を表1に示す。
【0029】
[比較例1]
ポリエステル長繊維(単糸繊度2.2デシテックス)からなるスパンボンド不織布(目付40g/m2 )を、厚み1.6mm、密度40個/インチのポリウレタンフォームシートに熔着し、複合体シートを得た。
次にポリエステル繊維天竺編物(55.6デシテックス/24f、密度65コース/45ウェル、目付54g/m2 、厚み0.47mm)を該ポリウレタンフォームのもう一方の面に熔着して、3層構造の複合体シートを得た。
この複合体シートを実施例1同様に前処理、メッキし、繊維及びフォームのセル表面が均一にメッキされた、目付232g/m2 、厚み1.4mmの三層構造の複合体シートを得た。その性能を表1に示す。
【0030】
[比較例2]
ポリエステル長繊維(単糸繊度2.2デシテックス)からなるスパンボンド不織布(目付40g/m2 )を、厚み1.6mm、密度40個/インチの連続気泡ポリウレタンフォームシートに熔着した複合体シートを得た。
次にポリエステル繊維から成る天竺編物(55.6デシテックス/24f、密度65コース/45ウェル、目付54g/m2 、厚み0.47mm)を該ポリウレタンフォームのもう一方の面に熔着して、3層構造の複合体シートを得た。
この複合体シートを実施例1同様に前処理、メッキし、繊維及びフォームのセル表面が均一にメッキされた、目付233g/m2 、厚み1.4mmの三層構造複合体シートを得た。
得られた複合体シートに、固形分45%のアクリル系樹脂(プライマルTR934HS:ローム・アンド・ハース・ジャパン株式会社製)10重量%、難燃剤(クロロテトラブロモブタン50重量%)60重量%を含む水溶液に浸漬し、マングルで絞ったあと、130℃で乾燥した。この時ピックアップは130%であった。複合体シートには、臭素系難燃剤が39重量%付与され,難燃剤を含む樹脂は45重量%であった。その性能を表1に示す。
【0031】
[参考例1]
ポリエステル長繊維(単糸繊度2.2デシテックス)からなるスパンボンド不織布(目付40g/m2 )を、厚み10mm、密度40個/インチの連続気泡ポリウレタンフォームシートに熔着した複合体シートを得た。
次にポリエステル繊維から成る天竺編物(55.6デシテックス/24f、密度65コース/45ウェル、目付54g/m2 、厚み0.47mm)を該ポリウレタンフォームのもう一方の面に熔着して、3層構造の複合体シートを得た。
この複合体シートを実施例1同様に前処理、メッキし、繊維及びフォームのセル表面が均一にメッキされた、目付398g/m2 、厚み10mmの三層構造複合体シートを得た。
得られた複合体シートに、固形分45%のアクリル系樹脂(プライマルTR934HS:ローム・アンド・ハース・ジャパン株式会社製)10重量%、難燃剤(ビス(ペンタブロモフェニル)エタン50重量%、ポリリン酸アンモニウム5重量%、三酸化アンチモン20重量%)60重量%を含む水溶液に浸漬し、マングルで絞ったあと、130℃で乾燥した。この時ピックアップは130%であった。複合体シートには、臭素系難燃剤が39重量%、リン系難燃剤が4重量%、アンチモン系難燃剤が16重量%付与され、難燃剤を含む樹脂の付着量は64重量%であった。その性能を表1に示す。
【0032】
【表1】
Figure 0004112307
【0033】
【発明の効果】
本発明の導電性材料、特に電磁波シールドガスケット材料は、極めて容易、安価且つ品質安定に製造できる上、優れた難燃性を有する。従来のように、予め金属皮膜が形成された布帛に難燃剤を含む樹脂を付与したものを準備し、成形された角柱形状の難燃剤配合合成樹脂多孔体シートの周囲に接着剤を塗布して回捲するという作業が排除された上、同等の性能を示す。
【図面の簡単な説明】
【図1】本発明の連続気泡性のフォームシートと布帛を積層した概略図である。
【図2】本発明の連続気泡性のフォームシートの両面に布帛を積層した概略図である。
【図3】本発明の実施例における表面抵抗値の測定法を示した概略図である。
【図4】本発明の実施例における体積抵抗値の測定法を示した概略図である。
【符号の説明】
1 布帛
2 連続気泡性のフォームシート
3 試料
4 電極
5 クランプ
6 テスター[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a flame-retardant conductive material suitable for an electromagnetic shielding gasket material that shields electromagnetic waves leaking from an electronic device, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, so-called electronic devices such as personal computers, video games, and mobile phones have come to be widely used, and have become popular in general household life. As such devices expand from industrial use to general use, electromagnetic waves leaking from these devices frequently cause problems such as malfunctioning other electronic devices and causing radio interference in communication devices. It has come to be taken up greatly.
[0003]
In such a social environment, in the field related to the electronics industry, there is a demand for an electromagnetic shielding material that exhibits an excellent shielding effect in order to prevent various obstacles due to electromagnetic waves leaking from the equipment, and at the same time, flame retardancy is also required. ing.
In order to satisfy such requirements, the republished patent WO 98/06247 discloses a low-cost, uniform quality and reliability that eliminates complicated manufacturing work and enables mass production compared to conventional electromagnetic shielding gasket materials. Conductive materials used for high electromagnetic shielding gasket materials have been proposed.
However, the conductive material of the republished patent WO 98/06247 has, for example, a problem that the material itself burns when a fire occurs.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such a current situation, and the object of the present invention is to reduce the complicated manufacturing work compared to conventional electromagnetic shielding gasket materials and to enable mass production at low cost and uniform quality. It is another object of the present invention to provide a conductive material that provides a gasket material having high reliability and excellent flame retardancy, and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the following present invention.
[0006]
In the present invention, first, a conductive metal film is formed on the entire surface of a composite sheet in which a fabric is laminated and integrated on at least one surface of an open-cell foam sheet without impairing the open-cell property of the foam. A conductive material having a thickness in the range of 0.5 mm to 7 mm, and a flame retardant comprising a bromine-based flame retardant, a phosphorus-based flame retardant, and an antimony-based flame retardant is attached to the conductive metal film. This is a flame retardant conductive material.
[0007]
The second aspect of the present invention is the above flame retardant conductive material, wherein the brominated flame retardant is an aromatic bromine compound, the phosphorous flame retardant is ammonium polyphosphate, and the antimony flame retardant is antimony trioxide.
Thirdly, the present invention is the above-mentioned flame-retardant conductive material in which a flame retardant is adhered on a conductive metal film by a binder resin.
Fourthly, according to the present invention, the binder resin is 1 to 10% by weight, the brominated flame retardant is 20 to 65% by weight, and the phosphorus flame retardant is 2 to 15% by weight based on the weight of the composite sheet having the conductive metal film. %, The flame retardant conductive material having 2 to 30% by weight of antimony flame retardant attached thereto.
[0008]
In the fifth aspect of the present invention, a composite sheet is manufactured by laminating and integrating a fabric on one or both surfaces of an open-cell foam sheet, and the composite sheet is electrically conductive so as to maintain the open-cell form of the foam. Flame retardancy characterized by attaching a flame retardant comprising a brominated flame retardant, a phosphorus flame retardant and an antimony flame retardant to a composite sheet having a conductive metal film deposited by plating metal It is a manufacturing method of an electroconductive material.
[0009]
Sixthly, the present invention is characterized in that the lamination and integration of the open-cell foam sheet and the fabric is performed by thermally melting at least a part of the open-cell foam sheet or by bonding with an adhesive. The above manufacturing method.
7thly this invention is said manufacturing method characterized by the provision of a flame retardant to the composite sheet | seat which has an electroconductive metal film by an immersion method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A typical example of a composite sheet of a conductive material suitable as an electromagnetic shielding gasket material of the present invention has a cross-sectional structure as shown in FIGS. 1 is a fabric and 2 is an open-cell foam sheet. In the present invention, a conductive metal film is formed on a composite sheet obtained by previously laminating and integrating an open-cell foam sheet and a fabric, and a flame retardant is applied to the obtained composite sheet. As a result, a flame-retardant conductive material suitable as an electromagnetic shielding gasket is formed.
[0011]
Examples of the fabric used in the present invention include fiber fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics using organic fibers and inorganic fibers.
Examples of organic fibers include chemical fibers such as synthetic fibers, semi-synthetic fibers, and regenerated fibers, and natural fibers such as plant fibers and animal fibers. Particularly, polyamide fibers such as nylon 6 and nylon 66, polyethylene, and the like. Polyester fibers such as terephthalate and synthetic fibers such as acrylic fibers are preferred, and among these, polyester fibers such as polyethylene terephthalate are particularly preferred.
[0012]
Moreover, as an inorganic fiber, a metal fiber, carbon fiber, glass fiber, etc. can be used, However, Carbon fiber is preferable at points, such as bending durability.
However, among the above-mentioned fibers, polyester fibers such as polyethylene terephthalate are particularly preferable in consideration of productivity, handleability, and cost.
[0013]
When using a polyester fiber, the multifilament yarn whose single yarn fineness is 0.11-5.6 decitex is more preferable. If the single yarn fineness is smaller than 0.11 dtex, the yarn cost becomes high, and if it is larger than 5.6 dtex, the fabric becomes hard and the flexibility may be impaired. The fabric weight is preferably 10 to 100 g / m 2 .
[0014]
In order to ensure the fixation of the metal film formed on these fabrics, it is possible to completely remove impurities such as glue, oil, dust, etc., previously adhered to the surface of the fabric by scouring treatment. preferable.
[0015]
Next, the foam sheet used in the present invention is an open-cell foam sheet, and is preferably a synthetic resin foam sheet made of open-cells that is flexible, has substantially no cell membrane, and is highly compressible. Examples of foams having these characteristics include polyethylene foam, polypropylene foam, polyvinyl chloride foam, polyurethane foam, polyimide foam, polybutadiene foam, and silicone foam.
[0016]
In the present invention, a foam that is easily deformable and rich in compression and restoration properties is preferable. Therefore, a flexible foam should be selected for a foam that is both commercially available, such as polyurethane foam. The foam used in the present invention is required to have open cell properties, and the open cell content is not particularly limited, and is usually 10% or more, preferably 30% or more, more preferably 50% or more, and most preferably 80%. A foam having the above open cell content is used. In the present invention, it is required that a conductive metal film be formed on the inside of the composite sheet, particularly on the inner wall of the open cells of the foam. For that purpose, the cell density is preferably 20 to 100 cells / inch. If the cell density is less than 20 cells / inch, sufficient electromagnetic wave shielding properties cannot be obtained. If the cell density is more than 100 cells / inch, the metal film cannot be sufficiently formed to the inside of the foam sheet, or there is a problem with the strength of the foam sheet. May occur.
[0017]
Next, as a method of obtaining a composite by laminating and integrating the foam sheet and the fabric, a method of applying a conductive adhesive on the surface of either the foam sheet or the fabric and laminating the other, and bonding the foam sheet or the foam sheet In the case where is melt-meltable, a method such as a so-called welding method, in which at least a part of the surface of the foam sheet is heat-melted and then the fabrics are laminated and bonded immediately. In the case where a metal film is formed on the resulting composite sheet, a welding method is preferable in order to ensure sufficient conductivity at the adhesive portion between the foam sheet and the fabric. For example, the surface portion of a foam sheet such as a polyurethane foam sheet is directly melted by a gas flame, and is then laminated and bonded to a fabric to form a composite. In this case, the melt of the foam sheet is preferably about 0.3 to 1 mm from the surface. If it is 0.3 mm or less, sufficient adhesive strength cannot be obtained, and if it is 1 mm or more, the manufacturing cost is increased. When a metal film is formed on a composite sheet produced by the welding method, a metal film is formed not only inside the fabric and inside the foam sheet, but also inside the melted layer portion of the foam sheet. The conductivity of the adhesive portion between them becomes good.
[0018]
Next, in forming the metal film on the composite sheet, it is necessary to form a thin metal film as uniformly as possible not only on the outer surface but also on the inner wall of the open cell so that the open cell characteristic of the foam is maintained. Usually, the plating method is used. After performing pretreatment such as application of catalyst or activation performed in normal plating treatment, electroless plating treatment or electroless plating of one or more desired metals such as Ag, Ni, Cu, Au, etc. This is achieved by performing an electroplating treatment after the treatment.
[0019]
The thickness of the metal film formed on the composite sheet is preferably 0.01 to 2 μm. If the thickness is less than 0.01 μm, sufficient shielding properties may not be obtained. If the thickness is more than 2 μm, further improvement in shielding properties cannot be expected, and flexibility may be impaired.
[0020]
The thickness of the composite sheet on which the metal film is formed varies depending on the application and the like, but usually 0.5 to 7 mm is used. If it is smaller than 0.5 mm, it is difficult to obtain elasticity, and if it is larger than 7 mm, the flame retardancy effect is inferior and costs are increased.
[0021]
Furthermore, a flame retardant is provided to the composite sheet on which the metal film is formed as described above. The flame retardant is applied to the composite sheet in the form of a binder resin solution. The flame retardant can be applied by spraying, knife coating, slit roll coating, or other coating methods, or by dipping in a resin solution to which a flame retardant has been added to remove excess resin. A dipping method is particularly preferred for imparting. Further, it may be combined with foaming after adding a flame retardant to the synthetic resin for forming a porous body before foaming, or kneading the flame retardant into fibers constituting the fabric in advance. The binder resin for fixing the flame retardant to the composite sheet gap is preferably a water-soluble resin or an emulsion resin, and examples thereof include polyester resins, acrylic resins, urethane resins, and silicone resins.
[0022]
As the flame retardant to be used, a composite flame retardant combining three types of a brominated flame retardant, a phosphorus flame retardant, and an antimony flame retardant is used. The brominated flame retardant is preferably an aromatic bromine compound such as bis (pentabromophenyl) ethane, bis (tribromophenyl) ether, bis (pentabromophenyl) ether, and the phosphorus flame retardant is ammonium polyphosphate. The antimony flame retardant is preferably antimony trioxide. These flame retardants can provide an excellent flame retardant effect due to a synergistic effect by using three types of flame retardants in combination. The weight ratio of the flame retardant to the binder resin is 200 to 1600%, preferably 500 to 1500% for the brominated flame retardant, 3 to 450%, preferably 50 to 400% for the phosphorus flame retardant, and 3 for the antimony flame retardant. -450%, preferably 50-400%.
[0023]
The weight ratio with respect to the composite sheet on which the metal film is formed is such that the resin is 1 to 10%, preferably 2 to 8%, and the brominated flame retardant is 20 to 65%, preferably 30 to 55% with respect to the composite sheet. The phosphorus flame retardant is 2 to 15%, preferably 3 to 10%, and the antimony flame retardant is 2 to 30%, preferably 10 to 20%.
[0024]
【Example】
The following examples illustrate the invention.
The measurement methods used in the examples are as follows.
1. Surface resistance (Ω / □)
Samples of 120 mm x 120 mm are prepared in the vertical and horizontal directions, and the resistance of the sample contact portion is 10 mm x 100 mm so that the gap between the electrodes is 100 mm with a tester (HIROKI 3220 mΩ Hi TESTER). Read. An outline of the measurement method is shown in FIG.
2. Volume resistance (mΩ)
A sample of 100 mm × 100 mm is sandwiched between 100 mm × 100 mm 100 g weight copper plate electrodes and a load of 30 g / cm 2 is applied, and a resistance value is measured using a tester (3220 mΩ Hi TESTER manufactured by HIOKI). The measurement method is shown in FIG.
3. Shielding property (dB)
Two copper plates (200 mm × 200 mm) having a thickness of 1 mm with a 5 mm × 25 mm rectangular hole in the center were prepared, a sample piece was attached to the center, and the shielding property was measured by the KEC method. That is, a sample piece is installed between the transmitting and receiving antennas in the shield box, the intensity of the received electric field is measured, and the attenuation rate (dB) is calculated from the ratio with the intensity when the test piece is not present. Obtained from Equation 1.
[0025]
[Formula 1]
Figure 0004112307
4). Based on flame retardant UL94 V-0 method, UL94 HB method.
[0026]
[Example 1]
A composite sheet in which a spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) made of polyester long fibers (single yarn fineness 2.2 dtex) is fused to an open-cell polyurethane foam sheet having a thickness of 1.6 mm and a cell density of 40 / inch. Got. Then polyester fiber sheeting knitted (55.6 dtex / 24f, 65 courses / 45 well, basis weight 54 g / m 2, thickness 0.47 mm) and was熔着on the other side of the polyurethane foam, having a three-layer structure A composite sheet was obtained.
[0027]
Next, this composite sheet was sufficiently washed, immersed in a 40 ° C. aqueous solution containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid, and then washed with water. Subsequently, it was immersed in 10% sulfuric acid at 30 ° C. for 5 minutes and then washed with water.
Further, it was immersed in an electroless copper plating solution composed of 7.5 g / L of copper sulfate, 30 ml / L of 37% formalin, and 85 g / L of Rochelle salt for 5 minutes at 40 ° C. and then washed with water. Subsequently, it was immersed in an electroless nickel solution composed of nickel sulfate 30 g / L, sodium hypophosphite 20 g / L, and ammonium citrate 50 g / L at 45 ° C. for 10 minutes and then washed with water. A composite sheet having a basis weight of 233 g / m 2 and a thickness of 1.4 mm was obtained, in which the cell surfaces of the fibers and foam were uniformly plated.
To the obtained composite sheet, a polyester resin having a solid content of 30% (Vylonal MD1930: manufactured by Toyobo Co., Ltd.) 10%, a flame retardant (bis (pentabromophenyl) ethane 60% by weight, ammonium polyphosphate 10% by weight Then, it was immersed in an aqueous solution containing 60% by weight of antimony trioxide (20% by weight), squeezed with a mangle and then dried at 130 ° C. At this time, the pickup was 120%. The composite sheet was provided with 43% by weight of brominated flame retardant, 7% by weight of phosphorus flame retardant, 14% by weight of antimony flame retardant, and the amount of resin containing the flame retardant was 68% by weight. . The performance is shown in Table 1.
[0028]
[Example 2]
A composite sheet obtained by welding a spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) made of polyester long fibers (single yarn fineness 2.2 dtex) to an open-cell polyurethane foam sheet having a thickness of 1.6 mm and a density of 40 pieces / inch. Obtained.
Next, a woven fabric made of polyester fiber (55.6 decitex / 24f, density 65 course / 45 well, basis weight 54 g / m 2 , thickness 0.47 mm) was welded to the other surface of the polyurethane foam, 3 A composite sheet having a layer structure was obtained.
The composite sheet was pretreated and plated in the same manner as in Example 1 to obtain a three-layer composite sheet having a basis weight of 233 g / m 2 and a thickness of 1.4 mm, in which the fiber and foam cell surfaces were uniformly plated.
To the obtained composite sheet, an acrylic resin having a solid content of 45% (Primal TR934HS: manufactured by Rohm and Haas Japan) 10% by weight, a flame retardant (bis (pentabromophenyl) ethane 50% by weight, polyphosphorus The sample was immersed in an aqueous solution containing 60% by weight of ammonium acid (5% by weight, antimony trioxide 20% by weight), squeezed with mangles, and dried at 130 ° C. At this time, the pickup was 130%. The composite sheet was provided with 39% by weight of brominated flame retardant, 4% by weight of phosphorus flame retardant, and 17% by weight of antimony flame retardant, and the amount of resin containing the flame retardant was 64% by weight. . The performance is shown in Table 1.
[0029]
[Comparative Example 1]
A composite sheet is obtained by fusing a spunbonded nonwoven fabric (weighing 40 g / m 2 ) made of polyester long fibers (single yarn fineness 2.2 dtex) to a polyurethane foam sheet having a thickness of 1.6 mm and a density of 40 pieces / inch. It was.
Next, a polyester fiber sheet fabric (55.6 decitex / 24f, density 65 course / 45 well, basis weight 54 g / m 2 , thickness 0.47 mm) is welded to the other surface of the polyurethane foam to form a three-layer structure. A composite sheet was obtained.
This composite sheet was pretreated and plated in the same manner as in Example 1 to obtain a composite sheet having a three-layer structure with a basis weight of 232 g / m 2 and a thickness of 1.4 mm, in which the cell surfaces of fibers and foam were uniformly plated. . The performance is shown in Table 1.
[0030]
[Comparative Example 2]
A composite sheet obtained by welding a spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) made of polyester long fibers (single yarn fineness 2.2 dtex) to an open-cell polyurethane foam sheet having a thickness of 1.6 mm and a density of 40 pieces / inch. Obtained.
Next, a woven fabric made of polyester fiber (55.6 decitex / 24f, density 65 course / 45 well, basis weight 54 g / m 2 , thickness 0.47 mm) was welded to the other surface of the polyurethane foam, 3 A composite sheet having a layer structure was obtained.
The composite sheet of Example 1 similarly pretreated, then plating the cell surface of the fiber and form is uniformly plated, basis weight 233 g / m 2, to obtain a three-layer structure composite sheet having a thickness of 1.4 mm.
On the obtained composite sheet, an acrylic resin having a solid content of 45% (Primal TR934HS: manufactured by Rohm and Haas Japan Co., Ltd.) 10% by weight and a flame retardant (50% by weight of chlorotetrabromobutane) 60% by weight After immersing in the aqueous solution containing it, squeezing with a mangle, it dried at 130 degreeC. At this time, the pickup was 130%. The composite sheet was given 39% by weight of a brominated flame retardant, and the resin containing the flame retardant was 45% by weight. The performance is shown in Table 1.
[0031]
[Reference Example 1]
A composite sheet was obtained in which a spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) composed of polyester long fibers (single yarn fineness 2.2 dtex) was welded to an open-cell polyurethane foam sheet having a thickness of 10 mm and a density of 40 pieces / inch. .
Next, a woven fabric made of polyester fiber (55.6 decitex / 24f, density 65 course / 45 well, basis weight 54 g / m 2 , thickness 0.47 mm) was welded to the other surface of the polyurethane foam, 3 A composite sheet having a layer structure was obtained.
This composite sheet was pretreated and plated in the same manner as in Example 1 to obtain a three-layer structure composite sheet having a basis weight of 398 g / m 2 and a thickness of 10 mm, in which the fiber and foam cell surfaces were uniformly plated.
To the obtained composite sheet, an acrylic resin having a solid content of 45% (Primal TR934HS: manufactured by Rohm and Haas Japan) 10% by weight, a flame retardant (bis (pentabromophenyl) ethane 50% by weight, polyphosphorus The sample was immersed in an aqueous solution containing 60% by weight of ammonium acid (5% by weight, antimony trioxide 20% by weight), squeezed with mangles, and dried at 130 ° C. At this time, the pickup was 130%. The composite sheet was provided with 39% by weight of brominated flame retardant, 4% by weight of phosphorus flame retardant, and 16% by weight of antimony flame retardant, and the amount of resin containing the flame retardant was 64% by weight. . The performance is shown in Table 1.
[0032]
[Table 1]
Figure 0004112307
[0033]
【The invention's effect】
The conductive material of the present invention, in particular, the electromagnetic shielding gasket material, can be manufactured very easily, inexpensively and with stable quality, and has excellent flame retardancy. As in the past, prepare a fabric with a metal film formed on it and add a resin containing a flame retardant, and apply an adhesive around the molded prismatic flame retardant synthetic resin porous sheet. The work of recovery is eliminated, and equivalent performance is shown.
[Brief description of the drawings]
FIG. 1 is a schematic view in which an open-cell foam sheet of the present invention and a fabric are laminated.
FIG. 2 is a schematic view in which fabrics are laminated on both sides of the open-cell foam sheet of the present invention.
FIG. 3 is a schematic view showing a method of measuring a surface resistance value in an example of the present invention.
FIG. 4 is a schematic view showing a method for measuring a volume resistance value in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fabric 2 Open-cell foam sheet 3 Sample 4 Electrode 5 Clamp 6 Tester

Claims (6)

連続気泡性のフォームシートの少なくとも一方の面に布帛が積層一体化された複合体シートの内部を含む全面にフォームの連続気泡性を損うことなく導電性金属皮膜が形成されて成る厚さが0.5mmから7mmの範囲にある導電性材料であって、該複合体シートの内部を含む全体の該導電性金属皮膜上に臭素系難燃剤、リン系難燃剤及びアンチモン系難燃剤からなる難燃剤が付着されていることを特徴とする難燃性導電性材料。A thickness obtained by forming a conductive metal film on the entire surface including the inside of the composite sheet in which the fabric is laminated and integrated on at least one surface of the open cell foam sheet without impairing the open cell property of the foam. A conductive material in the range of 0.5 mm to 7 mm, comprising a brominated flame retardant, a phosphorus flame retardant, and an antimony flame retardant on the entire conductive metal film including the inside of the composite sheet. A flame retardant conductive material, characterized in that a flame retardant is attached. 臭素系難燃剤が芳香族ブロム化合物、リン系難燃剤がポリリン酸アンモニウム、アンチモン系難燃剤が三酸化アンチモンである請求項1記載の難燃性導電性材料。  The flame-retardant conductive material according to claim 1, wherein the brominated flame retardant is an aromatic bromine compound, the phosphorous flame retardant is ammonium polyphosphate, and the antimony flame retardant is antimony trioxide. 難燃剤がバインダー樹脂によって導電性金属皮膜上に付着されている請求項1又は2記載の難燃性導電性材料。  The flame-retardant conductive material according to claim 1 or 2, wherein the flame retardant is attached onto the conductive metal film by a binder resin. 導電性金属皮膜をもつ複合体シートの重量に対し、バインダー樹脂が1〜10重量%、臭素系難燃剤が20〜65重量%、リン系難燃剤が2〜15重量%、アンチモン系難燃剤が2〜30重量%付着されている請求項3記載の難燃性導電性材料。  The binder resin is 1 to 10% by weight, the brominated flame retardant is 20 to 65% by weight, the phosphorus flame retardant is 2 to 15% by weight, and the antimony flame retardant is based on the weight of the composite sheet having the conductive metal film. The flame-retardant conductive material according to claim 3, which is attached in an amount of 2 to 30% by weight. 連続気泡性のフォームシートの一方又は両方の表面に布帛を積層一体化して複合体シートを製造し、該複合体シートにフォームの連続気泡性を維持するように導電性金属をメッキ処理によって付着し、得られた導電性金属皮膜を有する複合体シートを臭素系難燃剤、リン系難燃剤及びアンチモン系難燃剤からなる難燃剤を含有する樹脂溶液に浸漬し、マングルにより絞った後乾燥することを特徴とする請求項1〜4のいずれか1項記載の難燃性導電性材料の製造方法。A composite sheet is manufactured by laminating and integrating a fabric on one or both surfaces of an open-cell foam sheet, and a conductive metal is attached to the composite sheet by plating so as to maintain the open-cell form of the foam. The obtained composite sheet having a conductive metal film is immersed in a resin solution containing a flame retardant composed of a brominated flame retardant, a phosphorus flame retardant and an antimony flame retardant , squeezed with a mangle, and then dried. The method for producing a flame retardant conductive material according to any one of claims 1 to 4. 連続気泡性のフォームシートと布帛との積層一体化が、連続気泡性のフォームシートの少なくとも一部を熱熔融するか又は接着剤による貼り合せによって行なわれることを特徴とする請求項5記載の製造方法。  6. The production according to claim 5, wherein the lamination and integration of the open-cell foam sheet and the fabric is performed by hot-melting at least a part of the open-cell foam sheet or by bonding with an adhesive. Method.
JP2002232349A 2001-08-13 2002-08-09 Conductive material having flame retardancy and method for producing the same Expired - Lifetime JP4112307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232349A JP4112307B2 (en) 2001-08-13 2002-08-09 Conductive material having flame retardancy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-245161 2001-08-13
JP2001245161 2001-08-13
JP2002232349A JP4112307B2 (en) 2001-08-13 2002-08-09 Conductive material having flame retardancy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003175565A JP2003175565A (en) 2003-06-24
JP4112307B2 true JP4112307B2 (en) 2008-07-02

Family

ID=26620465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232349A Expired - Lifetime JP4112307B2 (en) 2001-08-13 2002-08-09 Conductive material having flame retardancy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4112307B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060348B2 (en) * 2002-03-08 2006-06-13 Laird Technologies, Inc. Flame retardant, electrically conductive shielding materials and methods of making the same
EP1827071A4 (en) 2004-12-15 2010-11-17 Nok Corp Gasket for electromagnetic wave shielding
TW200745407A (en) * 2006-01-17 2007-12-16 Seiren Co Ltd Conductive gasket material
JP6413116B2 (en) * 2014-10-31 2018-10-31 北川工業株式会社 Sliding resistant conductive cloth

Also Published As

Publication number Publication date
JP2003175565A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
JP3306665B2 (en) Conductive material and method of manufacturing the same
KR101179908B1 (en) Flame-retardant metal-coated fabric and gasket comprising the same for electromagnetic-wave shielding
US7060348B2 (en) Flame retardant, electrically conductive shielding materials and methods of making the same
EP2763520B1 (en) Electrically conductive porous material assemblies and methods of making the same
JPH05269903A (en) Layered member
KR20060041854A (en) Electromagnetic wave shield gasket and its manufacturing method
US20030036326A1 (en) Flame retardant conductive material and producing method thereof
KR101226773B1 (en) Conductive thin layer cushion seat with excellent impact absorbing function and electromagnetic waveshielding function and preparation method thereof
KR101326266B1 (en) Method for producing conductive non-woven fabric and Multi-fuctional Electro Magnetic Interference shield tape using conductive non-woven fabric
JP4112307B2 (en) Conductive material having flame retardancy and method for producing the same
JP2003243873A (en) Flame retardant gasket for shielding electromagnetic wave
WO2002002861A1 (en) Gold layer-laminated fabric and method for fabricating the same
EP1235473B1 (en) Gasket material for shielding electromagnetic waves and method for producing same
JP2668619B2 (en) Electromagnetic wave shielding material
JP4065045B2 (en) Manufacturing method of electromagnetic shielding gasket material
KR101018633B1 (en) Electromagnetic interferenceEMI shielding thin gasket with impact-resistance and manufacturing method thereof
US20140199904A1 (en) Electrically Conductive Porous Material Assemblies and Methods of Making The Same
JP2004211247A (en) Flame-retardant conductive fabric
JPH11214886A (en) Conductive material and its manufacture
KR101352944B1 (en) EMI Shielding Material and Method of manufacturing
CN219718982U (en) Flame-retardant all-dimensional conductive sponge
JP2005079572A (en) Method for manufacturing electromagnetic interference shielded material, and the electromagnetic interference shielded material
WO2014117362A1 (en) Electrically conductive porous material assemblies and methods of making the same
CN103773263A (en) Conductive thin layer cushion and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250