JP4110276B2 - Refrigerant filling apparatus and refrigerant filling method - Google Patents

Refrigerant filling apparatus and refrigerant filling method Download PDF

Info

Publication number
JP4110276B2
JP4110276B2 JP2003345140A JP2003345140A JP4110276B2 JP 4110276 B2 JP4110276 B2 JP 4110276B2 JP 2003345140 A JP2003345140 A JP 2003345140A JP 2003345140 A JP2003345140 A JP 2003345140A JP 4110276 B2 JP4110276 B2 JP 4110276B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
filling
supercooling
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003345140A
Other languages
Japanese (ja)
Other versions
JP2005114184A (en
Inventor
和幹 浦田
宏治 内藤
憲一 中村
信一郎 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003345140A priority Critical patent/JP4110276B2/en
Publication of JP2005114184A publication Critical patent/JP2005114184A/en
Application granted granted Critical
Publication of JP4110276B2 publication Critical patent/JP4110276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle

Description

本発明は、空気調和装置及び空気調和装置内に冷媒を充填する冷媒充填装置に係り、特に空気調和装置の施工状態に対して適正な冷媒を自動で充填するものに好適である。   The present invention relates to an air conditioner and a refrigerant filling apparatus that fills the air conditioner with a refrigerant, and is particularly suitable for an apparatus that automatically fills an appropriate refrigerant with respect to the installation state of the air conditioner.

空気調和装置の中でも特に室内機を複数台接続して成る多室形空気調和装置の場合は、室内機と室外機の設置状況としてビルの構造や管理面等から多種多様であるため、室外機に全冷媒量を充填して出荷することが不可能である。このため、施工現地において必ず冷媒を追加充填する作業が生じる。
従来、室外機及び室内機の各容量、室外機と室内機間を接続する接続配管の配管長さの情報と、室外機に対する室内機の高さ位置情報とを元に、室外機容量及び室内機容量それぞれに対して決められた接続配管径と前記配管径の単位長さ当り及び室内機容量により決定される追加冷媒充填量と、室外機に対する室内機の高さに対して決められる追加冷媒充填量の補正係数から、多室形空気調和装置の施工状況に適した追加冷媒充填量を演算し、冷媒ボンベを計量器等で測定しながら冷媒を充填することが知られ例えば、特許文献1に記載されている。
また、冷凍サイクルの圧縮機吐出側配管と吸入側配管とを接続するバイパス回路を設け、バイパス回路には余剰冷媒を貯留するための冷媒貯留器と吐出側配管から冷媒貯留器に流入する回路と冷媒貯留器から吸入側配管に流出する冷媒回路それぞれに開閉弁を設けるとともに、冷凍サイクル内の冷媒量が適正か否かを判定する冷媒量判定手段を設け、冷媒量判定手段により、冷媒量不足と検知された場合は、冷媒貯留器から圧縮機吸入側配管にバイパスする回路の開閉弁を開いて、冷媒貯留器内の冷媒を圧縮機吸入側に放出することで空気調和機内の冷媒量を調整することが特許文献2に記載されている。
In the case of a multi-room type air conditioner, in which a plurality of indoor units are connected, among the air conditioners, there are a wide variety of installation conditions for indoor units and outdoor units due to the structure and management of the building. It is impossible to ship with the total amount of refrigerant. For this reason, the work which always carries out additional filling of a refrigerant | coolant arises at the construction site.
Conventionally, based on the capacity of the outdoor unit and the indoor unit, the length of the connecting pipe connecting the outdoor unit and the indoor unit, and the height position information of the indoor unit with respect to the outdoor unit, Additional refrigerant determined for the connecting pipe diameter determined for each unit capacity, the additional refrigerant charge per unit length of the pipe diameter and the indoor unit capacity, and the height of the indoor unit relative to the outdoor unit It is known to calculate an additional refrigerant filling amount suitable for the construction situation of the multi-chamber air conditioner from the filling amount correction coefficient, and to fill the refrigerant while measuring the refrigerant cylinder with a measuring instrument or the like. It is described in.
In addition, a bypass circuit that connects the compressor discharge side pipe and the suction side pipe of the refrigeration cycle is provided, and the bypass circuit stores a refrigerant reservoir for storing surplus refrigerant and a circuit that flows into the refrigerant reservoir from the discharge side pipe; An open / close valve is provided for each refrigerant circuit that flows out from the refrigerant reservoir to the suction side pipe, and a refrigerant amount determination unit that determines whether or not the amount of refrigerant in the refrigeration cycle is appropriate is provided. Is detected, the on-off valve of the circuit bypassing from the refrigerant reservoir to the compressor suction side pipe is opened, and the refrigerant in the air conditioner is reduced by releasing the refrigerant in the refrigerant reservoir to the compressor suction side. The adjustment is described in Patent Document 2.

特開平11−63745号公報(図8)Japanese Patent Laid-Open No. 11-63745 (FIG. 8)

特開平9−273839号公報(図1)Japanese Patent Laid-Open No. 9-273739 (FIG. 1)

上記特許文献1のものでは、追加冷媒充填量の値は追加冷媒量演算手段で計算されるが、この追加冷媒量分を充填するのは作業者であり、人為的ミスなどの発生により冷媒過少状態や冷媒過多の状態となる恐れがある。また、冷凍サイクルの低圧側サービスポートに冷媒ボンベを接続して冷媒充填を行う場合は、圧縮機吸入側に液冷媒が戻りやすくなり、圧縮機の故障を招く。
また、特許文献2のものでは、冷媒を追加充填する場合に冷媒貯留器から圧縮機吸入側に冷媒が流出するため圧縮機吸入側に液冷媒が戻りやすくなり、圧縮機の故障を招く恐れがある。さらに、圧縮機吸入側への液戻りを防止するために冷媒貯留器の頭頂部からガス冷媒を圧縮機吸入側に戻すようにしても、ガス冷媒の質量が軽いため冷媒量の調整に多大な時間を要する。
In the above-mentioned Patent Document 1, the value of the additional refrigerant charging amount is calculated by the additional refrigerant amount calculating means. However, it is the operator who fills the additional refrigerant amount, and the refrigerant is insufficient due to the occurrence of human error. There is a risk of a state or excessive refrigerant state. Further, when a refrigerant cylinder is connected to the low-pressure side service port of the refrigeration cycle and the refrigerant is charged, the liquid refrigerant easily returns to the compressor suction side, resulting in a compressor failure.
Moreover, in the thing of patent document 2, when adding a refrigerant | coolant additionally, since a refrigerant | coolant flows out from a refrigerant | coolant reservoir to the compressor suction side, a liquid refrigerant | coolant becomes easy to return to a compressor suction side, and there exists a possibility of causing a failure of a compressor. is there. Furthermore, even if the gas refrigerant is returned from the top of the refrigerant reservoir to the compressor suction side in order to prevent the liquid from returning to the compressor suction side, the mass of the gas refrigerant is so light that the adjustment of the refrigerant amount is significant. It takes time.

本発明の目的は、適正な冷媒量となるように空気調和装置に自動で冷媒を追加充填すると共に圧縮機への液戻りを抑制することで、冷凍サイクルの信頼性を確保できる冷媒充填装置及び冷媒充填方法を得ることにある。 An object of the present invention is to provide a refrigerant charging device capable of ensuring the reliability of a refrigeration cycle by automatically adding additional refrigerant to an air conditioner so as to obtain an appropriate amount of refrigerant and suppressing liquid return to the compressor. It is to obtain a refrigerant charging method.

上記目的を達成するため本発明は、圧縮機、室外熱交換器、減圧装置、受液器を有する室外ユニットと、室内熱交換器、減圧装置を有する室内ユニットと、を配管接続した冷凍サイクルに対して、所定量の冷媒を室外ユニット内に充填、又は冷媒を追加充填する冷媒充填装置において、前記室外ユニットの受液器と室内ユニットの間に副流部を備えた過冷却熱交換器の主流部を配置し、前記副流部の一方は冷媒充填電磁弁を介して冷媒ボンベに、他方は前記圧縮機の吸入側に接続し、前記冷凍サイクルが安定と判定された後に前記冷媒充填電磁弁を開いて冷媒を充填し、前記過冷却熱交換器の主流部の出口側の冷媒過冷却度が予め設定されている適正冷媒充填時の値以上となったときに前記冷媒充填電磁弁を閉じて冷媒充填を完了するように前記冷媒充填電磁弁の開閉を制御するものである。 In order to achieve the above object, the present invention provides a refrigeration cycle in which an outdoor unit having a compressor, an outdoor heat exchanger, a pressure reducing device, and a liquid receiver, and an indoor unit having an indoor heat exchanger and a pressure reducing device are connected by piping. On the other hand, in the refrigerant filling device that fills the outdoor unit with a predetermined amount of refrigerant, or additionally fills the refrigerant, the subcooling heat exchanger having a subflow portion between the liquid receiver of the outdoor unit and the indoor unit. A main flow portion is disposed, one of the subflow portions is connected to a refrigerant cylinder via a refrigerant filling electromagnetic valve, and the other is connected to the suction side of the compressor, and the refrigerant filling electromagnetic wave is determined after the refrigeration cycle is determined to be stable. Open the valve to fill the refrigerant, and when the refrigerant supercooling degree on the outlet side of the main flow portion of the supercooling heat exchanger becomes equal to or higher than a preset value for proper refrigerant charging, closed so as to complete the refrigerant charging And it controls the opening and closing of the serial refrigerant charge solenoid valve.

また、上記のものにおいて、前記受液器と前記過冷却熱交換器とを接続する配管から前記副流部の入口と前記冷媒充填電磁弁の間にバイパスするバイパス回路を設け、該バイパス回路に過冷却バイパス膨張弁を設けたことが望ましい。
さらに、上記のものにおいて、前記冷媒充填電磁弁の上流側に阻止弁を設け、前記冷媒充填電磁弁と前記阻止弁の間から前記主流部の出口側に冷媒が流れる第2のバイパス回路を設けたことが望ましい。
Further, in the above, a bypass circuit is provided that bypasses between the inlet of the subflow portion and the refrigerant-filled solenoid valve from a pipe connecting the liquid receiver and the supercooling heat exchanger, and the bypass circuit It is desirable to provide a supercooling bypass expansion valve.
Further, in the above, a blocking valve is provided on the upstream side of the refrigerant charging solenoid valve, and a second bypass circuit is provided in which the refrigerant flows from between the refrigerant charging solenoid valve and the blocking valve to the outlet side of the main flow portion. It is desirable.

さらに、上記のものにおいて、前記圧縮機の吐出側に設けられた吐出圧力センサと、前記過冷却熱交換器の主流部の出口側に設けられた温度サーミスタとを備え、前記吐出圧力センサによる圧力値から飽和温度を演算し、演算された該飽和温度と前記温度サーミスタの出力値との差を前記冷媒過冷却度とすることが望ましい。
さらに、上記のものにおいて、前記圧縮機吐出側の冷媒過熱度を検出し、冷媒充填中に前記冷媒過熱度が所定値となるように前記冷凍サイクルを制御することが望ましい。
Further, in the above, the apparatus includes a discharge pressure sensor provided on the discharge side of the compressor, and a temperature thermistor provided on the outlet side of the main flow portion of the supercooling heat exchanger, and the pressure by the discharge pressure sensor calculating a Atsushi Kazu from the value, the calculated difference the refrigerant supercooling degree and to Rukoto the saturated temperature and the output value of the temperature thermistor is desirable.
Furthermore, in the above, it is preferable that the refrigerant superheating degree on the discharge side of the compressor is detected and the refrigeration cycle is controlled so that the refrigerant superheating degree becomes a predetermined value during the refrigerant filling.

さらに、本発明は、圧縮機、室外熱交換器、減圧装置、受液器を有する室外ユニットと、室内熱交換器、減圧装置を有する室内ユニットと、を配管接続した冷凍サイクルに対して冷媒を充填する冷媒充填方法であって、前記室外ユニットの受液器と室内ユニットの間に副流部を備えた過冷却熱交換器の主流部を配置し、前記副流部の一方は冷媒充填電磁弁を介して冷媒ボンベに、他方は前記圧縮機の吸入側に接続し、前記冷凍サイクルが安定と判定された後に前記冷媒充填電磁弁を開いて冷媒を充填し、前記過冷却熱交換器の主流部の出口側の冷媒過冷却度が予め設定されている適正冷媒充填時の値以上となったときに前記冷媒充填電磁弁を閉じて冷媒充填を完了するように前記冷媒充填電磁弁の開閉を制御しながら冷媒を充填するものである。 Furthermore, the present invention provides a refrigerant to a refrigeration cycle in which an outdoor unit having a compressor, an outdoor heat exchanger, a decompression device, and a liquid receiver, and an indoor unit having an indoor heat exchanger and a decompression device are connected by piping. A refrigerant charging method for charging, wherein a main flow portion of a subcooling heat exchanger having a subflow portion is disposed between a liquid receiver of the outdoor unit and the indoor unit, and one of the subflow portions is a refrigerant charging electromagnetic A refrigerant cylinder is connected via a valve, and the other is connected to the suction side of the compressor . After the refrigeration cycle is determined to be stable, the refrigerant charging electromagnetic valve is opened to fill the refrigerant, and the supercooling heat exchanger Opening and closing the refrigerant charging solenoid valve so that the refrigerant charging solenoid valve is closed and the refrigerant charging is completed when the refrigerant supercooling degree on the outlet side of the main flow part becomes equal to or higher than a preset value for proper refrigerant charging. The refrigerant is charged while controlling .

本発明によれば、室外ユニットに付設する受液器と室内ユニットの間に、副流部を備えた過冷却熱交換器の主流部を設け、その副流部の一方は冷媒充填電磁弁を介して冷媒ボンベに、他方は圧縮機の吸入側に接続したので以下の効果が得られる。
(イ)冷凍サイクルが安定と判定された後に冷媒充填電磁弁を開いて冷媒を充填し、過冷却熱交換器の主流部の出口側の冷媒過冷却度が予め設定されている適正冷媒充填時の値以上となったときに前記冷媒充填電磁弁を閉じて冷媒充填を完了するように冷媒充填電磁弁の開閉を制御しながら冷媒充填作業を行うことで、適正な冷媒量となるように自動で冷媒を追加充填できるので、冷凍サイクルの信頼性を確保することができる。
(ロ)また、冷媒ボンベから流出する液冷媒を過冷却熱交換器により加熱ガス化して充填することで、圧縮機への液戻りを抑制することができるので、冷媒充填中の圧縮機の信頼性をさらに確保することができる。
According to the present invention, the main flow portion of the supercooling heat exchanger having the subflow portion is provided between the liquid receiver attached to the outdoor unit and the indoor unit, and one of the subflow portions has the refrigerant-filled electromagnetic valve. Since the other is connected to the refrigerant cylinder and the other side to the suction side of the compressor, the following effects can be obtained.
(A) When proper refrigerant charging is performed, after the refrigeration cycle is determined to be stable, the refrigerant filling solenoid valve is opened to fill the refrigerant, and the refrigerant subcooling degree on the outlet side of the main stream portion of the supercooling heat exchanger is preset. When the refrigerant charging operation is performed while controlling the opening and closing of the refrigerant charging electromagnetic valve so that the refrigerant charging is completed by closing the refrigerant charging electromagnetic valve when the value becomes equal to or greater than the value of Since the refrigerant can be additionally charged, the reliability of the refrigeration cycle can be ensured.
(B) Since the liquid refrigerant flowing out from the refrigerant cylinder is heated and gasified by the supercooling heat exchanger and filled, the liquid return to the compressor can be suppressed, so the reliability of the compressor during refrigerant filling is reliable. The sex can be further secured.

以下、本発明の一実施の形態を図1ないし図10を参照して説明する。
図1は、本発明の一実施形態を示す冷媒充填装置を具備した空気調和装置の冷凍サイクル系統図であり、室外機と室内機をガス側接続配管と液側接続配管で接続されている。室外機は、圧縮機1、四方弁2、室外熱交換器7、室外膨張弁6、受液器5、アキュムレータ8、ガス側接続配管と接続されるガス阻止弁10、液側接続配管と接続される液阻止弁11を配管接続している。
圧縮機1の吐出側配管には、圧縮機から吐出される冷媒ガスの圧力を検出する吐出圧力センサ15と吐出される冷媒ガスの温度を検出する吐出温度サーミスタ16が設けられ、吐出圧力センサ15と吐出温度サーミスタ16の出力信号は、吐出ガス過熱度演算手段32に入力され、吐出圧力センサ15の信号を元に飽和温度を演算し、吐出温度サーミスタ16と演算された飽和温度との差を演算することで吐出ガス過熱度を演算する。
また、受液器5と液阻止弁11の間には、受液器5から流出する液冷媒を過冷却する過冷却熱交換器9が設けられている。過冷却熱交換器9は、主流部とバイパス部が設けられ、この主流部とバイパス部で熱交換する構成となっている。この過冷却熱交換器9の主流部は受液器5の一方と液阻止弁11とに配管接続され、バイパス部の一方はアキュムレータ8の入口部にバイパスするように配管接続され、もう一方は、冷媒充填電磁弁14を介して冷媒ボンベ50と接続されている。過冷却熱交換器9と液阻止弁11の間には、過冷却熱交換器9で冷却された液冷媒の温度を検出するための過冷却熱交換器出口温度サーミスタ17が設けられ、吐出圧力センサ15と過冷却熱交換器出口温度サーミスタ17の出力信号は、過冷却度演算手段30に入力され、吐出圧力センサ15の信号を元に飽和温度を演算し、演算した飽和温度と過冷却熱交換器出口温度サーミスタ17の値の差を演算することで過冷却熱交換器出口の過冷却度を演算する。
室内機は、室内熱交換器3と室内膨張弁4を配管接続し、室外機と室内機を接続するガス側配管及び液側配管には、それぞれガス側サービスポート12と液側サービスポート13が設けられている。
さらに、吐出ガス過熱度演算手段32の出力信号は室内膨張弁4の駆動回路に接続され、過冷却演算手段30の出力信号は冷媒充填電磁弁開閉手段31に入力され、冷媒充填電磁弁開閉手段31の出力信号は冷媒充填電磁弁14の駆動回路に接続される。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigeration cycle system diagram of an air conditioner equipped with a refrigerant filling apparatus according to an embodiment of the present invention, in which an outdoor unit and an indoor unit are connected by a gas side connection pipe and a liquid side connection pipe. The outdoor unit is connected to the compressor 1, the four-way valve 2, the outdoor heat exchanger 7, the outdoor expansion valve 6, the liquid receiver 5, the accumulator 8, the gas blocking valve 10 connected to the gas side connection pipe, and the liquid side connection pipe. The liquid blocking valve 11 is connected by piping.
The discharge side piping of the compressor 1 is provided with a discharge pressure sensor 15 for detecting the pressure of the refrigerant gas discharged from the compressor and a discharge temperature thermistor 16 for detecting the temperature of the discharged refrigerant gas. And the output signal of the discharge temperature thermistor 16 are input to the discharge gas superheat degree calculating means 32, and the saturation temperature is calculated based on the signal of the discharge pressure sensor 15, and the difference between the discharge temperature thermistor 16 and the calculated saturation temperature is calculated. The discharge gas superheat degree is calculated by calculating.
Further, a supercooling heat exchanger 9 for supercooling the liquid refrigerant flowing out from the liquid receiver 5 is provided between the liquid receiver 5 and the liquid blocking valve 11. The subcooling heat exchanger 9 is provided with a main flow portion and a bypass portion, and is configured to exchange heat between the main flow portion and the bypass portion. The main flow part of the supercooling heat exchanger 9 is connected to one of the liquid receiver 5 and the liquid blocking valve 11, one of the bypass parts is connected to the inlet of the accumulator 8, and the other is connected to the pipe. The refrigerant cylinder 50 is connected to the refrigerant cylinder 50 via the refrigerant filling electromagnetic valve 14. Between the supercooling heat exchanger 9 and the liquid blocking valve 11, a supercooling heat exchanger outlet temperature thermistor 17 for detecting the temperature of the liquid refrigerant cooled by the supercooling heat exchanger 9 is provided. The output signals of the sensor 15 and the supercooling heat exchanger outlet temperature thermistor 17 are input to the supercooling degree calculation means 30, and the saturation temperature is calculated based on the signal of the discharge pressure sensor 15, and the calculated saturation temperature and supercooling heat are calculated. By calculating the difference between the values of the exchanger outlet temperature thermistor 17, the degree of supercooling at the outlet of the supercooling heat exchanger is calculated.
In the indoor unit, the indoor heat exchanger 3 and the indoor expansion valve 4 are connected by pipe, and the gas side service port 12 and the liquid side service port 13 are respectively connected to the gas side pipe and the liquid side pipe connecting the outdoor unit and the indoor unit. Is provided.
Further, the output signal of the discharge gas superheat degree calculation means 32 is connected to the drive circuit of the indoor expansion valve 4, and the output signal of the supercooling calculation means 30 is input to the refrigerant filling electromagnetic valve opening / closing means 31, and the refrigerant filling electromagnetic valve opening / closing means The output signal 31 is connected to the drive circuit of the refrigerant filling electromagnetic valve 14.

次に、空気調和装置の冷媒充填方法について図1ないし図2により説明する。図2は、本発明の冷媒充填装置による冷媒充填方法を示した冷媒充填フローチャートを示している。室外機には予め室外機で必要な最低の冷媒量が封入されており、現地に室外機と室内機が施工された後にガス側接続配管、液側接続配管及び室内機内の空気や水分等を除去するために、ガス側サービスポート12及び液側サービスポート13に真空ポンプ等を接続し、配管内部及び機内配管内部を真空にする。次に、ガス阻止弁10と液阻止弁11を開けて、室外機内に封入されている冷媒を室内機側に開放し、空気調和装置を冷房運転で起動して図1に示す冷凍サイクル系統図に示す如く実線矢印のように冷媒を流す。
圧縮機1吐出側のガス冷媒温度や圧力等の変化が小さくなる状態すなわち冷凍サイクルが安定するまで室内膨張弁4により吐出ガス過熱度をある一定の値TdSH0以上となるように制御し、冷凍サイクルが安定と判定された後に冷媒充填電磁弁14を開く。冷媒ボンベ50から流出する液冷媒は、破線矢印の如く冷媒充填電磁弁14を通り過冷却熱交換器9のバイパス部に流入し、受液器5から流出する高温高圧の冷媒に放熱しながら蒸発ガス化してアキュムレータ8入口部に流入される。
Next, the refrigerant filling method of the air conditioner will be described with reference to FIGS. FIG. 2 shows a refrigerant filling flowchart showing a refrigerant filling method by the refrigerant filling apparatus of the present invention. The outdoor unit is pre-filled with the minimum amount of refrigerant necessary for the outdoor unit, and after the outdoor unit and indoor unit are installed on site, the air and moisture in the gas side connection pipe, liquid side connection pipe, and indoor unit are removed. In order to remove it, a vacuum pump or the like is connected to the gas side service port 12 and the liquid side service port 13 to evacuate the inside of the pipe and the inside of the machine pipe. Next, the gas blocking valve 10 and the liquid blocking valve 11 are opened, the refrigerant sealed in the outdoor unit is opened to the indoor unit side, the air conditioner is started in the cooling operation, and the refrigeration cycle system diagram shown in FIG. As shown in Fig. 3, the refrigerant is flown as indicated by solid arrows.
The state in which the temperature of the gas refrigerant on the discharge side of the compressor 1 is reduced, that is, the refrigeration cycle is controlled by the indoor expansion valve 4 so that the discharge gas superheat degree becomes a certain value TdSH0 or more until the refrigeration cycle is stabilized. Is determined to be stable, the refrigerant charging solenoid valve 14 is opened. The liquid refrigerant flowing out from the refrigerant cylinder 50 passes through the refrigerant-filled electromagnetic valve 14 as indicated by the broken arrow, flows into the bypass portion of the supercooling heat exchanger 9, and evaporates while dissipating heat to the high-temperature and high-pressure refrigerant flowing out from the liquid receiver 5. It is gasified and flows into the accumulator 8 inlet.

吐出ガス過熱度がある一定の値TdSH0以上であれば、吐出圧力センサ15から演算される飽和温度と過冷却熱交換器9出口側に付設する過冷却熱交換器出口温度サーミスタ17との差である過冷却熱交換器出口過冷却度SCを演算し、過冷却熱交換器出口過冷却度SCの値が予め設定されている適正冷媒充填時の過冷却度α以上となるまで冷媒ボンベ50から冷媒を充填し続け、過冷却熱交換器出口過冷却度SCの値が適正冷媒充填時の過冷却度α以上となった時点で冷媒充填電磁弁14を閉めることで冷媒充填が完了する。   If the discharge gas superheat degree is equal to or greater than a certain value TdSH0, the difference between the saturation temperature calculated from the discharge pressure sensor 15 and the supercooling heat exchanger outlet temperature thermistor 17 provided on the outlet side of the supercooling heat exchanger 9 A certain supercooling heat exchanger outlet supercooling degree SC is calculated, and from the refrigerant cylinder 50 until the value of the supercooling heat exchanger outlet supercooling degree SC becomes equal to or higher than the preset supercooling degree α at the time of charging the appropriate refrigerant. The refrigerant charging is completed by closing the refrigerant charging electromagnetic valve 14 when the value of the supercooling heat exchanger outlet supercooling degree SC becomes equal to or higher than the supercooling degree α at the time of charging the appropriate refrigerant.

図3は、本発明の冷媒充填装置を具備した空気調和装置の冷媒充填時における冷凍サイクルのモリエル線図を示し、実線及び丸印は冷媒適正充填時の冷凍サイクル60を示しており、破線及び四角印は冷媒不足充填時の冷凍サイクル61を示している。
空気調和装置内に冷媒を適正に充填される前の場合は、図3に示すモリエル線図の破線で示す冷凍サイクルとなり、圧縮機1で圧縮された高温高圧のガス冷媒はb'となり圧縮機1から吐出され、室外熱交換器7内に流入し空気と熱交換して放熱することでc'となり受液器5に流入する。ここで、空気調和装置内の冷媒が不足しているため、受液器5内には液冷媒が溜まらず受液器5からは気液二相状態で流出し、過冷却熱交換器9で冷媒ボンベ50から流入する冷媒に冷却されd'の状態となり室内膨張弁4で減圧されe'となり室内熱交換器3で空気と熱交換して蒸発しa'の状態で圧縮機1に吸い込まれる。
空気調和装置内に冷媒が適正に充填された後の場合は、図3に示すモリエル線図の実線で示す冷凍サイクルとなり、圧縮機1で圧縮された高温高圧のガス冷媒はbとなり圧縮機1から吐出され、室外熱交換器7内に流入し空気と熱交換して放熱することでcとなり受液器5に流入する。ここで、空気調和装置内の冷媒が適正な量だけ充填されているため、受液器5内に液冷媒が溜まり受液器5からは液単相状態で流出し、過冷却熱交換器9で冷媒ボンベ50から流入する冷媒に冷却され過冷却状態のdとなり室内膨張弁4で減圧されeとなり室内熱交換器3で空気と熱交換して蒸発しaの状態で圧縮機1に吸い込まれる。
FIG. 3 shows a Mollier diagram of a refrigeration cycle at the time of refrigerant filling of the air conditioner equipped with the refrigerant filling device of the present invention, and a solid line and a circle indicate the refrigeration cycle 60 at the time of refrigerant proper charging, A square mark indicates the refrigeration cycle 61 when the refrigerant is insufficiently charged.
Before the refrigerant is properly filled in the air conditioner, a refrigeration cycle indicated by a broken line in the Mollier diagram shown in FIG. 3 is obtained, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 becomes b ′. 1, flows into the outdoor heat exchanger 7, exchanges heat with the air and dissipates heat to become c ′, and flows into the liquid receiver 5. Here, since the refrigerant in the air conditioner is insufficient, the liquid refrigerant does not accumulate in the liquid receiver 5 and flows out from the liquid receiver 5 in a gas-liquid two-phase state, and in the supercooling heat exchanger 9. Cooled by the refrigerant flowing in from the refrigerant cylinder 50, becomes d 'state, decompressed by the indoor expansion valve 4, becomes e', evaporates by exchanging heat with air in the indoor heat exchanger 3, and is sucked into the compressor 1 in the state of a ' .
After the refrigerant is properly filled in the air conditioner, a refrigeration cycle indicated by a solid line in the Mollier diagram shown in FIG. 3 is obtained, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 becomes b. , And flows into the outdoor heat exchanger 7, exchanges heat with air and dissipates heat, and becomes c and flows into the liquid receiver 5. Here, since the refrigerant in the air conditioner is filled with an appropriate amount, the liquid refrigerant accumulates in the liquid receiver 5 and flows out from the liquid receiver 5 in a liquid single-phase state, and the supercooling heat exchanger 9. The refrigerant is cooled by the refrigerant flowing in from the refrigerant cylinder 50 and becomes d in the supercooled state, depressurized by the indoor expansion valve 4, becomes e and exchanges heat with air in the indoor heat exchanger 3, and is sucked into the compressor 1 in the state of a. .

図4は、冷媒充填割合と過冷却熱交換器9出口の冷媒過冷却度の相関関係を表した特性図であり、冷媒充填割合が100%よりも少ない冷媒不足の状態は、図3に示す冷凍サイクルのモリエル線図では破線の状態となり、過冷却熱交換器9出口の冷媒状態は点d'の気液二相状態となるため冷媒過冷却度は0Kとなる。冷媒を追加充填して行き冷媒充填割合が100%に近づいてくると、凝縮器として作用している室外熱交換器7に存在する冷媒量が増加するため、室外熱交換器7出口の冷媒状態がc'からcの方に移動し、過冷却熱交換器9出口の冷媒状態が過冷却状態となるため、実線のように右上がりに過冷却度が増加する。さらに冷媒を追加充填すると、追加された冷媒は受液器5内に溜まるだけで、室外熱交換器7に存在する冷媒量が変化しないため、過冷却度の増加は発生しない。さらに冷媒を追加充填すると、受液器5から冷媒が溢れ出すため室外熱交換器7に存在する冷媒量が増加し、室外熱交換器7出口の冷媒状態が過冷却状態となるため、過冷却熱交換器9出口の冷媒過冷却度は増加する。   FIG. 4 is a characteristic diagram showing the correlation between the refrigerant filling ratio and the degree of refrigerant supercooling at the outlet of the supercooling heat exchanger 9, and the refrigerant shortage state in which the refrigerant filling ratio is less than 100% is shown in FIG. In the Mollier diagram of the refrigeration cycle, the state becomes a broken line, and the refrigerant state at the outlet of the supercooling heat exchanger 9 becomes a gas-liquid two-phase state at point d ′, so that the refrigerant supercooling degree is 0K. When additional refrigerant is charged and the refrigerant charging rate approaches 100%, the amount of refrigerant existing in the outdoor heat exchanger 7 acting as a condenser increases, so the refrigerant state at the outlet of the outdoor heat exchanger 7 Moves from c ′ to c, and the refrigerant state at the outlet of the supercooling heat exchanger 9 becomes a supercooling state, so that the degree of supercooling increases to the right as shown by the solid line. When the refrigerant is further charged, the added refrigerant only accumulates in the liquid receiver 5, and the amount of refrigerant existing in the outdoor heat exchanger 7 does not change, so that the degree of supercooling does not increase. When the refrigerant is further charged, the refrigerant overflows from the liquid receiver 5, so that the amount of refrigerant existing in the outdoor heat exchanger 7 increases, and the refrigerant state at the outlet of the outdoor heat exchanger 7 becomes a supercooled state. The refrigerant supercooling degree at the outlet of the heat exchanger 9 increases.

以上説明したように、本冷媒充填装置では、冷媒を追加充填する際に空気調和装置を冷房運転で運転して冷媒ボンベ50の内圧とアキュムレータ8入口部の圧力差を確保しながら冷媒充填作業を行うため、素早く冷媒を充填することが可能となる。また、冷媒ボンベ50から流出する液冷媒を過冷却熱交換器9により加熱ガス化して充填するため、圧縮機1への液戻りを抑制することができ、冷媒充填中の圧縮機1の信頼性を確保することができる。さらに、過冷却熱交換器9出口の冷媒過冷却度を検出し、冷媒充填電磁弁14を開閉しながら冷媒充填作業を行うため、冷媒充填作業を自動化することができ、空気調和装置の施工時間の短縮を図ることが可能である。   As described above, in the present refrigerant filling apparatus, when the refrigerant is additionally charged, the air conditioning apparatus is operated in a cooling operation, and the refrigerant filling operation is performed while ensuring the pressure difference between the internal pressure of the refrigerant cylinder 50 and the inlet of the accumulator 8. Therefore, the refrigerant can be quickly filled. Further, since the liquid refrigerant flowing out from the refrigerant cylinder 50 is heated and gasified by the supercooling heat exchanger 9 and filled, the liquid return to the compressor 1 can be suppressed, and the reliability of the compressor 1 during refrigerant filling is improved. Can be secured. Furthermore, since the refrigerant subcooling degree at the outlet of the supercooling heat exchanger 9 is detected and the refrigerant charging operation is performed while opening and closing the refrigerant charging electromagnetic valve 14, the refrigerant charging operation can be automated, and the installation time of the air conditioner Can be shortened.

次に、本発明の他の実施形態について図5ないし図6を参照して説明する。
図5において、受液器5と過冷却熱交換器9の主流部の間にバイパス回路を設け、バイパス回路を過冷却熱交換器9のバイパス部と冷媒充填電磁弁14の間に接続し、バイパス回路の途中に過冷却バイパス膨張弁21を設けている。
冷媒充填方法は、冷房運転を行う際に、バイパス回路に付設する過冷却バイパス膨張弁21を所定の開度で固定し、冷媒充填中は過冷却熱交換器9のバイパス部に常時冷媒を流して行われる。
Next, another embodiment of the present invention will be described with reference to FIGS.
In FIG. 5, a bypass circuit is provided between the liquid receiver 5 and the main flow part of the supercooling heat exchanger 9, and the bypass circuit is connected between the bypass part of the supercooling heat exchanger 9 and the refrigerant filling electromagnetic valve 14, A supercooling bypass expansion valve 21 is provided in the middle of the bypass circuit.
In the refrigerant charging method, when the cooling operation is performed, the supercooling bypass expansion valve 21 attached to the bypass circuit is fixed at a predetermined opening degree, and the refrigerant is always supplied to the bypass portion of the supercooling heat exchanger 9 during the refrigerant charging. Done.

図6は、冷媒充填割合と過冷却熱交換器9出口の冷媒過冷却度の相関関係を表した特性図であり、図において、実線は図4で説明した過冷却バイパス膨張弁が無いもしくは閉じている場合の特性72を示し、破線は過冷却バイパス膨張弁が所定の開度で開いている場合の特性71を示す。過冷却バイパス膨張弁21が所定の開度で開いている場合は、過冷却熱交換器9のバイパス部への流量は、冷媒ボンベ50から流入する量と過冷却バイパス膨張弁21を通るバイパス量の合計量となるため、過冷却熱交換器9での冷却能力が増大する。このため、過冷却バイパス膨張弁21が無いもしくは閉じている場合と比較して、冷媒不足の状態からでも過冷却熱交換器9出口の冷媒が過冷却状態となり、過冷却度が発生し、冷媒充填適正時の場合は過冷却度が大きくなる。   FIG. 6 is a characteristic diagram showing the correlation between the refrigerant filling ratio and the degree of refrigerant supercooling at the outlet of the supercooling heat exchanger 9. In the figure, the solid line indicates that the supercooling bypass expansion valve described in FIG. The broken line indicates the characteristic 71 when the supercooling bypass expansion valve is opened at a predetermined opening degree. When the supercooling bypass expansion valve 21 is opened at a predetermined opening, the flow rate to the bypass portion of the supercooling heat exchanger 9 is the amount flowing from the refrigerant cylinder 50 and the bypass amount passing through the supercooling bypass expansion valve 21. Therefore, the cooling capacity in the supercooling heat exchanger 9 is increased. For this reason, compared with the case where the supercooling bypass expansion valve 21 is not present or closed, the refrigerant at the outlet of the supercooling heat exchanger 9 becomes supercooled even when the refrigerant is insufficient, and the degree of supercooling is generated. In the case of proper filling, the degree of supercooling increases.

以上説明したように、受液器5と過冷却熱交換器9の主流部の間に過冷却バイパス膨張弁21が付設するバイパス回路を設け、冷媒充填時にこのバイパス回路に冷媒を流すようにしたことで、過冷却熱交換器9出口の冷媒過冷却度の変化を大きくすることができ、冷媒の過不足をより精度良く判定することができる。また、冷媒不足の状態から冷媒過冷却度が発生するため、冷媒不足の割合をこの過冷却度から算出することが可能となる。   As described above, the bypass circuit provided with the supercooling bypass expansion valve 21 is provided between the main flow part of the liquid receiver 5 and the supercooling heat exchanger 9 so that the refrigerant flows through the bypass circuit when the refrigerant is charged. As a result, the change in the degree of refrigerant supercooling at the outlet of the supercooling heat exchanger 9 can be increased, and the excess or deficiency of the refrigerant can be determined with higher accuracy. Further, since the degree of refrigerant supercooling occurs from the state of refrigerant shortage, the ratio of refrigerant shortage can be calculated from this degree of supercooling.

次に、本発明の他の実施形態について図7を参照して説明する。
図7は、冷媒充填装置を具備した空気調和装置の冷凍サイクル系統図であり、冷媒充填装置は、過冷却度演算手段30に入力していた吐出圧力センサの替わりとして、室外熱交換器7の出口側の温度を検出するための凝縮温度サーミスタ18を室外熱交換器7と受液器5の間に設け、凝縮温度サーミスタ18の出力信号を過冷却演算手段30に入力し、凝縮温度サーミスタ18の値と過冷却熱交換器出口温度サーミスタ17の値の差から、過冷却熱交換器9出口の冷媒過冷却度を演算するものである。また、吐出ガス過熱度演算手段32の替わりとして、室内熱交換器3の入口部及び出口部にそれぞれ室内液温度サーミスタ20及び室内ガス温度サーミスタ19を設け、各々のサーミスタの出力信号を熱交過熱度演算手段33に入力し、室内ガス温度サーミスタ19の値と室内液温度サーミスタ20の値の差から、室内熱交換器3の冷媒過熱度を演算し、この冷媒過熱度により室内膨張弁4の開度を制御する。
したがって、過冷却度演算手段や過熱度演算手段の入力信号として高価な圧力センサを使用せずに、安価な温度サーミスタを使用しているため、冷媒充填装置としてのコストを低減することができる。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a refrigeration cycle system diagram of an air conditioner equipped with a refrigerant filling device. The refrigerant filling device uses an outdoor heat exchanger 7 instead of the discharge pressure sensor input to the supercooling degree calculation means 30. A condensation temperature thermistor 18 for detecting the temperature on the outlet side is provided between the outdoor heat exchanger 7 and the liquid receiver 5, and an output signal of the condensation temperature thermistor 18 is input to the subcooling calculation means 30, and the condensation temperature thermistor 18 is detected. The refrigerant supercooling degree at the outlet of the supercooling heat exchanger 9 is calculated from the difference between this value and the value of the supercooling heat exchanger outlet temperature thermistor 17. As an alternative to the discharge gas superheat degree calculation means 32, an indoor liquid temperature thermistor 20 and an indoor gas temperature thermistor 19 are provided at the inlet and outlet of the indoor heat exchanger 3, respectively, and the output signals of the thermistors are subjected to heat exchange heat. The degree of refrigerant superheat of the indoor heat exchanger 3 is calculated from the difference between the value of the indoor gas temperature thermistor 19 and the value of the indoor liquid temperature thermistor 20, and the degree of indoor expansion valve 4 is calculated based on the degree of refrigerant superheat. Control the opening.
Therefore, since an inexpensive temperature thermistor is used as an input signal to the supercooling degree calculation means or the superheat degree calculation means, an inexpensive temperature thermistor is used, so that the cost of the refrigerant filling device can be reduced.

次に、本発明のさらに他の実施形態について図8ないし図9を参照して説明する。
図8は、冷媒充填装置を具備した空気調和装置の冷凍サイクル系統図であり、冷媒充填装置は、冷媒充填電磁弁14の入口側と冷媒ボンベ50とを接続する配管部に冷媒充填阻止弁22を設け、冷媒充填阻止弁22と冷媒充填電磁弁14の間から過冷却熱交換器9と液阻止弁11の間にバイパスするように配管接続し、このバイパス回路にプリチャージ逆止弁23を設けている。
図9は、冷媒充填装置による冷媒充填フローチャートを示し、室外機には予め室外機で必要な最低の冷媒量が封入されており、現地に室外機と室内機が施工された後にガス側接続配管、液側接続配管及び室内機内の空気や水分等を除去するために、ガス側サービスポート12及び液側サービスポート13に真空ポンプ等を接続し、配管内部及び機内配管内部を真空にする。そして、ガス阻止弁10と液阻止弁11を開けて、室外機内に封入されている冷媒を室内機側に開放した後に、冷媒充填阻止弁22を開く。ガス阻止弁10及び液阻止弁11を開くと冷凍サイクル内の内圧が低下し、冷媒ボンベ50の内圧とに差圧が生じ、この圧力差を利用してプリチャージ逆止弁23を通り液接続配管側に冷媒が充填される。ここで、冷凍サイクル内の圧力変動が所定の値SPより小さくなる場合は、これ以上冷媒ボンベ50から冷凍サイクル内に冷媒が充填できないため、冷房運転で冷凍サイクルを起動して図8に示す冷凍サイクル系統図の実線矢印のように冷媒を流す。その後は、図2に示す冷媒充填方法と同じである。
本例によれば、冷房運転前に冷凍サイクル内の内圧と冷媒ボンベ50の内圧の圧力差を利用して冷媒を充填するため、接続配管長さが非常に長く予め室外機に充填されている冷媒量では冷房運転ができないような場合でも冷媒を自動で充填することができ、空気調和装置の施工時間の短縮を図ることが可能である。
Next, still another embodiment of the present invention will be described with reference to FIGS.
FIG. 8 is a refrigeration cycle system diagram of an air conditioner equipped with a refrigerant filling device. The refrigerant filling device is connected to a refrigerant filling blocking valve 22 at a pipe portion connecting the inlet side of the refrigerant filling electromagnetic valve 14 and the refrigerant cylinder 50. A pipe connection is made between the refrigerant charging prevention valve 22 and the refrigerant charging electromagnetic valve 14 so as to bypass between the supercooling heat exchanger 9 and the liquid blocking valve 11, and a precharge check valve 23 is connected to the bypass circuit. Provided.
FIG. 9 shows a refrigerant filling flowchart by the refrigerant filling device, in which the minimum amount of refrigerant necessary for the outdoor unit is enclosed in the outdoor unit in advance, and the gas side connection pipe after the outdoor unit and the indoor unit are installed on site In order to remove air, moisture and the like in the liquid side connection pipe and the indoor unit, a vacuum pump or the like is connected to the gas side service port 12 and the liquid side service port 13 to evacuate the inside of the pipe and the inside of the machine pipe. Then, after opening the gas blocking valve 10 and the liquid blocking valve 11 to open the refrigerant sealed in the outdoor unit to the indoor unit side, the refrigerant charging blocking valve 22 is opened. When the gas blocking valve 10 and the liquid blocking valve 11 are opened, the internal pressure in the refrigeration cycle is lowered, and a differential pressure is generated between the internal pressure of the refrigerant cylinder 50 and the liquid connection is made through the precharge check valve 23 using this pressure difference. The refrigerant is filled on the piping side. Here, when the pressure fluctuation in the refrigeration cycle is smaller than the predetermined value SP, the refrigerant cannot be filled into the refrigeration cycle from the refrigerant cylinder 50 any more, so the refrigeration cycle is started in the cooling operation and the refrigeration shown in FIG. Let the coolant flow as shown by the solid arrows in the cycle diagram. After that, it is the same as the refrigerant filling method shown in FIG.
According to this example, since the refrigerant is filled using the pressure difference between the internal pressure in the refrigeration cycle and the internal pressure of the refrigerant cylinder 50 before the cooling operation, the connection pipe length is very long and the outdoor unit is filled in advance. Even when the cooling operation cannot be performed with the amount of the refrigerant, the refrigerant can be automatically charged, and the construction time of the air conditioner can be shortened.

以上、室外機1台に対して室内機が1台設置される空気調和装置について説明したが、室外機が1台に対して室内機が2台以上の複数台が設置される多室形空気調和装置であっても、同等の効果を有する。
また、過冷却熱交換器出口の冷媒過冷却度から冷凍サイクル内の冷媒量が適正か否かを判定する方法として、冷媒充填作業の場合について説明したが、冷媒充填作業が終了した通常の冷房運転時の場合においては、冷媒過冷却度を利用して冷凍サイクル内の冷媒量が適正か否かを判定する冷媒量判定を行う。
さらに、冷媒ボンベの代わりに冷媒量調整用の貯留タンクを室外機内に設置し、貯留タンクには入口部と出口部が存在し、貯留タンクの入口部と冷凍サイクルの高圧部とを電磁弁を介して接続し、貯留タンクの出口部と冷媒充填電磁弁とを接続することで、冷凍サイクル内の冷媒量を自由に自動で変えることができる。
さらに、冷媒充填装置で充填する冷媒の種類が非共沸混合冷媒の場合は、冷媒ボンベから液冷媒で充填するため、冷媒充填時に組成変化を抑制しながら素早く充填することが可能である。
さらに、過冷却熱交換器出口温度サーミスタ部の温度を冷却する手段と、冷媒ボンベから充填される液冷媒を加熱する手段を過冷却熱交換器1つで行っているが、過冷却熱交換器出口温度サーミスタ部の温度を冷却する手段(例えば、受液器後流側に過冷却用熱交換器を設ける。)と冷媒ボンベから充填される液冷媒を加熱する手段(例えば、冷媒ボンベから充填される液冷媒を減圧して室外空気と熱交換する加熱用空気熱交換器を設け、加熱用空気熱交換器内を通す。)を別々に設けた場合も同様である。
The air conditioner in which one indoor unit is installed for one outdoor unit has been described above. However, multi-room air in which a plurality of two or more indoor units are installed for one outdoor unit. Even a harmony device has the same effect.
In addition, as a method for determining whether or not the amount of refrigerant in the refrigeration cycle is appropriate based on the degree of refrigerant supercooling at the outlet of the supercooling heat exchanger, the case of the refrigerant charging operation has been described. In the case of operation, the refrigerant amount determination is performed to determine whether the refrigerant amount in the refrigeration cycle is appropriate using the refrigerant supercooling degree.
In addition, a storage tank for adjusting the amount of refrigerant is installed in the outdoor unit in place of the refrigerant cylinder. The storage tank has an inlet and an outlet. An electromagnetic valve is connected between the inlet of the storage tank and the high-pressure part of the refrigeration cycle. And the refrigerant quantity in the refrigeration cycle can be freely and automatically changed by connecting the outlet portion of the storage tank and the refrigerant charging solenoid valve.
Furthermore, when the type of refrigerant to be filled by the refrigerant filling device is a non-azeotropic refrigerant mixture, the refrigerant is filled from the refrigerant cylinder with the liquid refrigerant, so that the refrigerant can be quickly filled while suppressing a change in composition.
Furthermore, the means for cooling the temperature of the subcooling heat exchanger outlet temperature thermistor section and the means for heating the liquid refrigerant filled from the refrigerant cylinder are performed by one supercooling heat exchanger. Means for cooling the temperature of the outlet temperature thermistor section (for example, a supercooling heat exchanger is provided on the downstream side of the receiver) and means for heating the liquid refrigerant charged from the refrigerant cylinder (for example, charging from the refrigerant cylinder) The same applies to a case where a heating air heat exchanger for reducing the pressure of the liquid refrigerant to be exchanged with the outdoor air is provided, and the liquid refrigerant is passed through the heating air heat exchanger.

次に、本発明のさらに他の実施形態について図10を参照して説明する。
図10は、冷媒充填中や充填終了等の冷媒充填時の作業内容情報や冷媒充填量の適否判定結果の情報を表示する表示手段を設けた冷媒充填装置を具備した空気調和装置の冷凍サイクル系統図を示す。冷媒充填装置は、過冷却度演算手段の出力信号を基に冷凍サイクル内に充填された冷媒量が適正か否かを判定する冷媒量適否判定手段を設け、冷媒量適否判定手段の出力信号はマイクロコンピュータに入力される。また、マイクロコンピュータには、冷媒自動充填運転、通常運転、試運転等の空気調和装置の運転情報が入力され、マイクロコンピュータ内の情報を表示するように表示手段が設けられた構成となっている。表示手段としては、室外ユニットの制御基板上に配設された7セグメント表示装置や液晶表示装置、各室内ユニットの起動や停止の制御を行うためのリモコンの表示部、各室内ユニットを一括で起動や停止の制御を行うための集中管理装置の表示部などがある。
Next, still another embodiment of the present invention will be described with reference to FIG.
FIG. 10 shows a refrigeration cycle system of an air conditioner equipped with a refrigerant charging device provided with display means for displaying work content information at the time of refrigerant charging during refrigerant charging or at the end of charging and information on the result of determining whether or not the refrigerant is charged. The figure is shown. The refrigerant filling device includes a refrigerant amount suitability determining unit that determines whether or not the amount of refrigerant charged in the refrigeration cycle is appropriate based on the output signal of the supercooling degree calculating unit, and the output signal of the refrigerant amount suitability determining unit is Input to the microcomputer. In addition, the microcomputer has a configuration in which display information is provided so that the operation information of the air conditioner such as the automatic refrigerant charging operation, the normal operation, and the test operation is input and the information in the microcomputer is displayed. As a display means, a 7-segment display device and a liquid crystal display device arranged on the control board of the outdoor unit, a display unit of a remote controller for controlling the start and stop of each indoor unit, and starting each indoor unit collectively And a display unit of a centralized management device for controlling stop and stop.

次に、冷媒充填時の表示手段の表示内容について説明する。冷媒充填のためにスイッチ等を入れた場合は、表示手段に冷媒充填運転中と認識できるように、7セグメント表示装置のように漢字表示ができない場合は英数字を組み合わせた表示(例えば、「RCH」)、液晶などの漢字表示が可能な場合は一般の人に認識できる表示(例えば、冷媒充填中)を表示する。また、冷媒充填が正常に終了した場合は、表示手段に冷媒充填運転が正常終了したことを認識できるように7セグメント表示装置のように漢字表示ができない場合は英数字を組み合わせた表示(例えば、「END」)、液晶などの漢字表示が可能な場合は一般の人に認識できる表示(例えば、冷媒充填完了)を表示する。
また、冷媒充填運転中に冷媒ボンベ内の冷媒が空になると、過冷却熱交換器を流通する冷媒循環量が減少するため過冷却熱交換器での冷却熱量が減少し、過冷却熱交換器出口の冷媒過冷却度が低下するため、冷媒ボンベ内が空であることを認識できる。このことから、冷媒充填中であるにも関わらず冷媒過冷却度が低下した場合には、表示手段に冷媒ボンベが空であるため冷媒ボンベを交換する指示もしくは冷媒ボンベが空であることを表示する。
Next, the display content of the display means at the time of refrigerant filling will be described. When a switch or the like is turned on for charging the refrigerant, the display means can recognize that the refrigerant charging operation is in progress. When the Chinese character cannot be displayed as in the 7-segment display device, a combination of alphanumeric characters (for example, “RCH” )) When a Chinese character display such as a liquid crystal is possible, a display that can be recognized by a general person (for example, refrigerant is being charged) is displayed. In addition, when refrigerant charging is normally completed, a combination of alphanumeric characters is displayed when the Chinese character cannot be displayed as in the 7-segment display device so that the display means can recognize that the refrigerant charging operation has been normally completed (for example, “END”), when a Chinese character display such as liquid crystal is possible, a display that can be recognized by a general person (for example, completion of refrigerant charging) is displayed.
Also, if the refrigerant in the refrigerant cylinder is emptied during the refrigerant charging operation, the amount of refrigerant circulating through the supercooling heat exchanger decreases, so the amount of cooling heat in the supercooling heat exchanger decreases, and the supercooling heat exchanger Since the refrigerant supercooling degree at the outlet is lowered, it can be recognized that the refrigerant cylinder is empty. Therefore, when the refrigerant supercooling degree is reduced even though the refrigerant is being charged, the indication means displays that the refrigerant cylinder is empty and the refrigerant cylinder is empty or the refrigerant cylinder is empty. To do.

さらに、冷媒量適否判定手段の結果である「冷媒不足」や「冷媒適正」なども表示装置に合わせて表示する。さらに、冷媒量適否判定手段から冷媒充填完了までに掛かる時間を演算し、演算した時間を表示手段に表示する。
以上によれば、表示手段に冷媒充填運転中や冷媒ボンベ内の状態や冷媒量適否判定手段の結果が表示されるため、現在の空気調和装置の運転が冷媒充填のために行われているのか、また冷媒充填量がどの程度なのかが一目でわかるようになる。また、表示手段として室外ユニットの制御基板上に配設される7セグメント表示装置を用いた場合は、表示部分のコストが非常に安価でできる。また、室外ユニットに液晶表示装置を設けた場合は、確実に認識できることになる。
Furthermore, “refrigerant shortage”, “refrigerant appropriateness”, etc., which are the results of the refrigerant quantity suitability determination means, are also displayed in accordance with the display device. Further, the time required from the refrigerant amount suitability determination means to the completion of refrigerant charging is calculated, and the calculated time is displayed on the display means.
According to the above, since the display means displays the state of the refrigerant filling operation, the state in the refrigerant cylinder, and the result of the refrigerant quantity suitability determination means, is the current operation of the air conditioner being performed for refrigerant filling? In addition, it is possible to understand at a glance how much the refrigerant is charged. Further, when a 7-segment display device disposed on the control board of the outdoor unit is used as the display means, the cost of the display portion can be very low. In addition, when the outdoor unit is provided with a liquid crystal display device, it can be reliably recognized.

また、表示手段として室内ユニットのリモコンの表示部や集中管理装置の表示部を用いた場合は、室外ユニットから離れた場合でも冷媒充填運転中や冷媒充填量などの認識が可能となる。さらに、冷媒過冷却度検出手段から冷凍サイクル内に充填されている冷媒量の適否を判定する冷媒充填量適否判定手段を設け、冷媒充填中や充填終了等の冷媒充填時の作業内容情報や前記冷媒充填量適否判定手段で判定された情報を表示する表示手段を設けることで、空気調和装置の運転が冷媒充填のために行われているか、また空気調和機内に充填された冷媒量が適正であるかを誰もが簡単に確実に認識することができる。   In addition, when the display unit of the remote control of the indoor unit or the display unit of the centralized management device is used as the display means, it is possible to recognize the refrigerant charging operation, the refrigerant charging amount, etc. even when away from the outdoor unit. Furthermore, a refrigerant charge amount suitability determining means for determining the suitability of the refrigerant amount filled in the refrigeration cycle from the refrigerant supercooling degree detection means is provided, and the work content information at the time of refrigerant filling such as during refrigerant filling or completion of filling, By providing display means for displaying the information determined by the refrigerant charge amount suitability determination means, the operation of the air conditioner is performed for refrigerant charge, and the amount of refrigerant charged in the air conditioner is appropriate. Anyone can easily and reliably recognize if there is.

さらに、受液器と過冷却熱交換器とを接続する配管から過冷却熱交換器のバイパス部入口と冷媒充填電磁弁の間にバイパスするようにバイパス回路を設け、バイパス回路に過冷却バイパス膨張弁を設け、冷媒充填時にこのバイパス回路に冷媒を流すようにしたことで、冷媒の過不足を判定するための過冷却熱交換器出口の冷媒過冷却度変化を大きくすることができ、冷媒の過不足をより精度良く判定することができる。また、冷媒不足の状態から冷媒過冷却度が発生するため、冷媒不足の割合をこの過冷却度から算出することができる。   Furthermore, a bypass circuit is provided so as to bypass the pipe connecting the receiver and the supercooling heat exchanger between the bypass portion inlet of the supercooling heat exchanger and the refrigerant-filled solenoid valve, and the bypass circuit is supercooled and bypass expanded. By providing a valve and allowing the refrigerant to flow through the bypass circuit when charging the refrigerant, it is possible to increase the change in the degree of refrigerant supercooling at the outlet of the supercooling heat exchanger for determining whether the refrigerant is excessive or insufficient. Excess or deficiency can be determined with higher accuracy. Further, since the refrigerant supercooling degree is generated from the refrigerant shortage state, the refrigerant shortage ratio can be calculated from the supercooling degree.

さらに、冷媒充填電磁弁の上流側に阻止弁を設け、冷媒充填電磁弁と阻止弁の間から過冷却熱交換器主流部出口側に冷媒が流れるように逆止弁を介してバイパス回路を設け、冷房運転前に冷凍サイクル内の内圧と冷媒ボンベの内圧の圧力差を利用して逆止弁部から液阻止弁側に冷媒を充填するため、接続配管長さが非常に長く、予め室外機に充填されている冷媒量では冷房運転ができないような場合でも冷媒を自動で充填することが可能であり、空気調和装置の施工時間の短縮を図ることができる。   Furthermore, a blocking valve is provided upstream of the refrigerant charging solenoid valve, and a bypass circuit is provided via a check valve so that the refrigerant flows from between the refrigerant charging solenoid valve and the blocking valve to the outlet side of the main flow section of the supercooling heat exchanger. Since the refrigerant is filled from the check valve part to the liquid blocking valve side using the pressure difference between the internal pressure in the refrigeration cycle and the internal pressure of the refrigerant cylinder before the cooling operation, the connection pipe length is very long and the outdoor unit Even in the case where the cooling operation cannot be performed with the amount of refrigerant filled in the refrigerant, the refrigerant can be automatically charged, and the construction time of the air conditioner can be shortened.

本発明の一実施形態を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows one Embodiment of this invention. 本発明の冷媒充填方法を示した冷媒充填フローチャート図。The refrigerant | coolant filling flowchart figure which showed the refrigerant | coolant filling method of this invention. 本発明の一実施形態による冷媒充填時における冷凍サイクルのモリエル線図。The Mollier diagram of the refrigerating cycle at the time of refrigerant | coolant filling by one Embodiment of this invention. 本発明の一実施形態による冷媒充填割合と過冷却熱交換器出口の冷媒過冷却度の相関関係を表した特性図。The characteristic view showing the correlation of the refrigerant | coolant filling ratio and refrigerant | coolant supercooling degree of a supercooling heat exchanger exit by one Embodiment of this invention. 他の実施形態を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows other embodiment. 他の実施形態による冷媒充填割合と過冷却熱交換器出口の冷媒過冷却度の相関関係を表した特性図。The characteristic view showing the correlation of the refrigerant | coolant filling ratio and refrigerant | coolant supercooling degree of a supercooling heat exchanger exit by other embodiment. 他の実施形態を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows other embodiment. さらに他の実施形態を示す冷凍サイクル系統図。Furthermore, the refrigeration cycle system diagram which shows other embodiment. さらに他の実施形態冷媒充填方法を示した冷媒充填フローチャート図。Furthermore, the refrigerant | coolant filling flowchart figure which showed other embodiment refrigerant | coolant filling method. さらに他の実施形態を示す冷凍サイクル系統図。Furthermore, the refrigeration cycle system diagram which shows other embodiment.

符号の説明Explanation of symbols

1…圧縮機、3…室内熱交換器、4…室内膨張弁、5…受液器、6…室外膨張弁、7…室外熱交換器、8…アキュムレータ、9…過冷却熱交換器、10…ガス阻止弁、11…液阻止弁、12…ガス側サービスポート、13…液側サービスポート、14…冷媒充填電弁、15…吐出圧力センサ、16…吐出温度サーミスタ、17…過冷却熱交換器出口温度サーミスタ、18…凝縮温度サーミスタ、19…室内ガス温度サーミスタ、20…室内液温度サーミスタ、21…過冷却バイパス膨張弁、22…冷媒充填阻止弁、23…プリチャージ逆止弁、30…過冷却度演算手段、31…冷媒充填電磁弁開閉手段、32…吐出ガス過熱度演算手段、33…熱交過熱度演算手段、50…冷媒ボンベ、34…冷媒量適否判定手段、35…マイクロコンピュータ、36…表示部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Indoor heat exchanger, 4 ... Indoor expansion valve, 5 ... Liquid receiver, 6 ... Outdoor expansion valve, 7 ... Outdoor heat exchanger, 8 ... Accumulator, 9 ... Supercooling heat exchanger, 10 DESCRIPTION OF SYMBOLS ... Gas blocking valve, 11 ... Liquid blocking valve, 12 ... Gas side service port, 13 ... Liquid side service port, 14 ... Refrigerant filling electric valve, 15 ... Discharge pressure sensor, 16 ... Discharge temperature thermistor, 17 ... Supercooling heat exchange Outlet temperature thermistor, 18 ... condensation temperature thermistor, 19 ... indoor gas temperature thermistor, 20 ... indoor liquid temperature thermistor, 21 ... supercooling bypass expansion valve, 22 ... refrigerant charging prevention valve, 23 ... precharge check valve, 30 ... Supercooling degree calculating means, 31 ... Refrigerant charging solenoid valve opening / closing means, 32 ... Discharge gas superheat degree calculating means, 33 ... Heat exchange superheat degree calculating means, 50 ... Refrigerant cylinder, 34 ... Refrigerant amount suitability determining means, 35 ... Microcomputer Pew , 36 ... display unit.

Claims (6)

圧縮機、室外熱交換器、減圧装置、受液器を有する室外ユニットと、室内熱交換器、減圧装置を有する室内ユニットと、を配管接続した冷凍サイクルに対して、所定量の冷媒を室外ユニット内に充填、又は冷媒を追加充填する冷媒充填装置において、
前記室外ユニットの受液器と室内ユニットの間に副流部を備えた過冷却熱交換器の主流部を配置し、前記副流部の一方は冷媒充填電磁弁を介して冷媒ボンベに、他方は前記圧縮機の吸入側に接続し、前記冷凍サイクルが安定と判定された後に前記冷媒充填電磁弁を開いて冷媒を充填し、前記過冷却熱交換器の主流部の出口側の冷媒過冷却度が予め設定されている適正冷媒充填時の値以上となったときに前記冷媒充填電磁弁を閉じて冷媒充填を完了するように前記冷媒充填電磁弁の開閉を制御することを特徴とする冷媒充填装置。
Refrigeration cycle in which an outdoor unit having a compressor, an outdoor heat exchanger, a pressure reducing device, and a liquid receiver, and an indoor unit having an indoor heat exchanger and a pressure reducing device are pipe-connected to the outdoor unit. In the refrigerant filling device that fills the inside or additionally fills the refrigerant,
A main flow portion of a supercooling heat exchanger having a subflow portion is disposed between the liquid receiver of the outdoor unit and the indoor unit, and one of the subflow portions is placed in a refrigerant cylinder via a refrigerant filling electromagnetic valve, and the other Is connected to the suction side of the compressor, and after the refrigeration cycle is determined to be stable, the refrigerant charging solenoid valve is opened to fill the refrigerant, and the refrigerant supercooling on the outlet side of the main flow portion of the supercooling heat exchanger A refrigerant that controls opening and closing of the refrigerant filling solenoid valve so that the refrigerant filling solenoid valve is closed to complete the refrigerant filling when the degree becomes equal to or more than a preset value at the time of proper refrigerant filling. Filling equipment.
請求項1記載の冷媒充填装置において、前記受液器と前記過冷却熱交換器とを接続する配管から前記副流部の入口と前記冷媒充填電磁弁の間にバイパスするバイパス回路を設け、該バイパス回路に過冷却バイパス膨張弁を設けたことを特徴とする冷媒充填装置。   The refrigerant charging device according to claim 1, further comprising a bypass circuit that bypasses between an inlet of the secondary flow portion and the refrigerant charging electromagnetic valve from a pipe connecting the liquid receiver and the supercooling heat exchanger, A refrigerant charging device, wherein a bypass circuit is provided with a supercooling bypass expansion valve. 請求項1に記載のものにおいて、前記冷媒充填電磁弁の上流側に阻止弁を設け、前記冷媒充填電磁弁と前記阻止弁の間から前記主流部の出口側に冷媒が流れる第2のバイパス回路を設けたことを特徴とする冷媒充填装置。   2. The second bypass circuit according to claim 1, wherein a blocking valve is provided on an upstream side of the refrigerant filling electromagnetic valve, and the refrigerant flows from between the refrigerant charging electromagnetic valve and the blocking valve to an outlet side of the main flow portion. A refrigerant filling apparatus comprising: 請求項1に記載のものにおいて、前記圧縮機の吐出側に設けられた吐出圧力センサと、前記過冷却熱交換器の主流部の出口側に設けられた温度サーミスタとを備え、前記吐出圧力センサによる圧力値から飽和温度を演算し、演算された該飽和温度と前記温度サーミスタの出力値との差を前記冷媒過冷却度とすることを特徴とする冷媒充填装置。 2. The discharge pressure sensor according to claim 1, comprising: a discharge pressure sensor provided on a discharge side of the compressor; and a temperature thermistor provided on an outlet side of a main flow portion of the supercooling heat exchanger. calculating a Atsushi Kazu from the pressure values according to the computed saturated temperature and refrigerant charging apparatus difference and said to Rukoto and the refrigerant supercooling degree of the output value of the temperature thermistor. 請求項1に記載のものにおいて、前記圧縮機吐出側の冷媒過熱度を検出し、冷媒充填中
に前記冷媒過熱度が所定値となるように前記冷凍サイクルを制御することを特徴とする冷
媒充填装置。
2. The refrigerant filling according to claim 1, wherein the refrigerant superheating degree on the discharge side of the compressor is detected, and the refrigeration cycle is controlled so that the refrigerant superheating degree becomes a predetermined value during the refrigerant filling. apparatus.
圧縮機、室外熱交換器、減圧装置、受液器を有する室外ユニットと、室内熱交換器、減圧装置を有する室内ユニットと、を配管接続した冷凍サイクルに対して冷媒を充填する冷媒充填方法であって、前記室外ユニットの受液器と室内ユニットの間に副流部を備えた過冷却熱交換器の主流部を配置し、前記副流部の一方は冷媒充填電磁弁を介して冷媒ボンベに、他方は前記圧縮機の吸入側に接続し、前記冷凍サイクルが安定と判定された後に前記冷媒充填電磁弁を開いて冷媒を充填し、前記過冷却熱交換器の主流部の出口側の冷媒過冷却度が予め設定されている適正冷媒充填時の値以上となったときに前記冷媒充填電磁弁を閉じて冷媒充填を完了するように前記冷媒充填電磁弁の開閉を制御しながら冷媒を充填することを特徴とする冷媒充填方法。A refrigerant charging method for charging a refrigerant into a refrigeration cycle in which an outdoor unit having a compressor, an outdoor heat exchanger, a pressure reducing device, and a liquid receiver, and an indoor unit having an indoor heat exchanger and a pressure reducing device are connected by piping. And a main flow part of a supercooling heat exchanger having a subflow part is disposed between the receiver of the outdoor unit and the indoor unit, and one of the subflow parts is connected to a refrigerant cylinder via a refrigerant-filled electromagnetic valve. The other is connected to the suction side of the compressor, and after the refrigeration cycle is determined to be stable, the refrigerant filling electromagnetic valve is opened to fill the refrigerant, and the outlet side of the main flow portion of the supercooling heat exchanger is When the refrigerant supercooling degree is equal to or higher than a preset value for charging proper refrigerant, the refrigerant filling solenoid valve is closed to control the opening and closing of the refrigerant filling solenoid valve so that the refrigerant filling is completed. Refrigerant filling method characterized by filling .
JP2003345140A 2003-10-03 2003-10-03 Refrigerant filling apparatus and refrigerant filling method Expired - Fee Related JP4110276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345140A JP4110276B2 (en) 2003-10-03 2003-10-03 Refrigerant filling apparatus and refrigerant filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345140A JP4110276B2 (en) 2003-10-03 2003-10-03 Refrigerant filling apparatus and refrigerant filling method

Publications (2)

Publication Number Publication Date
JP2005114184A JP2005114184A (en) 2005-04-28
JP4110276B2 true JP4110276B2 (en) 2008-07-02

Family

ID=34538503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345140A Expired - Fee Related JP4110276B2 (en) 2003-10-03 2003-10-03 Refrigerant filling apparatus and refrigerant filling method

Country Status (1)

Country Link
JP (1) JP4110276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506433B2 (en) 2020-02-28 2022-11-22 Trane International Inc. Systems and methods for charging refrigerant into a climate control system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942306B1 (en) * 2005-10-25 2019-05-08 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP2007127326A (en) * 2005-11-02 2007-05-24 Yanmar Co Ltd Engine drive type heat pump comprising refrigerant filling circuit
JP4165566B2 (en) * 2006-01-25 2008-10-15 ダイキン工業株式会社 Air conditioner
JP5336039B2 (en) * 2006-07-21 2013-11-06 ダイキン工業株式会社 Refrigerant charging method in refrigeration apparatus using carbon dioxide as refrigerant
JP4317878B2 (en) 2007-01-05 2009-08-19 日立アプライアンス株式会社 Air conditioner and method for judging refrigerant amount
JP4225357B2 (en) * 2007-04-13 2009-02-18 ダイキン工業株式会社 Refrigerant filling apparatus, refrigeration apparatus and refrigerant filling method
JP2009079842A (en) * 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerating cycle device and its control method
ES2690822T3 (en) 2007-11-01 2018-11-22 Mitsubishi Electric Corporation Refrigerant filling apparatus of refrigeration and air conditioning apparatus and refrigerant filling method of refrigeration and air conditioning apparatus
JP5104225B2 (en) * 2007-11-06 2012-12-19 ダイキン工業株式会社 Air conditioner
JP5511133B2 (en) * 2007-12-26 2014-06-04 三星電子株式会社 Air conditioner
JP4655107B2 (en) * 2008-05-12 2011-03-23 ダイキン工業株式会社 Air conditioner
JP2010002139A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle apparatus
CN102207323A (en) * 2010-03-31 2011-10-05 苏州三星电子有限公司 Automatic regulating apparatus and method of refrigerant amount of air conditioner
JP5625656B2 (en) * 2010-09-14 2014-11-19 パナソニック株式会社 Air conditioner
JP2011012958A (en) * 2010-10-22 2011-01-20 Mitsubishi Electric Corp Method for controlling refrigeration cycle apparatus
US9366465B2 (en) * 2011-07-08 2016-06-14 Bosch Automotive Service Solutions Inc. System and method for improving charge accuracy by temperature compensation
JP6080031B2 (en) * 2012-02-15 2017-02-15 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5948237B2 (en) * 2012-12-27 2016-07-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
CN104896818A (en) * 2014-03-04 2015-09-09 海尔集团公司 Low-pressure safe refrigerant filling air conditioner
US11175072B2 (en) * 2016-03-23 2021-11-16 Mitsubishi Electric Corporation Air conditioner
CN106198043A (en) * 2016-06-28 2016-12-07 河南师范大学 A kind of vehicle air conditioner refrigerant filling volume calibration method
CN106440461B (en) * 2016-11-03 2019-03-01 青岛海信日立空调系统有限公司 A kind of control method and air-conditioning of refrigerant filling
CN112771320B (en) * 2018-09-25 2022-08-02 东芝开利株式会社 Air conditioner
WO2020065731A1 (en) * 2018-09-25 2020-04-02 東芝キヤリア株式会社 Air conditioning device
JP7069060B2 (en) * 2019-01-30 2022-05-17 ダイキン工業株式会社 Additional filling amount management system
JP2021011960A (en) * 2019-07-04 2021-02-04 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant charging device
CN110567210B (en) * 2019-09-16 2020-11-10 珠海格力电器股份有限公司 Automatic control method and device for refrigerant filling amount of water chilling unit and water chilling unit
KR20210109844A (en) 2020-02-28 2021-09-07 엘지전자 주식회사 Air conditioning apparatus and a water supplying method of the same
CN112797680A (en) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 Control device, method and system for automatically filling refrigerant and air conditioning equipment
CN114413429B (en) * 2022-01-26 2023-05-30 青岛海信日立空调系统有限公司 Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506433B2 (en) 2020-02-28 2022-11-22 Trane International Inc. Systems and methods for charging refrigerant into a climate control system

Also Published As

Publication number Publication date
JP2005114184A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4110276B2 (en) Refrigerant filling apparatus and refrigerant filling method
JP4705878B2 (en) Air conditioner
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
JP5011957B2 (en) Air conditioner
JP4165566B2 (en) Air conditioner
US8806877B2 (en) Refrigerating cycle apparatus
JP6621616B2 (en) Refrigerant amount detection device
JP4474455B2 (en) Refrigerant filling apparatus for refrigeration air conditioner and refrigerant filling method for refrigeration air conditioner
JP5035024B2 (en) Air conditioner and refrigerant quantity determination method
JP2007163100A (en) Air conditioner
JP2008002786A (en) Air conditioner
JP2008298341A (en) Air conditioner
JP2008232579A (en) Refrigerant filling method
JP5916546B2 (en) Refrigerant filling equipment for refrigeration and air conditioners
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
JP5718629B2 (en) Refrigerant amount detection device
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JPH06201234A (en) Air-conditioner
JP5104225B2 (en) Air conditioner
JP4826266B2 (en) Air conditioner
JP2007292429A (en) Air conditioner
JP2000337740A (en) Refrigerant amount regulating method and refrigerant amount judging device
JP2007163102A (en) Air conditioning system
JP7280521B2 (en) heat pump equipment
JP4655107B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R151 Written notification of patent or utility model registration

Ref document number: 4110276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees