JP4108655B2 - Battery control device and battery temperature control method - Google Patents

Battery control device and battery temperature control method Download PDF

Info

Publication number
JP4108655B2
JP4108655B2 JP2004246775A JP2004246775A JP4108655B2 JP 4108655 B2 JP4108655 B2 JP 4108655B2 JP 2004246775 A JP2004246775 A JP 2004246775A JP 2004246775 A JP2004246775 A JP 2004246775A JP 4108655 B2 JP4108655 B2 JP 4108655B2
Authority
JP
Japan
Prior art keywords
battery
temperature
soc
region
soc region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004246775A
Other languages
Japanese (ja)
Other versions
JP2006067691A (en
Inventor
寿 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
NEC Corp
Original Assignee
NEC Corp
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Fuji Jukogyo KK filed Critical NEC Corp
Priority to JP2004246775A priority Critical patent/JP4108655B2/en
Publication of JP2006067691A publication Critical patent/JP2006067691A/en
Application granted granted Critical
Publication of JP4108655B2 publication Critical patent/JP4108655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、バッテリ制御装置およびバッテリ温度制御方法に関する。   The present invention relates to a battery control device and a battery temperature control method.

従来、バッテリの電力を車両内の駆動モータに供給するバッテリ制御装置が知られている。バッテリは、充放電されると、電流量に応じて発熱する。   2. Description of the Related Art Conventionally, a battery control device that supplies battery power to a drive motor in a vehicle is known. When the battery is charged and discharged, it generates heat according to the amount of current.

バッテリは、ある規定の温度以上になると、電解液の分解が始まり、寿命および性能が劣化する。従来、高温に起因するバッテリの劣化を抑制する技術が知られている。   When the battery reaches a predetermined temperature or higher, decomposition of the electrolyte begins, and the life and performance deteriorate. Conventionally, a technique for suppressing deterioration of a battery due to high temperature is known.

特許文献1(特開2000−209789号公報)には、バッテリの温度が上昇すると、バッテリに流れる電流を小さくしてバッテリの発熱を抑制し、高温に起因するバッテリの劣化を抑制する充放電制御装置が記載されている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-209789) discloses charge / discharge control that suppresses heat generation of a battery by reducing current flowing through the battery and suppressing deterioration of the battery due to high temperature when the temperature of the battery rises. An apparatus is described.

特許文献2(特開2003−132956号公報)には、バッテリの温度が上昇すると、バッテリが負荷に供給する電力量(具体的には電流)を少なくしてバッテリの発熱を抑制し、高温に起因するバッテリの劣化を抑制する放電制御装置が記載されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2003-132956), when the temperature of the battery rises, the amount of power (specifically, current) supplied by the battery to the load is reduced to suppress the heat generation of the battery, and the temperature is increased. A discharge control device that suppresses the deterioration of the resulting battery is described.

また、高温に起因するバッテリの劣化を抑制するために、バッテリの寿命および性能が悪化する危険な高温下で使用される可能性のあるバッテリに、バッテリの温度を管理する冷却システムが付加されることもある。   In addition, a cooling system for managing the battery temperature is added to a battery that may be used under a dangerous high temperature that deteriorates the life and performance of the battery in order to suppress the deterioration of the battery due to the high temperature. Sometimes.

また、バッテリは、化学反応を利用しているため、低温になると化学反応の速度が低下して出力可能な電力が低下する。従来、低温に起因する出力電力の低下を抑制する技術が知られている。   In addition, since the battery uses a chemical reaction, when the temperature becomes low, the speed of the chemical reaction decreases and the power that can be output decreases. Conventionally, a technique for suppressing a decrease in output power due to low temperature is known.

特許文献3(特開平11−355967号公報)には、低温時にバッテリの充電量(SOC:State of Charge)を高くして、低温時の出力電力の低下を抑制するバッテリ制御装置が記載されている。なお、SOCは、バッテリの充電率も示す。
特開2003−209789号公報 特開2003−132956号公報 特開平11−355967号公報
Patent Document 3 (Japanese Patent Laid-Open No. 11-355967) describes a battery control device that increases a state of charge (SOC) of a battery at a low temperature and suppresses a decrease in output power at a low temperature. Yes. The SOC also indicates the battery charge rate.
JP 2003-209789 A JP 2003-132958 A JP 11-355967 A

特許文献1に記載の技術では、バッテリの温度が上昇すると、バッテリに流れる電流が小さくなるため、電流が小さくなった分だけ、バッテリが負荷に供給する電力が減少してしまい、バッテリは車両のアクセル等から要求される電力を出力できなくなってしまう。このため、バッテリの出力電力を利用して動作する駆動部の動作が不安定になってしまうという問題が生じる。   In the technique described in Patent Literature 1, when the temperature of the battery rises, the current flowing through the battery becomes small. Therefore, the power supplied to the load by the amount of the reduced current is reduced. The power required from the accelerator or the like cannot be output. For this reason, the problem that operation | movement of the drive part which operate | moves using the output electric power of a battery will become unstable arises.

特許文献2に記載の技術では、バッテリの温度が上昇すると、バッテリが負荷に供給する電力量(具体的には電流)が少なくなるため、特許文献1に記載の技術と同様に、バッテリは車両のアクセル等から要求される電力を出力できなくなってしまい、バッテリの出力電力を利用する駆動部の動作が不安定になってしまうという問題が生じる。   In the technique described in Patent Document 2, since the amount of electric power (specifically, current) supplied from the battery to the load decreases when the temperature of the battery rises, the battery is a vehicle as in the technique described in Patent Document 1. Therefore, there is a problem that the power required from the accelerator or the like cannot be output, and the operation of the drive unit using the output power of the battery becomes unstable.

また、冷却システムを用いてバッテリの温度を管理する場合、バッテリの発熱量が大きくなると、冷却システムが大型化してしまう。   Moreover, when managing the temperature of a battery using a cooling system, if the emitted-heat amount of a battery becomes large, a cooling system will enlarge.

また、特許文献3に記載の技術では、低温時の出力電力の低下を抑制することは可能であるが、低温状態のバッテリの温度を上昇させることは困難である。   Further, with the technique described in Patent Document 3, it is possible to suppress a decrease in output power at a low temperature, but it is difficult to increase the temperature of a battery in a low temperature state.

本発明の目的は、バッテリの出力電力が要求電力を保ちつつ、バッテリの温度に応じてバッテリの発熱量を制御可能なバッテリ制御装置およびバッテリ温度制御方法を提供することである。   An object of the present invention is to provide a battery control device and a battery temperature control method capable of controlling the amount of heat generated by a battery according to the temperature of the battery while the output power of the battery maintains the required power.

また、本発明の他の目的は、バッテリが高温になったときに、バッテリの出力電力が要求電力を保ちつつ、バッテリの発熱量を抑制することが可能なバッテリ制御装置およびバッテリ温度制御方法を提供することである。   Another object of the present invention is to provide a battery control device and a battery temperature control method capable of suppressing the heat generation amount of the battery while maintaining the required output power of the battery when the battery becomes high temperature. Is to provide.

また、本発明のさらに他の目的は、バッテリ冷却システムの大型化を防ぐことが可能なバッテリ制御装置およびバッテリ温度制御方法を提供することである。   Still another object of the present invention is to provide a battery control device and a battery temperature control method capable of preventing an increase in size of a battery cooling system.

また、本発明のさらに他の目的は、バッテリが低温になったときに、バッテリの出力電力が要求電力を保ちつつ、バッテリの発熱量を促進することが可能なバッテリ制御装置およびバッテリ温度制御方法を提供することである。   Still another object of the present invention is to provide a battery control device and a battery temperature control method capable of promoting the amount of heat generated by the battery while maintaining the required output power of the battery when the battery becomes low temperature. Is to provide.

上記の目的を達成するため、本発明のバッテリ制御装置は、SOCの増大に応じて電圧が増大するバッテリと、前記バッテリの温度を検出する温度検出部と、前記温度検出部が検出したバッテリの温度が所定温度未満のときには、前記バッテリのSOCが第1のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上のときには、該バッテリのSOCが該第1のSOC領域より高い第2のSOC領域に含まれるように前記バッテリの充放電を制御する制御部と、必要となる電力を示す旨の必要電力情報を受け付ける必要電力情報受付部と、前記制御部の制御によりバッテリの温度に応じたSOCとされている前記バッテリから前記必要電力情報が示す電力を取得する際の電流を、前記バッテリの電圧に応じて変更する電力取得部とを含む。   In order to achieve the above object, a battery control device according to the present invention includes a battery whose voltage increases in accordance with an increase in SOC, a temperature detection unit that detects the temperature of the battery, and a battery that is detected by the temperature detection unit. When the temperature is lower than the predetermined temperature, charging / discharging of the battery is controlled so that the SOC of the battery is included in the first SOC region. When the temperature of the battery is equal to or higher than the predetermined temperature, the SOC of the battery is A control unit that controls charging / discharging of the battery so as to be included in a second SOC region that is higher than the first SOC region, a required power information receiving unit that receives necessary power information indicating the required power, and The current at the time of acquiring the electric power indicated by the necessary electric power information from the battery, which is an SOC according to the temperature of the battery under the control of the control unit, is the voltage of the battery And a power acquisition unit to change accordingly.

また、本発明のバッテリ温度制御方法は、SOCの増大に応じて電圧が増大するバッテリの温度を検出する温度検出ステップと、前記温度検出ステップで検出したバッテリの温度が所定温度未満のときには、前記バッテリのSOCが第1のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上のときには、該バッテリのSOCが該第1のSOC領域より高い第2のSOC領域に含まれるように前記バッテリの充放電を制御する制御ステップと、必要となる電力を示す旨の必要電力情報を受け付ける必要電力情報受付ステップと、前記制御部の制御によりバッテリの温度に応じたSOCとされている前記バッテリから前記必要電力情報が示す電力を取得する際の電流を、前記バッテリの電圧に応じて変更する電力取得ステップとを含む。   The battery temperature control method of the present invention includes a temperature detection step for detecting a temperature of a battery whose voltage increases with an increase in SOC, and when the battery temperature detected in the temperature detection step is less than a predetermined temperature, The charging / discharging of the battery is controlled so that the SOC of the battery is included in the first SOC region, and when the temperature of the battery is equal to or higher than the predetermined temperature, the second SOC is higher than the first SOC region. A control step for controlling charging / discharging of the battery so as to be included in the SOC region, a necessary power information receiving step for receiving necessary power information indicating the required power, and a control of the control unit to control the battery temperature. Depending on the voltage of the battery, the current at the time of obtaining the power indicated by the required power information from the battery that is the SOC Further to include a power acquisition step.

上記の発明によれば、バッテリの温度が所定温度未満のときには、バッテリのSOCは第1のSOC領域に含まれるようになり、バッテリの温度が所定温度以上のときには、バッテリのSOCは第1のSOC領域より高い第2のSOC領域に含まれるようになる。   According to the above invention, when the battery temperature is lower than the predetermined temperature, the battery SOC is included in the first SOC region, and when the battery temperature is equal to or higher than the predetermined temperature, the battery SOC is the first SOC region. It is included in the second SOC region higher than the SOC region.

バッテリはSOCの増大に応じて電圧が増大するため、バッテリの平均電圧は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が高くなる。よって、必要電力情報が示す電力がバッテリから取得される際にバッテリから取得される平均電流は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなる。バッテリの発熱量は電流の2乗に比例するので、バッテリの発熱量はバッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなる。   Since the voltage of the battery increases as the SOC increases, the average voltage of the battery is higher when the battery temperature is equal to or higher than the predetermined temperature than when the battery temperature is lower than the predetermined temperature. Therefore, when the power indicated by the required power information is acquired from the battery, the average current acquired from the battery is smaller when the battery temperature is equal to or higher than the predetermined temperature than when the battery temperature is lower than the predetermined temperature. Since the amount of heat generated by the battery is proportional to the square of the current, the amount of heat generated by the battery is smaller when the temperature of the battery is above the predetermined temperature than when the temperature of the battery is lower than the predetermined temperature.

したがって、バッテリが高温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を抑制することが可能となり、また、バッテリが低温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を促進することが可能となる。   Therefore, when the battery becomes high temperature, it is possible to suppress the heat generation amount of the battery while maintaining the required output power of the battery, and when the battery becomes low temperature, the output power of the battery is required. It is possible to promote the amount of heat generated by the battery while maintaining the electric power.

また、バッテリが高温になったときに、バッテリの発熱量を抑制することが可能となるため、バッテリ冷却システムの大型化を防ぐことが可能となる。   Moreover, since it becomes possible to suppress the emitted-heat amount of a battery when a battery becomes high temperature, it becomes possible to prevent the enlargement of a battery cooling system.

前記第1のSOC領域の幅を前記第2のSOC領域の幅より広くすることが望ましい。   It is desirable that the width of the first SOC region is wider than the width of the second SOC region.

上記の発明によれば、第1のSOC領域の幅が第2のSOC領域の幅より広いため、バッテリから取り出せる電力が、バッテリ温度が所定温度以上のときより所定温度未満のときの方が大きくなる。このため、バッテリ温度の低下により、バッテリの出力電力が低下することを抑制可能となる。   According to the above invention, since the width of the first SOC region is wider than the width of the second SOC region, the power that can be extracted from the battery is larger when the battery temperature is lower than the predetermined temperature than when the battery temperature is equal to or higher than the predetermined temperature. Become. For this reason, it becomes possible to suppress that the output electric power of a battery falls by the fall of battery temperature.

前記温度検出部が検出したバッテリの温度が所定温度未満のときには、前記バッテリの温度の低下に伴い、前記第1のSOC領域を徐々に低くしていくことが望ましい。   When the temperature of the battery detected by the temperature detection unit is lower than a predetermined temperature, it is desirable to gradually lower the first SOC region as the temperature of the battery decreases.

上記の発明によれば、バッテリの出力電力が要求電力を保ちつつ、バッテリの温度が低くなるにつれてバッテリの発熱量を徐々に上げることが可能になる。このため、バッテリの発熱量が必要以上に大きくなることを抑制できる。   According to the above invention, it is possible to gradually increase the amount of heat generated by the battery as the battery temperature decreases while the output power of the battery maintains the required power. For this reason, it can suppress that the emitted-heat amount of a battery becomes large more than necessary.

上記バッテリ制御装置において、前記制御部は、さらに、前記温度検出部が検出したバッテリの温度が前記所定温度よりも高い特定温度以上のときには、前記バッテリのSOCが前記第2のSOC領域より高い第3のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上でかつ該特定温度未満のときには、該バッテリのSOCが該第2のSOC領域に含まれるように該バッテリの充放電を制御する ことが望ましい。   In the battery control apparatus, the control unit may further include a second step in which the SOC of the battery is higher than the second SOC region when the temperature of the battery detected by the temperature detection unit is equal to or higher than a specific temperature higher than the predetermined temperature. The charging / discharging of the battery is controlled so as to be included in the SOC region of 3. When the temperature of the battery is equal to or higher than the predetermined temperature and lower than the specific temperature, the SOC of the battery is included in the second SOC region. Thus, it is desirable to control charging and discharging of the battery.

上記バッテリ温度制御方法において、前記制御ステップは、さらに、前記温度検出ステップで検出したバッテリの温度が前記所定温度よりも高い特定温度以上のときには、前記バッテリのSOCが前記第2のSOC領域より高い第3のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上でかつ該特定温度未満のときには、該バッテリのSOCが該第2のSOC領域に含まれるように該バッテリの充放電を制御することが望ましい。   In the battery temperature control method, in the control step, when the temperature of the battery detected in the temperature detection step is equal to or higher than a specific temperature higher than the predetermined temperature, the SOC of the battery is higher than the second SOC region. The charging / discharging of the battery is controlled to be included in the third SOC region, and when the temperature of the battery is equal to or higher than the predetermined temperature and lower than the specific temperature, the SOC of the battery is included in the second SOC region. It is desirable to control charging / discharging of the battery.

上記の発明によれば、さらに、バッテリの温度が所定温度よりも高い特定温度以上のときには、バッテリの充電量が第2のSOC領域より高い第3のSOC領域に含まれるようになり、バッテリの温度が所定温度以上でかつ特定温度未満のときには、バッテリの充電量が第2のSOC領域に含まれるようになる。このため、バッテリが高温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を抑制することが可能となり、かつ、バッテリが低温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を促進することが可能となる。   According to the above invention, when the battery temperature is equal to or higher than the specific temperature higher than the predetermined temperature, the charge amount of the battery is included in the third SOC region higher than the second SOC region, and the battery When the temperature is equal to or higher than the predetermined temperature and lower than the specific temperature, the charge amount of the battery is included in the second SOC region. For this reason, when the battery becomes high temperature, it becomes possible to suppress the heat generation amount of the battery while maintaining the required output power of the battery, and when the battery becomes low temperature, the output power of the battery is reduced. It is possible to promote the amount of heat generated by the battery while maintaining the required power.

本発明によれば、バッテリの温度が所定温度未満のときには、バッテリのSOCは第1のSOC領域に含まれるようになり、バッテリの温度が所定温度以上のときには、バッテリのSOCは第1のSOC領域より高い第2のSOC領域に含まれるようになる。   According to the present invention, when the temperature of the battery is lower than the predetermined temperature, the SOC of the battery is included in the first SOC region, and when the temperature of the battery is equal to or higher than the predetermined temperature, the SOC of the battery is the first SOC. The second SOC region is higher than the region.

バッテリはSOCの増大に応じて電圧が増大するため、バッテリの平均電圧は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が高くなる。よって、必要電力情報が示す電力がバッテリから取得される際にバッテリから取得される平均電流は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなる。バッテリの発熱量は電流の2乗に比例するので、バッテリの発熱量はバッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなる。   Since the voltage of the battery increases as the SOC increases, the average voltage of the battery is higher when the battery temperature is equal to or higher than the predetermined temperature than when the battery temperature is lower than the predetermined temperature. Therefore, when the power indicated by the required power information is acquired from the battery, the average current acquired from the battery is smaller when the battery temperature is equal to or higher than the predetermined temperature than when the battery temperature is lower than the predetermined temperature. Since the amount of heat generated by the battery is proportional to the square of the current, the amount of heat generated by the battery is smaller when the temperature of the battery is above the predetermined temperature than when the temperature of the battery is lower than the predetermined temperature.

したがって、バッテリが高温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を抑制することが可能となり、また、バッテリが低温になったときに、バッテリの出力電力が要求電力を保ちつつバッテリの発熱量を促進することが可能となる。   Therefore, when the battery becomes high temperature, it is possible to suppress the heat generation amount of the battery while maintaining the required output power of the battery, and when the battery becomes low temperature, the output power of the battery is required. It is possible to promote the amount of heat generated by the battery while maintaining the electric power.

また、バッテリが高温になったときに、バッテリの発熱量を抑制することが可能となるため、バッテリ冷却システムの大型化を防ぐことが可能となる。   Moreover, since it becomes possible to suppress the emitted-heat amount of a battery when a battery becomes high temperature, it becomes possible to prevent the enlargement of a battery cooling system.

以下、本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例のバッテリ制御装置を用いたバイブリッド型電気自動車を示したブロック図である。   FIG. 1 is a block diagram showing a hybrid electric vehicle using a battery control device according to an embodiment of the present invention.

図1において、バイブリッド型電気自動車は、バッテリ1と、温度検出部2と、SOC用センサ3と、制御部4と、アクセル5と、インバータ6と、エンジン7と、発電機8と、整流器9と、エンジン発電ユニットコントローラ10と、モータ11と、減速機12と、タイヤ13とを含む。なお、バッテリ1と、温度検出部2と、制御部4と、アクセル5と、インバータ6とは、バッテリ制御装置に含まれる。   In FIG. 1, a hybrid electric vehicle includes a battery 1, a temperature detection unit 2, an SOC sensor 3, a control unit 4, an accelerator 5, an inverter 6, an engine 7, a generator 8, and a rectifier. 9, an engine power generation unit controller 10, a motor 11, a speed reducer 12, and a tire 13. The battery 1, the temperature detection unit 2, the control unit 4, the accelerator 5, and the inverter 6 are included in the battery control device.

バッテリ1は、例えば、リチウム・イオン電池であり、充電量の増大に応じて電圧が増大する電池である。なお、バッテリ1は、リチウム・イオン電池に限らず、充電量の増大に応じて電圧が増大する電池であればよい。   The battery 1 is, for example, a lithium ion battery, and a battery whose voltage increases as the amount of charge increases. The battery 1 is not limited to a lithium ion battery, and may be a battery whose voltage increases with an increase in charge amount.

温度検出部2は、例えば、温度センサであり、バッテリ1の温度を検出する。   The temperature detection unit 2 is a temperature sensor, for example, and detects the temperature of the battery 1.

SOC用センサ3は、バッテリ1のSOCを検出するために必要な情報を検出する。本実施例では、SOC用センサ3は、バッテリ1の電圧を検出する電圧計と、バッテリ1に流れる電流を検出する電流計とを含む。なお、以下で説明するSOCは、バッテリ1の充電率を示すが、このSOCをバッテリの充電量と読みかえてもよい。   The SOC sensor 3 detects information necessary for detecting the SOC of the battery 1. In the present embodiment, the SOC sensor 3 includes a voltmeter that detects the voltage of the battery 1 and an ammeter that detects a current flowing through the battery 1. Note that the SOC described below indicates the charging rate of the battery 1, but this SOC may be read as the amount of charge of the battery.

制御部4は、SOC用センサ3の検出結果に基づいてバッテリ1のSOCを算出する。例えば、制御部4は、SOC用センサ3内の電流計で検出された電流の積算値とSOC用センサ3内の電圧計で検出された電圧とに基づいて、バッテリ1のSOCを算出する。   The control unit 4 calculates the SOC of the battery 1 based on the detection result of the SOC sensor 3. For example, the control unit 4 calculates the SOC of the battery 1 based on the integrated value of the current detected by the ammeter in the SOC sensor 3 and the voltage detected by the voltmeter in the SOC sensor 3.

また、制御部4は、バッテリ1のSOCが所定のSOC領域に収まるようにバッテリ1の充放電を制御する。   Control unit 4 controls charging / discharging of battery 1 so that the SOC of battery 1 is within a predetermined SOC region.

例えば、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが所定のSOC領域の下限値に達すると、エンジン発電ユニットコントローラ10に充電信号を出力してバッテリ1の充電を指示する。また、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが所定のSOC領域の上限値に達すると、エンジン発電ユニットコントローラ10に充電中止信号を出力してバッテリ1の放電を指示する。   For example, when the SOC of the battery 1 calculated by the control unit 4 based on the detection result of the SOC sensor 3 reaches a lower limit value of a predetermined SOC region, the control unit 4 outputs a charge signal to the engine power generation unit controller 10 to output the battery. 1 is instructed to charge. Further, when the SOC of the battery 1 calculated by itself based on the detection result of the SOC sensor 3 reaches the upper limit value of the predetermined SOC region, the control unit 4 outputs a charge stop signal to the engine power generation unit controller 10. Instructing the battery 1 to discharge.

また、制御部4は、温度検出部2が検出したバッテリ1の温度に応じて、所定のSOC領域を変更する。   Further, the control unit 4 changes a predetermined SOC region according to the temperature of the battery 1 detected by the temperature detection unit 2.

具体的には、制御部4は、温度検出部2が検出したバッテリ1の温度が所定温度未満のときには、バッテリ1のSOCが第1のSOC領域に含まれるようにバッテリ1の充放電を制御し、バッテリ1の温度が所定温度以上のときには、バッテリ1のSOCが第1のSOC領域より高い第2のSOC領域に含まれるようにバッテリ1の充放電を制御する。   Specifically, control unit 4 controls charging / discharging of battery 1 such that the SOC of battery 1 is included in the first SOC region when the temperature of battery 1 detected by temperature detection unit 2 is lower than a predetermined temperature. When the temperature of the battery 1 is equal to or higher than the predetermined temperature, the charging / discharging of the battery 1 is controlled so that the SOC of the battery 1 is included in the second SOC region higher than the first SOC region.

例えば、制御部4は、温度検出部2が検出したバッテリ1の温度が、バッテリ1の発熱量を抑制したい最低バッテリ温度としての所定温度(例えば、35度C)未満のときには、バッテリ1のSOCがSOC30%〜SOC70%の間の領域(第1のSOC領域)に含まれるようにバッテリ1の充放電を制御し、バッテリ1の温度が35度C以上のときには、バッテリ1のSOCがSOC60%〜SOC80%の間の領域(第2のSOC領域)に含まれるようにバッテリ1の充放電を制御する。   For example, when the temperature of the battery 1 detected by the temperature detection unit 2 is less than a predetermined temperature (for example, 35 degrees C.) as the minimum battery temperature at which the amount of heat generated by the battery 1 is desired to be suppressed, the control unit 4 determines the SOC of the battery 1. Is controlled to be included in the region between SOC 30% and SOC 70% (first SOC region), and when the temperature of the battery 1 is 35 degrees C or higher, the SOC of the battery 1 is SOC 60%. The charging / discharging of the battery 1 is controlled so as to be included in the region between the SOC of 80% (second SOC region).

なお、バッテリ1の発熱量を抑制したい最低バッテリ温度としての所定温度は、35度Cに限るものではなく適宜変更可能であり、また、第2のSOC領域が第1のSOC領域より高ければ、第1および第2のSOC領域も適宜変更可能である。   Note that the predetermined temperature as the minimum battery temperature at which the amount of heat generated by the battery 1 is desired to be suppressed is not limited to 35 degrees C and can be changed as appropriate. If the second SOC region is higher than the first SOC region, The first and second SOC regions can be changed as appropriate.

また、制御部4は、温度検出部2が検出したバッテリ1の温度が、バッテリ1の発熱を促進したい最高バッテリ温度としての所定温度(例えは、0度C)未満のときには、バッテリ1のSOCがSOC20%〜SOC60%の間の領域(第1のSOC領域)に含まれるようにバッテリ1の充放電を制御し、バッテリ1の温度が0度C以上のときには、バッテリ1のSOCがSOC60%〜SOC80%の間の領域(第2のSOC領域)に含まれるようにバッテリ1の充放電を制御してもよい。なお、この場合、バッテリ1の発熱を促進したい最高バッテリ温度としての所定温度は0度Cに限るものではなく適宜変更可能であり、また、第2のSOC領域が第1のSOC領域より高ければ、第1および第2のSOC領域も適宜変更可能である。   In addition, when the temperature of the battery 1 detected by the temperature detection unit 2 is lower than a predetermined temperature (for example, 0 degree C) as the maximum battery temperature at which the heat generation of the battery 1 is desired to be promoted, the control unit 4 Is controlled to be included in the region between SOC 20% and SOC 60% (first SOC region). When the temperature of battery 1 is 0 ° C. or higher, the SOC of battery 1 is SOC 60%. The charging / discharging of the battery 1 may be controlled so as to be included in the region between the SOC of 80% (second SOC region). In this case, the predetermined temperature as the maximum battery temperature at which the heat generation of the battery 1 is desired to be promoted is not limited to 0 ° C. and can be changed as appropriate, and if the second SOC region is higher than the first SOC region. The first and second SOC regions can be changed as appropriate.

必要電力情報受付部としてのアクセル5は、ユーザによって操作され、必要となる電力を示す旨の必要電力情報を受け付ける。アクセル5は、受け付けた必要電力情報を制御部4に供給する。制御部4は、アクセル5から供給される必要電力情報をインバータ6に出力する。   The accelerator 5 as a required power information receiving unit is operated by a user and receives required power information indicating the required power. The accelerator 5 supplies the received required power information to the control unit 4. The control unit 4 outputs necessary power information supplied from the accelerator 5 to the inverter 6.

電力取得部としてのインバータ6は、バッテリ1の電圧に応じて、換言すると、バッテリ1のSOCに応じて、バッテリ1から取得する電流を変更して、アクセル5が受け付けた必要電力情報が示す電力をバッテリ1から取得する。   The inverter 6 as the power acquisition unit changes the current acquired from the battery 1 according to the voltage of the battery 1, in other words, according to the SOC of the battery 1, and indicates the power indicated by the required power information received by the accelerator 5. Is obtained from the battery 1.

なお、バッテリ1の温度が所定温度未満のときにはバッテリ1のSOCは第1のSOC領域に含まれるようになり、バッテリ1の温度が所定温度以上のときにはバッテリ1のSOCは第1のSOC領域より高い第2のSOC領域に含まれるようになるため、バッテリ1の平均電圧は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が高くなる。   When the temperature of the battery 1 is lower than the predetermined temperature, the SOC of the battery 1 is included in the first SOC region. When the temperature of the battery 1 is higher than the predetermined temperature, the SOC of the battery 1 is higher than that of the first SOC region. Since it is included in the high second SOC region, the average voltage of the battery 1 becomes higher when the temperature of the battery is equal to or higher than the predetermined temperature than when the temperature of the battery is lower than the predetermined temperature.

このため、インバータ6が必要電力情報に示されている電力をバッテリ1から取得する際にバッテリ1から取得される平均電流は、バッテリ1の温度が所定温度未満のときより所定温度以上のときの方が小さくなり、バッテリ1の発熱量は、バッテリ1の温度が所定温度未満のときより所定温度以上のときの方が小さくなる。なお、バッテリ1の発熱量は、バッテリ1を流れる電流の2乗に比例する。   For this reason, the average current acquired from the battery 1 when the inverter 6 acquires the power indicated in the necessary power information from the battery 1 is higher than the temperature when the temperature of the battery 1 is lower than the predetermined temperature. The amount of heat generated by the battery 1 is smaller when the temperature of the battery 1 is equal to or higher than the predetermined temperature than when the temperature of the battery 1 is lower than the predetermined temperature. Note that the amount of heat generated by the battery 1 is proportional to the square of the current flowing through the battery 1.

インバータ6は、バッテリ1から取得した電力を交流電力に変換してモータ11に印加する。   The inverter 6 converts the power acquired from the battery 1 into AC power and applies it to the motor 11.

エンジン7は、例えば、ガソリンエンジンまたはディーゼルエンジンなどの内燃機関である。発電機8は、エンジン7によって駆動されて交流電力を発生する。整流器9は、発電機が発生する交流電力を直流電力に変換する。なお、発電機8が直流電力を発生する場合には、整流器9を省略することができる。   The engine 7 is an internal combustion engine such as a gasoline engine or a diesel engine, for example. The generator 8 is driven by the engine 7 to generate AC power. The rectifier 9 converts AC power generated by the generator into DC power. When the generator 8 generates DC power, the rectifier 9 can be omitted.

整流器9から出力された電力はバッテリ1に供給され、バッテリ1はこの電力を充電する。また、整流器9から出力された電力は、インバータ6にも供給され、インバータ6で交流電力に変換されてモータ11に印加される。   The electric power output from the rectifier 9 is supplied to the battery 1, and the battery 1 charges this electric power. Further, the power output from the rectifier 9 is also supplied to the inverter 6, converted into AC power by the inverter 6, and applied to the motor 11.

エンジン発電ユニットコントローラ10は、制御部4から充電信号が供給されると、エンジン7と発電機8とを作動させてバッテリ1を充電し、また、制御部4から充電中止信号が供給されると、エンジン7と発電機8とを停止させてバッテリ1を放電する。   When the charging signal is supplied from the control unit 4, the engine power generation unit controller 10 operates the engine 7 and the generator 8 to charge the battery 1, and when the charging stop signal is supplied from the control unit 4. Then, the engine 7 and the generator 8 are stopped and the battery 1 is discharged.

モータ11は、インバータ6から供給される交流電力によって駆動する。モータ11の出力軸は、減速機12を介してタイヤ13に接続されている。   The motor 11 is driven by AC power supplied from the inverter 6. The output shaft of the motor 11 is connected to the tire 13 via the speed reducer 12.

次に、動作を説明する。   Next, the operation will be described.

図2は、バッテリ制御装置の動作を説明するためのフローチャートである。以下、図2を参照してバッテリ制御装置の動作を説明する。   FIG. 2 is a flowchart for explaining the operation of the battery control device. Hereinafter, the operation of the battery control apparatus will be described with reference to FIG.

ステップ21では、制御部4は、温度検出部2が検出したバッテリ1の温度を受け付けて、バッテリ1の温度を検出し、その後、ステップ22に進む。   In step 21, the control unit 4 receives the temperature of the battery 1 detected by the temperature detection unit 2, detects the temperature of the battery 1, and then proceeds to step 22.

ステップ22では、制御部4は、バッテリ1の温度が所定温度(バッテリ1の発熱量を抑制したい最低バッテリ温度であり、例えば35度C)未満であればステップ23に進み、バッテリ1の温度が所定温度以上であればステップ24に進む。   In step 22, if the temperature of the battery 1 is less than a predetermined temperature (the minimum battery temperature at which the amount of heat generated by the battery 1 is desired to be suppressed, for example, 35 degrees C), the control unit 4 proceeds to step 23 and the temperature of the battery 1 is increased. If the temperature is equal to or higher than the predetermined temperature, the process proceeds to step 24.

ステップ23では、制御部4は、所定のSOC領域として、第1のSOC領域(SOC30%〜SOC70%の間の領域)を設定する。その後、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが第1のSOC領域の間の領域に含まれるように、充電信号と充電中止信号とをエンジン発電ユニットコントローラ10に適宜出力してバッテリ1の充放電を制御する。   In step 23, control unit 4 sets a first SOC region (a region between SOC 30% and SOC 70%) as the predetermined SOC region. Thereafter, the control unit 4 sends the charge signal and the charge stop signal to the engine so that the SOC of the battery 1 calculated by itself based on the detection result of the SOC sensor 3 is included in the region between the first SOC regions. The battery 1 is appropriately output to the power generation unit controller 10 to control charging / discharging of the battery 1.

ステップ24では、制御部4は、所定のSOC領域として、第2のSOC領域(SOC60%〜SOC80%の間の領域)を設定する。その後、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが第2のSOC領域の間の領域に含まれるように、充電信号と充電中止信号とをエンジン発電ユニットコントローラ10に適宜出力してバッテリ1の充放電を制御する。   In step 24, control unit 4 sets a second SOC area (an area between SOC 60% and SOC 80%) as the predetermined SOC area. Thereafter, the control unit 4 outputs the charge signal and the charge stop signal so that the SOC of the battery 1 calculated by itself based on the detection result of the SOC sensor 3 is included in the region between the second SOC regions. The battery 1 is appropriately output to the power generation unit controller 10 to control charging / discharging of the battery 1.

バッテリ1の温度が所定温度未満のときにはバッテリ1のSOCは第1のSOC領域に含まれるようになり、バッテリ1の温度が所定温度以上のときにはバッテリ1のSOCは第1のSOC領域より高い第2のSOC領域に含まれるようになるため、バッテリ1の平均電圧は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が高くなる。   When the temperature of the battery 1 is lower than the predetermined temperature, the SOC of the battery 1 is included in the first SOC region, and when the temperature of the battery 1 is higher than the predetermined temperature, the SOC of the battery 1 is higher than the first SOC region. Therefore, the average voltage of the battery 1 is higher when the temperature of the battery is equal to or higher than the predetermined temperature than when the temperature of the battery is lower than the predetermined temperature.

ステップ25では、バッテリ1が放電状態であるとき、インバータ6は、バッテリ1の電圧に応じてバッテリ1から取得する電流を変更して、アクセル5が受け付けた必要電力情報が示す電力をバッテリ1から取得する。   In step 25, when the battery 1 is in a discharged state, the inverter 6 changes the current acquired from the battery 1 in accordance with the voltage of the battery 1, and the power indicated by the required power information received by the accelerator 5 from the battery 1. get.

インバータ6が必要電力情報によって示される電力をバッテリ1から取得する際にバッテリ1から取得される平均電流は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなり、バッテリ1の発熱量は、バッテリの温度が所定温度未満のときより所定温度以上のときの方が小さくなる。このため、所定温度が、バッテリ1の発熱量を抑制したい最低バッテリ温度に設定されると、バッテリ1の温度が所定温度以上になると、バッテリの出力電力は要求電力を保ちつつ、バッテリ1の発熱量が抑制される。よって、バッテリ冷却システムの大型化を防ぐことが可能となる。   When the inverter 6 acquires the power indicated by the required power information from the battery 1, the average current acquired from the battery 1 is smaller when the battery temperature is higher than the predetermined temperature than when the battery temperature is lower than the predetermined temperature. The calorific value of 1 is smaller when the temperature of the battery is above the predetermined temperature than when it is below the predetermined temperature. For this reason, when the predetermined temperature is set to the minimum battery temperature at which the amount of heat generated by the battery 1 is desired to be suppressed, when the temperature of the battery 1 becomes equal to or higher than the predetermined temperature, the output power of the battery maintains the required power and the heat of the battery 1 is generated. The amount is suppressed. Therefore, it is possible to prevent the battery cooling system from becoming large.

なお、制御部4において、所定温度として、バッテリ1の発熱を促進したい最高バッテリ温度(例えば0度C)が設定され、第1のSOC領域としてSOC20%〜SOC60%の間の領域が用いられ、第2のSOC領域としてSOC60%〜SOC80%の間の領域が用いられると、バッテリ1の温度が所定温度未満になると、バッテリ1の出力電力が要求電力を保ちつつ、バッテリ1の発熱が促進される。   In the control unit 4, a maximum battery temperature (for example, 0 degree C) that is desired to promote heat generation of the battery 1 is set as the predetermined temperature, and an area between SOC 20% and SOC 60% is used as the first SOC area. When a region between SOC 60% and SOC 80% is used as the second SOC region, when the temperature of the battery 1 becomes lower than a predetermined temperature, the heat generation of the battery 1 is promoted while the output power of the battery 1 maintains the required power. The

この場合、バッテリ1の自己発熱により、バッテリ1の温度をバッテリ1が設計上の性能を発揮できる温度まで短時間で上昇させることが可能となる。   In this case, the self-heating of the battery 1 makes it possible to increase the temperature of the battery 1 in a short time to a temperature at which the battery 1 can exhibit the designed performance.

また、制御部4は、第1のSOC領域の幅を第2のSOC領域の幅より広くしているため、インバータ6がバッテリ1から取り出せる電力が、バッテリ1の温度が所定温度以上のときより所定温度未満のときの方が大きくなる。このため、バッテリ1の温度の低下により、バッテリ1の出力電力が低下することを抑制可能となる。   Moreover, since the control part 4 makes the width | variety of the 1st SOC area | region wider than the width | variety of a 2nd SOC area | region, the electric power which the inverter 6 can take out from the battery 1 is compared with the time when the temperature of the battery 1 is more than predetermined temperature. It becomes larger when the temperature is lower than the predetermined temperature. For this reason, it becomes possible to suppress that the output electric power of the battery 1 falls by the fall of the temperature of the battery 1. FIG.

また、従来、低温時はバッテリ1の内部抵抗が非常に大きくなるため、バッテリ1が車両の回生エネルギを吸収できなくなる可能性が生じるという問題が発生するが、本実施例では、バッテリ1の温度が所定温度未満になるとバッテリ1の電圧が低下するため、バッテリ1による回生エネルギの吸収量も増加することができる。   Conventionally, since the internal resistance of the battery 1 becomes very large at low temperatures, there is a possibility that the battery 1 may not be able to absorb the regenerative energy of the vehicle. In this embodiment, the temperature of the battery 1 is increased. Since the voltage of the battery 1 decreases when the temperature becomes lower than the predetermined temperature, the amount of regenerative energy absorbed by the battery 1 can also be increased.

なお、制御部4は、温度検出部2が検出したバッテリ1の温度が所定温度未満のときには、バッテリ1の温度の低下に伴い、第1のSOC領域を徐々に低くしていくようにしてもよい。   When the temperature of the battery 1 detected by the temperature detection unit 2 is lower than a predetermined temperature, the control unit 4 may gradually lower the first SOC region as the temperature of the battery 1 decreases. Good.

図3は、制御部4が、バッテリ1の温度が所定温度未満のときに、バッテリ1の温度の低下に伴い、第1のSOC領域を徐々に低くしていく動作の一例を説明するための説明図である。   FIG. 3 illustrates an example of an operation in which the control unit 4 gradually lowers the first SOC region as the temperature of the battery 1 decreases when the temperature of the battery 1 is lower than a predetermined temperature. It is explanatory drawing.

制御部4は、バッテリ1の温度が所定温度(図3では0度C)以上のときには、所定のSOC領域として、第2のSOC領域(SOC60%〜SOC80%の間の領域)を設定する。   When the temperature of battery 1 is equal to or higher than a predetermined temperature (0 degree C in FIG. 3), control unit 4 sets a second SOC region (a region between SOC 60% and SOC 80%) as the predetermined SOC region.

制御部4は、バッテリ1の温度が所定温度(図3では0度C)未満になると、所定のSOC領域として、第1のSOC領域を設定する。このとき、制御部4は、バッテリ1の温度の低下に伴い、第1のSOC領域を徐々に低くしていく。この場合、バッテリ1の出力電力が要求電力を保ちつつ、バッテリ1の温度が低くなるにつれてバッテリ1の発熱量を徐々に上げることが可能になる。このため、バッテリ1の発熱量が必要以上に大きくなることを抑制できる。なお、図3に示した例では、制御部4は、バッテリ1の温度が−15度C以下になると、第1のSOC領域を固定する。   When the temperature of battery 1 falls below a predetermined temperature (0 degrees C in FIG. 3), control unit 4 sets the first SOC region as the predetermined SOC region. At this time, the control unit 4 gradually lowers the first SOC region as the temperature of the battery 1 decreases. In this case, it is possible to gradually increase the amount of heat generated by the battery 1 as the temperature of the battery 1 decreases while the output power of the battery 1 maintains the required power. For this reason, it can suppress that the emitted-heat amount of the battery 1 becomes large more than necessary. In the example illustrated in FIG. 3, the control unit 4 fixes the first SOC region when the temperature of the battery 1 becomes −15 degrees C or lower.

また、制御部4は、さらに、温度検出部1が検出したバッテリ1の温度が所定温度よりも高い特定温度以上のときには、バッテリ1の充電量が第2のSOC領域より高い第3のSOC領域に含まれるようにバッテリ1の充放電を制御し、バッテリ1の温度が所定温度以上でかつ特定温度未満のときには、バッテリ1の充電量が第2のSOC領域に含まれるようにバッテリの充放電を制御するようにしてもよい。   In addition, when the temperature of the battery 1 detected by the temperature detection unit 1 is equal to or higher than a specific temperature, the control unit 4 further includes a third SOC region in which the charge amount of the battery 1 is higher than the second SOC region. The charging / discharging of the battery 1 is controlled so that the charging amount of the battery 1 is included in the second SOC region when the temperature of the battery 1 is equal to or higher than the predetermined temperature and lower than the specific temperature. May be controlled.

図4は、制御部4が、バッテリ1の温度に応じて、所定のSOC領域を3段階に切り換える動作の一例を説明するためのフローチャートである。以下、図4を参照して、制御部4が、バッテリ1の温度に応じて所定のSOC領域を3段階に切り換える動作を説明する。   FIG. 4 is a flowchart for explaining an example of an operation in which the control unit 4 switches the predetermined SOC region in three stages according to the temperature of the battery 1. Hereinafter, with reference to FIG. 4, an operation in which the control unit 4 switches the predetermined SOC region in three stages according to the temperature of the battery 1 will be described.

ステップ41では、制御部4は、温度検出部2が検出したバッテリ1の温度を受け付けて、バッテリ1の温度を検出し、その後、ステップ42に進む。   In step 41, the control unit 4 receives the temperature of the battery 1 detected by the temperature detection unit 2, detects the temperature of the battery 1, and then proceeds to step 42.

ステップ22では、制御部4は、バッテリ1の温度が所定温度(バッテリ1の発熱を促進したい最高バッテリ温度(例えば0度C)未満であればステップ43に進み、バッテリ1の温度が所定温度以上であればステップ44に進む。   In step 22, if the temperature of the battery 1 is lower than a predetermined temperature (the maximum battery temperature (for example, 0 degree C) at which the heat generation of the battery 1 is desired to be promoted), the control unit 4 proceeds to step 43 and the temperature of the battery 1 is equal to or higher than the predetermined temperature. If so, go to Step 44.

ステップ43では、制御部4は、所定のSOC領域として、第1のSOC領域(SOC20%〜SOC60%の間の領域)を設定する。その後、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが第1のSOC領域の間の領域に含まれるように、充電信号と充電中止信号とを適宜エンジン発電ユニットコントローラ10に出力してバッテリ1の充放電を制御する。   In step 43, control unit 4 sets a first SOC region (a region between SOC 20% and SOC 60%) as the predetermined SOC region. Thereafter, the control unit 4 appropriately sets the charge signal and the charge stop signal so that the SOC of the battery 1 calculated by the control unit 4 based on the detection result of the SOC sensor 3 is included in the region between the first SOC regions. It outputs to the engine power generation unit controller 10 and controls charging / discharging of the battery 1.

ステップ44では、制御部4は、バッテリ1の温度が特定温度(バッテリ1の発熱を抑制したい最低バッテリ温度(例えば35度C)未満であればステップ45に進み、バッテリ1の温度が特定温度以上であればステップ46に進む。   In step 44, if the temperature of the battery 1 is lower than the specific temperature (the minimum battery temperature (for example, 35 degrees C) at which the heat generation of the battery 1 is desired to be suppressed), the control unit 4 proceeds to step 45 and the temperature of the battery 1 is equal to or higher than the specific temperature. If so, go to Step 46.

ステップ45では、制御部4は、所定のSOC領域として、第2のSOC領域(SOC30%〜SOC70%の間の領域)を設定する。その後、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが第2のSOC領域の間の領域に含まれるように、充電信号と充電中止信号とを適宜エンジン発電ユニットコントローラ10に出力してバッテリ1の充放電を制御する。   In step 45, control unit 4 sets a second SOC area (an area between SOC 30% and SOC 70%) as the predetermined SOC area. Thereafter, the control unit 4 appropriately sets the charge signal and the charge stop signal so that the SOC of the battery 1 calculated by the control unit 4 based on the detection result of the SOC sensor 3 is included in the region between the second SOC regions. It outputs to the engine power generation unit controller 10 and controls charging / discharging of the battery 1.

ステップ46では、制御部4は、所定のSOC領域として、第3のSOC領域(SOC60%〜SOC80%の間の領域)を設定する。その後、制御部4は、SOC用センサ3の検出結果に基づいて自らが算出したバッテリ1のSOCが第3のSOC領域の間の領域に含まれるように、充電信号と充電中止信号とを適宜エンジン発電ユニットコントローラ10に出力してバッテリ1の充放電を制御する。   In step 46, control unit 4 sets a third SOC region (a region between SOC 60% and SOC 80%) as the predetermined SOC region. After that, the control unit 4 appropriately sets the charge signal and the charge stop signal so that the SOC of the battery 1 calculated by itself based on the detection result of the SOC sensor 3 is included in the region between the third SOC regions. It outputs to the engine power generation unit controller 10 and controls charging / discharging of the battery 1.

ステップ47では、バッテリ1が放電状態であるとき、インバータ6は、バッテリ1の電圧に応じてバッテリ1から取得する電流を変更して、アクセル5が受け付けた必要電力情報が示す電力をバッテリ1から取得する。   In step 47, when the battery 1 is in a discharged state, the inverter 6 changes the current acquired from the battery 1 in accordance with the voltage of the battery 1, and the power indicated by the required power information received by the accelerator 5 from the battery 1. get.

なお、特定温度が所定温度より高ければ、特定温度と所定温度とは適宜変更可能であり、第1のSOC領域<第2のSOC領域<第3のSOC領域の関係が満たされていれば、第1のSOC領域と第2のSOC領域と第3のSOC領域とも適宜変更可能である。   If the specific temperature is higher than the predetermined temperature, the specific temperature and the predetermined temperature can be changed as appropriate, and if the relationship of the first SOC region <second SOC region <third SOC region is satisfied, The first SOC region, the second SOC region, and the third SOC region can be appropriately changed.

制御部4が、バッテリ1の温度に応じて所定のSOC領域を3段階に切り換える場合、バッテリ1が高温(特定温度以上)となるときバッテリ1の発熱を抑制し、バッテリが低温(所定温度未満)となるときバッテリ1の発熱を促進することが可能となる。   When the control unit 4 switches the predetermined SOC region in three stages according to the temperature of the battery 1, the battery 1 suppresses heat generation when the battery 1 is at a high temperature (above a specific temperature), and the battery is at a low temperature (below the predetermined temperature). ), The heat generation of the battery 1 can be promoted.

また、制御部4は、所定温度と特定温度にヒステリシスを持たせれば、温度センサ2が検出した温度が所定温度近傍または特定温度近傍で細かく変動する場合にSOC領域の変更頻度が高くなってしまうという問題を防止することが可能となる。   In addition, if the control unit 4 has hysteresis between the predetermined temperature and the specific temperature, when the temperature detected by the temperature sensor 2 fluctuates in the vicinity of the predetermined temperature or in the vicinity of the specific temperature, the SOC region change frequency increases. It is possible to prevent this problem.

以上説明した実施例において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。   In the embodiment described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.

本発明の一実施例のバッテリ制御装置を示したブロック図である。It is the block diagram which showed the battery control apparatus of one Example of this invention. 図1に示したバッテリ制御装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the battery control device shown in FIG. 1. 図1に示したバッテリ制御装置の動作を他の例を説明するための説明図である。It is explanatory drawing for demonstrating another example of operation | movement of the battery control apparatus shown in FIG. 図1に示したバッテリ制御装置の動作を他の例を説明するためのフローチャートである。6 is a flowchart for explaining another example of the operation of the battery control device shown in FIG. 1.

符号の説明Explanation of symbols

1 バッテリ
2 温度検出部
3 SOC用センサ
4 制御部
5 アクセル
6 インバータ
7 エンジン
8 発電機
9 整流器
10 エンジン発電ユニットコントローラ
11 モータ
12 減速機
13 タイヤ
DESCRIPTION OF SYMBOLS 1 Battery 2 Temperature detection part 3 SOC sensor 4 Control part 5 Accelerator 6 Inverter 7 Engine 8 Generator 9 Rectifier 10 Engine power generation unit controller 11 Motor 12 Reducer 13 Tire

Claims (8)

SOCの増大に応じて電圧が増大するバッテリと、
前記バッテリの温度を検出する温度検出部と、
前記温度検出部が検出したバッテリの温度が所定温度未満のときには、前記バッテリのSOCが第1のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上のときには、該バッテリのSOCが該第1のSOC領域より高い第2のSOC領域に含まれるように前記バッテリの充放電を制御する制御部と、
必要となる電力を示す必要電力情報を受け付ける必要電力情報受付部と、
前記制御部の制御によりバッテリの温度に応じたSOCとされている前記バッテリから前記必要電力情報が示す電力を取得する際の電流を、前記バッテリの電圧に応じて変更する電力取得部と、を含むバッテリ制御装置。
A battery whose voltage increases with increasing SOC;
A temperature detector for detecting the temperature of the battery;
When the temperature of the battery detected by the temperature detection unit is lower than a predetermined temperature, charge / discharge of the battery is controlled so that the SOC of the battery is included in the first SOC region, and the temperature of the battery is equal to or higher than the predetermined temperature. In this case, a control unit that controls charging / discharging of the battery so that the SOC of the battery is included in a second SOC region higher than the first SOC region;
A required power information receiving unit that receives required power information indicating required power; and
A power acquisition unit that changes a current when acquiring the power indicated by the required power information from the battery, which is an SOC according to the temperature of the battery by the control of the control unit, according to the voltage of the battery; Including battery control device.
請求項1に記載のバッテリ制御装置において、
前記制御部は、前記第1のSOC領域の幅を前記第2のSOC領域の幅より広くする、バッテリ制御装置。
The battery control device according to claim 1,
The battery control device, wherein the control unit makes a width of the first SOC region wider than a width of the second SOC region.
請求項2に記載のバッテリ制御装置において、
前記制御部は、前記温度検出部が検出したバッテリの温度が所定温度未満のときには、前記バッテリの温度の低下に伴い、前記第1のSOC領域を徐々に低くしていく、バッテリ制御装置。
The battery control device according to claim 2,
The control unit is configured to gradually lower the first SOC region as the battery temperature decreases when the temperature of the battery detected by the temperature detection unit is lower than a predetermined temperature.
請求項1に記載のバッテリ制御装置において、
前記制御部は、さらに、前記温度検出部が検出したバッテリの温度が前記所定温度よりも高い特定温度以上のときには、前記バッテリのSOCが前記第2のSOC領域より高い第3のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上でかつ該特定温度未満のときには、該バッテリのSOCが該第2のSOC領域に含まれるように該バッテリの充放電を制御する、バッテリ制御装置。
The battery control device according to claim 1,
The control unit further includes a third SOC region in which the SOC of the battery is higher than the second SOC region when the temperature of the battery detected by the temperature detection unit is equal to or higher than a specific temperature higher than the predetermined temperature. Charge / discharge of the battery is controlled so that when the temperature of the battery is equal to or higher than the predetermined temperature and lower than the specific temperature, the charge / discharge of the battery is included so that the SOC of the battery is included in the second SOC region. A battery control device that controls discharging.
SOCの増大に応じて電圧が増大するバッテリの温度を検出する温度検出ステップと、
前記温度検出ステップで検出したバッテリの温度が所定温度未満のときには、前記バッテリのSOCが第1のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上のときには、該バッテリのSOCが該第1のSOC領域より高い第2のSOC領域に含まれるように前記バッテリの充放電を制御する制御ステップと、
必要となる電力を示す旨の必要電力情報を受け付ける必要電力情報受付ステップと、
前記制御ステップの制御によりバッテリの温度に応じたSOCとされている前記バッテリから前記必要電力情報が示す電力を取得する際の電流を、前記バッテリの電圧に応じて変更する電力取得ステップと、を含むバッテリ温度制御方法。
A temperature detecting step for detecting a temperature of the battery whose voltage increases in accordance with an increase in SOC;
When the temperature of the battery detected in the temperature detection step is lower than a predetermined temperature, charge / discharge of the battery is controlled so that the SOC of the battery is included in the first SOC region, and the temperature of the battery is equal to or higher than the predetermined temperature. A control step of controlling charging / discharging of the battery so that the SOC of the battery is included in a second SOC region higher than the first SOC region;
A required power information receiving step for receiving required power information indicating the required power;
A power acquisition step of changing a current when acquiring the power indicated by the necessary power information from the battery, which is an SOC according to the temperature of the battery by the control of the control step, according to the voltage of the battery; Including battery temperature control method.
請求項5に記載のバッテリ温度制御方法において、
前記制御ステップは、前記第1のSOC領域の幅を前記第2のSOC領域の幅より広くする、バッテリ温度制御方法。
The battery temperature control method according to claim 5,
The battery temperature control method, wherein the control step makes the width of the first SOC region wider than the width of the second SOC region.
請求項6に記載のバッテリ温度制御方法において、
前記制御ステップは、前記温度検出ステップで検出したバッテリの温度が前記所定温度未満のときには、前記バッテリの温度の低下に伴い、前記第1のSOC領域を徐々に低くしていく、バッテリ温度制御方法。
The battery temperature control method according to claim 6,
In the battery temperature control method, the control step gradually lowers the first SOC region as the battery temperature decreases when the temperature of the battery detected in the temperature detection step is lower than the predetermined temperature. .
請求項5に記載のバッテリ温度制御方法において、
前記制御ステップは、さらに、前記温度検出ステップで検出したバッテリの温度が前記所定温度よりも高い特定温度以上のときには、前記バッテリのSOCが前記第2のSOC領域より高い第3のSOC領域に含まれるように前記バッテリの充放電を制御し、該バッテリの温度が該所定温度以上でかつ該特定温度未満のときには、該バッテリのSOCが該第2のSOC領域に含まれるように該バッテリの充放電を制御する、バッテリ温度制御方法。
The battery temperature control method according to claim 5,
In the control step, when the temperature of the battery detected in the temperature detection step is equal to or higher than a specific temperature higher than the predetermined temperature, the SOC of the battery is included in a third SOC region higher than the second SOC region. Charge / discharge of the battery is controlled so that when the temperature of the battery is equal to or higher than the predetermined temperature and lower than the specific temperature, the charge / discharge of the battery is included so that the SOC of the battery is included in the second SOC region. A battery temperature control method for controlling discharge.
JP2004246775A 2004-08-26 2004-08-26 Battery control device and battery temperature control method Active JP4108655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246775A JP4108655B2 (en) 2004-08-26 2004-08-26 Battery control device and battery temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246775A JP4108655B2 (en) 2004-08-26 2004-08-26 Battery control device and battery temperature control method

Publications (2)

Publication Number Publication Date
JP2006067691A JP2006067691A (en) 2006-03-09
JP4108655B2 true JP4108655B2 (en) 2008-06-25

Family

ID=36113671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246775A Active JP4108655B2 (en) 2004-08-26 2004-08-26 Battery control device and battery temperature control method

Country Status (1)

Country Link
JP (1) JP4108655B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831038B2 (en) * 2007-09-28 2011-12-07 三菱自動車工業株式会社 Motor torque control device
JP4805328B2 (en) * 2008-10-31 2011-11-02 本田技研工業株式会社 Electric vehicle
JP5110155B2 (en) 2010-11-24 2012-12-26 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5356439B2 (en) * 2011-03-04 2013-12-04 古河電気工業株式会社 Charge control device and charge control method
JP6122594B2 (en) * 2012-09-20 2017-04-26 積水化学工業株式会社 Storage battery management device, storage battery management method and program
JP2018057107A (en) * 2016-09-27 2018-04-05 Fdk株式会社 Charge/discharge device, power storage module, and charge/discharge control method
JP7196830B2 (en) * 2019-12-27 2022-12-27 トヨタ自動車株式会社 FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM

Also Published As

Publication number Publication date
JP2006067691A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US8098050B2 (en) Charge/discharge control device for secondary battery and vehicle equipped with the same
CN106029430B (en) The supply unit of electric vehicle
KR101135314B1 (en) Secondary battery temperature-increasing control apparatus, vehicle including the same, and secondary battery temperature-increasing control method
US10507735B2 (en) Power supply system, transportation device, and power transmission method
US10538167B2 (en) Power supply system, transportation device, and power transmission method
US10040368B2 (en) Power supply system, transportation device, and power transmission method including changing a proportion of a charging prower
JP2008308122A (en) Control apparatus for vehicle battery
JP2010093871A (en) Temperature rise controller for battery
JP2009123435A (en) Device and method of controlling secondary battery
JP2012016078A (en) Charging control system
KR101807364B1 (en) Vehicle driven by electric motor and control method for vehicle
JP2010143310A (en) Power generation control device for series hybrid electric vehicle
JP2011076927A (en) Warming-up control device of battery
EP2669987A1 (en) Power storage system
JP5396428B2 (en) In-vehicle battery full charge control device
JP2015033154A (en) Battery charge/discharge control device
JP2010273413A (en) Device for controlling battery pack
JP2010195350A (en) Control unit for vehicle
JP2006177939A (en) Battery charge state calculation method for preventing memory effect
JP4108655B2 (en) Battery control device and battery temperature control method
EP3664205A1 (en) Power supply system and control method therefor
JP2005304179A (en) Drive system and moving body mounted with the same
JP5081068B2 (en) Fuel cell system
JP2005269824A (en) Hybrid system
JP4517981B2 (en) Idle stop vehicle control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4108655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350