JP4106557B2 - Torque transmission device - Google Patents

Torque transmission device Download PDF

Info

Publication number
JP4106557B2
JP4106557B2 JP2003334991A JP2003334991A JP4106557B2 JP 4106557 B2 JP4106557 B2 JP 4106557B2 JP 2003334991 A JP2003334991 A JP 2003334991A JP 2003334991 A JP2003334991 A JP 2003334991A JP 4106557 B2 JP4106557 B2 JP 4106557B2
Authority
JP
Japan
Prior art keywords
driven
damper
portions
rotating body
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334991A
Other languages
Japanese (ja)
Other versions
JP2005098448A (en
Inventor
理志 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2003334991A priority Critical patent/JP4106557B2/en
Publication of JP2005098448A publication Critical patent/JP2005098448A/en
Application granted granted Critical
Publication of JP4106557B2 publication Critical patent/JP4106557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Pulleys (AREA)

Description

本発明は、車両のパワーウィンドウにおける駆動トルク伝達手段や、あるいは産業機器におけるトルク伝達手段等に用いられ、トルク変動(捩り振動)及び衝撃入力に対する吸収機能をもったトルク伝達装置に関する。   The present invention relates to a torque transmission device used for driving torque transmission means in a power window of a vehicle, torque transmission means in an industrial device, or the like and having a function of absorbing torque fluctuation (torsional vibration) and impact input.

回転機器の駆動トルクは、内燃機関によるものであれ、電気モータによるものであれ、回転に伴って周期的なトルク変動を生じている。図6は、このようなトルク変動やを吸収して伝達トルクの平滑化を図り、あるいは何らかの原因によって回転がロックされた時の衝撃を吸収する機能をもったトルク伝達装置の典型的な従来技術を示す分離斜視図、図7は図6に示される弾性体103を外周側から見た側面図、図8は他の従来技術における弾性体を外周側から見た側面図である。   The driving torque of a rotating device, whether it is due to an internal combustion engine or an electric motor, causes a periodic torque fluctuation with rotation. FIG. 6 shows a typical prior art of a torque transmission device that absorbs such torque fluctuations and smoothes the transmission torque, or absorbs an impact when the rotation is locked for some reason. 7 is a side view of the elastic body 103 shown in FIG. 6 viewed from the outer peripheral side, and FIG. 8 is a side view of the elastic body of another prior art viewed from the outer peripheral side.

まず図6において、参照符号101は駆動側回転体、102は従動側回転体、103はゴム状弾性材料からなる弾性体である。駆動側回転体101と従動側回転体102を、弾性体103を介してカップリングした状態では、駆動側回転体101の端部に形成された複数の駆動側突起101aと、従動側回転体102の端部に形成された複数の従動側突起102aが、円周方向交互に配置される。弾性体103は、突起101a,102aの間に介在される複数のダンパ部103a,103bを、その組み付け性を良くするために、突起101a,102aの先端を交互に跨ぐブリッジ部103c,103dを介して環状に連結した形状に成形されている。   First, in FIG. 6, reference numeral 101 is a driving side rotating body, 102 is a driven side rotating body, and 103 is an elastic body made of a rubber-like elastic material. In a state where the driving side rotating body 101 and the driven side rotating body 102 are coupled via the elastic body 103, a plurality of driving side protrusions 101 a formed at the end of the driving side rotating body 101 and the driven side rotating body 102. A plurality of driven-side protrusions 102a formed at the end of each are alternately arranged in the circumferential direction. The elastic body 103 has a plurality of damper portions 103a and 103b interposed between the projections 101a and 102a via bridge portions 103c and 103d that alternately straddle the tips of the projections 101a and 102a in order to improve the assemblability. Are formed into a ring-like shape.

すなわちこの種のトルク伝達装置は、駆動側回転体101の駆動側突起101aと従動側回転体102の従動側突起102aとの間で、弾性体103のダンパ部103a又は103bが圧縮変形を受けることによって、トルク変動を吸収しつつ、このトルクを駆動側回転体101から従動側回転体102へ伝達するものである。   That is, in this type of torque transmission device, the damper 103a or 103b of the elastic body 103 is subjected to compression deformation between the driving side protrusion 101a of the driving side rotating body 101 and the driven side protrusion 102a of the driven side rotating body 102. Thus, this torque is transmitted from the driving side rotating body 101 to the driven side rotating body 102 while absorbing the torque fluctuation.

なお、同様のトルク伝達装置としては、例えば下記の特許文献1に記載されたものが知られている。特許文献1によるトルク伝達装置は、上述のダンパ部に相当する部分を、2個1組として連結したものである。
特開2002−206564(第4図,第5図参照)
As a similar torque transmission device, for example, the one described in Patent Document 1 below is known. The torque transmission device according to Patent Document 1 is obtained by connecting portions corresponding to the above-described damper portion as one set.
JP 2002-206564 (see FIGS. 4 and 5)

しかしながら、上記従来のトルク伝達装置によれば、駆動側突起101aの側面先端部がブリッジ部103cの付け根に当接して、この部分に剪断応力を与え、従動側突起102aの側面先端部がブリッジ部103dの付け根に当接して、この部分に剪断応力を与える。このため、長期使用によって、ブリッジ部103c,103dの付け根に、図7に示されるような亀裂Cが発生する問題があった。前記剪断応力は、突起101a,102aの先端を丸く形成することによって緩和することは可能であるが、根本的な対策には到らなかった。   However, according to the above-described conventional torque transmission device, the side surface tip portion of the driving-side protrusion 101a abuts on the base of the bridge portion 103c and shear stress is applied to this portion, and the side surface tip portion of the driven-side protrusion 102a is the bridge portion. Abutting on the base of 103d, a shear stress is applied to this portion. For this reason, there has been a problem that cracks C as shown in FIG. 7 occur at the bases of the bridge portions 103c and 103d due to long-term use. The shear stress can be alleviated by forming the tips of the protrusions 101a and 102a in a round shape, but it has not reached a fundamental measure.

また、ブリッジ部103c,103dの付け根部分に、図8に示されるようなR状の凹部103e,103fを形成することによって、剪断応力を緩和し、亀裂Cの発生を防止することは可能である。しかしこの場合は、弾性体103の成形において、凹部103e,103fの存在がアンダーカットとなるため、成形後の離型が困難になり、対策の実現性が低い。   Further, by forming R-shaped concave portions 103e and 103f as shown in FIG. 8 at the base portions of the bridge portions 103c and 103d, it is possible to relieve the shear stress and prevent the generation of the crack C. . However, in this case, in the molding of the elastic body 103, the presence of the recesses 103e and 103f becomes an undercut, so that it becomes difficult to release the mold after molding, and the feasibility of the countermeasure is low.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、円周方向交互に配置された複数の駆動側突起と従動側突起との間に介在される複数のダンパ部とこれを連結するブリッジ部を有するトルク伝達装置において、駆動側突起と従動側突起との間での繰り返しトルク入力によって、ダンパ部におけるブリッジ部の付け根部分に亀裂が発生するのを有効に防止することにある。   The present invention has been made in view of the above points, and a technical problem thereof is that a plurality of intervening between a plurality of drive-side protrusions and driven-side protrusions arranged alternately in the circumferential direction. In a torque transmission device having a damper part and a bridge part connecting the damper part, it is effective that cracks occur in the base part of the bridge part in the damper part due to repeated torque input between the driving side protrusion and the driven side protrusion. There is to prevent.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係るトルク伝達装置は、駆動側回転体に円周方向所定間隔で形成された複数の駆動側突起と、従動側回転体に円周方向所定間隔で形成されると共に前記駆動側突起と円周方向交互に配置された複数の従動側突起との間に、それぞれゴム状弾性材料からなるダンパ部が介在され、各ダンパ部が、前記駆動側突起又は(及び)前記従動側突起の先端部を跨ぐゴム状弾性材料からなるブリッジ部と一体に形成され、前記ダンパ部のうち、前記駆動側突起と従動側突起の間での入力トルクによる圧縮を受ける側のダンパ部に、前記ブリッジ部側の端部に位置して、軸方向深さが前記ブリッジ部の軸方向肉厚よりも大きい凹部が形成されたものである。   As means for effectively solving the above technical problem, a torque transmission device according to the invention of claim 1 includes a plurality of driving side protrusions formed on the driving side rotating body at predetermined intervals in the circumferential direction, and a driven side. A damper portion made of a rubber-like elastic material is interposed between the driving-side protrusions and the plurality of driven-side protrusions alternately arranged in the circumferential direction, and is formed on the rotating body at predetermined intervals in the circumferential direction. The damper part is formed integrally with the bridge part made of a rubber-like elastic material straddling the driving side protrusion or (and) the tip part of the driven side protrusion, and among the damper part, the driving side protrusion and the driven side protrusion In the damper part on the side subjected to compression by the input torque between them, a recess is formed which is located at the end part on the bridge part side and whose axial depth is larger than the axial thickness of the bridge part. is there.

請求項1の発明に係るトルク伝達装置によれば、ダンパ部にブリッジ部の少なくとも円周方向一側に位置して形成された凹部が、突起の側面先端部との当接部分での剪断応力の発生を防止又は緩和するので、亀裂の発生を有効に防止又は抑制することができ、耐久性を大幅に向上することができる。また前記凹部は、駆動側回転体と従動側回転体の捩れ角(伝達トルク)が小さい場合は前記ダンパ部のばね定数を小さくし、前記捩れ角が大きくなるほど、ばね定数が大きくなるといった非線形特性によって、トルク変動(捩り振動)の吸収機能と、十分なトルク伝達機能とを両立させる機能をも有し、しかも成形時のアンダーカットとならないため、成形後の離型が困難となることもない。   According to the torque transmission device of the first aspect of the present invention, the recess formed in the damper portion at least on one side in the circumferential direction of the bridge portion has a shear stress at the contact portion with the side surface tip portion of the protrusion. Since generation | occurrence | production of this is prevented or relieve | moderated, generation | occurrence | production of a crack can be prevented or suppressed effectively and durability can be improved significantly. The concave portion has a non-linear characteristic such that when the torsion angle (transmission torque) between the driving side rotating body and the driven side rotating body is small, the spring constant of the damper portion is reduced, and the spring constant increases as the torsion angle increases. Because of this, it also has the function of achieving both a function of absorbing torque fluctuation (torsional vibration) and a sufficient torque transmission function, and since it does not cause undercutting during molding, it does not become difficult to release after molding. .

以下、本発明に係るトルク伝達装置を、例えば車両のパワーウィンドウにおける駆動トルク伝達部に適用した好ましい第一の形態について、図面を参照しながら説明する。図1はこの第一の形態を示す分離斜視図、図2は第一の形態によるトルク伝達装置の組付け状態を示すもので、(A)は軸心と直交する平面で切断して示す断面図、(B)は(A)におけるII−II断面図、図3は第一の形態における弾性体を示すもので、(A)は軸方向から見た図、(B)は(A)におけるIII方向矢視図である。   Hereinafter, a preferred first embodiment in which a torque transmission device according to the present invention is applied to, for example, a drive torque transmission unit in a power window of a vehicle will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing the first embodiment, FIG. 2 shows an assembled state of the torque transmission device according to the first embodiment, and (A) is a cross section cut by a plane perpendicular to the axis. FIG. 3B is a cross-sectional view taken along line II-II in FIG. 3A, FIG. 3A shows an elastic body in the first embodiment, FIG. 3A is a view seen from the axial direction, and FIG. It is a III direction arrow directional view.

まず図1において、参照符号10は駆動側回転体、20は駆動側回転体10と同心配置された従動側回転体である。駆動側回転体10における従動側回転体20との対向端部には、円筒状のハウジング11と、円柱状の内周突部12が同心的に形成されており、更に、ハウジング11と内周突部12との間には、軸方向かつ径方向へ延びる3個の駆動側突起13が、円周方向120度間隔で形成されている。   First, in FIG. 1, reference numeral 10 is a driving side rotating body, and 20 is a driven side rotating body arranged concentrically with the driving side rotating body 10. A cylindrical housing 11 and a columnar inner peripheral protrusion 12 are formed concentrically at the end of the driving side rotating body 10 facing the driven side rotating body 20. Three drive-side protrusions 13 extending in the axial direction and the radial direction are formed between the protrusions 12 at intervals of 120 degrees in the circumferential direction.

一方、従動側回転体20における駆動側回転体10との対向端部には、軸方向かつ径方向へ延びる3個の従動側突起21が、円周方向120度間隔で形成されている。また、図2(A)に示されるように、各従動側突起21の外周側の端部に対する外接円が、駆動側回転体10のハウジング11の内径より僅かに小径であり、各従動側突起21の内周側の端部に対する内接円が、駆動側回転体10の内周突部12の外径よりも僅かに大径であり、すなわち、従動側回転体20における従動側突起21は、駆動側回転体10におけるハウジング11と内周突部12との間に挿入されるようになっている。そしてこの状態では、駆動側突起13と従動側突起21が、円周方向交互に配置されることになる。   On the other hand, three driven projections 21 extending in the axial direction and in the radial direction are formed at intervals of 120 degrees in the circumferential direction at the end of the driven side rotating body 20 facing the driving side rotating body 10. Further, as shown in FIG. 2A, the circumscribed circle with respect to the outer peripheral end of each driven-side protrusion 21 is slightly smaller than the inner diameter of the housing 11 of the driving-side rotating body 10, and each driven-side protrusion The inscribed circle with respect to the inner circumferential end of 21 is slightly larger in diameter than the outer diameter of the inner circumferential projection 12 of the driving side rotating body 10, that is, the driven side protrusion 21 in the driven side rotating body 20 is The drive-side rotating body 10 is inserted between the housing 11 and the inner peripheral projection 12. In this state, the driving side protrusions 13 and the driven side protrusions 21 are alternately arranged in the circumferential direction.

ハウジング11及び内周突部12は互いに等しい軸方向高さhに形成されており、駆動側突起13及び従動側突起21は互いに等しい軸方向高さhであって、かつハウジング11及び内周突部12の軸方向高さhより低く形成されている。 The housing 11 and the inner peripheral projection 12 are formed to have the same axial height h 1 , the drive side projection 13 and the driven side projection 21 have the same axial height h 2 , and the housing 11 and the inner projection 12 It is formed lower than the axial height h 1 of the peripheral projection 12.

図1における参照符号30はゴム状弾性材料によって環状に成形された弾性体である。この弾性体30は、駆動側回転体10と従動側回転体20の間に介在して、両者を弾性的にカップリングするもので、図2(A)に示される組付け状態において円周方向交互に存在する駆動側突起13と従動側突起21との間に、円周方向交互に介在されるダンパ部301,302と、図2(B)に示されるように、各駆動側突起13の先端部13aを跨ぐ3個のブリッジ部303と、各従動側突起21の先端部21aを跨ぐ3個のブリッジ部304が一体に形成されたものである。言い換えれば、弾性体30は、互いに軸方向反対側に位置するブリッジ部303,304を介して、各ダンパ部301,302を円周方向へ交互に連結した構造を呈する。   Reference numeral 30 in FIG. 1 is an elastic body formed into a ring shape by a rubber-like elastic material. This elastic body 30 is interposed between the driving side rotating body 10 and the driven side rotating body 20 and elastically couples them. In the assembled state shown in FIG. Between the drive-side protrusions 13 and the driven-side protrusions 21 that are alternately present, damper portions 301 and 302 that are alternately interposed in the circumferential direction, and as shown in FIG. Three bridge portions 303 straddling the tip portion 13a and three bridge portions 304 straddling the tip portion 21a of each driven-side projection 21 are integrally formed. In other words, the elastic body 30 has a structure in which the damper portions 301 and 302 are alternately connected in the circumferential direction via the bridge portions 303 and 304 positioned on the opposite sides in the axial direction.

図1及び図3に示されるように、軸方向一側のブリッジ部303及びその円周方向両側のダンパ部301,302で囲まれた部分は、駆動側突起13が挿入される係合溝305となっており、軸方向他側のブリッジ部304及びその円周方向両側のダンパ部302,301で囲まれた部分は、従動側突起21が挿入される係合溝306となっている。そして、これらの係合溝305,306の軸方向深さdは、図2に示される駆動側突起13及び従動側突起21の軸方向高さhと略等しく、係合溝305,306の溝幅は、駆動側突起13及び従動側突起21の幅と略等しいものとなっている。 As shown in FIGS. 1 and 3, the portion surrounded by the bridge portion 303 on one side in the axial direction and the damper portions 301 and 302 on both sides in the circumferential direction is an engagement groove 305 into which the drive side protrusion 13 is inserted. The portion surrounded by the bridge portion 304 on the other side in the axial direction and the damper portions 302 and 301 on both sides in the circumferential direction is an engagement groove 306 into which the driven projection 21 is inserted. The axial depths d 1 of these engaging grooves 305 and 306 are substantially equal to the axial height h 2 of the driving side protrusion 13 and the driven side protrusion 21 shown in FIG. The groove width is substantially equal to the width of the driving side protrusion 13 and the driven side protrusion 21.

弾性体30における各ダンパ部301,302には、軸方向一方のブリッジ部303側の端部及び軸方向他方のブリッジ部304側の端部に位置して、半径方向と平行な方向に延びる凹部307,308が形成されており、言い換えれば、ブリッジ部303の円周方向両側にそれぞれ一対の凹部307が形成されると共に、ブリッジ部304の円周方向両側にそれぞれ一対の凹部308が形成されている。図3に示されるように、これら凹部307,308の軸方向深さdは、ブリッジ部303,304の軸方向肉厚tよりも大きく形成されている。したがって、ブリッジ部303,304は、凹部307,307あるいは凹部308,308によって、実質的に、かすがい形の屈曲形状を呈することとなる。 Each of the damper portions 301 and 302 in the elastic body 30 has a recess extending in a direction parallel to the radial direction, positioned at one end in the axial direction on the bridge portion 303 side and on the other end in the axial direction on the bridge portion 304 side. 307, 308 are formed, in other words, a pair of recesses 307 are formed on both sides of the bridge portion 303 in the circumferential direction, and a pair of recesses 308 are formed on both sides of the bridge portion 304 in the circumferential direction. Yes. As shown in FIG. 3, the axial depths d 2 of the recesses 307 and 308 are formed larger than the axial thickness t 1 of the bridge portions 303 and 304. Therefore, the bridge portions 303 and 304 have a substantially bend-like bent shape due to the concave portions 307 and 307 or the concave portions 308 and 308.

ブリッジ部303,304の軸方向肉厚tは、駆動側回転体10におけるハウジング11及び内周突部12の軸方向高さhと、駆動側突起13及び従動側突起21の軸方向高さhとの差(h−h)と略同等である。したがって、図2に示される組付け状態では、ブリッジ部303,304は、駆動側突起13の先端部13aと従動側回転体20の軸方向対向面間、及び従動側突起21の先端部21aと駆動側回転体10の軸方向対向面間に介在される。 The axial thickness t 1 of the bridge portions 303 and 304 is the axial height h 1 of the housing 11 and the inner peripheral protrusion 12 in the driving side rotating body 10 and the axial height of the driving side protrusion 13 and the driven side protrusion 21. it is substantially equal to the difference between h 2 (h 1 -h 2) . Therefore, in the assembled state shown in FIG. 2, the bridge portions 303 and 304 are formed between the tip end portion 13 a of the driving side protrusion 13 and the axially opposed surface of the driven side rotating body 20 and the tip end portion 21 a of the driven side protrusion 21. It is interposed between the axially facing surfaces of the driving side rotating body 10.

また上記組付け状態とした時の、駆動側突起13及び従動側突起21とその両側に存在することになる凹部307,308のオーバーラップ量、言い換えれば図3(B)におけるd−tは、1mm程度であり、図3(A)に示される凹部307(及び308)の幅wは、駆動側突起13と従動側突起21の間での伝達トルクの変動によるダンパ部301又は302の圧縮ストロークの最大値程度とする。 Further, when the assembly state is set, the overlap amount of the driving-side protrusion 13 and the driven-side protrusion 21 and the recesses 307 and 308 existing on both sides thereof, in other words, d 2 −t 1 in FIG. Is about 1 mm, and the width w of the concave portion 307 (and 308) shown in FIG. 3A is that of the damper portion 301 or 302 due to the variation in the transmission torque between the driving side projection 13 and the driven side projection 21. About the maximum value of the compression stroke.

弾性体30は、これを加硫成形する金型が、弾性体30の軸方向に離型動作するような分割形状とすることによって、凹部307,308がアンダーカットとならない。このため、成形後の離型の困難性を生じることはない。   The elastic body 30 is formed in a split shape such that a mold for vulcanizing and molding the elastic body 30 is released in the axial direction of the elastic body 30 so that the recesses 307 and 308 are not undercut. For this reason, the difficulty of mold release after molding does not occur.

以上の構成において、弾性体30は、駆動側突起13と従動側突起21との間に円周方向交互に介装されるダンパ部301,302がブリッジ部303,304を介して環状に連続しているので、まず軸方向一方を向いた係合溝305(又は306)を駆動側回転体10における各駆動側突起13(又は従動側回転体20における各従動側突起21)に差し込んで係止してから、軸方向他方を向いた係合溝306(又は305)に従動側回転体20における各従動側突起21(又は駆動側回転体10における各駆動側突起13)を挿入することによって、図2に示される状態への組付け作業を容易に行うことができる。   In the above-described configuration, the elastic body 30 includes the damper portions 301 and 302 that are alternately interposed in the circumferential direction between the driving-side protrusion 13 and the driven-side protrusion 21 in an annular manner via the bridge portions 303 and 304. Therefore, first, the engaging groove 305 (or 306) facing in the axial direction is inserted into each driving-side protrusion 13 (or each driven-side protrusion 21 in the driven-side rotating body 20) of the driving-side rotating body 10 and locked. Then, by inserting each driven-side protrusion 21 (or each driving-side protrusion 13 in the driving-side rotating body 10) in the driven-side rotating body 20 into the engagement groove 306 (or 305) facing the other in the axial direction, The assembling work to the state shown in FIG. 2 can be easily performed.

そして、この組付け状態において、駆動側回転体10が図1における矢印R方向へ回転する場合、その駆動トルクは、駆動側突起13から弾性体30におけるダンパ部301を介して従動側突起21に伝達され、従動側回転体20が同方向へ回転する。このため、伝達トルクが増大した場合、ダンパ部301は駆動側突起13と従動側突起21との間で円周方向圧縮力を受けることになる。   In this assembled state, when the driving side rotating body 10 rotates in the direction of arrow R in FIG. 1, the driving torque is transferred from the driving side protrusion 13 to the driven side protrusion 21 via the damper portion 301 in the elastic body 30. As a result, the driven-side rotator 20 rotates in the same direction. For this reason, when the transmission torque increases, the damper portion 301 receives a circumferential compression force between the driving side protrusion 13 and the driven side protrusion 21.

このとき、ダンパ部301の両端部は、凹部307,308によって軸方向肉厚が小さくなっていることによって、円周方向圧縮ばね定数が低くなっているので、トルク変動初期には、主にこの両端部が円周方向に圧縮変形される。したがって、低ばね特性によって、回転中の伝達トルクの変動(捩り振動)を有効に吸収し、従動側回転体20の回転を平滑化することができる。   At this time, since both ends of the damper portion 301 have a reduced axial thickness due to the recesses 307 and 308, the circumferential compression spring constant is low. Both end portions are compressed and deformed in the circumferential direction. Therefore, the low spring characteristic can effectively absorb the fluctuation (torsional vibration) of the transmission torque during rotation and smoothen the rotation of the driven side rotating body 20.

またこのとき、弾性体30におけるブリッジ部303,304の付け根には、駆動側突起13及び従動側突起21の側面先端部が当接しているが、この側面先端部と軸方向にオーバーラップして、凹部307,308が形成されているので、前記ブリッジ部303,304の付け根近傍には、剪断応力が生じない。このため、ブリッジ部303,304の付け根に剪断応力による円周方向の亀裂が発生するのを、有効に防止することができる。   Further, at this time, the side end portions of the drive side projection 13 and the driven side projection 21 are in contact with the bases of the bridge portions 303 and 304 in the elastic body 30, but overlap the side end portions in the axial direction. Since the recesses 307 and 308 are formed, no shear stress is generated near the roots of the bridge portions 303 and 304. For this reason, it can prevent effectively that the crack of the circumference direction by shearing stress generate | occur | produces in the root of the bridge parts 303 and 304. FIG.

そして、駆動側回転体10と従動側回転体20の捩れ角(伝達トルク)が更に大きくなり、ダンパ部301の両端部の圧縮変形量が増大していくのに伴って、ダンパ部301は、凹部307,308の間の、軸方向肉厚が大きい部分も圧縮されていくので、円周方向圧縮ばね定数は、非線形的に増大する。このため、例えば起動時等のような大きな駆動トルクに対する伝達力を確保すると共に、トルクによる円周方向圧縮荷重に対する所要の耐久性を確保することができる。そして、このような非線形特性によって、トルク変動(捩り振動)の吸収機能と、十分なトルク伝達機能とを両立することができる。また、このような非線形特性によって、緩衝能力にも優れるため、衝撃入力時のギアや回転体に対する保護機能を発揮することができる。   Then, as the torsional angle (transmission torque) of the driving side rotating body 10 and the driven side rotating body 20 further increases and the amount of compressive deformation at both ends of the damper portion 301 increases, the damper portion 301 Since the portion having a large axial thickness between the recesses 307 and 308 is also compressed, the circumferential compression spring constant increases nonlinearly. For this reason, for example, it is possible to ensure a transmission force for a large driving torque such as at the time of start-up and to ensure a required durability against a circumferential compression load due to the torque. Such a nonlinear characteristic makes it possible to achieve both a function of absorbing torque fluctuation (torsional vibration) and a sufficient torque transmission function. In addition, because of such non-linear characteristics, the buffering ability is also excellent, so that a protection function for the gear and the rotating body at the time of impact input can be exhibited.

なお、回転時の遠心力によるダンパ部301,302の外周側への変位は、駆動側回転体10における円筒状のハウジング11によって制限される。   In addition, the displacement to the outer peripheral side of the damper parts 301 and 302 by the centrifugal force at the time of rotation is restrict | limited by the cylindrical housing 11 in the drive side rotary body 10. FIG.

また、この形態によれば、凹部307,308がそれぞれブリッジ部303,304の円周方向両側に形成されているので、駆動側回転体10が図1における矢印Rと逆方向へ回転することによって、弾性体30におけるダンパ部302が駆動側突起13と従動側突起21との間で円周方向圧縮力を受ける場合も、上述と同様の効果が実現される。   Further, according to this embodiment, since the concave portions 307 and 308 are formed on both sides in the circumferential direction of the bridge portions 303 and 304, respectively, the drive side rotating body 10 is rotated in the direction opposite to the arrow R in FIG. Even when the damper portion 302 in the elastic body 30 receives the circumferential compressive force between the driving side protrusion 13 and the driven side protrusion 21, the same effect as described above is realized.

次に図4は、本発明に係るトルク伝達装置を、例えば車両のパワーウィンドウにおける駆動トルク伝達部に適用した好ましい第二の形態を示す分離斜視図、図5は第二の形態における弾性体セグメント31を単体で示す斜視図である。   Next, FIG. 4 is an exploded perspective view showing a second preferred embodiment in which the torque transmission device according to the present invention is applied to, for example, a drive torque transmission portion in a vehicle power window, and FIG. 5 is an elastic segment in the second embodiment. It is a perspective view which shows 31 alone.

第二の形態において、先に説明した第一の形態と異なるところは、第一の形態においては、円周方向交互に配置されたダンパ部301,302が、ブリッジ部303,304を介して一体化された環状の弾性体30を用いているのに対し、第二の形態の形態は、図5に示されるような、円周方向に隣接する2個のダンパ部311,312を一組として、ブリッジ部313を介して一体化された複数(図示の例では3個)の弾性体セグメント31を用いている点にある。   In the second embodiment, the difference from the first embodiment described above is that, in the first embodiment, damper portions 301 and 302 arranged alternately in the circumferential direction are integrated via bridge portions 303 and 304. In contrast to the use of the formed annular elastic body 30, the second form has a pair of two damper portions 311 and 312 adjacent in the circumferential direction as shown in FIG. In this embodiment, a plurality of (three in the illustrated example) elastic body segments 31 integrated through the bridge portion 313 are used.

なお、駆動側回転体10及び従動側回転体20は、図1と同様に構成されている。   The driving side rotating body 10 and the driven side rotating body 20 are configured in the same manner as in FIG.

各弾性体セグメント31は、ゴム状弾性材料によって成形されたものであって、ダンパ部311,312は、組付け状態において円周方向交互に存在する駆動側突起13と従動側突起21との間に円周方向交互に介在され、ブリッジ部313は、このダンパ部311,312間における軸方向一側に、駆動側突起13の先端部13aを跨ぐように形成されている。また、この組付け状態において、ダンパ部311,312におけるブリッジ部313と反対側の端部、言い換えれば弾性体セグメント31の円周方向両端部311a,312aは、従動側突起21の側面と当接されるようになっている。   Each elastic body segment 31 is formed of a rubber-like elastic material, and the damper portions 311 and 312 are arranged between the drive-side protrusions 13 and the driven-side protrusions 21 that exist alternately in the circumferential direction in the assembled state. The bridge portions 313 are formed on one side in the axial direction between the damper portions 311 and 312 so as to straddle the front end portion 13a of the drive side protrusion 13. In this assembled state, the end portions of the damper portions 311 and 312 opposite to the bridge portion 313, in other words, the circumferential end portions 311 a and 312 a of the elastic body segment 31 are in contact with the side surface of the driven side protrusion 21. It has come to be.

ブリッジ部313及びその円周方向両側のダンパ部311,312で囲まれた部分は、駆動側突起13又は従動側突起21が挿入される係合溝314となっている。そして、この係合溝314の軸方向深さは、先に説明した図2(B)に示される駆動側突起13の軸方向高さhと等しく、係合溝314の溝幅は、駆動側突起13の幅と略等しいものとなっている。 The portion surrounded by the bridge portion 313 and the damper portions 311 and 312 on both sides in the circumferential direction is an engaging groove 314 into which the driving side protrusion 13 or the driven side protrusion 21 is inserted. The axial depth of the engaging groove 314 is equal to the axial height h 2 of the driving-side protrusion 13 shown in FIG. 2B described above, and the groove width of the engaging groove 314 is the driving width. The width of the side protrusion 13 is substantially equal.

各弾性体セグメント31におけるダンパ部311,312には、ブリッジ部313側の端部、言い換えればブリッジ部313の円周方向両側に位置して、半径方向と平行な方向に延びる一対の凹部315,315が形成されている。この凹部315の軸方向深さdは、ブリッジ部313の軸方向肉厚tよりも大きく形成され、したがって、ブリッジ部313は、凹部315,315によって、実質的に、かすがい形の屈曲形状を呈することとなる。 The damper portions 311 and 312 in each elastic body segment 31 have a pair of recesses 315 located on both ends of the bridge portion 313, in other words, on both sides in the circumferential direction of the bridge portion 313 and extending in a direction parallel to the radial direction. 315 is formed. The axial depth d 3 of the recess 315 is formed to be larger than the axial thickness t 2 of the bridge portion 313, so that the bridge portion 313 is substantially bent and bent by the recesses 315 and 315. A shape will be exhibited.

ブリッジ部313の軸方向肉厚tは、先に説明した図2(B)に示される駆動側回転体10のハウジング11及び内周突部12の軸方向高さhと、駆動側突起13の軸方向高さhとの差(h−h)と略同等である。したがって、組付け状態では、ブリッジ部313は、駆動側突起13の先端部13aと従動側回転体20の軸方向対向面間に介在される。 Axial thickness t 2 of the bridge portion 313, an axial height h 1 of the housing 11 and the inner circumferential projection 12 of the driving-side rotator 10 shown in FIG described above 2 (B), the drive-side protrusions It is substantially equivalent to the difference (h 1 −h 2 ) from the axial height h 2 of 13. Therefore, in the assembled state, the bridge portion 313 is interposed between the tip end portion 13a of the driving side protrusion 13 and the axially opposed surface of the driven side rotating body 20.

また、組付け状態での駆動側突起13とその両側に存在することになる凹部315,315のオーバーラップ量、言い換えれば図5におけるd−tは、1mm程度であり、凹部315の幅は、駆動側突起13と従動側突起21の間での伝達トルクの変動によるダンパ部311又は312の圧縮ストロークの最大値程度とする。 Further, the overlap amount of the driving-side protrusion 13 and the concave portions 315 and 315 existing on both sides in the assembled state, in other words, d 3 -t 2 in FIG. 5 is about 1 mm, and the width of the concave portion 315 Is about the maximum value of the compression stroke of the damper portion 311 or 312 due to fluctuations in the transmission torque between the driving side protrusion 13 and the driven side protrusion 21.

以上の構成を備える第二の形態において、弾性体セグメント31の組付けに際しては、各弾性体セグメント31の係合溝314を駆動側回転体10における各駆動側突起13差し込んだ状態で、この弾性体セグメント31をハウジング11と内周突部12との間に保持し、円周方向に隣接する弾性体セグメント31の両端部311a,312a間の隙間Gに、従動側回転体20における従動側突起21を挿入することによって、容易に組付けることができる。   In the second embodiment having the above-described configuration, when the elastic body segment 31 is assembled, the elastic groove 31 is inserted in the state where the engaging groove 314 of each elastic body segment 31 is inserted into each driving-side protrusion 13 in the driving-side rotating body 10. The body segment 31 is held between the housing 11 and the inner circumferential protrusion 12, and the driven-side protrusion on the driven-side rotator 20 is inserted into the gap G between both end portions 311 a and 312 a of the elastic body segment 31 adjacent in the circumferential direction. By inserting 21, it can be assembled easily.

そしてこの形態においても、先に説明した第一の形態と同様の作用・効果を奏するものである。すなわち、弾性体セグメント31は、その成形に際して凹部315がアンダーカットとならないので、成形後の離型の困難性を生じることはなく、凹部315が、ブリッジ部313の付け根にトルクによる剪断応力及びこれによる円周方向の亀裂の発生を防止することができ、更には、駆動側回転体10と従動側回転体20の捩れ角(伝達トルク)が大きくなるほど、ばね定数が大きくなるといった非線形特性によって、トルク変動(捩り振動)の吸収機能と、十分なトルク伝達機能とを両立することができる。また、このような非線形特性によって、緩衝能力にも優れるため、衝撃入力時のギアや回転体に対する保護機能を発揮することができる。   Also in this embodiment, the same operations and effects as the first embodiment described above are exhibited. In other words, since the concave portion 315 is not undercut during the molding of the elastic segment 31, there is no difficulty in releasing after molding, and the concave portion 315 has shear stress due to torque and the root of the bridge portion 313. Due to the non-linear characteristic that the spring constant increases as the torsion angle (transmission torque) between the driving side rotating body 10 and the driven side rotating body 20 increases. A function of absorbing torque fluctuation (torsional vibration) and a sufficient torque transmission function can be achieved at the same time. In addition, because of such non-linear characteristics, the buffering ability is also excellent, so that a protection function for the gear and the rotating body at the time of impact input can be exhibited.

なお、上述した第一及び第二の形態においては、駆動側回転体10側にハウジング11を有するものとして説明したが、逆に、従動側回転体20側にハウジングを形成して、駆動側回転体10にはハウジングが存在しないものであっても良く、すなわち、上述した第一及び第二の形態の説明においては、駆動側回転体を従動側回転体と読み替え、従動側回転体を駆動側回転体と読み替えても良い。   In the first and second embodiments described above, it has been described that the housing 11 is provided on the drive-side rotator 10 side, but conversely, a housing is formed on the driven-side rotator 20 side to drive-side rotation. The body 10 may have no housing. That is, in the description of the first and second embodiments described above, the driving side rotating body is read as the driven side rotating body, and the driven side rotating body is replaced with the driving side. It may be read as a rotating body.

また、上述した第一の形態においては、凹部307,308を、ダンパ部301,302の双方、言い換えれば各ブリッジ部303,304の円周方向両側に形成し、第二の形態においても、凹部315を、ダンパ部311,312の双方、言い換えればブリッジ部313の両側に形成したが、回転方向が一定である場合は、駆動側突起13と従動側突起21の間での入力トルクによる圧縮を受ける側、すなわち例えば図1において、R方向にのみ回転する場合は、圧縮を受けるダンパ部301にのみ凹部307,308を形成しても良い。   Further, in the first embodiment described above, the recesses 307 and 308 are formed on both the damper portions 301 and 302, in other words, on both sides in the circumferential direction of the bridge portions 303 and 304. 315 is formed on both of the damper portions 311 and 312, in other words, on both sides of the bridge portion 313, but when the rotation direction is constant, compression by the input torque between the driving side protrusion 13 and the driven side protrusion 21 is performed. In the case of rotating only in the R direction in the receiving side, for example, in FIG. 1, the concave portions 307 and 308 may be formed only in the damper portion 301 that receives compression.

本発明に係るトルク伝達装置の好ましい第一の形態を示す分離斜視図である。1 is an exploded perspective view showing a first preferred embodiment of a torque transmission device according to the present invention. 第一の形態の組付け状態を示すもので、(A)は軸心と直交する平面で切断して示す断面図、(B)は(A)におけるII−II断面図である。The assembly state of a 1st form is shown, (A) is sectional drawing cut | disconnected and shown by the plane orthogonal to an axial center, (B) is II-II sectional drawing in (A). 図1の形態における弾性体30を示すもので、(A)は軸方向から見た図、(B)は(A)におけるIII方向矢視図である。The elastic body 30 in the form of FIG. 1 is shown, (A) is the figure seen from the axial direction, (B) is the III direction arrow line view in (A). 本発明に係るトルク伝達装置の好ましい第二の形態を示す分離斜視図である。It is a separation perspective view showing a desirable second form of a torque transmission device concerning the present invention. 第二の形態における弾性体セグメント31を示す斜視図である。It is a perspective view which shows the elastic body segment 31 in a 2nd form. トルク伝達装置の典型的な従来技術を示す分離斜視図である。It is an isolation | separation perspective view which shows the typical prior art of a torque transmission device. 図6に示される弾性体103を外周側から見た側面図である。It is the side view which looked at the elastic body 103 shown by FIG. 6 from the outer peripheral side. 他の従来技術における弾性体103を外周側から見た側面図である。It is the side view which looked at the elastic body 103 in another prior art from the outer peripheral side.

符号の説明Explanation of symbols

10 駆動側回転体
11 ハウジング
12 内周突部
13 駆動側突起
13a,21a 先端部
20 従動側回転体
21 従動側突起
30 弾性体
31 弾性体セグメント
301,302,311,312 ダンパ部
303,304,313 ブリッジ部
305,306,314 係合溝
307,308,315 凹部
DESCRIPTION OF SYMBOLS 10 Drive side rotary body 11 Housing 12 Inner peripheral protrusion 13 Drive side protrusion 13a, 21a Tip part 20 Drive side rotary body 21 Drive side protrusion 30 Elastic body 31 Elastic body segment 301,302,311,312 Damper part 303,304, 313 Bridge portion 305, 306, 314 Engagement groove 307, 308, 315 Recess

Claims (1)

駆動側回転体(10)に円周方向所定間隔で形成された複数の駆動側突起(13)と、従動側回転体(20)に円周方向所定間隔で形成されると共に前記駆動側突起(13)と円周方向交互に配置された複数の従動側突起(21)との間に、それぞれゴム状弾性材料からなるダンパ部(301,302,311,312)が介在され、各ダンパ部(301,302,311,312)が、前記駆動側突起(13)又は(及び)前記従動側突起(21)の先端部(13a,21a)を跨ぐゴム状弾性材料からなるブリッジ部(303,304,313)と一体に形成され、前記ダンパ部(301,302,311,312)のうち、前記駆動側突起(13)と従動側突起(21)の間での入力トルクによる圧縮を受ける側のダンパ部に、前記ブリッジ部(303,304,313)側の端部に位置して、軸方向深さ(d,d)が前記ブリッジ部(303,304,313)の軸方向肉厚(t,t)よりも大きい凹部(307,308,315)が形成されたことを特徴とするトルク伝達装置。 A plurality of drive-side protrusions (13) formed at predetermined intervals in the circumferential direction on the drive-side rotator (10) and the drive-side protrusions (13) formed at predetermined intervals in the circumferential direction on the driven-side rotator (20). 13) and a plurality of driven-side protrusions (21) arranged alternately in the circumferential direction, damper portions (301, 302, 311 and 312) made of rubber-like elastic material are respectively interposed between the damper portions ( 301, 302, 311, 312) are bridge portions (303, 304) made of a rubber-like elastic material straddling the tip end portions (13 a, 21 a) of the drive side projection (13) or (and) the driven side projection (21). , 313) of the damper portion (301, 302, 311, 312) on the side subjected to compression by the input torque between the driving side projection (13) and the driven side projection (21). In the damper section, Tsu located on the edge portion of the di portion (303,304,313) side, the axial thickness of the axial depth (d 2, d 3) said bridge portion (303,304,313) (t 1, torque transmission device, characterized in that t 2) greater recesses than (307,308,315) are formed.
JP2003334991A 2003-09-26 2003-09-26 Torque transmission device Expired - Fee Related JP4106557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334991A JP4106557B2 (en) 2003-09-26 2003-09-26 Torque transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334991A JP4106557B2 (en) 2003-09-26 2003-09-26 Torque transmission device

Publications (2)

Publication Number Publication Date
JP2005098448A JP2005098448A (en) 2005-04-14
JP4106557B2 true JP4106557B2 (en) 2008-06-25

Family

ID=34462503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334991A Expired - Fee Related JP4106557B2 (en) 2003-09-26 2003-09-26 Torque transmission device

Country Status (1)

Country Link
JP (1) JP4106557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294657B2 (en) 2006-06-20 2009-07-15 アスモ株式会社 Coupling device, motor device, and wiper motor
JP6287716B2 (en) 2014-09-12 2018-03-07 株式会社デンソー Power transmission device

Also Published As

Publication number Publication date
JP2005098448A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US6142878A (en) Flexible coupling with elastomeric belt
US8444322B2 (en) Face spline for a driven wheel hub
JP5349756B2 (en) Constant velocity universal joint
JPH076549B2 (en) Elastic shaft coupling
JP2007113634A (en) Pulley structure
WO2017154870A1 (en) Joint for torque transmission, and electric power steering device
US20180066713A1 (en) Joint for torque transmission and worm reduction gear
JP2006283810A (en) Elastic shaft coupling
US20050230208A1 (en) Power transmission device
JP4106557B2 (en) Torque transmission device
JP5157666B2 (en) Elastic shaft coupling and electric power steering device
JP2001041308A (en) Power transmission device
JP4320627B2 (en) Torque transmission device
WO2019022015A1 (en) Torque transmission joint and electric power steering device
JP2019190526A (en) Friction fastening device
JP2009185893A (en) Damper spring assembly
JP5942569B2 (en) Torque transmission joint and electric power steering device
JP7341240B2 (en) dog clutch
JP2007010086A (en) Constant velocity universal joint
KR20210103062A (en) Shaft joint coupling structure
JP5553105B2 (en) Electric power steering device
JP5955793B2 (en) Damper mechanism of torque transmission device
JP2000039027A (en) Coupling structure of rotary shaft
JP2008202666A (en) Shaft fitting structure
JP5915375B2 (en) Torque transmission joint and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4106557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees