JP4104265B2 - Garbage disposal equipment - Google Patents

Garbage disposal equipment Download PDF

Info

Publication number
JP4104265B2
JP4104265B2 JP2000040745A JP2000040745A JP4104265B2 JP 4104265 B2 JP4104265 B2 JP 4104265B2 JP 2000040745 A JP2000040745 A JP 2000040745A JP 2000040745 A JP2000040745 A JP 2000040745A JP 4104265 B2 JP4104265 B2 JP 4104265B2
Authority
JP
Japan
Prior art keywords
tank
decomposition
water
stored water
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040745A
Other languages
Japanese (ja)
Other versions
JP2000189931A5 (en
JP2000189931A (en
Inventor
禎佑 前川
秀臣 新永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Shinmaywa Industries Ltd
Original Assignee
Taikisha Ltd
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd, Shinmaywa Industries Ltd filed Critical Taikisha Ltd
Priority to JP2000040745A priority Critical patent/JP4104265B2/en
Publication of JP2000189931A publication Critical patent/JP2000189931A/en
Publication of JP2000189931A5 publication Critical patent/JP2000189931A5/ja
Application granted granted Critical
Publication of JP4104265B2 publication Critical patent/JP4104265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生ごみを投じた分解槽内の貯留水に酸素を供給して、その貯留水中で生ごみを好気性菌により分解する生ごみ処理装置に関する。
【0002】
【従来の技術】
従来、この種方式の生ごみ処理において、分解槽の貯留水中で生ごみを分解するのに対し、後続処理として、分解槽から分解残渣物を含んだ濃縮液を二次処理槽へ移し、この二次処理槽でヒータにより濃溶液を加熱して水を蒸発させることで、液中の分解残渣物を乾燥させて回収する方式がある(例えば、実用新案登録第3013267号(平成7年)公報参照)。
【0003】
【発明が解決しようとする課題】
しかし、分解槽から取り出す分解残渣物には、分解槽への投入から未だ充分な処理時間を経ていない未分解物質や、好気性菌では分解が難しい難分解物質が含まれる場合が多く、この為、上記の如く分解槽からの取り出し濃縮液を加熱して単に水分を蒸発させるだけでは、これら未分解物質や難分解物質が乾燥後の回収残渣物の中にそのまま残り、充分な減量効果、無害化効果を得ることができない問題があった。
【0004】
殊に、分解槽に投入された生ごみの中に殺菌性を有する物質が含まれていた場合、この殺菌性物質の為に好気性菌の活性が損なわれて分解槽中における未分解物質の量及び存在時間が長くなり、これが原因で、回収残渣物中における未分解物質の量が大巾に増加して上記問題が一層顕著になることもあった。
【0005】
かといって、分解槽への投入物に選別処理を施して難分解物質や殺菌性物質を予め除外したり、また、分解槽への生ごみ投入を時間的に制限して分解槽からの取り出し残渣物に未分解物質が含まれるのを回避するのでは、利便性が大きく低下し、この点で未だ改善の余地があった。
【0006】
この実情に鑑み、本発明の主たる課題は、合理的な装置構成により生ごみの分解を促進する点にある。
【0007】
【課題を解決するための手段】
本発明は、生ごみ処理装置に係り、その特徴は、
生ごみを投じた分解槽内の貯留水に酸素を供給して、その貯留水中で生ごみを好気性菌により分解する生ごみ処理装置において、
前記分解槽における貯留水面上の槽内空間に対し、その槽内空間へ新鮮空気を導入する空気導入口、及び、その槽内空間から内部空気を排出する排気口を開口させ、
前記分離槽の下部に設けた吸入口から槽内の貯留水を吸入して、その吸入貯留水の一部を主循環路から散水用分岐路を通じて散水具から前記分離槽内の貯留水面上へ散布し、
かつ、吸入貯留水の他部を前記主循環路から撹拌用分岐路を通じて分離槽下部の撹拌用吐出口から前記分離槽内の貯留水中へ吐出する循環ポンプを設けてある点にある。
【0008】
この発明では、循環ポンプにより分解槽下部の吸入口から吸入した貯留水の一部は、主循環路から散水用分岐路を通じて散水具から槽内の貯留水面上へ散布し、他部は攪拌用分岐路を通じて分解槽下部の攪拌用吐出口から槽内の貯留水中へ吐出させ、生ごみを含む槽内貯留水の攪拌に用いる。
【0009】
つまり、この装置では、分解槽の槽内空間に開口させた排気口から臭気を帯びた空気(分解処理に伴う発生ガスを含む空気)を槽外へ排出し、また、それに伴い、空気導入口から槽外の新鮮空気を分解槽の槽内空間に導入しながら、その貯留水面上の槽内空間において、散水具により循環ポンプからの供給貯留水を貯留水面上へ拡げて飛散させることにより、その飛散過程での気液接触をもって、槽内空間における空気(空気導入口から導入した空気)から飛散水に酸素を効率的に与え、これにより、攪拌を伴う貯留水循環の下で分解槽内の貯留水に酸素を効率的かつ均一に供給して、貯留水中での好気性菌による生ごみの分解を促進することができる。
【0010】
なお、分解槽の貯留水に酸素を供給して貯留水中で好気性菌により生ごみを分解するのに対し、後続処理として、分解槽から取り出した分解残渣物を加熱乾燥機において炭化が生じる温度で加熱乾燥処理するように構成すれば、この加熱乾燥処理で、取り出し残渣物に含まれる未分解物質や難分解物質もともに炭化した乾燥状態にすることができる
0011
したがって、未分解物質や難分解物質が単に水分除去されただけの乾燥状態で回収残渣物中にそのまま残る先述の従来方法に比べ、一層高い減量効果及び無害化効果(特に無臭化効果)が得られる。また、炭化により回収残渣物が均質な炭屑状のサラサラのものになり、回収残渣物の取り扱いも一層簡便になる。
0012
そして、未分解物質や難分解物質もともに良好に処理できることで、分解槽への投入物を選別処理して難分解物質や殺菌性物質を予め除外したり、分解槽への生ごみ投入を時間的に制限して分解槽からの取り出し残渣物に未分解物質が含まれるのを回避するといった処置も不要になり、また、良好な処理が可能な生ごみの種別範囲も拡大でき、利便性・汎用性の面でも優れた処理方法となる。
0013
また、分解槽から取り出した分解残渣物を加熱乾燥機において炭化が生じる温度で加熱するのに、分解残渣物を130℃〜170℃の範囲内の温度に加熱するのが好ましい。
0014
つまり、各種実験の結果、分解槽から取り出した分解残渣物を130℃〜170℃の範囲内の温度に加熱すれば、例えば、分解残渣物をさらに高い温度で焼却処理する方式を採るに比べ、有害な燃焼副生ガスの発生を回避して周辺環境への影響を極めて小さくし、また、加熱に要するコストは低くしながら、一般的な組成の生ごみについて、分解残渣物をそれに含まれる未分解物質や難分解物質とともに減量面、無害化面、取り扱い性の面で極めて良好な炭化状態にすることができる。
0015
更に、分解槽内の貯留水に酸素を供給して貯留水中で生ごみを好気性菌により分解する生ごみ処理装置に、その分解槽での分解処理に並行して槽内の分解残渣物の一部量を連続的又は間欠的に取り出す抜取手段、及び、その抜取手段により取り出した分解残渣物を炭化が生じる温度で加熱乾燥処理する加熱乾燥機を付帯装備する構成にすると、生ごみ処理を一連の工程でまとめて実施でき、これにより、従来方法を採る装置に比べ、前記の如く減量面、無害化面、回収残渣物の取り扱い性の面で一層処理性能に優れ、また管理も容易な処理装置となる。
0016
しかも、分解残渣物を加熱乾燥処理するのに、分解槽での分解処理に並行して槽内の分解残渣物の一部量を連続的又は間欠的に取り出すから、分解槽に残す分解残渣物を栄養源にして分解槽における好気性菌の働きを活発に保つことができて、生ごみ投入に対し常に備えた状態を維持でき、この点、分解槽内の分解残渣物の全量を一度に取り出して加熱乾燥機に送る方式を採るに比べ、利便性の一層高い装置となり、また、分解残渣物を受け入れる加熱乾燥装置も小型なもので済み、装置コスト面及び装置のコンクパクト化の面でも有利になる。
0017
更に、抜取手段により分解槽から取り出して加熱乾燥機に送る分解残渣物と、加熱乾燥処理において加熱乾燥機から排出される高温の水蒸気含有ガスとを熱交換させることで、その排出高温ガスの保有熱を回収利用して加熱乾燥機へ供給する分解残渣物を予熱する方式とするから、加熱乾燥処理の熱効率を高めてランニングコストを低減でき、省エネ面でも優れた処理装置となる。
0018
また、この熱交換をもって加熱乾燥機からの排出高温ガスに含まれる水蒸気(分解残渣物の加熱乾燥処理で発生する水蒸気)を復水させて、専用復水器の付帯装備を不要にしながら、加熱乾燥処理に伴う発生水蒸気の処理も合わせ行うことができる。
0019
そしてまた、上記熱交換器における分解残渣物の熱交換室を、残渣物導入路及び残渣物導出路の閉じ操作による密閉化が可能な構造にし、この密閉化した熱交換室の室内を低圧化する排気ポンプを設けることにより、加熱乾燥機からの排出高温ガスとの熱交換による加熱(予熱)と、排気ポンプによる低圧化とで水分蒸発を効果的に促進して、熱交換室から加熱乾燥機に送る分解残渣物の水分量を効果的に低下させることができ、これにより、加熱乾燥機を一層小型なもので済ませることができ、排気ポンプの付加があるにしても、装置コスト面、ランニングコスト面、及び、装置のコンクパクト化の面でさらに有利になる。
0020
そして更に、前記抜取手段を、分解槽から分解残渣物を含む貯留水を流入させる沈降槽と、この沈降槽への貯留水流入を断続する流入弁と、この沈降槽の上下中間部から沈降物上のうわずみ水を分解槽へ流出させる排水弁と、この沈降槽の底部から沈降物を流出させる導出弁とで構成し、これにより分解槽からの分解残渣物の取り出しを次の如く行うのが好ましい。
0021
排水弁及び導出弁を閉じた状態で流入弁を開き、分解槽における分解残渣物の一部量を貯留水とともに沈降槽に流入させ、その後、流入弁を閉じた状態で適当時間の間、そのまま放置し、沈降槽の槽内で貯留水中の分解残渣物を沈降させて槽底に堆積させる。
0022
この沈降の後、排水弁を開き、沈降物として槽底に堆積した分解残渣物の上のうわずみ水のみを沈降槽から流出させて分解槽へ戻し、その後、導出弁を開くことで槽底の堆積分解残渣物を沈降槽から流出させ、この分解残渣物を前記熱交換室(ないしは直接に加熱乾燥機)に送る。
0023
つまり、分解残渣物を貯留水とともに分解槽から流出させる形態を採ることで、分解槽からの分解残渣物の取り出しを円滑かつ容易に行えるようにしながらも、各弁を操作しての沈降槽での水の分離除去により後続の加熱乾燥処理の処理負担を小さくして、加熱乾燥機を初めとする加熱乾燥処理のための付帯構成を小さくすることができ、装置コスト面、ランニングコスト面、及び、装置のコンクパクト化の面でさらに有利になる。
0024
【発明の実施の形態】
図1は、分離槽1に投入した生ごみを槽内の貯留水W中で好気性菌により分解処理する方式の生ごみ処理装置を示し、分解槽1の上部には、貯留水面上の槽内空間Sに対し開口させる空気導入口2及び排気口3を設け、また、給水弁4の開閉により槽内に所要量の水Wを供給する給水路5を接続してある。
0025
6は分解槽1内の貯留水Wを循環させる循環ポンプであり、この循環ポンプ6により分解槽下部の吸入口7から吸入した貯留水Wの一部は、主循環路8から散水用分岐路9を通じて分解槽1内の頂部に配備の散水具10から槽内の貯留水面上へ散布し、他部は攪拌用分岐路11を通じて分解槽下部の攪拌用吐出口12から槽内の貯留水W中へ吐出させ、生ごみを含む槽内貯留水Wの攪拌に用いる。
0026
つまり、この装置では、分解槽1の槽内空間Sに開口させた排気口3から臭気を帯びた空気A’(分解処理に伴う発生ガスを含む空気)を排気ファン13により排気路14を通じて槽外へ排出し、また、それに伴い、空気導入口2から槽外の新鮮空気Aを分解槽1の槽内空間Sに導入しながら、その貯留水面上の槽内空間Sにおいて、散水具10により循環ポンプ6からの供給貯留水Wを貯留水面上へ拡げて飛散させることにより、その飛散過程での気液接触をもって、槽内空間Sにおける空気(空気導入口2から導入した空気A)から飛散水Wに酸素を効率的に与え、これにより、攪拌を伴う貯留水循環の下で分解槽1内の貯留水Wに酸素を効率的かつ均一に供給して、貯留水W中での好気性菌による生ごみの分解を促進する。
0027
なお、好気性菌による分解処理であるから発生臭気はそれほど強いものではないが、排気路14から槽外へ排出する空気A’に対しては付帯の脱臭装置により脱臭処理を施す。
0028
前記散水具10は、図2に示すように、循環ポンプ6から供給される貯留水Wを大口径(例えば25mm以上の口径)の吐水口15から下向きに吐出させて、その吐出水Wを吐水口15の下方に設けた円板状衝突部16の上向き衝突面に衝突させることにより、吐出水Wを微細化した状態で水平方向への拡がりを持たせて分離槽1の貯留水面上へ広く飛散させる構造にしてあり、吐水口15を大口径にすることで循環ポンプ6からの供給貯留水Wに含まれる分解過程物質や分解残渣物による吐出口15の目詰まりを確実に防止しながら、上記の衝突をもって吐出水Wを貯留水面上へ大きく拡げて良好に飛散させる。
0029
また、衝突部16の水平方向周囲は、衝突部16からの飛散水Wを反射させる壁部aと衝突部16からの飛散水Wの通過を許す開口部bとを周方向に交互に多数並べて櫛歯状に形成した散水カバー17で囲ってあり、これにより、外方側への飛散水Wの拡がりは各開口部bを通過する飛散水Wにより充分にしながら、内方側に飛散水不存の空洞部が生じることを各壁部aによる飛散水Wの反射により防止して、貯留水面に対する散水の均一性を高める。
0030
さらにまた、散水具10は分解槽1の頂部に設けた下向き空気導入口2の内部に同芯上に配置してあり、これにより、散水具10の吐水口15から吐出させて衝突部16への衝突により飛散させる水Wに対し、空気導入口2からの導入新鮮空気Aを集中的かつ水吐出に伴う誘引作用の下で効率的に接触させる。
0031
18は上記の分解処理で最終的に残る分解残渣物Dを加熱乾燥処理して回収する加熱乾燥機であり、図1及び図3に示す如く、分解槽1での分解処理に並行して、攪拌用分岐路11から分解残渣物Dを含む循環貯留水Wの一部量を取出路19へ所定時間毎に取り出し、この取り出し水W中の分解残渣物Dを、沈降槽20での水分離処理、及び、それに続く熱交換器21での水分蒸発処理を経て加熱乾燥機18に送る。22は加熱乾燥機18から送出される処理済の残渣物Dを受け入れる回収容器である。
0032
23は取出路19を通じての沈降槽20への貯留水流入を断続する流入弁、24は沈降槽20の上下中間部から沈降物D上のうわずみ水Wを流出させる排水弁、25は沈降槽20の底部から沈降物Dを流出させる導出弁であり、この構成により沈降槽20での水分離処理を次の如く行う。
0033
排水弁24及び導出弁25を閉じた状態で流入弁23を開き、取出路19を通じて分解残渣物Dを貯留水Wとともに沈降槽20に流入させ、その後、流入弁23を閉じた状態で所定時間の間、そのまま放置し、沈降槽20の槽内で貯留水W中の分解残渣物Dを沈降させて槽底に堆積させる。そして、この沈降の後、排水弁24を開き、沈降物として槽底に堆積した分解残渣物Dの上のうわずみ水Wのみを還水路26を通じ沈降槽20から流出させて分解槽20へ戻し、その後、導出弁25を開くことで槽底の堆積分解残渣物Dを沈降槽20から熱交換器21の熱交換室21aへ流出させる。
0034
つまり、これら沈降槽20及び付帯の各弁23〜25は、分解槽1から分解残渣物Dの一部量を貯留水Wとともに取り出し、その取り出し残渣物Dを水分離処理した上で熱交換器21の熱交換室21aに送る抜取手段を構成する。
0035
なお、27は流入弁23を開いた状態で取出路19に導入される貯留水Wのうち、沈降槽20の受け入れ流量を上回る余剰流量分を分解槽1に戻す放水路であり、この放水路27を設けて流入弁23における過大な水通過を許すことで、流入弁23に大口径のものを選定できるように、また、その流入弁23を全閉か全開かの2位置で使用できるようにして、貯留水W中の分解残渣物Dによる弁の詰まりを防止する。
0036
熱交換器21は、沈降槽20で水分離処理した分解残渣物Dを、加熱乾燥機18から排出される高温の水蒸気含有ガスGと熱交換させて加熱(予熱)するものであり、沈降槽20からの分解残渣物Dを受け入れる熱交換室21aの周部に蒸気室21bを形成し、この蒸気室21aに加熱乾燥機18からのガス送出路28を接続してある。21cは熱交換を促進するための伝熱フィンである。
0037
また、熱交換室21aには、沈降槽20から熱交換室21aへの導出弁25、及び、熱交換室21aから加熱乾燥機18への導出弁29を閉じて熱交換室21aを密閉化した状態で、その熱交換室21aから排気ポンプ30(真空ポンプ)により室内気を吸引排気して熱交換室21aの室内を低圧化する吸引路31を接続してあり、これにより、加熱乾燥機18からの排出高温ガスGとの熱交換による加熱(予熱)と、排気ポンプ30による低圧化とで室内分解残渣物Dからの水分蒸発を促進して、熱交換室21aから加熱乾燥機18に送る分解残渣物Dの水分量を低下させる。
0038
32は蒸発室21bにおいて分解残渣物Dとの熱交換で復水した水蒸気凝縮水を蒸発室21bから排出するUトラップ装備のドレン路、33は蒸発室21bに導入した高温の水蒸気含有ガスGのうち非凝縮のガス分を蒸発室21bから排出する排ガス路であり、この排ガス路33への排出ガスと排気ポンプ30による熱交換室21aからの排出気とは合流排ガス路34を通じて排気ファン13に導き、分離槽1からの排出空気A’とともに脱臭装置で脱臭処理する。
0039
加熱乾燥機18は、熱交換器21の熱交換室21aから供給される分解残渣物Dを、複数の攪拌翼35の回転により攪拌しながら送出口36へ向けて機体内移動させる過程で、機壁に装備の電気ヒータ37により加熱して乾燥させる構造を採用してあり、その運転にあたっては、分解残渣物Dを130〜170℃の範囲内の温度に加熱して、分解残渣物D中に含まれる未分解物質や難分解物質もともに炭化させ、これにより、処理済残渣物Dとして均質でサラサラの炭屑状のものを送出口36から得る。
0040
38a,38bは加熱乾燥機18内での処理物移動を調整する堰、39は攪拌翼35の駆動モータである。
0041
なお、以上の処理において、各弁23〜25,29の開閉操作、及び、排気ポンプ30の発停は付帯の制御器(図示せず)が予め設定されたプログラムに従って自動的に行う。
0042
〔別の実施形態〕
次に別の実施形態を列記する。
0043
加熱乾燥機での加熱温度は前記の如く130〜170℃が一般的に最適であるが、分解残渣物がそれに含まれる未分解物質や難分解物質とともに炭化する温度範囲であれば、生ごみの組成や要求される回収残渣物の組成によって、130〜170℃の範囲よりも低い加熱温度あるいは高い加熱温度を選定してもよい。
0044
前述の実施形態では、流入弁23の開閉操作により分解槽の槽内から分解残渣物の一部量を間欠的に取り出す方式を示したが、間欠的な取り出しに代え、分解槽の槽内から分解残渣物の一部量を連続的に取り出して加熱乾燥処理する方式を採ってもよく、分解槽での分解処理に並行して槽内の分解残渣物の一部量を連続的又は間欠的に取り出す抜取手段の具体的方式・構造は種々の構成変更が可能である。
0045
処理対象の生ごみは、魚屑や野菜屑に限られるのではなく、例えば油滓や廃棄油を初めとする油脂類などであってもよく、また、食品ごみ以外のものであってもよく、混入する難分解物質以外の主組成が好気性菌による水中での分解が可能なものであれば、どのようなものも処理対象とすることができる。
【図面の簡単な説明】
【図1】 装置の全体構成図
【図2】 散水具の構成図
【図3】 要部の拡大構成図
【符号の説明】
1 分解槽
18 加熱乾燥機
20,23,24,25 抜取手段
20 沈降槽
21 熱交換器
21a 熱交換室
30 排気ポンプ
23 流入弁
24 排水弁
25 導出弁
D 分解残渣物
G 水蒸気含有ガス
W 貯留水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a garbage processing apparatus that supplies oxygen to stored water in a decomposition tank in which garbage is thrown and decomposes the garbage with aerobic bacteria in the stored water.
[0002]
[Prior art]
Conventionally, in this type of garbage treatment, garbage is decomposed in the water stored in the decomposition tank, whereas as a subsequent treatment, the concentrated liquid containing decomposition residues is transferred from the decomposition tank to the secondary treatment tank. There is a method in which a concentrated solution is heated by a heater in a secondary treatment tank to evaporate water, thereby drying and recovering decomposition residues in the liquid (for example, Utility Model Registration No. 301313 (1995)). reference).
[0003]
[Problems to be solved by the invention]
However, the decomposition residue taken out from the decomposition tank often contains undegraded substances that have not yet passed a sufficient treatment time since being put into the decomposition tank, and hardly decomposed substances that are difficult to decompose with aerobic bacteria. When the concentrated liquid taken out from the decomposition tank is heated as described above and the water is simply evaporated, these undecomposed substances and hardly decomposed substances remain in the recovered residue after drying, and a sufficient weight reduction effect and harmlessness. There was a problem that it was not possible to obtain an effect.
[0004]
In particular, if the garbage put into the decomposition tank contains a sterilizing substance, the activity of the aerobic bacteria is impaired due to this sterilizing substance, and the undecomposed substance in the decomposition tank Due to this, the amount and the time of existence become longer, and this causes the amount of undecomposed substances in the recovered residue to increase greatly, which may make the above problem more remarkable.
[0005]
However, the input to the decomposition tank is subjected to a sorting process to exclude hard-to-decompose substances and disinfectant substances in advance, or the garbage input to the decomposition tank is limited in terms of time and taken out from the decomposition tank. Avoiding the inclusion of undecomposed substances in the residue greatly reduces convenience, and there is still room for improvement in this respect.
[0006]
In view of this situation, the main problem of the present invention is to promote the decomposition of garbage with a rational device configuration .
[0007]
[Means for Solving the Problems]
The present invention relates to a garbage disposal apparatus, and its features are:
In the garbage processing device that supplies oxygen to the stored water in the decomposition tank where the garbage is thrown, and decomposes the garbage with aerobic bacteria in the stored water,
Opening an air inlet for introducing fresh air into the tank space, and an exhaust port for discharging internal air from the tank space, with respect to the tank space on the stored water surface in the decomposition tank,
The water stored in the tank is sucked from a suction port provided in the lower part of the separation tank, and a part of the suction stored water passes from the main circulation path to the water storage surface in the separation tank through the watering branch. Spray,
And the circulation pump which discharges the other part of suction | inhalation stored water from the said main circulation path through the branch for stirring to the stored water in the said separation tank from the discharge outlet for stirring of the lower part of a separation tank is provided.
[0008]
In this invention, a part of the stored water sucked from the suction port at the lower part of the decomposition tank by the circulation pump is sprayed from the water sprinkler to the stored water surface in the tank through the sprinkling branch, and the other part is used for stirring. It is discharged into the stored water in the tank from the stirring outlet at the lower part of the decomposition tank through the branch path, and used for stirring the stored water in the tank including garbage.
[0009]
In other words, in this device, odorous air (air containing gas generated by the decomposition process) is exhausted from the exhaust port opened in the internal space of the decomposition tank to the outside of the tank. While introducing fresh air outside the tank into the tank space of the decomposition tank, in the tank space on the stored water surface, by spreading the supply stored water from the circulation pump onto the stored water surface with a watering tool, With the gas-liquid contact in the scattering process, oxygen is efficiently given to the scattered water from the air in the tank space (air introduced from the air inlet). Oxygen can be efficiently and uniformly supplied to the stored water to promote the decomposition of garbage by aerobic bacteria in the stored water.
[0010]
In addition, while oxygen is supplied to the storage water of the decomposition tank and the garbage is decomposed by aerobic bacteria in the storage water, as a subsequent treatment, the temperature at which carbonization occurs in the heating residue of the decomposition residue taken out from the decomposition tank If it is configured to heat and dry , the heat drying process can make a dry state in which both undecomposed substances and hardly decomposed substances contained in the removed residue are carbonized.
[ 0011 ]
Therefore, higher weight loss and detoxification effects (especially non-bromide effect) can be obtained compared with the above-mentioned conventional method in which undegraded substances and hardly decomposed substances remain in the recovered residue in a dry state in which moisture is simply removed. It is done. In addition, the carbonized carbon dioxide is made of a uniform carbon scrap-like residue by carbonization, and handling of the recovered residue is further simplified.
[ 0012 ]
And because both undegraded and difficult-to-decompose substances can be treated well, the input to the decomposition tank is sorted to exclude difficult-to-decompose substances and bactericidal substances in advance, and it is time to put garbage into the decomposition tank. It is no longer necessary to limit the amount of waste that can be removed from the decomposition tank to avoid the inclusion of undecomposed substances, and the range of types of garbage that can be treated well can be expanded. It is an excellent treatment method in terms of versatility.
[ 0013 ]
Further, to heat decomposition residue taken out from the decomposition tank at a temperature carbonization occurs in the hot air dryer, preferably you heat the decomposed residue to a temperature in the range of 130 ° C. to 170 ° C..
[ 0014 ]
That is, as a result of various experiments, if the decomposition residue taken out from the decomposition tank is heated to a temperature within the range of 130 ° C. to 170 ° C., for example, compared to adopting a method of incinerating the decomposition residue at a higher temperature, The generation of harmful combustion by-product gas is avoided, the impact on the surrounding environment is extremely small, and the cost of heating is low. Along with decomposing substances and hard-to-decompose substances, the carbonization state can be made extremely good in terms of weight reduction, detoxification and handling.
[ 0015 ]
Furthermore, in the garbage treatment equipment that supplies oxygen to the stored water in the decomposition tank and decomposes the garbage with aerobic bacteria in the stored water, the decomposition residue in the tank is parallel to the decomposition treatment in the decomposition tank. When it is configured to be equipped with a sampling means that continuously or intermittently removes a part amount, and a heating dryer that heat-drys the decomposition residue extracted by the sampling means at a temperature at which carbonization occurs , the garbage treatment As a result, it can be carried out in a series of processes, and as described above, it has superior processing performance and ease of management in terms of weight reduction, detoxification, and handling of recovered residues as described above. It becomes a processing device.
[ 0016 ]
Moreover, in order to heat and dry the decomposition residue, a part of the decomposition residue in the tank is taken out continuously or intermittently in parallel with the decomposition process in the decomposition tank. As a nutrient source, it can keep the aerobic bacteria active in the decomposition tank and maintain the state always prepared for garbage input. In this respect, the entire amount of decomposition residue in the decomposition tank can be maintained at once. Compared to the method of taking it out and sending it to the heat dryer, it becomes a more convenient device, and the heat drying device that accepts the decomposition residue is small, which is advantageous in terms of device cost and compactness of the device. become.
[ 0017 ]
Furthermore, by exchanging heat between the decomposition residue taken out from the decomposition tank by the extraction means and sent to the heat dryer and the high-temperature steam-containing gas discharged from the heat dryer in the heat drying treatment, Since the decomposition residue supplied to the heat dryer is preheated by recovering and using heat, the heat efficiency of the heat drying process can be increased, the running cost can be reduced, and the processing apparatus is excellent in terms of energy saving.
[ 0018 ]
In addition, this heat exchange condenses water vapor (water vapor generated by heat drying treatment of decomposition residue) contained in the high-temperature gas discharged from the heat dryer, eliminating the need for additional equipment of the dedicated condenser, and heating The treatment of the generated water vapor accompanying the drying treatment can also be performed.
[ 0019 ]
In addition, the heat exchange chamber for the decomposition residue in the heat exchanger has a structure that can be closed by closing the residue introduction path and the residue discharge path, and the pressure in the sealed heat exchange chamber is reduced. By providing an exhaust pump that heats heat (preheating) by heat exchange with the high-temperature gas discharged from the heat dryer and lowering the pressure by the exhaust pump, it effectively promotes moisture evaporation and heat-drys from the heat exchange chamber. It is possible to effectively reduce the moisture content of the decomposition residue sent to the machine, which makes it possible to reduce the size of the heat dryer, and even with the addition of an exhaust pump, This is further advantageous in terms of running cost and compactness of the apparatus.
[ 0020 ]
Further, the extraction means includes a settling tank for allowing the stored water containing decomposition residue from the decomposition tank, an inflow valve for intermittently flowing the stored water into the settling tank, and a sediment from the upper and lower intermediate portions of the settling tank. It consists of a drainage valve that allows the above-mentioned waste water to flow into the decomposition tank, and a discharge valve that allows the sediment to flow out from the bottom of this settling tank, so that the decomposition residue can be removed from the decomposition tank as follows . Is preferred.
[ 0021 ]
Open the inflow valve with the drain valve and outlet valve closed, and let some amount of decomposition residue in the decomposition tank flow into the sedimentation tank together with the stored water, and then leave it in the closed state for an appropriate time. It is allowed to stand, and the decomposition residue in the stored water is allowed to settle in the settling tank and deposit on the bottom of the tank.
[ 0022 ]
After this sedimentation, the drainage valve is opened, and only the swollen water on the decomposition residue deposited on the bottom of the tank as sediment is discharged from the sedimentation tank and returned to the decomposition tank, and then the outlet valve is opened to open the bottom of the tank. The deposited decomposition residue is discharged from the settling tank, and the decomposition residue is sent to the heat exchange chamber (or directly to the heat dryer).
[ 0023 ]
In other words, by adopting a configuration in which the decomposition residue is allowed to flow out of the decomposition tank together with the stored water, it is possible to smoothly and easily take out the decomposition residue from the decomposition tank, but in the settling tank that operates each valve. By separating and removing the water, it is possible to reduce the processing load of the subsequent heating and drying process, and to reduce the incidental configuration for the heating and drying process including the heating and drying machine. This is further advantageous in terms of compacting the apparatus.
[ 0024 ]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a garbage processing apparatus of a method for decomposing garbage input to the separation tank 1 with aerobic bacteria in the stored water W in the tank. In the upper part of the decomposition tank 1, a tank on the stored water surface is shown. An air introduction port 2 and an exhaust port 3 that open to the inner space S are provided, and a water supply path 5 that supplies a required amount of water W into the tank by opening and closing the water supply valve 4 is connected.
[ 0025 ]
A circulation pump 6 circulates the stored water W in the decomposition tank 1, and a part of the stored water W sucked from the inlet 7 at the lower part of the decomposition tank by the circulation pump 6 is sprinkled from the main circulation path 8. 9 is sprayed from the sprinkler 10 provided on the top of the decomposition tank 1 onto the stored water surface in the tank, and the other part is stored in the tank from the stirring discharge port 12 in the lower part of the decomposition tank through the stirring branch 11. It is discharged to the inside and used for agitation of the stored water W in the tank containing garbage.
[ 0026 ]
In other words, in this apparatus, the odorous air A ′ (air containing the gas generated by the decomposition process) is discharged from the exhaust port 3 opened in the internal space S of the decomposition tank 1 through the exhaust path 14 by the exhaust fan 13. In addition to this, while introducing fresh air A outside the tank from the air inlet 2 to the in-tank space S of the decomposition tank 1, the sprinkler 10 in the in-tank space S on the stored water surface By spreading the supply stored water W from the circulation pump 6 onto the surface of the stored water and splashing it, it is scattered from the air in the tank space S (air A introduced from the air inlet 2) with gas-liquid contact in the scattering process. Oxygen is efficiently given to the water W, and thereby oxygen is efficiently and uniformly supplied to the stored water W in the decomposition tank 1 under the stored water circulation with stirring, so that the aerobic bacteria in the stored water W Promotes the decomposition of food waste.
[ 0027 ]
Although the generated odor is not so strong because it is a decomposition process by aerobic bacteria, the deodorizing process is performed on the air A ′ discharged from the exhaust passage 14 to the outside of the tank by an accompanying deodorizing device.
[ 0028 ]
As shown in FIG. 2, the watering tool 10 discharges the discharged water W by discharging the stored water W supplied from the circulation pump 6 downward from a water discharge port 15 having a large diameter (for example, a diameter of 25 mm or more). By colliding with the upward collision surface of the disk-shaped collision part 16 provided below the water port 15, the discharge water W is spread in the horizontal direction in a miniaturized state and widely spread on the stored water surface of the separation tank 1. The structure is made to scatter, and the discharge port 15 is reliably prevented from being clogged by decomposition process substances and decomposition residues contained in the supply and stored water W from the circulation pump 6 by making the water discharge port 15 have a large diameter. With the above collision, the discharged water W is greatly spread on the stored water surface and scattered well.
[ 0029 ]
In addition, a large number of wall portions a that reflect the splashed water W from the collision portion 16 and a plurality of openings b that allow the splashed water W to pass from the collision portion 16 are alternately arranged in the circumferential direction around the collision portion 16 in the horizontal direction. It is surrounded by a water spray cover 17 formed in a comb-like shape, so that the spread of the splashed water W to the outer side is sufficient by the splashed water W passing through each opening b, while the splashed water is not splashed to the inner side. The existence of the existing cavity is prevented by the reflection of the scattered water W by each wall part a, and the uniformity of the water spray on the stored water surface is enhanced.
[ 0030 ]
Furthermore, the water sprinkler 10 is arranged concentrically inside the downward air inlet 2 provided at the top of the decomposition tank 1, and is thereby discharged from the spout 15 of the sprinkler 10 to the collision part 16. The fresh air A introduced from the air inlet 2 is efficiently brought into contact with the water W scattered by the collision of the water under an intensive and attracting action accompanying water discharge.
[ 0031 ]
18 is a heating dryer that recovers the decomposition residue D finally left by the above-described decomposition treatment by heat drying treatment, as shown in FIGS. 1 and 3, in parallel with the decomposition treatment in the decomposition tank 1, A part of the circulating stored water W including the decomposition residue D is taken out from the agitation branch 11 to the extraction passage 19 every predetermined time, and the decomposition residue D in the extraction water W is separated into water in the settling tank 20. After the process and the subsequent water evaporation process in the heat exchanger 21, it is sent to the heating dryer 18. Reference numeral 22 denotes a collection container for receiving the processed residue D delivered from the heat dryer 18.
[ 0032 ]
Reference numeral 23 denotes an inflow valve for intermittently storing the inflow of the stored water into the settling tank 20 through the take-out channel 19; 24, a drain valve for discharging the swollen water W on the sediment D from the upper and lower intermediate portions of the settling tank 20, and 25: a settling tank. This is a lead-out valve that allows the sediment D to flow out from the bottom of the tank 20. With this configuration, the water separation process in the sedimentation tank 20 is performed as follows.
[ 0033 ]
The inflow valve 23 is opened with the drain valve 24 and the outlet valve 25 closed, and the decomposition residue D is allowed to flow into the settling tank 20 together with the stored water W through the take-out passage 19, and then the inflow valve 23 is closed for a predetermined time. The decomposition residue D in the stored water W is allowed to settle in the tank of the settling tank 20 and deposited on the tank bottom. After the sedimentation, the drain valve 24 is opened, and only the swollen water W on the decomposition residue D deposited on the bottom of the tank as sediment is caused to flow out of the sedimentation tank 20 through the return water channel 26 and returned to the decomposition tank 20. Then, by opening the outlet valve 25, the sediment decomposition residue D at the bottom of the tank is caused to flow from the settling tank 20 to the heat exchange chamber 21 a of the heat exchanger 21.
[ 0034 ]
In other words, the settling tank 20 and the accompanying valves 23 to 25 take out a part of the decomposition residue D together with the stored water W from the decomposition tank 1, perform the water separation treatment on the removal residue D, and then heat exchanger The extraction means sent to the heat exchange chamber 21a of 21 is comprised.
[ 0035 ]
In addition, 27 is a drainage channel which returns the excess flow rate exceeding the receiving flow rate of the sedimentation tank 20 among the stored water W introduced into the extraction channel 19 with the inflow valve 23 opened, and this drainage channel. 27 to allow an excessive flow of water through the inflow valve 23, so that a large diameter can be selected for the inflow valve 23, and the inflow valve 23 can be used in two positions of being fully closed or fully opened. Thus, clogging of the valve due to the decomposition residue D in the stored water W is prevented.
[ 0036 ]
The heat exchanger 21 heats (preheats) the decomposition residue D, which has been subjected to water separation treatment in the settling tank 20, by exchanging heat with the high-temperature steam-containing gas G discharged from the heating dryer 18. A steam chamber 21b is formed in the peripheral portion of the heat exchange chamber 21a that receives the decomposition residue D from 20, and a gas delivery path 28 from the heating dryer 18 is connected to the steam chamber 21a. 21 c is a heat transfer fin for promoting heat exchange.
[ 0037 ]
Further, in the heat exchange chamber 21a, the outlet valve 25 from the settling tank 20 to the heat exchanger chamber 21a and the outlet valve 29 from the heat exchanger chamber 21a to the heating dryer 18 are closed to seal the heat exchanger chamber 21a. In this state, a suction path 31 is connected from the heat exchange chamber 21a to suck and exhaust the indoor air by an exhaust pump 30 (vacuum pump) to reduce the pressure in the heat exchange chamber 21a. The heat (preheating) by heat exchange with the exhausted hot gas G from the exhaust gas and the pressure reduction by the exhaust pump 30 promote moisture evaporation from the indoor decomposition residue D and send it from the heat exchange chamber 21a to the heating dryer 18 The water content of the decomposition residue D is reduced.
[ 0038 ]
32 is a drain path equipped with a U trap for discharging steam condensed water condensed by heat exchange with the decomposition residue D in the evaporation chamber 21b from the evaporation chamber 21b, and 33 is a high-temperature steam-containing gas G introduced into the evaporation chamber 21b. Of these, an exhaust gas path for discharging non-condensable gas from the evaporation chamber 21 b, and the exhaust gas to the exhaust gas path 33 and the exhaust gas from the heat exchange chamber 21 a by the exhaust pump 30 are sent to the exhaust fan 13 through the combined exhaust gas path 34. Then, the deodorizing device and the exhaust air A ′ from the separation tank 1 are deodorized.
[ 0039 ]
The heating dryer 18 is a process in which the decomposition residue D supplied from the heat exchange chamber 21a of the heat exchanger 21 is moved toward the delivery port 36 while being stirred by the rotation of the plurality of stirring blades 35. In the operation, the decomposition residue D is heated to a temperature in the range of 130 to 170 ° C., and the decomposition residue D is put into the decomposition residue D. Both the undecomposed substance and the hardly decomposable substance contained are carbonized, and thereby, a homogenous and smooth debris is obtained from the delivery port 36 as the treated residue D.
[ 0040 ]
Reference numerals 38 a and 38 b denote weirs for adjusting the movement of the processed material in the heating dryer 18, and reference numeral 39 denotes a drive motor for the stirring blade 35.
[ 0041 ]
In the above processing, the opening / closing operation of the valves 23 to 25 and 29 and the start / stop of the exhaust pump 30 are automatically performed by an accompanying controller (not shown) according to a preset program.
[ 0042 ]
[Another embodiment]
Next, another embodiment will be listed.
[ 0043 ]
As described above, the heating temperature in the heat dryer is generally optimal at 130 to 170 ° C. However, if the decomposition residue is in a temperature range that carbonizes together with undecomposed substances and hardly decomposed substances contained therein, A heating temperature lower or higher than the range of 130 to 170 ° C. may be selected depending on the composition and the composition of the required recovery residue.
[ 0044 ]
In the above-described embodiment, the method of intermittently removing a part of the decomposition residue from the decomposition tank by opening / closing the inflow valve 23 is shown. A method may be employed in which a part of the decomposition residue is continuously taken out and heat-dried, and a part of the decomposition residue in the tank is continuously or intermittently performed in parallel with the decomposition process in the decomposition tank. The specific method and structure of the extraction means to be taken out can be changed in various ways.
[ 0045 ]
The garbage to be treated is not limited to fish and vegetable waste, but may be, for example, fats and oils such as oil bottles and waste oil, and may be other than food waste. As long as the main composition other than the difficult-to-decompose substances to be mixed can be decomposed in water by an aerobic bacterium, any substance can be treated.
[Brief description of the drawings]
[Fig. 1] Overall configuration diagram of the device [Fig. 2] Configuration diagram of the watering tool [Fig. 3] Enlarged configuration diagram of the main part [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Decomposition tank 18 Heating dryer 20,23,24,25 Extraction means 20 Sedimentation tank 21 Heat exchanger 21a Heat exchange chamber 30 Exhaust pump 23 Inflow valve 24 Drain valve 25 Outlet valve D Decomposition residue G Steam-containing gas W Reservoir

Claims (1)

生ごみを投じた分解槽内の貯留水に酸素を供給して、その貯留水中で生ごみを好気性菌により分解する生ごみ処理装置であって、
前記分解槽における貯留水面上の槽内空間に対し、その槽内空間へ新鮮空気を導入する空気導入口、及び、その槽内空間から内部空気を排出する排気口を開口させ、
前記分離槽の下部に設けた吸入口から槽内の貯留水を吸入して、その吸入貯留水の一部を主循環路から散水用分岐路を通じて散水具から前記分離槽内の貯留水面上へ散布し、
かつ、吸入貯留水の他部を前記主循環路から撹拌用分岐路を通じて分離槽下部の撹拌用吐出口から前記分離槽内の貯留水中へ吐出する循環ポンプを設けてある生ごみ処理装置。
A garbage treatment device that supplies oxygen to the stored water in a decomposition tank in which garbage is thrown and decomposes the garbage with aerobic bacteria in the stored water,
Opening an air inlet for introducing fresh air into the tank space, and an exhaust port for discharging internal air from the tank space, with respect to the tank space on the stored water surface in the decomposition tank,
The water stored in the tank is sucked from a suction port provided in the lower part of the separation tank, and a part of the suction stored water passes from the main circulation path to the water storage surface in the separation tank through the watering branch. Spray,
And the garbage processing apparatus provided with the circulation pump which discharges the other part of suction | inhalation stored water from the main circulation path to the stored water in the said separation tank from the stirring discharge port of the lower part of a separation tank through the stirring branch.
JP2000040745A 1998-03-18 2000-02-18 Garbage disposal equipment Expired - Fee Related JP4104265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040745A JP4104265B2 (en) 1998-03-18 2000-02-18 Garbage disposal equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP06808998A JP3560466B2 (en) 1998-03-18 1998-03-18 Garbage disposal method and garbage disposal device
JP2000040745A JP4104265B2 (en) 1998-03-18 2000-02-18 Garbage disposal equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06808998A Division JP3560466B2 (en) 1998-03-18 1998-03-18 Garbage disposal method and garbage disposal device

Publications (3)

Publication Number Publication Date
JP2000189931A JP2000189931A (en) 2000-07-11
JP2000189931A5 JP2000189931A5 (en) 2005-06-09
JP4104265B2 true JP4104265B2 (en) 2008-06-18

Family

ID=13363673

Family Applications (2)

Application Number Title Priority Date Filing Date
JP06808998A Expired - Lifetime JP3560466B2 (en) 1998-03-18 1998-03-18 Garbage disposal method and garbage disposal device
JP2000040745A Expired - Fee Related JP4104265B2 (en) 1998-03-18 2000-02-18 Garbage disposal equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP06808998A Expired - Lifetime JP3560466B2 (en) 1998-03-18 1998-03-18 Garbage disposal method and garbage disposal device

Country Status (1)

Country Link
JP (2) JP3560466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126705A (en) * 2000-10-30 2002-05-08 Taikisha Ltd Pump, aeration tank using pump and garbage disposal device using aeration tank
WO2013027402A1 (en) * 2011-08-22 2013-02-28 共立工業株式会社 System with separating unit

Also Published As

Publication number Publication date
JPH11262747A (en) 1999-09-28
JP3560466B2 (en) 2004-09-02
JP2000189931A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP2742016B2 (en) Method and apparatus for composting organic matter having high moisture content
KR101118714B1 (en) Food treater which can recycle food waste
JP3954864B2 (en) Dehumidification fermentation type organic waste processing machine
JP2005007282A (en) Garbage disposal apparatus
JP4104265B2 (en) Garbage disposal equipment
KR100844915B1 (en) Food grabage ferment decompose extinction method and device that all processing of simultaneously processing is possible
KR101841940B1 (en) Corpse Disposal Apparatus for and Method of Treating Companion Animal
KR100506535B1 (en) Deodorization apparatus and a food-waste disposal apparatus utilizing thereof
KR20120060502A (en) Fermentation And Drying Device For Edible Waste Material
JP2003279247A (en) Reduced-pressure drier and waste proposal system using it
JP2000189931A5 (en)
CN211707699U (en) Horizontal kitchen waste treatment equipment
KR20180130833A (en) Deodorizing apparatus for food waste treatment
KR101922546B1 (en) Disposer of food waste
KR970010844B1 (en) Solid organic waste processing apparatus
KR100512256B1 (en) A treatment apparatus of a food refuse
JPH07148479A (en) Organic waste fermenting and drying apparatus and method using deodorizing device
KR20100106813A (en) Apparatus for processing waste foods
KR102525241B1 (en) Carbon dioxide capture system for animals and plants waste matter treatment apparatus
KR20090030395A (en) Food waste processing apparatus for home
KR100839960B1 (en) A food trash control device
JPS59102499A (en) Drying device for excreta or sludge
JPH1128444A (en) Treatment of decomposable organic matter and device therefor
KR200310729Y1 (en) Deodorization apparatus and a food-waste disposal apparatus utilizing thereof
JP3740412B2 (en) Organic waste treatment machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees