JP4103936B2 - Antenna structure and wireless communication device including the same - Google Patents

Antenna structure and wireless communication device including the same Download PDF

Info

Publication number
JP4103936B2
JP4103936B2 JP2007514942A JP2007514942A JP4103936B2 JP 4103936 B2 JP4103936 B2 JP 4103936B2 JP 2007514942 A JP2007514942 A JP 2007514942A JP 2007514942 A JP2007514942 A JP 2007514942A JP 4103936 B2 JP4103936 B2 JP 4103936B2
Authority
JP
Japan
Prior art keywords
electrode
capacitance
resonance frequency
loading
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007514942A
Other languages
Japanese (ja)
Other versions
JPWO2006120763A1 (en
Inventor
悟 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP4103936B2 publication Critical patent/JP4103936B2/en
Publication of JPWO2006120763A1 publication Critical patent/JPWO2006120763A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Description

本発明は、放射電極が形成されている基体が回路基板に搭載されて成るアンテナ構造およびそれを備えた無線通信機に関するものである。   The present invention relates to an antenna structure in which a substrate on which a radiation electrode is formed is mounted on a circuit board, and a radio communication apparatus including the antenna structure.

無線通信機に設けられるアンテナの一つとして、無線通信機の回路基板に搭載され無線通信機の筐体内に収容配置される表面実装型アンテナがある。この表面実装型アンテナは、例えば、誘電体の基体に、アンテナ動作を行う放射電極が形成されている構成を備えている。   As one of antennas provided in a wireless communication device, there is a surface mount antenna that is mounted on a circuit board of the wireless communication device and accommodated in a housing of the wireless communication device. This surface-mounted antenna has a configuration in which, for example, a radiation electrode for performing antenna operation is formed on a dielectric substrate.

特開平10−209733号公報Japanese Patent Laid-Open No. 10-209733 特開2002−141739号公報JP 2002-141739 A 特開2002−335117号公報JP 2002-335117 A

ところで、回路基板に表面実装型アンテナが搭載されている無線通信機の電波の周波数特性(リターンロス特性)は、表面実装型アンテナの放射電極だけで定まるものではなく、表面実装型アンテナが搭載されている回路基板の接地電極や部品等の様々な要素が関与して定まるものである。このため、無線通信機の無線通信用電波の共振周波数は、表面実装型アンテナの放射電極の共振周波数からずれたものとなる。これにより、同じ表面実装型アンテナが搭載されていても、例えば、無線通信機の機種が異なると、無線通信機の無線通信用電波の共振周波数(以下、アンテナの共振周波数と記す)が異なるという問題が発生する。   By the way, the frequency characteristics (return loss characteristics) of radio waves of a wireless communication device with a surface-mounted antenna mounted on a circuit board are not determined only by the radiation electrode of the surface-mounted antenna, but a surface-mounted antenna is mounted. Various elements such as ground electrodes and parts of the circuit board are determined. For this reason, the resonance frequency of the radio communication radio wave of the radio communication device is shifted from the resonance frequency of the radiation electrode of the surface mount antenna. As a result, even if the same surface mount antenna is mounted, for example, if the wireless communication device model is different, the resonance frequency of the radio communication radio wave of the wireless communication device (hereinafter referred to as the antenna resonance frequency) is different. A problem occurs.

つまり、無線通信機の機種が異なると、回路基板に形成されている接地電極(グランド)の大きさや形状が異なったり、表面実装型アンテナの周囲に配設されている部品の種類や、表面実装型アンテナとその周辺の部品との間の間隔が異なったり、無線通信機の筐体の材質が異なるというように、表面実装型アンテナの周囲の状態が異なる。そのような表面実装型アンテナの周囲状態が複雑に関与してアンテナの共振周波数が定まるものであることから、表面実装型アンテナが搭載される無線通信機の種類が異なって表面実装型アンテナの周囲状態が異なると、同じ表面実装型アンテナが設けられているのにも拘わらず、アンテナの共振周波数が異なる。   In other words, the size and shape of the ground electrode (ground) formed on the circuit board will differ, the types of parts installed around the surface mount antenna, The surrounding conditions of the surface-mounted antenna are different such that the distance between the mold antenna and its peripheral components is different or the material of the housing of the wireless communication device is different. Since the surrounding frequency of such a surface mount antenna is involved in a complicated manner and the resonance frequency of the antenna is determined, the type of radio communication device on which the surface mount antenna is mounted differs. If the state is different, the resonance frequency of the antenna is different even though the same surface-mounted antenna is provided.

このように同じ表面実装型アンテナを設けても、無線通信機の機種が異なると同じアンテナの共振周波数を得ることができない。このため、要求されるアンテナの共振周波数が同じでも、例えば、無線通信機の機種が異なると、同じ表面実装型アンテナを設けることができず、無線通信機の機種毎に表面実装型アンテナの例えば放射電極の大きさ等をカスタム設計する必要があり、面倒であった。   Even if the same surface mount antenna is provided in this way, the same antenna resonance frequency cannot be obtained if the models of the wireless communication devices are different. For this reason, even if the required resonance frequency of the antenna is the same, for example, if the model of the wireless communication device is different, the same surface-mounted antenna cannot be provided. It was necessary to customize the size of the radiation electrode, which was troublesome.

また、表面実装型アンテナではなく、例えば、表面実装型アンテナに電気的に接続されている回路基板の回路を無線通信機の機種毎に変更する等というように表面実装型アンテナ以外の部分をカスタム設計して、アンテナの共振周波数を設定の共振周波数に調整するという手法が提案されている(例えば特許文献1〜3参照)。   Also, instead of surface mount antennas, for example, the circuit board circuit that is electrically connected to the surface mount antenna is changed for each wireless communication device model. A method of designing and adjusting the resonance frequency of the antenna to a set resonance frequency has been proposed (for example, see Patent Documents 1 to 3).

しかしながら、回路基板の回路でもってアンテナの共振周波数を調整する今までの手法では、電流損失が増加して、アンテナ利得が低下するという問題があった。また、アンテナの共振周波数の調整に容量あるいはインダクタンスを持つ部品を利用する場合に、例えばコストの問題から汎用の部品を使用することにすると、予め定まったいくつかの数値の容量又はインダクタンス値を持つ部品(コンデンサ部品又はインダクタ部品)しか用意できない。このために、最適な数値のコンデンサ部品やインダクタ部品を得ることができないことが多いので、アンテナの共振周波数を精度良く設定の共振周波数に調整することが難しかった。   However, the conventional methods of adjusting the resonance frequency of the antenna with the circuit on the circuit board have a problem that the current loss increases and the antenna gain decreases. In addition, when using a component having capacitance or inductance for adjusting the resonance frequency of the antenna, for example, if a general-purpose component is used due to cost problems, it has several predetermined capacitance or inductance values. Only parts (capacitor parts or inductor parts) can be prepared. For this reason, since it is often impossible to obtain capacitor components and inductor components having optimum numerical values, it is difficult to accurately adjust the resonance frequency of the antenna to the set resonance frequency.

この発明は次に示す構成をもって前記課題を解決するための手段としている。すなわち、この発明のアンテナ構造の構成の一つは、アンテナ動作を行う放射電極が基体に設けられ、その基体は回路基板に搭載されており、前記基体の上面に形成されている放射電極は回路基板の基板面に間隔を介して対向するように設けられている構成を備えたアンテナ構造において、
回路基板には、搭載される基体の底面の下側となる領域に前記基体の上面に形成されている放射電極に互いに電極面同士が対向配置して放射電極との間に容量を持つ接地間容量装荷用電極が放射電極とは電気的に非導通接続状態に絶縁されて形成され、また、回路基板には、その接地間容量装荷用電極の形成領域を避け接地間容量装荷用電極と間隔を介して接地間容量装荷用電極とは電気的に絶縁された接地電極が形成され、さらに、接地間容量装荷用電極と接地電極との間を接続する共振周波数調整用素子が設けられており、その共振周波数調整用素子は、アンテナ構造の共振周波数を予め定められた設定の共振周波数に調整するための容量あるいはインダクタンスを有していることを特徴としている。また、この発明の無線通信機は、この発明において特有の構成を持つアンテナ構造が設けられていることを特徴としている。
The present invention has the following configuration as means for solving the above problems. That is, one of the configurations of the antenna structure according to the present invention is that a radiating electrode for performing antenna operation is provided on a base, the base is mounted on a circuit board, and the radiating electrode formed on the upper surface of the base is a circuit. in the antenna structure having a configuration that is kicked set so as to be opposed via a gap to the surface of the substrate,
The circuit board, between the ground of electrodes faces each other in the radiation electrode formed on the upper surface of the substrate on the lower side and a region of the bottom surface of the substrate to be mounted with a capacity between the opposed to the radiation electrode The capacitance loading electrode is formed in an electrically non-conducting connection state with the radiation electrode, and the circuit board has a space between the capacitance loading electrode and the grounding capacitance avoiding the formation area of the capacitance loading electrode between the grounding. A ground electrode that is electrically insulated from the electrode for loading capacitance between grounds is formed, and an element for adjusting the resonance frequency that connects between the electrode for loading capacitance between the ground and the ground electrode is provided. The resonance frequency adjusting element has a capacity or inductance for adjusting the resonance frequency of the antenna structure to a resonance frequency set in advance. In addition, the wireless communication device of the present invention is characterized in that an antenna structure having a configuration specific to the present invention is provided.

この発明によれば、放射電極が設けられた基体は回路基板に搭載され、その回路基板には、基体の放射電極に対向配置して放射電極との間に容量を持つ接地間容量装荷用電極が形成されている。また、回路基板には、接地間容量装荷用電極と間隔を介して接地電極が形成され、さらに、接地間容量装荷用電極と接地電極との間を接続する共振周波数調整用素子が設けられている。その共振周波数調整用素子は容量又はインダクタンスを有する構成とした。すなわち、この発明では、放射電極は、接地間容量装荷用電極との間の容量と、共振周波数調整用素子の容量又はインダクタンスとを介して接地電極に接続されている。その放射電極と接地間容量装荷用電極との間の容量と、共振周波数調整用素子の容量又はインダクタンスとが直列接続されて成る回路(以下、共振周波数調整用回路と記す)のインピーダンスは、放射電極の共振周波数定に関与するものである。このことから、共振周波数調整用素子の容量の大きさ又はインダクタンス値を可変調整することにより、共振周波数調整用回路のインピーダンスが可変し、これにより、放射電極の共振周波数(つまり、アンテナ構造の共振周波数)を可変調整できる。 According to the present invention, the substrate on which the radiation electrode is provided is mounted on the circuit board, and the circuit board includes a grounded capacitive loading electrode that is disposed opposite the radiation electrode of the substrate and has a capacitance between the radiation electrode and the circuit board. Is formed. In addition, the circuit board is provided with a ground electrode via a gap between the electrodes for loading capacitance between grounds, and further provided with an element for adjusting a resonance frequency for connecting between the electrodes for loading capacitance between grounds and the ground electrode. Yes. The resonant frequency adjusting element has a capacity or inductance. In other words, in the present invention, the radiation electrode is connected to the ground electrode via a capacitance between the capacitance loading electrode and the capacitance or inductance of the resonance frequency adjusting element. The impedance of the circuit in which the capacitance between the radiation electrode and the electrode for loading the capacitance between the ground and the capacitance or inductance of the resonant frequency adjusting element is connected in series (hereinafter referred to as the resonant frequency adjusting circuit) is radiated. is that which is involved in decisions of the resonance frequency of the electrodes. Therefore, by the size or the inductance value of the capacitance of the resonance frequency adjusting element for variably adjusting impedance of the resonance frequency adjusting circuit is variable by this, the resonant frequency of the radiation electrode (i.e., the antenna structure (Resonance frequency) can be variably adjusted.

このように、共振周波数調整用素子の容量の大きさ又はインダクタンス値を可変するだけで、基体の放射電極の形状等を設計変更することなく、アンテナ構造の共振周波数を可変調整することができる。これにより、放射電極が基体に形成されて成る部品(アンテナ部品)を複数種の無線通信機に共通に使用することができて、部品の共通化を図ることができる。このことにより、アンテナ部品や無線通信機の低コスト化を図ることが容易となる。   As described above, the resonance frequency of the antenna structure can be variably adjusted without changing the design of the shape of the radiation electrode of the base body by merely changing the capacitance or inductance value of the resonance frequency adjusting element. As a result, a component (antenna component) in which the radiation electrode is formed on the base can be used in common for a plurality of types of wireless communication devices, and the component can be shared. This makes it easy to reduce the cost of antenna parts and wireless communication devices.

また、接地間容量装荷用電極の電極面積を大きくして当該接地間容量装荷用電極と放射電極との間の容量を大きくするに従って、共振周波数調整用素子の容量の大きさ又はインダクタンス値の変化量に対するアンテナ構造の共振周波数の変化量を大きくすることができる。換言すれば、接地間容量装荷用電極の電極面積を小さくして当該接地間容量装荷用電極と放射電極との間の容量を小さくするに従って、共振周波数調整用素子の容量の大きさ又はインダクタンス値の変化量に対するアンテナ構造の共振周波数の変化量を小さくすることができる。   Further, as the electrode area of the electrode for capacity loading between grounds is increased and the capacity between the electrode for capacity loading between grounds and the radiation electrode is increased, the capacitance size or inductance value of the resonance frequency adjusting element changes. The amount of change in the resonance frequency of the antenna structure with respect to the amount can be increased. In other words, the capacitance size or inductance value of the resonant frequency adjusting element is reduced as the electrode area of the capacitance loading electrode between grounds is reduced to reduce the capacitance between the capacitance loading electrode and the radiation electrode. The amount of change in the resonance frequency of the antenna structure with respect to the amount of change can be reduced.

このため、例えば、低コスト化のために、汎用のコンデンサ部品又はインダクタ部品を共振周波数調整用素子として使用することとし、共振周波数調整用素子の容量の大きさ又はインダクタンス値を不連続的にしか可変調整することができない場合でも、接地間容量装荷用電極の電極面積を可変調整して放射電極と接地間容量装荷用電極との間の容量を変化させることにより、アンテナ構造の共振周波数の変化幅を小さくすることができてアンテナ構造の共振周波数の微調整を行うことが可能である。このことにより、要求にあった放射電極の共振周波数を得ることが容易となり、この発明のアンテナ構造を備えた無線通信機の無線通信に対する信頼性を向上させることができる。   For this reason, for example, in order to reduce the cost, general-purpose capacitor parts or inductor parts are used as the resonance frequency adjustment element, and the capacitance size or inductance value of the resonance frequency adjustment element is only discontinuous. Even if variable adjustment is not possible, the resonant frequency of the antenna structure can be changed by changing the capacitance between the radiation electrode and the ground-capacity loading electrode by variably adjusting the electrode area of the ground-capacity loading electrode. The width can be reduced and the resonance frequency of the antenna structure can be finely adjusted. This makes it easy to obtain the resonance frequency of the radiation electrode that meets the requirements, and the reliability of the wireless communication device equipped with the antenna structure of the present invention for wireless communication can be improved.

さらに、この発明では、接地間容量装荷用電極は回路基板に設けられ、放射電極が形成されている基体に設けられているものではない。このことから、設計変更等により放射電極と接地間容量装荷用電極との間の容量を変更したい場合に、回路基板に形成されている接地間容量装荷用電極の電極面積を変更するだけでよく、放射電極が基体に形成されて成る部品(アンテナ部品)を設計変更しなくて済む。つまり、設計変更後も設計変更前と同じアンテナ部品を用いることが可能である。このように、接地間容量装荷用電極を回路基板に設ける構成も、アンテナ部品の共通化を促進させることができる重要な要素となる。   Furthermore, in the present invention, the electrode for loading the capacitance between the grounds is provided on the circuit board, and is not provided on the base on which the radiation electrode is formed. For this reason, when it is desired to change the capacitance between the radiation electrode and the electrode for capacitive loading between grounds due to a design change, etc., it is only necessary to change the electrode area of the electrode for loading capacitance between the grounds formed on the circuit board. It is not necessary to change the design of the part (antenna part) formed by forming the radiation electrode on the base. That is, it is possible to use the same antenna component after the design change as before the design change. As described above, the configuration in which the electrode for loading capacitance between the grounds is provided on the circuit board is also an important element that can promote the common use of the antenna components.

さらに、放射電極が回路基板の基板面に間隔を介して対向するように基体に設けられている場合に、仮に、接地間容量装荷用電極を基体の側面に設ける構成とする。この場合には、放射電極の電極面に沿う仮想平面と、接地間容量装荷用電極の電極面に沿う仮想平面とは、例えば直交関係又は略直交関係となることから、放射電極と接地間容量装荷用電極との間の容量は小さい。このため、放射電極と接地間容量装荷用電極との間に大きな容量が要求される場合には、接地間容量装荷用電極を拡大形成しなければならず、基体(つまり、アンテナ部品)が大型化してしまうという問題が発生する。   Further, in the case where the radiation electrode is provided on the base so as to face the substrate surface of the circuit board with a gap, a ground-to-ground capacity loading electrode is temporarily provided on the side of the base. In this case, the virtual plane along the electrode surface of the radiation electrode and the virtual plane along the electrode surface of the electrode for loading capacitance between grounds have, for example, an orthogonal relationship or a substantially orthogonal relationship. The capacity between the loading electrodes is small. For this reason, when a large capacity is required between the radiation electrode and the electrode for capacity loading between the grounds, the electrode for capacity loading between the grounds must be formed enlarged, and the base (that is, the antenna component) is large. The problem of becoming a problem occurs.

これに対して、この発明では、接地間容量装荷用電極は、放射電極に対向する回路基板面部分に形成することから、接地間容量装荷用電極と放射電極との対向面積を大きくできて接地間容量装荷用電極と放射電極との間に大きな容量を形成することが容易となる。また、接地間容量装荷用電極は基体に設けないので、接地間容量装荷用電極を基体に設けない分、基体(アンテナ部品)の小型化を図ることができる。   In contrast, according to the present invention, the electrode for loading capacitance between grounds is formed on the surface of the circuit board facing the radiation electrode, so that the opposing area between the electrodes for loading capacitance between the ground and the radiation electrode can be increased and grounding is performed. It becomes easy to form a large capacitance between the inter-capacity loading electrode and the radiation electrode. In addition, since the electrode for loading capacitance between grounds is not provided on the base, the size of the base (antenna component) can be reduced as much as the electrode for loading capacitance between grounds is not provided on the base.

さらに、接地間容量装荷用電極は、放射電極に対向する回路基板面部分に形成され、接地間容量装荷用電極と放射電極との間には大きな容量を形成することができる構成であることから、アンテナ利得の悪化を防止しながら、アンテナ構造の共振周波数の可変調整を行うことができる。   Further, the capacitance loading electrode between the grounds is formed on the circuit board surface portion facing the radiation electrode, and a large capacitance can be formed between the capacitance loading electrode between the ground and the radiation electrode. The resonance frequency of the antenna structure can be variably adjusted while preventing the antenna gain from deteriorating.

図1aは、第1実施例のアンテナ構造を説明するための模式的な平面図である。FIG. 1 a is a schematic plan view for explaining the antenna structure of the first embodiment. 図1bは、図1aのアンテナ構造の模式的な斜視図である。FIG. 1b is a schematic perspective view of the antenna structure of FIG. 1a. 図1cは、図1aのアンテナ構造を構成する回路基板の構成例を説明するための模式的な平面図である。FIG. 1c is a schematic plan view for explaining a configuration example of a circuit board constituting the antenna structure of FIG. 1a. 図2は、第1実施例のアンテナ構造を構成する共振周波数調整用素子の容量の大きさの変化によるアンテナ構造のリターンロス特性の変化例を説明するためのグラフである。FIG. 2 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure due to a change in the capacitance of the resonance frequency adjusting element constituting the antenna structure of the first embodiment. 図3は、第1実施例のアンテナ構造を構成する共振周波数調整用素子のインダクタンス値の変化によるアンテナ構造のリターンロス特性の変化例を説明するためのグラフである。FIG. 3 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure due to a change in the inductance value of the resonant frequency adjusting element constituting the antenna structure of the first embodiment. 図4は、第1実施例のアンテナ構造を構成する接地電極のスリットの構成例を説明するための図である。FIG. 4 is a diagram for explaining a configuration example of a slit of the ground electrode constituting the antenna structure of the first embodiment. 図5は、接地電極に設けた共振周波数調整用のスリットの長さの変化に対するアンテナ構造のリターンロス特性の変化例を説明するためのグラフである。FIG. 5 is a graph for explaining an example of a change in the return loss characteristic of the antenna structure with respect to a change in the length of the resonance frequency adjusting slit provided in the ground electrode. 図6aは、第1実施例の構成から得られる効果を説明するためのモデル図である。FIG. 6a is a model diagram for explaining the effects obtained from the configuration of the first embodiment. 図6bは、従来例の問題点を説明するためのモデル図である。FIG. 6B is a model diagram for explaining the problem of the conventional example. 図6cは、図6bと共に、従来例の問題点を説明するためのモデル図である。FIG. 6c is a model diagram for explaining the problem of the conventional example together with FIG. 6b. 図7bと共に、その他の実施例の一つを説明するための断面図である。It is sectional drawing for demonstrating one of the other Examples with FIG. 7b. 図7aと共に、その他の実施例の一つを説明するための断面図である。It is sectional drawing for demonstrating one of the other Examples with FIG. 7a.

符号の説明Explanation of symbols

1 アンテナ構造
2 誘電体基体
3 放射電極
5 回路基板
6 接地電極
7 接地間容量装荷用電極
8 共振周波数調整用素子
13 スリット
DESCRIPTION OF SYMBOLS 1 Antenna structure 2 Dielectric base 3 Radiation electrode 5 Circuit board 6 Ground electrode 7 Electrode for capacity loading between grounds 8 Resonance frequency adjustment element 13 Slit

以下に、この発明に係る実施例を図面に基づいて説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1aには本発明に係るアンテナ構造の第1実施例が模式的な平面図により示され、図1bには図1aのアンテナ構造の模式的な斜視図が示され、図1cには図1aのアンテナ構造を構成する回路基板の導体パターンの形態例が模式的な平面図により示されている。   FIG. 1a shows a schematic plan view of a first embodiment of an antenna structure according to the present invention, FIG. 1b shows a schematic perspective view of the antenna structure of FIG. 1a, and FIG. An example of a conductor pattern of a circuit board constituting the antenna structure is shown by a schematic plan view.

この第1実施例のアンテナ構造1は、誘電体から成る基体2と、この誘電体基体2に形成されている放射電極3および給電電極4と、誘電体基体2が表面実装される回路基板5と、この回路基板5に形成されている接地電極6および接地間容量装荷用電極7と、接地電極6と接地間容量装荷用電極7との間を接続する共振周波数調整用素子8と、回路基板5に形成され誘電体基体2の給電電極4に電気的に接続する給電用ライン9とを有して構成されている。   The antenna structure 1 of the first embodiment includes a base 2 made of a dielectric, a radiation electrode 3 and a feed electrode 4 formed on the dielectric base 2, and a circuit board 5 on which the dielectric base 2 is surface-mounted. A grounding electrode 6 and an inter-ground capacitive loading electrode 7 formed on the circuit board 5, a resonant frequency adjusting element 8 connecting the ground electrode 6 and the inter-ground capacitive loading electrode 7, a circuit, The power supply line 9 is formed on the substrate 5 and electrically connected to the power supply electrode 4 of the dielectric substrate 2.

すなわち、この第1実施例では、誘電体基体2は直方体状と成している。この誘電体基体2の模式的な断面図が図6aに示されている。この誘電体基体2の上面から例えば図1bの右側の端面を通って底面の端縁部に回り込む態様でもって放射電極3が形成されている。また、誘電体基体2の底面の端縁部から例えば図1bの左側の端面を通り誘電体基体2の上面における放射電極3と間隔を介して対向する位置まで給電電極4が伸張形成されている。   That is, in the first embodiment, the dielectric substrate 2 has a rectangular parallelepiped shape. A schematic cross-sectional view of this dielectric substrate 2 is shown in FIG. 6a. The radiation electrode 3 is formed from the top surface of the dielectric substrate 2 so as to wrap around the edge of the bottom surface through, for example, the right end surface of FIG. In addition, the feeding electrode 4 is extended from the edge of the bottom surface of the dielectric substrate 2 to a position facing the radiation electrode 3 on the upper surface of the dielectric substrate 2 with a gap passing through the left end surface of FIG. .

回路基板5の角部はアンテナ構成部位と成しており、この回路基板5の角部の基板面には、接地間容量装荷用電極7と給電用ライン9が形成されている。回路基板5の基板面には、それら接地間容量装荷用電極7と給電用ライン9の形成領域を避けたほぼ全領域に接地電極6が形成されている。放射電極3および給電電極4が形成されている誘電体基体2は、その底面を回路基板5側に向けた姿勢で、かつ、放射電極3が形成されている例えば図1aの右側の端部が接地電極6上に配設される状態でもって回路基板5の角部のアンテナ構成部位に搭載(表面実装)される。このように、誘電体基体2が回路基板5に搭載されることにより、放射電極3の両端部のうち、給電電極4に遠い側の端部(つまり、例えば図1aの右側の端部)は接地電極6に直接的に接合され、また、誘電体基体2の上面に設けられている放射電極3は回路基板5の基板面に対向配置された状態となる。   The corner of the circuit board 5 forms an antenna component. On the board surface of the corner of the circuit board 5, a ground-loading electrode 7 and a power supply line 9 are formed. On the substrate surface of the circuit board 5, the ground electrode 6 is formed in almost the entire area avoiding the formation area of the inter-ground capacitance loading electrode 7 and the power supply line 9. The dielectric substrate 2 on which the radiation electrode 3 and the feeding electrode 4 are formed has a posture in which the bottom surface thereof is directed toward the circuit board 5 and the end on the right side of FIG. The circuit board 5 is mounted (surface mounted) on the antenna component part at the corner of the circuit board 5 in a state of being disposed on the ground electrode 6. As described above, when the dielectric substrate 2 is mounted on the circuit board 5, among the both end portions of the radiation electrode 3, the end portion far from the feeding electrode 4 (that is, the right end portion in FIG. 1 a, for example). The radiation electrode 3 that is directly bonded to the ground electrode 6 and provided on the upper surface of the dielectric substrate 2 is placed opposite to the substrate surface of the circuit board 5.

給電用ライン9は、その一端側が給電電極4に電気的に接続される。また、給電用ライン9の他端側は、例えば無線通信機の無線通信用の高周波回路10に電気的に接続される。つまり、給電用ライン9は、無線通信用の高周波回路10と、給電電極4との間を電気的に接続するものである。当該給電用ライン9には、給電電極4側と、高周波回路10側とのインピーダンス整合をとるための整合回路を構成する整合用素子11が設けられている。   One end side of the power supply line 9 is electrically connected to the power supply electrode 4. Further, the other end side of the power supply line 9 is electrically connected to, for example, a radio frequency circuit 10 for radio communication of a radio communication device. That is, the power supply line 9 electrically connects the radio communication high-frequency circuit 10 and the power supply electrode 4. The power supply line 9 is provided with a matching element 11 that constitutes a matching circuit for impedance matching between the power supply electrode 4 side and the high-frequency circuit 10 side.

給電電極4は放射電極3と間隔を介して形成されており、当該給電電極4と放射電極3は容量を介して電磁結合する構成と成している。つまり、例えば、無線通信用の高周波回路10から給電用ライン9を通って無線送信用の信号が給電電極4に伝達されたときには、給電電極4と放射電極3間の容量結合により給電電極4から放射電極3に無線送信用の信号が伝達される。すなわち、放射電極3は容量給電タイプの放射電極と成している。   The power supply electrode 4 is formed with a space from the radiation electrode 3, and the power supply electrode 4 and the radiation electrode 3 are electromagnetically coupled through a capacitor. That is, for example, when a signal for wireless transmission is transmitted from the high frequency circuit 10 for wireless communication to the power supply electrode 4 through the power supply line 9, the power supply electrode 4 is connected by capacitive coupling between the power supply electrode 4 and the radiation electrode 3. A signal for wireless transmission is transmitted to the radiation electrode 3. That is, the radiation electrode 3 is a capacitive feed type radiation electrode.

この第1実施例では、回路基板5には、放射電極3に対向する部分に、接地間容量装荷用電極7が接地電極6と間隔を介して形成されている(図1c参照)。その接地間容量装荷用電極7は、誘電体基体2が搭載される領域から当該領域の外部に引き出し形成されている引き出し部位7aを有している。共振周波数調整用素子8はコンデンサ部品又はインダクタ部品により構成されており、接地間容量装荷用電極7の引き出し部位7aと、接地電極6とを接続する態様でもって回路基板5上に搭載されている。なお、この第1実施例では、放射電極3を備えた誘電体基体2はグランド実装タイプのものであり、本来なら、誘電体基体2が搭載される回路基板5の部位に接地電極6が形成されるが、接地間容量装荷用電極7と給電用ライン9を形成するために、その接地間容量装荷用電極7および給電用ライン9の形成領域の基板面には接地電極6を形成しない構成となっている。   In the first embodiment, an inter-ground capacitive loading electrode 7 is formed on the circuit board 5 at a portion facing the radiation electrode 3 with a gap from the ground electrode 6 (see FIG. 1c). The grounded electrode for capacitive loading 7 has a lead-out portion 7a formed to be drawn out of the region where the dielectric substrate 2 is mounted. The resonance frequency adjusting element 8 is composed of a capacitor component or an inductor component, and is mounted on the circuit board 5 in such a manner that the lead portion 7a of the inter-ground capacitance loading electrode 7 and the ground electrode 6 are connected. . In this first embodiment, the dielectric substrate 2 provided with the radiation electrode 3 is of the ground mounting type, and originally, the ground electrode 6 is formed on the portion of the circuit board 5 on which the dielectric substrate 2 is mounted. However, in order to form the capacitance loading electrode 7 and the power supply line 9, the ground electrode 6 is not formed on the substrate surface in the region where the capacitance loading electrode 7 and the power supply line 9 are formed. It has become.

この第1実施例では、接地間容量装荷用電極7が放射電極3に対向配置されて放射電極3との間に容量が形成される構成であり、その接地間容量装荷用電極7は共振周波数調整用素子8を介して接地電極6に接続されている。つまり、放射電極3は、当該放射電極3と接地間容量装荷用電極7との間の容量と、共振周波数調整用素子8の容量又はインダクタンスとが直列に接続されて成る回路(共振周波数調整用回路)を介して、接地電極6に接続されている。その共振周波数調整用回路のインピーダンスは、共振周波数に関与するものである。このことから、共振周波数調整用素子8の容量の大きさ又はインダクタンス値を可変調整して共振周波数調整用回路のインピーダンスの可変調整を行うことにより、放射電極3の共振周波数(アンテナ構造1の共振周波数)を可変調整することができる。 In this first embodiment, the capacitance loading electrode 7 is arranged opposite to the radiation electrode 3 so that a capacitance is formed between the radiation electrode 3 and the capacitance loading electrode 7 has a resonance frequency. It is connected to the ground electrode 6 through the adjustment element 8. In other words, the radiation electrode 3 is a circuit (resonance frequency adjustment circuit) in which the capacitance between the radiation electrode 3 and the ground-to-ground capacity loading electrode 7 and the capacitance or inductance of the resonance frequency adjustment element 8 are connected in series. Circuit) via the circuit). Impedance of the resonance frequency adjusting circuit is that which is involved in the resonant frequency. From this, the resonance frequency of the radiation electrode 3 (resonance of the antenna structure 1) can be adjusted by variably adjusting the magnitude or inductance value of the resonance frequency adjustment element 8 to variably adjust the impedance of the resonance frequency adjustment circuit. Frequency) can be variably adjusted.

例えば、共振周波数調整用素子8をコンデンサ部品により構成する場合には、共振周波数調整用素子8が配設されていない場合に比べて、アンテナ構造1の共振周波数を低くすることができる。その共振周波数の低下量は、共振周波数調整用素子(コンデンサ部品)8の容量の大きさが大きくなるに従って、大きくなる。   For example, when the resonant frequency adjusting element 8 is configured by a capacitor component, the resonant frequency of the antenna structure 1 can be made lower than when the resonant frequency adjusting element 8 is not provided. The amount of decrease in the resonance frequency increases as the capacitance of the resonance frequency adjusting element (capacitor component) 8 increases.

図2には、共振周波数調整用素子8に関わる構成以外は同じ構成を持つ5種類のアンテナ構造1のそれぞれのリターンロス特性例が示されている。つまり、図2のグラフ中の点線Aは共振周波数調整用素子8が設けられていない場合のアンテナ構造1のリターンロス特性の一例である。また、図2のグラフ中の実線B〜Eは、それぞれ、共振周波数調整用素子8としてコンデンサ部品が設けられている場合のアンテナ構造1のリターンロス特性の一例であり、実線Bは共振周波数調整用素子8の容量が0.5pFの場合の一例であり、実線Cは共振周波数調整用素子8の容量が1pFの場合の一例であり、実線Dは共振周波数調整用素子8の容量が3pFの場合の一例であり、実線Eは共振周波数調整用素子8の容量が6pFの場合の一例である。この図2のグラフからも分かるように、共振周波数調整用素子(コンデンサ部品)8を設けることによって、共振周波数調整用素子8が設けられていない場合よりもアンテナ構造1の共振周波数は低くなる。また、そのアンテナ構造1の共振周波数の低下量ΔfB,ΔfC,ΔfD,ΔfEは、共振周波数調整用素子8の容量が大きくなるに従って大きくなる。FIG. 2 shows examples of return loss characteristics of five types of antenna structures 1 having the same configuration except for the configuration related to the resonance frequency adjusting element 8. That is, the dotted line A in the graph of FIG. 2 is an example of the return loss characteristic of the antenna structure 1 when the resonance frequency adjusting element 8 is not provided. Also, the solid lines B to E in the graph of FIG. 2 are examples of the return loss characteristics of the antenna structure 1 when a capacitor component is provided as the resonance frequency adjustment element 8, and the solid line B is the resonance frequency adjustment. The solid line C is an example when the capacitance of the resonance frequency adjustment element 8 is 1 pF, and the solid line D is an example when the capacitance of the resonance frequency adjustment element 8 is 3 pF. The solid line E is an example when the capacitance of the resonance frequency adjusting element 8 is 6 pF. As can be seen from the graph of FIG. 2, by providing the resonance frequency adjusting element (capacitor component) 8, the resonance frequency of the antenna structure 1 becomes lower than when the resonance frequency adjusting element 8 is not provided. Further, the amount of decrease Δf B , Δf C , Δf D , Δf E of the resonance frequency of the antenna structure 1 increases as the capacitance of the resonance frequency adjusting element 8 increases.

また、共振周波数調整用素子8をインダクタ部品により構成する場合には、共振周波数調整用素子8が配設されていない場合に比べて、アンテナ構造1の共振周波数を高くすることができる。その共振周波数の上昇量は、共振周波数調整用素子(インダクタ部品)8のインダクタンス値が小さくなるに従って、共振周波数調整用素子8の影響の度合いが大きくなって、アンテナ構造1の共振周波数は高くなる。   Further, when the resonance frequency adjusting element 8 is formed of an inductor component, the resonance frequency of the antenna structure 1 can be increased as compared with the case where the resonance frequency adjusting element 8 is not provided. The amount of increase in the resonance frequency increases as the inductance value of the resonance frequency adjusting element (inductor component) 8 decreases, and the degree of influence of the resonance frequency adjusting element 8 increases and the resonance frequency of the antenna structure 1 increases. .

図3には、共振周波数調整用素子8に関わる構成以外は同じ構成を持つ5種類のアンテナ構造1のそれぞれのリターンロス特性例が示されている。つまり、図3のグラフ中の点線aは共振周波数調整用素子8が設けられていない場合のアンテナ構造1のリターンロス特性の一例である。また、図3のグラフ中の実線b〜eは、それぞれ、共振周波数調整用素子8としてインダクタ部品が設けられている場合のアンテナ構造1のリターンロス特性の一例であり、実線bは共振周波数調整用素子8のインダクタンス値が6.8nHの場合の一例であり、実線cは共振周波数調整用素子8のインダクタンス値が4.7nHの場合の一例であり、実線dは共振周波数調整用素子8のインダクタンス値が3.9nHの場合の一例であり、実線eは共振周波数調整用素子8のインダクタンス値が2.7nHの場合の一例である。この図3のグラフからも分かるように、共振周波数調整用素子(インダクタ部品)8を設けることによって、共振周波数調整用素子8が設けられていない場合よりもアンテナ構造1の共振周波数は高くなる。また、そのアンテナ構造1の共振周波数の上昇量Δfb,Δfc,Δfd,Δfeは、共振周波数調整用素子8のインダクタンス値が小さくなるに従って大きくなっていく。   FIG. 3 shows examples of return loss characteristics of the five types of antenna structures 1 having the same configuration except for the configuration related to the resonance frequency adjusting element 8. That is, the dotted line a in the graph of FIG. 3 is an example of the return loss characteristic of the antenna structure 1 when the resonance frequency adjusting element 8 is not provided. 3 are examples of the return loss characteristics of the antenna structure 1 when an inductor component is provided as the resonance frequency adjusting element 8, and the solid line b indicates the resonance frequency adjustment. The solid line c is an example when the inductance value of the resonance frequency adjusting element 8 is 4.7 nH, and the solid line d is an example when the inductance value of the resonance frequency adjusting element 8 is 6.8 nH. A solid line e is an example when the inductance value is 3.9 nH, and a solid line e is an example when the inductance value of the resonance frequency adjusting element 8 is 2.7 nH. As can be seen from the graph of FIG. 3, by providing the resonance frequency adjusting element (inductor component) 8, the resonance frequency of the antenna structure 1 becomes higher than when the resonance frequency adjusting element 8 is not provided. Further, the increase amounts Δfb, Δfc, Δfd, and Δfe of the resonance frequency of the antenna structure 1 increase as the inductance value of the resonance frequency adjusting element 8 decreases.

なお、放射電極3と接地間容量装荷用電極7との間の容量と、共振周波数調整用素子8の容量又はインダクタンスとが直列接続されて成る共振周波数調整用回路は、放射電極3と接地間容量装荷用電極7との間の容量によって、共振周波数調整用素子8の容量の大きさ又はインダクタンス値の変化量に対する当該共振周波数調整用回路のインピーダンスの変化量が異なるものである。このことにより、放射電極3と接地間容量装荷用電極7との間の容量の可変調整、つまり、接地間容量装荷用電極7の電極面積の可変調整によって、共振周波数調整用素子8の容量の大きさ又はインダクタンス値の変化量に対する共振周波数調整用回路のインピーダンスの変化量を調整して、アンテナ構造1の共振周波数の可変調整を行うことができる。   Note that a resonance frequency adjusting circuit in which a capacitance between the radiation electrode 3 and the capacitance loading electrode 7 and the capacitance or inductance of the resonance frequency adjustment element 8 are connected in series is provided between the radiation electrode 3 and the ground. The amount of change in the impedance of the resonance frequency adjustment circuit with respect to the amount of change in the capacitance or the inductance value of the resonance frequency adjustment element 8 differs depending on the capacitance between the capacitor loading electrode 7 and the capacitor loading electrode 7. As a result, the capacitance of the resonance frequency adjusting element 8 can be adjusted by variably adjusting the capacitance between the radiation electrode 3 and the grounded capacitance loading electrode 7, that is, by adjusting the electrode area of the grounded capacitance loading electrode 7. It is possible to variably adjust the resonance frequency of the antenna structure 1 by adjusting the amount of change in impedance of the resonance frequency adjustment circuit with respect to the amount of change in size or inductance value.

具体的には、接地間容量装荷用電極7の電極面積を小さくして接地間容量装荷用電極7と放射電極3との間の容量を小さくするに従って、共振周波数調整用素子8の容量の大きさ又はインダクタンス値の変化量に対するアンテナ構造1の共振周波数の変化量は小さくなる。換言すれば、接地間容量装荷用電極7の電極面積を大きくして接地間容量装荷用電極7と放射電極3との間の容量を大きくするに従って、共振周波数調整用素子8の容量の大きさ又はインダクタンス値の変化量に対するアンテナ構造1の共振周波数の変化量は大きくなる。このことから、例えば、共振周波数調整用素子8の容量の大きさ又はインダクタンス値を同様に変化させても、接地間容量装荷用電極7の電極面積によってアンテナ構造1の共振周波数の変動幅が変化する。これにより、アンテナ構造1の共振周波数の微調整を行いたい場合には、接地間容量装荷用電極7の電極面積を小さくし、反対に、アンテナ構造1の共振周波数を大きく変化させたい場合には、接地間容量装荷用電極7の電極面積を大きくする。   Specifically, the capacitance of the resonance frequency adjusting element 8 increases as the electrode area of the capacitance loading electrode 7 between the grounds is reduced to reduce the capacitance between the capacitance loading electrode 7 and the radiation electrode 3. In addition, the amount of change in the resonance frequency of the antenna structure 1 with respect to the amount of change in the inductance value is small. In other words, the capacity of the resonance frequency adjusting element 8 increases as the electrode area of the electrode for loading capacitance between grounds 7 increases to increase the capacitance between the electrode for loading capacitance between grounds 7 and the radiation electrode 3. Alternatively, the change amount of the resonance frequency of the antenna structure 1 with respect to the change amount of the inductance value becomes large. From this, for example, even if the capacitance size or inductance value of the resonance frequency adjusting element 8 is changed in the same manner, the fluctuation range of the resonance frequency of the antenna structure 1 varies depending on the electrode area of the electrode 7 for loading capacitance between grounds. To do. As a result, when fine adjustment of the resonance frequency of the antenna structure 1 is desired, the electrode area of the electrode 7 for loading the capacitance between the grounds is reduced, and conversely, when the resonance frequency of the antenna structure 1 is greatly changed. The electrode area of the electrode 7 for capacity loading between grounds is increased.

この第1実施例では、接地電極6には、放射電極3と接合する部分からスリット13が伸長形成されている。このスリット13は、放射電極3に連接されている接地電極6の一部分を放射電極3の一部として機能させるためのものである。当該スリット13は、放射電極3の一部として機能する接地電極6の部分を残りの他の接地電極6の部分と区分けする形態に形成されている。   In the first embodiment, the ground electrode 6 is formed with a slit 13 extending from a portion joined to the radiation electrode 3. The slit 13 is for causing a part of the ground electrode 6 connected to the radiation electrode 3 to function as a part of the radiation electrode 3. The slit 13 is formed in a form that separates the portion of the ground electrode 6 that functions as a part of the radiation electrode 3 from the other portions of the ground electrode 6.

スリット13の形成によって、例えば、図4の鎖線Zで囲まれた接地電極6の一部分が放射電極3の一部として機能することとなる。このため、スリット13の形状や長さを変化させて放射電極3の一部として機能する接地電極6の部分Zの電気的な長さを変化させることは、放射電極3の電気的な長さを変化させることと等価な状態となり、アンテナ構造1の共振周波数を変化させることができる。つまり、例えば、図4の実線に示されるようなスリット13の長さから、スリット13の長さを点線に示されるように延長していくに従って、アンテナ構造1のリターンロス特性は、例えば、図5のグラフの実線La→実線Lb→実線Lc→実線Ld→実線Le→実線Lfというように、変化していく。つまり、スリット13の長さが長くなって放射電極3の等価的な電気的な長さが長くなるに従って、アンテナ構造1の共振周波数を下げていくことができる。   By forming the slit 13, for example, a part of the ground electrode 6 surrounded by a chain line Z in FIG. 4 functions as a part of the radiation electrode 3. For this reason, changing the shape and length of the slit 13 to change the electrical length of the portion Z of the ground electrode 6 that functions as a part of the radiation electrode 3 means that the electrical length of the radiation electrode 3 is changed. It becomes an equivalent state to change the antenna frequency, and the resonance frequency of the antenna structure 1 can be changed. That is, for example, as the length of the slit 13 is extended as indicated by the dotted line from the length of the slit 13 as indicated by the solid line in FIG. In the graph of FIG. 5, the line changes as follows: solid line La → solid line Lb → solid line Lc → solid line Ld → solid line Le → solid line Lf. That is, the resonance frequency of the antenna structure 1 can be lowered as the length of the slit 13 increases and the equivalent electrical length of the radiation electrode 3 increases.

なお、共振周波数調整用素子8の容量の大きさ又はインダクタンス値の可変調整および接地間容量装荷用電極7の電極面積の可変調整によって、アンテナ構造1の共振周波数を例えば約10MHz単位、あるいは、接地間容量装荷用電極7の電極面積によっては1MHz単位又は数MHz単位で可変調整することができる。これに対して、スリット13の可変調整により、アンテナ構造1の共振周波数を例えば約100MHz単位で可変調整することができる。このように、この第1実施例では、スリット13によってアンテナ構造1の共振周波数の粗調整を行い、また、共振周波数調整用素子8および接地間容量装荷用電極7の電極面積によってアンテナ構造1の共振周波数の微調整を行うことにより、アンテナ構造1の共振周波数を精度良く調整することが可能である。   Note that the resonance frequency of the antenna structure 1 can be set to, for example, a unit of about 10 MHz by adjusting the magnitude of the capacitance or the inductance value of the resonance frequency adjusting element 8 and adjusting the electrode area of the capacitance loading electrode 7 between grounds. Depending on the electrode area of the inter-capacity loading electrode 7, it can be variably adjusted in units of 1 MHz or several MHz. On the other hand, the resonance frequency of the antenna structure 1 can be variably adjusted by, for example, about 100 MHz by variable adjustment of the slit 13. As described above, in this first embodiment, the resonance frequency of the antenna structure 1 is roughly adjusted by the slits 13, and the antenna structure 1 is adjusted according to the electrode areas of the resonance frequency adjusting element 8 and the grounded capacitance loading electrode 7. By finely adjusting the resonance frequency, the resonance frequency of the antenna structure 1 can be adjusted with high accuracy.

この第1実施例では、上記のように共振周波数調整用素子8の容量の大きさ又はインダクタンス値と、接地間容量装荷用電極7の電極面積(接地間容量装荷用電極7と放射電極3との間の容量)と、スリット13の長さや形状とを可変調整することでアンテナ構造1の共振周波数を可変調整することができる。このことから、アンテナ構造1の共振周波数が予め定められた設定の共振周波数となるように、共振周波数調整用素子8の容量の大きさ又はインダクタンス値と、接地間容量装荷用電極7の電極面積と、スリット13の長さや形状とが、それぞれ、適宜調整されて設定されている。   In the first embodiment, as described above, the capacitance size or inductance value of the resonant frequency adjusting element 8 and the electrode area of the grounding capacity loading electrode 7 (the grounding capacity loading electrode 7 and the radiation electrode 3 The resonance frequency of the antenna structure 1 can be variably adjusted by variably adjusting the length and shape of the slit 13. From this, the capacitance size or inductance value of the resonant frequency adjusting element 8 and the electrode area of the ground-to-ground capacitive loading electrode 7 are set so that the resonant frequency of the antenna structure 1 becomes a preset resonant frequency. The length and shape of the slit 13 are appropriately adjusted and set.

この第1実施例の構成を備えることによって、放射電極3の大きさや形状などを変更することなく、回路基板5に設ける共振周波数調整用素子8の容量又はインダクタンス値や、接地間容量装荷用電極7の電極面積や、スリット13の長さや形状を可変調整するだけで、アンテナ構造1の共振周波数を設定の共振周波数に調整することができるという効果を得ることができる。   By providing the configuration of the first embodiment, the capacitance or inductance value of the resonant frequency adjusting element 8 provided on the circuit board 5 or the capacitance for ground capacitance loading without changing the size or shape of the radiation electrode 3. 7, the resonance frequency of the antenna structure 1 can be adjusted to the set resonance frequency only by variably adjusting the electrode area 7 and the length and shape of the slit 13.

また、接地間容量装荷用電極7は、放射電極3に対向する回路基板5の基板面部分に形成されていることから、誘電体基体2の大型化を抑制することができるという効果を得ることができる。つまり、例えば、図6bの模式的な断面図に示されるように、放射電極3と接地電極6との間に容量を形成するための電極14を、誘電体基体2の端面に形成する場合には、例えば図6bの左側から誘電体基体2の端面構成を見た図である図6cに示すように、給電電極4に加えて、上記電極14を誘電体基体2の端面に形成することとなる。このために、誘電体基体2を大きくしなければならず、アンテナ構造1が大型化する。また、電極14と、放射電極3とは対向配置していないので、電極14と放射電極3との間の容量は小さい。このため、電極14と放射電極3間の容量を大きくする場合には、例えば電極14を放射電極3側に伸長形成して電極14と放射電極3間の間隔(ギャップ)を狭くすることで電極14と放射電極3間の容量を大きくすることが考えられる。しかし、電極14と放射電極3間の間隔が狭くなるにつれて、間隔のばらつきによる電極14と放射電極3間の容量のばらつき変動が大きくなるので、好ましくない。そこで、電極14と放射電極3との間の容量を大きくするために電極14の電極面積を拡大しようとすると、必然的に誘電体基体2を大きくしなければならず、アンテナ構造1の大型化を招くという問題が発生する。   Moreover, since the electrode 7 for capacitive loading between grounds is formed in the board | substrate surface part of the circuit board 5 which opposes the radiation electrode 3, the effect that the enlargement of the dielectric substrate 2 can be suppressed is acquired. Can do. That is, for example, as shown in the schematic cross-sectional view of FIG. 6 b, when the electrode 14 for forming a capacitance between the radiation electrode 3 and the ground electrode 6 is formed on the end face of the dielectric substrate 2. For example, as shown in FIG. 6 c, which is a view of the end face configuration of the dielectric base 2 from the left side of FIG. 6 b, the electrode 14 is formed on the end face of the dielectric base 2 in addition to the feeding electrode 4. Become. For this reason, the dielectric substrate 2 must be enlarged, and the antenna structure 1 is enlarged. In addition, since the electrode 14 and the radiation electrode 3 are not arranged to face each other, the capacitance between the electrode 14 and the radiation electrode 3 is small. Therefore, when the capacitance between the electrode 14 and the radiation electrode 3 is increased, for example, the electrode 14 is formed to extend toward the radiation electrode 3 so that the gap (gap) between the electrode 14 and the radiation electrode 3 is reduced. It is conceivable to increase the capacity between the electrode 14 and the radiation electrode 3. However, as the distance between the electrode 14 and the radiation electrode 3 becomes narrower, the variation in the capacitance between the electrode 14 and the radiation electrode 3 due to the variation in the distance increases, which is not preferable. Therefore, in order to increase the electrode area of the electrode 14 in order to increase the capacitance between the electrode 14 and the radiation electrode 3, the dielectric substrate 2 must be enlarged, and the antenna structure 1 is increased in size. The problem of incurring.

これに対して、この第1実施例では、図6aの模式的な断面図に示されるように、接地間容量装荷用電極7は、放射電極3に対向する回路基板5の基板面に形成する構成とした。このため、接地間容量装荷用電極7は放射電極3に対向配置しているので、放射電極3との間に大きな容量を得ることが容易である。また、接地間容量装荷用電極7は回路基板5の基板面に形成され、誘電体基体2に設けられているものではないし、当該接地間容量装荷用電極7が形成されている回路基板面部分は、誘電体基体2が搭載されて今まで使用されていなかったデッスペースである。これらのことから、接地間容量装荷用電極7と放射電極3との間の容量を大きくするために接地間容量装荷用電極7を大きくする場合に、誘電体基体2の大型化(つまり、アンテナ構造1の大型化)を抑制することができる。 On the other hand, in the first embodiment, as shown in the schematic cross-sectional view of FIG. 6A, the inter-ground capacitance loading electrode 7 is formed on the substrate surface of the circuit board 5 facing the radiation electrode 3. The configuration. For this reason, since the capacitance loading electrode 7 is disposed opposite to the radiation electrode 3, it is easy to obtain a large capacity between the radiation electrode 3. In addition, the capacitance loading electrode 7 between the grounds is formed on the substrate surface of the circuit board 5 and is not provided on the dielectric substrate 2, but the circuit board surface portion on which the capacitance loading electrode 7 is formed. is a dead de space in which the dielectric substrate 2 has not been used until now been installed. For these reasons, in order to increase the capacitance between the grounding capacity loading electrode 7 and the radiation electrode 3, the size of the dielectric substrate 2 (that is, the antenna) The increase in size of the structure 1 can be suppressed.

さらに、この第1実施例に示すように共振周波数調整用素子8を設けても、アンテナ利得の変動を小さく抑えることができる。このことは、本発明者の実験により確認されている。その実験では、共振周波数調整用素子8に関わる構成以外は全て同じ条件の3種類のアンテナ構造1(サンプルα,β,γ)を用意した。つまり、サンプルαは共振周波数調整用素子8が設けられていないものである。サンプルβは共振周波数調整用素子8として例えば容量6pFを持つコンデンサ部品が設けられているものである。サンプルγは共振周波数調整用素子8として例えばインダクタンス値3.9nHを持つインダクタ部品が設けられているものである。これら各サンプルα,β,γのそれぞれについて、直線偏波のアンテナ利得を求めた。その実験結果が表1〜表3に表されている。表1は、サンプルαに関するものであり、表2は、サンプルβに関するものであり、表3は、サンプルγに関するものである。   Further, even if the resonance frequency adjusting element 8 is provided as shown in the first embodiment, the fluctuation of the antenna gain can be suppressed to a small value. This has been confirmed by the inventors' experiments. In the experiment, three types of antenna structures 1 (samples α, β, and γ) having the same conditions except for the configuration related to the resonance frequency adjusting element 8 were prepared. That is, the sample α is not provided with the resonance frequency adjusting element 8. In the sample β, a capacitor component having a capacitance of 6 pF, for example, is provided as the resonance frequency adjusting element 8. The sample γ is provided with an inductor component having an inductance value of 3.9 nH, for example, as the resonance frequency adjusting element 8. The linearly polarized antenna gain was determined for each of these samples α, β, and γ. The experimental results are shown in Tables 1 to 3. Table 1 relates to sample α, Table 2 relates to sample β, and Table 3 relates to sample γ.

Figure 0004103936
Figure 0004103936

Figure 0004103936
Figure 0004103936

Figure 0004103936
Figure 0004103936

サンプルα(共振周波数調整用素子8が設けられていないもの)のアンテナ利得を表した表1と、サンプルβ,γ(共振周波数調整用素子8が設けられているもの)のアンテナ利得を表した表2、表3との比較からも分かるように、共振周波数調整用素子8を設けても、共振周波数調整用素子8を設けない場合と同様のアンテナ利得を得ることができることが確認できる。   Table 1 showing the antenna gain of the sample α (without the resonance frequency adjusting element 8) and the antenna gain of the samples β and γ (with the resonance frequency adjusting element 8) As can be seen from the comparison with Tables 2 and 3, it can be confirmed that the antenna gain similar to that obtained when the resonant frequency adjusting element 8 is not provided can be obtained even if the resonant frequency adjusting element 8 is provided.

以下に、第2実施例を説明する。この第2実施例は無線通信機に関するものである。この第2実施例の無線通信機には、第1実施例に示したアンテナ構造1が設けられている。なお、無線通信機の構成には様々な構成があり、アンテナ構造1以外の無線通信機の構成は何れの構成を採用してもよく、ここでは、その説明は省略する。また、アンテナ構造1の構成は第1実施例で述べたので、その重複説明は省略する。   The second embodiment will be described below. The second embodiment relates to a wireless communication device. The wireless communication device of the second embodiment is provided with the antenna structure 1 shown in the first embodiment. There are various configurations of the radio communication device, and any configuration of the radio communication device other than the antenna structure 1 may be adopted, and the description thereof is omitted here. Further, since the configuration of the antenna structure 1 has been described in the first embodiment, a duplicate description thereof will be omitted.

なお、この発明は第1や第2の各実施例の形態に限定されるものではなく、様々な実施の形態を採り得る。例えば、第1と第2の各実施例のアンテナ構造1では、接地電極6の一部位を放射電極3の一部として機能させるためのスリット13が設けられていたが、例えば、スリット13を設けなくともアンテナ構造1の共振周波数を設定の共振周波数に調整することができる場合には、スリット13を省略してもよい。   In addition, this invention is not limited to the form of each 1st and 2nd Example, Various embodiment can be taken. For example, in the antenna structure 1 of each of the first and second embodiments, the slit 13 for causing one part of the ground electrode 6 to function as a part of the radiation electrode 3 is provided. For example, the slit 13 is provided. If the resonance frequency of the antenna structure 1 can be adjusted to the set resonance frequency, the slit 13 may be omitted.

また、第1と第2の各実施例の構成に加えて、回路基板5の接地間容量装荷用電極7に対向する誘電体基体底面部分にも、図7aの模式的な断面図およびその分解図である図7bに示されるように、接地間容量装荷用電極7’を設けてもよい。この誘電体基体2側の接地間容量装荷用電極7’は、回路基板5側の接地間容量装荷用電極7に例えばはんだ等の導電性接合材料により接合される。この構成によって次に示すような効果を得ることができる。すなわち、誘電体基体2は回路基板5に例えばはんだ等の導電性接合材料により搭載される。その導電性接合材料の一部は、誘電体基体2と回路基板5との間に介在する。その介在量は、誘電体基体2を回路基板5に導電性接合材料によって搭載する際の例えば加熱状況や導電性接合材料の溶融状態等の様々な条件によって変わるものであり、ばらつく。このため、誘電体基体2と回路基板5との間の間隔はばらついたものとなる。これにより、誘電体基体2の放射電極3と、回路基板5の接地間容量装荷用電極7との間の間隔がばらついて、例えば図6aに示されるような構成の場合には、誘電体基体2の放射電極3と、回路基板5の接地間容量装荷用電極7との間の容量もばらつく。これに対して、誘電体基体2の底面に接地間容量装荷用電極7’を設けることにより、放射電極3と接地間容量装荷用電極7’との間の間隔は精度良くほぼ設計通りとすることができる。このため、その接地間容量装荷用電極7’を回路基板5の接地間容量装荷用電極7に導電性接合材料を介して接合することによって、誘電体基体2と回路基板5との間の間隔がばらついても、放射電極3と、接地間容量装荷用電極7,7’との間の容量のばらつきを抑制することができる。これにより、より一層のアンテナ性能の向上を図ることができる。   In addition to the configurations of the first and second embodiments, the schematic cross-sectional view of FIG. 7a and its decomposition are also applied to the bottom surface portion of the dielectric substrate facing the capacitance loading electrode 7 of the circuit board 5. As shown in FIG. 7b, an electrode for loading capacitance between grounds 7 'may be provided. The grounding capacity loading electrode 7 ′ on the dielectric substrate 2 side is joined to the grounding capacity loading electrode 7 on the circuit board 5 side by a conductive joining material such as solder. With this configuration, the following effects can be obtained. That is, the dielectric substrate 2 is mounted on the circuit board 5 with a conductive bonding material such as solder. A part of the conductive bonding material is interposed between the dielectric substrate 2 and the circuit board 5. The amount of the intervening varies depending on various conditions such as a heating state and a molten state of the conductive bonding material when the dielectric substrate 2 is mounted on the circuit board 5 with the conductive bonding material, and varies. For this reason, the distance between the dielectric substrate 2 and the circuit board 5 varies. As a result, the distance between the radiation electrode 3 of the dielectric substrate 2 and the grounded capacitance loading electrode 7 of the circuit board 5 varies. For example, in the case of the configuration shown in FIG. The capacitance between the second radiation electrode 3 and the grounded capacitance loading electrode 7 of the circuit board 5 also varies. On the other hand, by providing the electrode for loading capacitance between grounds 7 ′ on the bottom surface of the dielectric substrate 2, the distance between the radiation electrode 3 and the electrode for loading capacitance between the grounds 7 ′ is made almost exactly as designed. be able to. For this reason, the gap between the dielectric substrate 2 and the circuit board 5 is bonded to the capacitance loading electrode 7 'of the circuit board 5 via the conductive bonding material. Even if there is a variation, it is possible to suppress the variation in capacitance between the radiation electrode 3 and the grounded capacitance loading electrodes 7 and 7 '. Thereby, the antenna performance can be further improved.

さらに、第1と第2の各実施例では、誘電体基体2は直方体状であったが、例えば、円柱状や多角柱状等の他の形状であってもよい。さらに、放射電極3は、容量給電タイプの放射電極であれば、例えば図1に示した形状以外の形状であってもよい。さらに、第1と第2の各実施例では、接地間容量装荷用電極7が形成されている回路基板領域には、接地電極6が形成されていなかったが、例えば、回路基板5の表面に接地間容量装荷用電極7が形成され、その接地間容量装荷用電極7が形成されている回路基板5の部位の裏面あるいは内層に接地電極6が形成されている構成としてもよい。また、放射電極3を備えた誘電体基体2はグランド領域に搭載されるものであったが、この発明は、放射電極を備えた誘電体基体が非グランド領域に搭載される構成のものにも適用することができるものである。   Furthermore, in each of the first and second embodiments, the dielectric substrate 2 has a rectangular parallelepiped shape, but may have another shape such as a columnar shape or a polygonal column shape. Furthermore, the radiation electrode 3 may have a shape other than the shape illustrated in FIG. 1, for example, as long as it is a capacitive power supply type radiation electrode. Further, in each of the first and second embodiments, the ground electrode 6 is not formed in the circuit board region where the inter-ground capacitance loading electrode 7 is formed. A configuration may be employed in which the grounding electrode 7 is formed, and the ground electrode 6 is formed on the back surface or the inner layer of the portion of the circuit board 5 on which the grounding electrode 7 is formed. Further, the dielectric substrate 2 provided with the radiation electrode 3 is mounted on the ground region, but the present invention is also applied to a configuration in which the dielectric substrate provided with the radiation electrode is mounted on the non-ground region. It can be applied.

本発明は、アンテナ構造の大型化やアンテナ利得の悪化を抑制しながらアンテナ構造の共振周波数を精度良く設定の共振周波数に調整することが容易にできるので、小型化が要求されているアンテナ構造や無線通信機に適用するのに有効である。
The present invention can easily adjust the resonance frequency of the antenna structure to the set resonance frequency with high accuracy while suppressing the increase in the size of the antenna structure and the deterioration of the antenna gain. It is effective for application to a wireless communication device.

Claims (3)

アンテナ動作を行う放射電極が基体に設けられ、その基体は回路基板に搭載されており、前記基体の上面に形成されている放射電極は回路基板の基板面に間隔を介して対向するように設けられている構成を備えたアンテナ構造において、
回路基板には、搭載される基体の底面の下側となる領域に前記基体の上面に形成されている放射電極に互いに電極面同士が対向配置して放射電極との間に容量を持つ接地間容量装荷用電極が放射電極とは電気的に非導通接続状態に絶縁されて形成され、また、回路基板には、その接地間容量装荷用電極の形成領域を避け接地間容量装荷用電極と間隔を介して接地間容量装荷用電極とは電気的に絶縁された接地電極が形成され、さらに、接地間容量装荷用電極と接地電極との間を接続する共振周波数調整用素子が設けられており、その共振周波数調整用素子は、アンテナ構造の共振周波数を予め定められた設定の共振周波数に調整するための容量あるいはインダクタンスを有していることを特徴とするアンテナ構造。
Radiation electrode for performing an antenna operation is provided on the substrate, the substrate is mounted on the circuit board, set such that the radiation electrode formed on the upper surface of the substrate to face each other with a distance to the substrate surface of the circuit board In the antenna structure with the configuration
The circuit board, between the ground of electrodes faces each other in the radiation electrode formed on the upper surface of the substrate on the lower side and a region of the bottom surface of the substrate to be mounted with a capacity between the opposed to the radiation electrode The capacitance loading electrode is formed in an electrically non-conducting connection state with the radiation electrode, and the circuit board has a space between the capacitance loading electrode and the grounding capacitance avoiding the formation area of the capacitance loading electrode between the grounding. A ground electrode that is electrically insulated from the electrode for loading capacitance between grounds is formed, and an element for adjusting the resonance frequency that connects between the electrode for loading capacitance between the ground and the ground electrode is provided. The resonance frequency adjusting element has a capacitance or inductance for adjusting the resonance frequency of the antenna structure to a resonance frequency set in advance.
基体はその一部が接地電極上に配設される状態でもって回路基板に搭載され、放射電極は、接地電極上に配置されている基体部分を通って接地電極まで伸長形成され当該接地電極に直接的に接合されている構成と成しており、接地電極には、上記放射電極が接合されている部分から接地電極の一部を放射電極に連続させて伸張させて当該接地電極部位を放射電極の一部として機能させるためのスリットが、放射電極の一部位として機能させる接地電極部位を残りの他の接地電極部位と区分する形態で形成されていることを特徴とする請求項1に記載のアンテナ構造。  The substrate is mounted on the circuit board with a part of the substrate disposed on the ground electrode, and the radiation electrode extends to the ground electrode through the substrate portion disposed on the ground electrode. The ground electrode is configured such that a part of the ground electrode is continuously extended from the portion where the radiation electrode is joined to the radiation electrode to radiate the ground electrode portion. The slit for functioning as a part of an electrode is formed in a form in which a ground electrode part functioning as one part of a radiation electrode is separated from other remaining ground electrode parts. Antenna structure. 請求項1又は請求項2記載のアンテナ構造が設けられていることを特徴とする無線通信機。  A wireless communication device provided with the antenna structure according to claim 1.
JP2007514942A 2005-05-13 2005-07-13 Antenna structure and wireless communication device including the same Active JP4103936B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005141242 2005-05-13
JP2005141242 2005-05-13
PCT/JP2005/012946 WO2006120763A1 (en) 2005-05-13 2005-07-13 Antenna structure and radio communication device using the same

Publications (2)

Publication Number Publication Date
JP4103936B2 true JP4103936B2 (en) 2008-06-18
JPWO2006120763A1 JPWO2006120763A1 (en) 2008-12-18

Family

ID=37396284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514942A Active JP4103936B2 (en) 2005-05-13 2005-07-13 Antenna structure and wireless communication device including the same

Country Status (3)

Country Link
JP (1) JP4103936B2 (en)
GB (1) GB2439863C (en)
WO (1) WO2006120763A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217288A (en) * 2010-04-01 2011-10-27 Tdk Corp Antenna apparatus, and wireless communication device using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991451B2 (en) * 2007-08-29 2012-08-01 京セラ株式会社 Antenna, method for adjusting resonance frequency thereof, and communication apparatus using the same
JP4941202B2 (en) * 2007-09-26 2012-05-30 Tdk株式会社 Antenna device and characteristic adjustment method thereof
JP4924327B2 (en) * 2007-09-26 2012-04-25 Tdk株式会社 Antenna device and characteristic adjustment method thereof
JP4924399B2 (en) * 2007-12-13 2012-04-25 Tdk株式会社 ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
WO2009081803A1 (en) * 2007-12-21 2009-07-02 Tdk Corporation Antenna device and wireless communication device using the same
JP4645729B2 (en) * 2008-11-26 2011-03-09 Tdk株式会社 ANTENNA DEVICE, RADIO COMMUNICATION DEVICE, SURFACE MOUNTED ANTENNA, PRINTED BOARD, SURFACE MOUNTED ANTENNA AND PRINTED BOARD MANUFACTURING METHOD
JP5263383B2 (en) * 2009-02-20 2013-08-14 株式会社村田製作所 Antenna device
WO2012008177A1 (en) * 2010-07-16 2012-01-19 株式会社村田製作所 Antenna device
WO2014007087A1 (en) * 2012-07-04 2014-01-09 株式会社村田製作所 Antenna apparatus
WO2015120780A1 (en) 2014-02-12 2015-08-20 华为终端有限公司 Antenna and mobile terminal
US10727579B2 (en) * 2018-08-03 2020-07-28 The Chinese University Of Hong Kong Device and method of reducing mutual coupling of two antennas by adding capacitors on ground

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347903A (en) * 1991-01-31 1992-12-03 Tdk Corp Method for adjusting frequency of triplate band-pass filter by multilayered dielectric substrate
JPH07249925A (en) * 1994-03-10 1995-09-26 Murata Mfg Co Ltd Antenna and antenna system
JP3277812B2 (en) * 1996-06-18 2002-04-22 株式会社村田製作所 Surface mount antenna
JP4635326B2 (en) * 2000-10-31 2011-02-23 株式会社村田製作所 Antenna mounting structure and radio apparatus including the same
JP2002335117A (en) * 2001-05-08 2002-11-22 Murata Mfg Co Ltd Antenna structure and communication device equipped therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217288A (en) * 2010-04-01 2011-10-27 Tdk Corp Antenna apparatus, and wireless communication device using the same
US9225057B2 (en) 2010-04-01 2015-12-29 Tdk Corporation Antenna apparatus and wireless communication device using same

Also Published As

Publication number Publication date
GB2439863A (en) 2008-01-09
GB2439863B (en) 2009-02-18
GB2439863C (en) 2009-04-08
JPWO2006120763A1 (en) 2008-12-18
GB0718977D0 (en) 2007-11-07
WO2006120763A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4103936B2 (en) Antenna structure and wireless communication device including the same
JP3992077B2 (en) Antenna structure and wireless communication device including the same
JP3180683B2 (en) Surface mount antenna
KR101800910B1 (en) Dielectric chip antennas
US9190721B2 (en) Antenna device
JP6518285B2 (en) Antenna device
US20100214173A1 (en) Chip antenna
JP6451865B2 (en) Antenna device
JP5969821B2 (en) Antenna device
US9742072B2 (en) Printed circuit board arrangement for supplying antennas via a three-conductor system for exciting different polarizations
JPH0851313A (en) Surface mount antenna and its frequency adjustment method
WO2014132519A1 (en) Antenna, printed circuit board, and wireless communication device
KR101803233B1 (en) Ground radiator using capacitor
JP2010268183A (en) Antenna and radio communication apparatus
JP5862948B2 (en) Antenna device
JP2004312364A (en) Antenna structure and communication apparatus provided therewith
KR102008716B1 (en) Antenna apparatus and feeding structure thereof
US8462051B2 (en) Chip antenna and antenna apparatus
JP2010258924A (en) Antenna and radio communication device
JP6004173B2 (en) Antenna device
JP5831754B2 (en) Antenna device
JP7315694B2 (en) Antenna device and wireless communication device
JP6826318B2 (en) Antenna device
KR101992517B1 (en) Antenna device use board and antenna device
TWI581501B (en) Antenna device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4103936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6