JP4102883B2 - Simple and quick drying method for new water-containing samples - Google Patents
Simple and quick drying method for new water-containing samples Download PDFInfo
- Publication number
- JP4102883B2 JP4102883B2 JP2004555012A JP2004555012A JP4102883B2 JP 4102883 B2 JP4102883 B2 JP 4102883B2 JP 2004555012 A JP2004555012 A JP 2004555012A JP 2004555012 A JP2004555012 A JP 2004555012A JP 4102883 B2 JP4102883 B2 JP 4102883B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- containing sample
- drying
- porous material
- dried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 282
- 238000001035 drying Methods 0.000 title claims description 178
- 238000000034 method Methods 0.000 claims description 129
- 239000011148 porous material Substances 0.000 claims description 122
- 230000035699 permeability Effects 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 57
- 239000011111 cardboard Substances 0.000 claims description 40
- 244000005700 microbiome Species 0.000 claims description 29
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 239000008187 granular material Substances 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 10
- 239000000123 paper Substances 0.000 description 66
- 241000196324 Embryophyta Species 0.000 description 48
- 239000000306 component Substances 0.000 description 36
- 229920000728 polyester Polymers 0.000 description 26
- 239000000047 product Substances 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 21
- 239000000049 pigment Substances 0.000 description 20
- 230000000717 retained effect Effects 0.000 description 20
- 210000002268 wool Anatomy 0.000 description 19
- 229920000742 Cotton Polymers 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 18
- 239000000835 fiber Substances 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 17
- 239000003205 fragrance Substances 0.000 description 16
- 238000002845 discoloration Methods 0.000 description 12
- 239000004744 fabric Substances 0.000 description 12
- 235000011197 perejil Nutrition 0.000 description 12
- 244000047670 Viola x wittrockiana Species 0.000 description 11
- 235000004031 Viola x wittrockiana Nutrition 0.000 description 11
- 235000015097 nutrients Nutrition 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 241000208317 Petroselinum Species 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- -1 etc. Polymers 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 241000202296 Delphinium Species 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 239000000741 silica gel Substances 0.000 description 8
- 229910002027 silica gel Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000004745 nonwoven fabric Substances 0.000 description 7
- 239000003223 protective agent Substances 0.000 description 7
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007799 cork Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 229960005070 ascorbic acid Drugs 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000008239 natural water Substances 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 241000238421 Arthropoda Species 0.000 description 3
- 241000238424 Crustacea Species 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 244000269722 Thea sinensis Species 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000012041 food component Nutrition 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 2
- 240000009164 Petroselinum crispum Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000019568 aromas Nutrition 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000002306 biochemical method Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229960005233 cineole Drugs 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- 210000003934 vacuole Anatomy 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003071 Polyclar® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 240000000278 Syzygium polyanthum Species 0.000 description 1
- 235000008089 Syzygium polyanthum Nutrition 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 235000016614 betalains Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 1
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 1
- 235000007746 carvacrol Nutrition 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 229930007927 cymene Natural products 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000018927 edible plant Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000000050 mohair Anatomy 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B5/00—Drying solid materials or objects by processes not involving the application of heat
- F26B5/16—Drying solid materials or objects by processes not involving the application of heat by contact with sorbent bodies, e.g. absorbent mould; by admixture with sorbent materials
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N3/00—Preservation of plants or parts thereof, e.g. inhibiting evaporation, improvement of the appearance of leaves or protection against physical influences such as UV radiation using chemical compositions; Grafting wax
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/32—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
- F26B3/34—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
- F26B3/347—Electromagnetic heating, e.g. induction heating or heating using microwave energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Dentistry (AREA)
- Physics & Mathematics (AREA)
- Agronomy & Crop Science (AREA)
- Electromagnetism (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Drying Of Solid Materials (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は植物、動物、微生物等の含水試料の乾燥方法に関する。具体的には、天然状態の含水試料の細胞および組織ならびに該試料が含む有用な含有成分を破壊させずに乾燥させる方法に関する。さらに具体的には、植物含水試料の天然状態の色彩および/または芳香を保ったまま、あるいは微生物細胞を生存したまま迅速、効率的かつ低コストで乾燥する方法に関する。 The present invention relates to a method for drying water-containing samples such as plants, animals and microorganisms. Specifically, the present invention relates to a method for drying a cell and tissue of a water-containing sample in a natural state and useful components contained in the sample without destroying them. More specifically, the present invention relates to a method for quickly, efficiently and inexpensively drying a hydrated plant sample while maintaining its natural color and / or fragrance or alive microbial cells.
従来より、植物体およびその部分を乾燥させる種々の方法があった。例えば、乾燥させようとする植物の上下もしくは、上下一方のいずれかに吸水性の材料を置き、植物中の水分を吸水させつつ乾燥させるという押し花製造法がある。押し花法として、従来より重りにより圧力をかけて植物中の水分を強制的に排出させる重石処理法があった。また、植物を吸水性材料およびセラミック板ではさみ圧縮しマイクロ波を照射し、水分蒸発を早める方法(特開平4−49202号公報)、植物を吸水性材料および多数の小孔を有する加圧用プレートではさみ圧縮しマイクロ波を照射し、水分蒸発を早める方法(米国特許第5948311号公報)、植物を吸水性材料および加圧用木製プレートではさみ圧縮しマイクロ波を照射し、水分蒸発を早める方法(特開2001−302401号公報)があった。また、乾燥させようとする植物をシリカゲル等の吸湿性材料中に入れ乾燥させる方法(米国特許第3861053号公報)があった。しかし、植物体を圧縮する方法は、圧縮により植物の組織、細胞を壊し内部の水分を強制的に排出させ、乾燥時間を早めようとするものであり、この時に色素および芳香成分も植物体から完全にまたは部分的に失われ、天然状態の植物が有する色彩および芳香は維持することはできなかった。また、圧縮する為に植物の立体形状を維持することも不可能であった。さらに、植物体をシリカゲル等の吸湿性材料中に入れる方法でも、吸湿性材料の重量のため植物は変形し立体形状の維持はできず、また吸湿するまでに時間がかかり、その間植物自体が変質し、天然状態の植物の色彩および芳香の維持は不可能であった。
また、微生物を保存する方法として、凍結、凍結乾燥等があった。しかし、凍結保存には、微生物を凍結状態に保つための凍結用設備等が必要になる。また、凍結乾燥法は、かならずしも微生物を生存させたまま保存する方法ではなく、培養微生物を凍結保存した後に再培養した場合の生存率は高くなかった。さらに、有用な色素成分や栄養成分を産生保持する微生物において該成分は凍結乾燥により変性し、天然状態で微生物が有する成分を保持させることはできなかった。
このような問題点を解決すべく、本発明者らは先に、含水試料の外表面を吸湿性の多孔質柔軟シートで覆い、当該シートの外周を含水試料が含んでいる水分をすべて吸収できる量の吸湿性粒状体で囲み、含水試料の外表面と吸湿性の多孔質柔軟シートと吸湿性粒状体とを密着させて、マイクロ波を照射し、放冷することを特徴とする含水試料の迅速乾燥方法を開発した(特開2001−071695号公報)。
この方法は、植物を圧縮する必要がなく植物の組織・細胞がそのまま維持されるので、天然状態の立体形状、色彩および芳香を維持することが可能であった。またマイクロ波照射により蒸発した水分を、一旦吸湿性の多孔質柔軟シートに吸収させ次いで、その水分をシリカゲル等の吸湿性粒状体に吸湿させるので、迅速な乾燥が可能であった。
この方法により天然状態の含水試料の色彩・芳香を保持した乾燥体の製造が可能になった。
In addition, methods for preserving microorganisms include freezing and freeze-drying. However, cryopreservation requires freezing equipment for keeping microorganisms in a frozen state. In addition, the freeze-drying method is not necessarily a method of storing microorganisms while they are alive, and the survival rate is not high when the cultured microorganisms are stored after being frozen and stored. Further, in microorganisms that produce and retain useful pigment components and nutritional components, the components are denatured by freeze-drying, and the components of the microorganisms in the natural state cannot be retained.
In order to solve such problems, the present inventors first covered the outer surface of the water-containing sample with a hygroscopic porous flexible sheet, and can absorb all the moisture contained in the water-containing sample on the outer periphery of the sheet. A water-containing sample characterized in that it is surrounded by an amount of hygroscopic granules, the outer surface of the water-containing sample, the hygroscopic porous flexible sheet and the hygroscopic granules are brought into close contact, irradiated with microwaves, and allowed to cool. A rapid drying method was developed (Japanese Patent Laid-Open No. 2001-071695).
In this method, it is not necessary to compress the plant, and the tissue and cells of the plant are maintained as they are, so that it is possible to maintain the three-dimensional shape, color and aroma in the natural state. In addition, the moisture evaporated by the microwave irradiation was once absorbed by the hygroscopic porous flexible sheet, and then the moisture was absorbed by the hygroscopic granular material such as silica gel, so that quick drying was possible.
This method has made it possible to produce a dry product that retains the color and aroma of a natural water-containing sample.
本発明は、天然状態の含水試料の細胞および組織ならびに該試料が含む有用な含有成分を破壊させずに乾燥させる方法の提供、例えば、天然状態の含水試料の色彩および/または芳香を保ったまま、含水試料を迅速、効率的かつ低コストで乾燥する方法の提供を目的とする。さらに、本発明は含水試料の細胞および組織ならびに含まれる有用な成分が破壊されずに保持されている乾燥体、例えば、天然状態の含水試料の色彩および/または芳香を保った乾燥体の提供を目的とする。
本発明者らは、先に開発した含水試料の迅速乾燥方法を改良し、より低コストで簡便かつ迅速に行える乾燥方法を開発しようと鋭意検討を行った。その過程で、先に開発した含水試料の迅速乾燥方法の乾燥メカニズムについて検討を行った結果、シリカゲル等の吸湿性粒状体は単にマイクロ波照射により含水試料から蒸発した水分を吸収するだけではなく、蒸発した水分が含水試料を囲む吸湿性粒状体の間隙を通って、吸湿性粒状体の外に放出されるという、「煙突効果」を担っていることを見出した。蒸発し外に放出された水分子は、加熱後の放冷過程において、運動性を失い再び含水試料に吸収されにくくなるので、含水試料の迅速かつ完全な乾燥が達成できたのである。しかしながら、この「煙突効果」の発揮という点において、シリカゲル等の吸湿性粒状体は、一旦蒸発した水分を完全に外に放出させるのではなく、その間隙に蒸気を保持している可能性があり、冷却時に間隙の水分が再び含水試料に戻る可能性が考えられた。そこで、本発明者らは、吸湿性粒状体の代わりに含水試料から蒸発した水分を外に放出し、なおかつ一旦放出された水分が再び含水試料に吸収されるのを妨げるような材料を用いることにより、より容易に含水試料の迅速乾燥が達成され得ると考え、材料および乾燥方法について鋭意検討を行った。その結果、一定の透湿性を有する材料ならば含水試料から蒸発した水分子を含水試料の周囲に留まらせることなく透過放出させることができ、一定の吸湿性を有する材料ならば一旦透過放出された水分子が運動性を失うときに水分子を内部に捕捉し乾燥した含水試料が水分を再吸収するのを防ぐことができることを見出し、本発明を完成させるに至った。
すなわち、本発明は、
(1) 含水試料の外表面を透湿性、吸湿性および耐熱性を有する多孔性材料で囲み、マイクロ波発生装置に入れマイクロ波を照射することを含む含水試料の迅速乾燥法、
(2) 含水試料の外表面を吸湿性の多孔質柔軟シートで囲みさらに該シートの周囲を透湿性、吸湿性および耐熱性を有する多孔性材料で囲み、マイクロ波発生装置に入れマイクロ波を照射することを含む含水試料の迅速乾燥法、
(3) 吸湿性の多孔質柔軟シートおよび透湿性、吸湿性および耐熱性を有する多孔性材料をあらかじめ、マイクロ波照射により予備加熱しておく(1)または(2)の含水試料の迅速乾燥法、
(4) マイクロ波発生装置内で含水試料にマイクロ波を照射して乾燥させた後に、余熱乾燥させる(1)から(3)のいずれかの含水試料の迅速乾燥法、
(5) 余熱乾燥がマイクロ波発生装置内で行われる(4)の含水試料の迅速乾燥法、
(6) 透湿性かつ吸湿性を有する多孔性材料が段ボールである(1)から(3)のいずれかの含水試料の迅速乾燥法、
(7) 段ボールが吸湿性粒状体を含む(6)の含水試料の迅速乾燥法、
(8) マイクロ波照射直後の含水試料の周囲温度が60℃未満である(1)から(3)の含水試料の迅速乾燥法、
(9) 透湿性かつ吸湿性を有する多孔性材料がフェルトまたはフリースである(8)の含水試料の迅速乾燥法、
(10) マイクロ波の照射が含水試料中の水分減少率が95%以上になるまで行う、(1)から(9)のいずれかの含水試料の迅速乾燥法、
(11) 含水試料が生試料である(10)の含水試料の迅速乾燥法、
(12) 生試料が植物体またはその部分である(11)の含水試料の迅速乾燥法、
(13) 生試料が微生物であって、乾燥微生物が生存している、(11)の含水試料の迅速乾燥法、
(14) 植物の花弁1枚を候補多孔性材料で囲み、マイクロ波を照射し、一定時間毎に含水試料の水分減少率および含水試料近辺の温度を測定し、60秒から240秒で水分減少率が100%になりかつ温度が60℃以上に上昇しない材料を乾燥に用いるのに適した材料として選択する、(1)の含水試料の迅速乾燥法に適した透湿性、吸湿性および耐熱性を有する多孔性材料の選択方法、
(15) (14)の方法により選択された透湿性、吸湿性および耐熱性を有する多孔性材料、および多孔質柔軟シートを含む含水試料の迅速乾燥キット、
(16) 透湿性かつ吸湿性を有する多孔性材料がフェルトまたはフリースである(14)の含水試料の迅速乾燥キット、
(17) (13)の方法により製造された細胞および組織が破壊されていない、含水試料の乾燥体、
(18) (13)の方法により製造された天然状態の色彩および/または芳香が保持された、含水試料の乾燥体、ならびに
(19) 含水試料の乾燥体が、培養した場合に増殖し得る微生物である、(17)または(18)の含水試料の乾燥体。
以下、本発明を詳細に説明する。
本発明は、含水試料の外表面を透湿性かつ吸湿性を有する多孔性材料で囲み、マイクロ波を照射することを含む含水試料の迅速乾燥法である。
本発明で乾燥させ得る含水試料としては植物体全体および花、葉、茎、果実、根等の植物体の部分、昆虫、甲殻動物等の節足動物、昆虫、甲殻動物等の節足動物の卵、魚類の卵、動物の肉、皮等の動物体およびその部分、ならびに線虫、原生動物、大腸菌、枯草菌などの細菌、酵母、藻類、昆虫細胞、動物細胞等の微生物を含む生試料、岩石、泥、砂等の含水鉱物試料が含まれる。乾燥させる試料の用途も限定されず、食用植物、食用動物、観賞用植物、有用成分採取用植物・微生物、研究用微生物等、細胞および組織ならびに含有有用成分が破壊されることなく保持されることが望ましい試料の用途ならばどのような用途にも応用できる。これらの中でも特に植物体およびその部分ならびに微生物が好ましい。また、本発明の方法で乾燥させた乾燥体は、天然状態での色彩ばかりでなく、芳香も保持しているので、茶葉、ハーブ等の乾燥にも適する。また、本発明の乾燥法は押し花法のように圧縮して含水試料中の水分を強制的に放出させる必要がないので、天然の含水試料が有する立体構造を保持したまま、乾燥させることができる。従って、複雑な形状を有する植物体、壊れ易い植物体もその立体形状を保持したまま乾燥させることができる。この点で、本発明の方法はドライフラワーの製造にも適している。また、本発明の方法で乾燥させた動物体およびその部分の細胞、組織が破壊されることなく保持され、乾燥前の試料が含む有用成分も破壊されることなく保持される。したがって、動物体およびその部分の乾燥体は乾燥前の色彩や風味を保持している。さらに、本発明の方法で乾燥させた微生物は、組織が破壊されることなく保持され、乾燥前の試料が含む有用成分も破壊されることなく保持される。したがって、微生物はその生物学的活性を保持しており、生存したまま乾燥させることができ、保存後に培養等により増殖させることができる。
本発明は、前記含水試料の周囲を透湿性、吸湿性および耐熱性を有する多孔性材料で囲みマイクロ波を照射することにより含水試料を乾燥させる方法である。
ここで、含水試料を囲むとは含水試料の周囲全体または周囲のほぼ全体が透湿性、吸湿性および耐熱性を有する多孔性材料で覆われていることをいい、このとき含水試料が部分的に好ましくは大部分が多孔性材料と接触していることが必要である。これは含水試料と透湿性、吸湿性および耐熱性を有する多孔性材料が接触することにより、含水試料から蒸発した水分子が直ちに前記多孔性材料に吸収されるようにである。また、後記のように、含水試料と多孔性材料の間に多孔質の柔軟シートが存在していてもよい。多孔性材料で含水試料を囲むには、多孔性材料が柔軟性に富む場合は含水試料を包めばよいし、多孔性材料が柔軟性に欠ける場合には含水試料をはさめばよい。含水試料を囲む場合、植物の花弁や葉を平らに維持する程度の圧力をかけてもよいが、本発明は天然の含水試料の色素および/または芳香が保持されている乾燥体の製造を目的とするため、含水試料の組織や細胞が破壊される強さの圧力はかけてはならない。植物の花弁や葉を平らに維持する程度の圧力は、重りを用いて押さえることによりかけることができる。材料の透湿性とはその材料の蒸発した水分子を透過させ得る特性をいい、透湿度ともいう。材料の吸湿性とは運動性を失った水分子をその材料が保持し得る性質をいい、吸水性ともいう。透湿性を有していると、マイクロ波照射により含水試料から蒸発した水分が容易に透過し、含水試料を囲んだ透湿性材料から放出され、含水試料から分離される。また、蒸発し熱を有する水分子が分離されると、含水試料の近辺に熱がこもりにくく、含水試料近辺の温度上昇を抑えることができる。透湿性(透湿度)は、一定条件下で一定面積の透湿性材料を一定時間に透過する水蒸気量(g)を測定することにより測定できる。透湿度は、例えばJISの繊維製品の透湿度試験方法(JIS L 1099−1993)のA−1法、A−2法、A−3法またはA−4法のいずれかに従って行うことができる。例えば、A−1法は、透湿カップに塩化カルシウム等の吸湿剤を入れ、カップの開口部を一定面積の被試験材料で覆い、高湿度条件下に一定時間置き、非試験材料の重量を測定し、さらに一定時間置いた後に再度被試験材料の重量を測定することにより行う。該試験法において、透湿度(PA1)は、式{10×(a2−a1)}/SA1で表される。ここで、a2−a1は、被試験材料の1時間あたりの質量の変化量(mg/h)を示し、SA1は、透湿面積(cm2)を示す。PA1の単位は、g/m2.hである。本発明で用いうる材料の透湿度は、ウール製のフェルト(例えば、日本フェルト工業株式会社、品番227)とほぼ同等であり、ほぼ同等とは、上述の試験法での透湿度の値がウール製のフェルトに対して±30%、好ましくは±20%、さらに好ましくは±10%、特に好ましくは±5%であることをいう。さらに、吸湿性(吸水性)を有していると、蒸発して孔を通っている水分子の一部およびマイクロ波照射終了後の冷却過程で運動性を失った水分子を吸収保持することができ、水分子が再び含水試料に吸収されるのを防止することができる。吸水性は、例えばJISの繊維製品の吸水性試験方法(JIS L 1907−1994)に従って行うことができる。該試験法は、吸水速度を測定するための滴下法、バイレク法、沈降法、吸水率を測定する方法、最大吸水速度及び最大吸水速度時点の吸水量を測定する方法を含み、このいずれかの方法で試験すればよい。例えば、吸水速度は、一定の大きさの被試験材料を試験片保持枠に取り付け、該試験材料にビュレットから水または砂糖水を滴下し、水滴が材料の表面に達したときからその水滴が特別な反射をしなくなるまでの時間を測定することにより行う。本発明で用いうる材料の吸水性は、ウール製のフェルト(例えば、日本フェルト工業株式会社、品番227)とほぼ同等であり、ほぼ同等とは、上述の試験法での透湿度の値が、ウール製のフェルトに対して±30%、好ましくは±20%、さらに好ましくは±10%、特に好ましくは±5%であることをいう。耐熱性とは熱に侵されにくい特性をいい、本発明においては特にマイクロ波を照射しても溶けたり、焦げたり、燃えたりしない特性をいう。すなわち、本発明において耐熱性を有するとは、耐マイクロ波照射性をいう。例えば、マイクロ波を直接照射した場合に、2分間、好ましくは3分間、さらに好ましくは5分間、さらに好ましくは10分間、溶けたり焦げたり燃えたりしなければ耐熱性を有するという。また、本発明の方法で実際に含水試料を乾燥させようとする場合、含水試料中の水がマイクロ波により蒸発し、発熱する。本発明で用いる材料は、本発明の方法で乾燥させるためにマイクロ波を照射する時間マイクロ波を照射しても発熱により変質が認められない耐熱性を有していればよい。例えば、本発明の方法で乾燥させるときに、含水試料が乾燥するに要する時間マイクロ波を照射しても変質しない材料であり、例えば、含水試料を乾燥させるためにマイクロ波を照射した場合に、2分間、好ましくは3分間、さらに好ましくは5分間、さらに好ましくは10分間、溶けたり焦げたり燃えたりしなければ耐熱性を有するという。また、多孔性材料とは、材料の表側から裏側に連絡する孔を多数有している材料をいい、該孔が存在するため透湿性、吸湿性および耐熱性を有する。孔の大きさは限られないが、少なくとも水分子が容易に透過し得る大きさである。図1に本発明の方法の該略図を示す。
さらに、該材料は含水試料を破壊したり変形しないようにするために、柔軟性を有しかつ単位体積または単位面積当たりの重量が小さいものが好ましい。
例えば、本発明の含水試料を囲む透湿性、吸湿性および耐熱性を有する多孔性材料として、繊維性多孔性材料が挙げられる。繊維性多孔性材料には、布や紙が含まれ、また布として成型されていない繊維そのものを用いてもよい。具体的には、毛(羊毛およびカシミヤ、アンゴラ、モヘヤ、アルパカ、キャメル等の獣毛)、絹、綿(コットン)、麻等の天然繊維、ポリエステル、ポリスチレン、ポリエチレンテレフタレート(PET)、キュプラ、ポリプロピレン、ナイロン、レーヨン、アセテート、ビニロン、ポリ塩化ビニル、ビニルデン、アクリル、アラミド、ポリエチレン、ポリウレタン、プロミックス、ポリクラール、ポリイミド、アルギン酸繊維、炭素繊維、セラミックス繊維等の合成繊維またはこれらのいずれかを混ぜた繊維等でできた布やこれらの繊維そのものが挙げられる。さらに、フェルト、フリース、ネル(フランネル)、ベロア、織物の表面をフェルト状にした毛布、ビリヤードクロス等の織フェルト、キルト芯やドミット芯等の不織布芯地または織物芯地等が挙げられる。ここで、フェルトとは、繊維を絡ませて布状にしたものをいい、羊毛からできた伝統的フェルト、材料の種類を問わないがクリンプ状に縮れた短繊維からできたフェルト、ポリエステル等の合成繊維からできたフェルトがある。フリースとは、繊維を高密度で織り起毛させた布をいい、その素材は羊毛、ポリエステル等である。ネルとは太番手の糸を用い、平織又はあや織の両面又は片面を起毛した織布をいい、ベロアとは縮充起毛して布面に毛羽を立てた布をいう。ガラスや石英繊維でできたグラスウールや石英ウールも用いられ、これらの材料も水蒸気を透過させ、多孔中に水分を保持しうるので吸湿性を有し、本発明の繊維性多孔性材料に含まれる。紙は吸湿性という観点から、ある程度の厚みが必要であり、薄い紙の場合は重ねて用いればよい。トータルの厚みは限定されないが、数mmから数cm、好ましくは1〜2cmである。紙として、段ボール、クレープ紙、ろ紙等が挙げられる。ここで、クレープ紙とはちりめん状のしわをつけた紙をいい、抄紙工程で湿紙にしわつけ加工をするウェットクレープと乾燥した紙に加工するドライクレープのいずれでもよい。クレープ紙の例として、紙タオル、紙ナプキン等が挙げられる。段ボールも、吸湿性の観点から、ある程度の厚みが必要である。段ボールの種類により必要な厚みは異なるが数mmから数cm、好ましくは1〜2cmである。薄い段ボールの場合は、紙と同様に数枚を重ねて用いればよい。布は織布でも不織布でもニットでもよく、また天然素材の布でも合成素材の布でもよい。また、吸湿性の観点からある程度の厚みが必要であり、その厚みは数mmから数cm、好ましくは5mm〜2cm、さらに好ましくは5mm〜1cmである。薄い布の場合は重ねて用いればよい。なお、段ボールを用いるときに、段ボールにシリカゲル等の吸湿性粒状体を含ませてもよい。段ボールは波形に成形した中しんの片面または両面にライナを貼ったものであり、中しんとライナの間に吸湿性粒状体を含ませることもできる。
なお、本方法を実施する際に含水試料を囲むのに適した透湿性、吸湿性および耐熱性を有する多孔性材料は以下のようにして選択することができる。すなわち、植物の花、花弁等の含水試料、例えば生重量0.03〜0.05のパンジーの花弁一枚または生重量0.3g〜0.5gのデルフィニウムの花を候補材料で囲み、家庭用電子レンジ(例えば、出力500Wから600Wのもの)を用いてマイクロ波を照射した場合に、60秒〜240秒で水分減少率が100%になる材料であって、水分減少率が95%の時点では含水試料に変色が認められない材料である。ここで、一定時間のマイクロ波照射後の水分減少率は(乾燥前の試料の重量―一定時間マイクロ波を照射した時の試料の重量)/(乾燥前の試料の重量―完全乾燥完了時の試料の重量)×100(%)で表される。
このような透湿性、吸湿性および耐熱性を有する多孔性材料を用いて乾燥させようとする含水試料を囲み、マイクロ波を照射することにより含水試料を乾燥することができる。この際、透湿性、吸湿性および耐熱性を有する多孔性材料と含水試料の間には多孔質柔軟シートを介するのが望ましい。ここで多孔質柔軟シートとしては、クレープ紙、和紙、ティッシュペーパー、新聞紙、ろ紙等の薄くて柔軟な紙類が挙げられる。多孔質柔軟シートは、透湿性、吸湿性および耐熱性を有する多孔性材料でもあるが、布やダンボールを含まず、透湿性、吸湿性および耐熱性を有する多孔性材料と区別するために本明細書中では多孔質柔軟シートという語を用いている。本発明の実施態様によっては、透湿性、吸湿性および耐熱性を有する多孔性材料としてクレープ紙を複数枚重ねて用いることがあり、この場合はクレープ紙は、透湿性、吸湿性および耐熱性を有する多孔性材料でもあり、多孔質柔軟シートでもある。多孔質柔軟シートは一枚でもよいし、複数枚を重ねて用いてもよい。乾燥させようとする含水試料の周囲を多孔質柔軟シートで囲み、さらに前記透湿性、吸湿性および耐熱性を有する多孔性材料で囲みマイクロ波を照射する。この際多孔質柔軟シートは含水試料に部分的に、好ましくは含水試料の大部分を接触させる。ここで、大部分を接触させるとは含水試料の表面積の50%以上を多孔質柔軟シートに接触させることをいう。さらに、多孔質柔軟シートの外側に位置する透湿性、吸湿性および耐熱性を有する多孔性材料は多孔質柔軟シートに部分的に、好ましくは大部分を接触させる。ここで、大部分を接触させるとは多孔質柔軟シートの表面積の50%以上を多孔性材料に接触させることをいう。該多孔質柔軟シートは含水試料に接触し透湿性、吸湿性および耐熱性を有する多孔性材料がさらに多孔質柔軟シートに接触しているので、含水試料、多孔質柔軟シートおよび透湿性、吸湿性および耐熱性を有する多孔性材料を通る水分子の通路が形成される。含水試料から蒸発した水分は直ちに多孔質柔軟シートに吸収され、次いでその水分は前記透湿性、吸湿性および耐熱性を有する多孔性材料中に移動し、該材料の孔を通って外に放出される。多孔質柔軟シートは十分な柔軟性を有するため、ある程度複雑な形状を有している含水試料であっても、その試料と接触させるのは容易である。しかし、植物の花そのもの、植物体そのもののような高度に複雑な形状を有する含水試料の場合、含水試料の複雑な形状を有する部分と多孔質柔軟シートを接触させるのは容易ではない。この場合は、多孔質柔軟シートを適当な大きさに切断し、その断片を含水試料の複雑な形状部分に挟んだり、差し込んだり、結んだりして接触させればよい。断片の大きさ、形状は限定されず、乾燥させようとする含水試料の大きさ、形状により適宜決定すればよい。例えば、バラの花、タンポポの花のように花弁が重なりあっている場合、多孔質柔軟シートを切って花弁より大きい断片(例えば、短冊状)を作製し、その断片を花弁と花弁の間に差し込めばよい。このまわりをさらに多孔質柔軟シートで囲み、さらに透湿性、吸湿性および耐熱性を有する多孔性材料で囲むことにより、含水試料と多孔質柔軟シートとの間および多孔質柔軟シートと前記透湿性、吸湿性および耐熱性を有する多孔性材料との間に良好な接触を達成できる。より複雑な形状を有する植物体等を乾燥させようとする場合は、多孔質柔軟シートを糸状に切断したり、小さい断片に細切し、それらを植物体を囲むようにして用いて、このまわりを多孔質柔軟シートで囲めばよい。本明細書において、このように多孔質柔軟シートの断片を差し込んだり、挟んだりして含水試料と接触させる場合も、含水試料を多孔質柔軟シートで囲むという。
なお、透湿性、吸湿性および耐熱性を有する多孔性材料として繊維を用いる場合は、繊維を束ねて多孔質柔軟シートを覆うようにすればよい。また、多孔性材料として段ボール以外のものを用いる場合、多孔性材料をさらに段ボールで挟んで乾燥を行ってもよい。例えば、含水試料を多孔質柔軟シートで挟み、さらに透湿性、吸湿性および耐熱性を有する多孔性材料で覆い、それを段ボールの板で挟めばよい。このときの段ボールの枚数は限定されないが、合計数mm〜数cm程度、例えば2mm〜15mm程度の厚さになるようにする。
本発明の方法で用いる透湿性、吸湿性および耐熱性を有する多孔性材料および多孔質柔軟シートの面積は乾燥させようとする含水試料の大きさにより適宜設定すればよい。また、含水試料の上下をはさんで用いるか、または包んで用いるかによっても面積を適宜変更することができる。
本発明で用いるマイクロ波の発生装置としては、市販の家庭用電子レンジを用いればよい。工業的に大量の乾燥体を作成するには、大型のマイクロ波発生装置を用いることができる。この場合、ベルトコンベア等を用いて含水試料が連続的にマイクロ波発生装置内に移動し、一定時間マイクロ波が照射されるようにすることにより、より大量に含水試料の乾燥体を製造することができる。なお、本発明においてはマイクロ波発生装置と称しているが、これはマイクロ波加熱炉ともいい、本発明で含水試料にマイクロ波を照射するとは、マイクロ波を作用させて水分子を誘電加熱し(マイクロ波加熱)蒸発させることをいう。
マイクロ波の照射時間は、乾燥させようとする含水試料の体積、含水量等により、さらに含水試料が植物の場合、表面のクチクラ層の有無等により異なるが、約十秒から数百秒でよい。例えば、葉が厚くクチクラ層の発達しているアオキの葉を一枚乾燥させる場合、約60秒で十分乾燥させることができる。また、微生物の場合、例えばOD650が3になる程度の微生物の懸濁液数μから数十μLを多孔性の柔軟紙であるろ紙に含浸または、はさむようにのせた場合も約十秒から数百秒で、好ましくは30秒から60秒でよい。マイクロ波の照射時間が長すぎると、含水試料が変色することがあるので望ましくない。マイクロ波発生装置の出力により照射時間を適宜変えることにより、良好な乾燥体を得ることができる。あらかじめ、用いようとする含水試料をマイクロ波の照射時間を変えて乾燥させ、乾燥状態および変色の程度を調べて、適切な照射時間を設定することができるし、また短い時間マイクロ波を照射し乾燥状態および変色の程度を確認することを繰り返すことにより最適の乾燥状態を達成することもできる。本明細書における実施例においては、乾燥中の水分蒸発に伴う重量減少を測定し、重量が減少しなくなった時点、すなわち含水試料からの水分減少率が100%となった時点を完全乾燥の完了としている。しかし、用いる透湿性吸湿性材料によっては、完全乾燥時に含水試料に変色が認められることがある。本発明の方法により作製した含水試料の乾燥体は、乾燥剤の存在下、あるいは低湿度条件下で乾燥状態を保持して保存することが望ましく、わずかに残った水分は保存時に乾燥剤により吸湿される。従って、変色が認められる場合は、完全乾燥に達する前にマイクロ波の照射を止め、後は乾燥剤の存在下あるいは低湿度条件下で保存すればよい。また、本発明の含水試料の乾燥体を、食用、飲用等あるいは生物資源の保存等の目的で用いるのではなく、装飾用として用いる場合は、必ずしも高度な乾燥状態を保持させる必要はなく、多少の水分が含まれていてもほとんど問題とはならない。従って、この場合変色が生じない程度の照射時間で乾燥を停止し、以後そのまま大気条件下に保存しておいても、実用上は何ら問題なく少なくとも数ヶ月から数年の極めて長期にわたって、天然状態の色彩および芳香を保持しうる。マイクロ波照射の過程における含水試料の重量減少がなくなった場合を、水分減少率100%とした場合、一定時間のマイクロ波照射後の水分減少率は(乾燥前の試料の重量―一定時間マイクロ波を照射した時の試料の重量)/(乾燥前の試料の重量―完全乾燥完了時の試料の重量)×100(%)で表される。本発明の方法により作製される含水試料の乾燥体の水分減少率は、好ましくは95%、さらに好ましくは98%、特に好ましくは99%である。
尚、含水試料を囲む透湿性、吸湿性および耐熱性を有する多孔性材料を適宜選択することにより、含水試料が高温にさらされるのを防ぐことができる。例えば、多孔性材料としてフェルトまたはフリースを用いた場合、含水試料が過度の高温にさらされるのを防ぐことができる。これは、マイクロ波照射により分子運動が活発になり蒸発した水分子が、含水試料の周囲に留まることなく直ちに多孔性材料中に入りさらに該材料を透過していくためであると考えられる。この際、マイクロ波を照射した物質中の水分子は極めて高速で物質から放出される。この高速で運動する水分子と、多孔性材料の「煙突効果」があいまって、含水試料の温度を上昇させずに水分子を分離することが可能になるのである。マイクロ波は物質中の水分子の運動エネルギーを上昇させ、水分子同士の摩擦によりその物質を加熱するので、運動エネルギーが上昇した水分子が物質から直ちに分離されれば、その物質の温度上昇は抑えられる。すなわち、本発明の方法は、低温での乾燥を達成しうる。本発明の方法の温度上昇を抑える最適条件で乾燥を行った場合に、含水試料がさらされる温度は100℃未満、好ましくは90℃未満、さらに好ましくは80℃未満、特に好ましくは70℃未満、最も好ましくは60℃未満である。含水試料周囲の温度は、例えばマイクロ波の照射後直ぐに含水試料およびそれを囲む透湿性、吸湿性および耐熱性を有する多孔性材料を取り出し、含水試料の近くに、温度計、熱電対等の温度センサーを置くことにより測定することができる。この方法により測定される温度は、実際にマイクロ波を照射している時の含水試料がさらされる正確な温度ではないが、実際に生試料がさらされる温度の目安となる。本発明の方法の温度上昇を抑える最適条件で乾燥を行った場合の前記温度測定方法で測定した含水試料近辺の温度は、100℃未満、好ましくは90℃未満、さらに好ましくは80℃未満、特に好ましくは70℃未満、最も好ましくは60℃未満である。
用いる透湿性、吸湿性および耐熱性を有する多孔性材料の種類によりある程度乾燥中に含水試料がさらされる温度をコントロールできる。含水試料によっては、もともと水分含量が多かったり、表面に水分蒸発を妨げる層が存在し、乾燥させにくいものがある。このような含水試料を乾燥させる場合は、ある程度高温条件下で行った方がよい場合がある。前記多孔性材料の種類を適宜選択することにより、乾燥時の温度を変えることができる。例えば、前記多孔性材料として、フリースやフェルトを用いた場合は比較的低温での乾燥が達成でき、段ボールやクレープ紙を用いた場合は、比較的高温で乾燥させることができる。
なお、含水試料を乾燥させる前に、乾燥に用いる前記透湿性、吸湿性および耐熱性を有する多孔性材料および/または前記多孔質柔軟シートはあらかじめマイクロ波を照射しておくのが望ましい。あらかじめマイクロ波を照射しておくことにより、前記透湿性、吸湿性および耐熱性を有する多孔性材料および/または前記多孔質柔軟シートがある程度加熱され以降の乾燥が迅速かつ効率的に行われる。この加熱を予備加熱といい、用いる前記透湿性、吸湿性および耐熱性を有する多孔性材料および多孔質柔軟シートの種類にもよるが、60秒から90秒行うことが望ましい。
さらに、含水試料へのマイクロ波の照射終了後、乾燥させた含水試料は直ぐにマイクロ波発生装置から取り出さずに、そのままの状態で一定時間放置しておき、放冷または余熱乾燥させるのが望ましい。加熱された含水試料、前記透湿性、吸湿性および耐熱性を有する多孔性材料および/または前記多孔質柔軟シートをマイクロ波発生装置中で放置することにより、保持されている熱により含水試料にわずかに残っている水分がさらに蒸発し、良好な乾燥体が得られる。予熱乾燥の時間は、5〜10分である。
図2に本発明の乾燥法の推定される原理を示す。図2中、斜め線の入ったブロックは透湿性、吸湿性および耐熱性を有する多孔性材料を表し、円は水分子を表し、矢印は水分子の動きを表す。マイクロ波照射により含水試料中の水分子の運動が活発になり、含水試料から高速で放出される。放出された水分子は含水試料を囲む透湿性の多孔性材料中の孔を高速を保ったまま次々に透過し水分子の流れが新たに含水試料から放出された水分子を多孔性材料の孔中に導き水分子は次々に外に放出される(煙突効果)。一旦、外にでた水分子はマイクロ波照射終了後運動エネルギーが減少し、吸湿性の多孔性材料に吸収されそこに留まる。あるいは、含水試料から蒸発した水分子の一部は多孔性材料の孔を通るときに多孔性材料に吸収されそこに留まる。多孔性材料に一旦吸収保持された水分子が含水試料に再び吸収されることはない。
以上のように、本発明は含水試料の外表面を透湿性、吸湿性および耐熱性を有する多孔性材料で囲み、マイクロ波発生装置に入れマイクロ波を照射することを含む含水試料の迅速乾燥法であり、また本発明は、含水試料の外表面を吸湿性の多孔質柔軟シートで囲みさらに該シートの周囲を透湿性、吸湿性および耐熱性を有する多孔性材料で囲み、マイクロ波発生装置に入れマイクロ波を照射することを含む含水試料の迅速乾燥法である。さらに本発明は、含水試料の上下を、1から数枚の多孔質柔軟シートではさみ、さらにその上下を1から数枚の多孔性材料ではさみ、マイクロ波発生装置に入れマイクロ波を照射することを含む含水試料の迅速乾燥法である。
本発明は、さらに前記の乾燥方法で得られた含水試料の乾燥体をも含む。該乾燥体は、含水試料の有する組織や細胞が破壊されていないため、栄養成分、色素や芳香物質が乾燥体内部に残り長期にわたって、天然状態での色彩および/または芳香が保持される。例えば、植物の赤から青系色の色素であるアントシアンは不安定であり、植物体を圧縮して乾燥させる重石押し花法等の乾燥法ではアントシアンを含む植物の色彩を保持することは困難であった。しかし、本発明の方法はアントシアンを含む植物でもその色彩を長期にわたって保持し得る。また、植物に含まれるフェノール色素は放置しておくと黒変することが報告されており、乾燥時に過度の加熱によっても黒変すると考えられる。本発明の乾燥法によれば、植物が過度の高温にさらされることなく乾燥できるので、熱によるフェノール色素の黒変を抑えられる。本発明の乾燥体の組織や細胞が破壊されず残っているかどうかは、顕微鏡で観察すればよく、例えば、乾燥体に色素が残存しているかどうか、細胞中の液胞が残っているかどうかで評価することができる。また、乾燥体から栄養成分、色素や酵素を抽出し、その活性が保持されているかどうかを測定することによっても評価することができる。植物の色素としては、前述のアントシアンの他、クロロフィル、カロテノイド、フェノール色素、ベタレイン等がある。植物の芳香成分としてテルペン類、チモール、カルバクロール、シメン、ピネン、リナロール、1,8−シオネール(ユーカリプトール)等がある。また、栄養成分としてアスコルビン酸等のビタミン等がある。本発明の乾燥法では、これらを含む植物の栄養成分、色素および芳香成分が部分的に、好ましくは大部分が保持されている。これらの栄養成分、色素および/または芳香成分が保持されていることの確認は、視覚により天然状態の色とほぼ同じであること、または嗅覚により天然状態の芳香が残っていることを確認することにより行うことができる。また、公知の化学的手法、物理学的手法、または生化学的手法により色素成分および/または芳香成分を測定することによっても、色素成分および/または芳香成分が保持されていることを確認することが可能である。公知の手法により本発明の方法により得られる乾燥体の栄養成分、色素成分および/または芳香成分を測定した場合、本発明の方法により得られる乾燥体は、天然状態の栄養成分、色素成分および/または芳香成分の少なくとも10%、好ましくは25%、さらに好ましくは50%、さらに好ましくは75%、さらに好ましくは90%、特に好ましくは95%以上が残っている。従って、本発明の方法により得られる乾燥体は、組織、細胞が破壊されておらず、細胞中の液胞が残っており、天然状態で存在していた栄養成分、色素および/または芳香成分が部分的に残っているか、または大部分が残っている生試料の乾燥体である。さらに、本発明の方法により得られる乾燥体は天然状態で保持していた酵素等のタンパク質や核酸の一部またはほとんどが天然状態の構造や活性を保ったまま保持される。このため、乾燥体が微生物の場合、天然状態の栄養成分、色素成分および/または芳香成分が保持されるだけでなく、生物学的活性を有する酵素等の物質も保持されるため、乾燥過程で死滅することがなく乾燥体として保存することができる。なお、この場合、乾燥微生物のすべてが生存している必要はなく、乾燥微生物集団を一定期間乾燥後、微生物の培養用培地に入れたときに、増殖を開始するだけの数の微生物が生存していればよい。例えば、乾燥微生物の数の0.01%以上、好ましくは0.1%以上、さらに好ましくは1%以上、さらに好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは40%以上、さらに好ましくは50%以上、さらに好ましくは60%以上、さらに好ましくは70%以上、さらに好ましくは80%以上、さらに好ましくは90%以上の数が生存していればよい。本発明の方法で乾燥させた微生物は、4℃で5日間以上、好ましくは10日間以上、さらに好ましくは1ヶ月以上、さらに好ましくは3ヶ月以上、さらに好ましくは6ヶ月以上、さらに好ましくは1年以上、さらに好ましくは2年以上、さらに好ましくは3年以上、さらに好ましくは5年以上、さらに好ましくは10年以上、さらに好ましくは20年以上生存しており、これらの期間保存した後に微生物の培養用培地に入れたときに、増殖を開始し得る。
さらに、昆虫等を本発明の方法で乾燥させた場合、乾燥体は天然状態の色を保持した昆虫標本として利用することができる。さらに、本発明の方法で乾燥させた昆虫、甲殻類などの節足動物の卵、魚類の卵を水に入れたり、湿度の高い条件下におくことにより、孵化させることもできる。
本発明の方法により得られた乾燥体は、そのまま大気中で保存してもよく、この場合であっても長期にわたって天然状態の栄養成分、色彩および/または芳香が保持される。また、食品や飲料等の分野で用いる場合のように高度な乾燥状態を保持しておく必要がある場合は、乾燥剤等と一緒に密閉状態で保存しておけばよいし、湿度をコントロール可能な容器または部屋で低湿度状態で保存しておいてもよい。
本発明の方法により得られた乾燥体は、天然状態の栄養成分、色彩および/または芳香を保持しているので、装飾品または芳香付装飾品として利用することができる。また、芳香剤として利用することができる。さらに、茶等を乾燥させれば、乾燥茶として利用することができる。さらにまた、植物標本等の科学標本として用いることもできる。特に、本発明の方法で用いる透湿性、吸湿性および耐熱性を有する多孔性材料の種類ならびにマイクロ波照射時間をコントロールすることにより含水試料がさらされる温度が過度に高くなるのを防止でき、酵素等のタンパク質の一部またはほとんどが変性せずに保持される可能性がある。従って、本発明で乾燥させた乾燥体を含水試料と同等の生物学的実験材料として用いることも可能である。例えば、本発明の乾燥体から変性していないタンパク質、核酸等を抽出することが可能である。乾燥体のタンパク質および/または核酸が残っていることは、公知の化学的手法、物理学的手法または生化学的手法により確認することができる。例えば、乾燥させようとする生試料が天然状態で有する特定のタンパク質を定量してもよいし、天然状態で有する特定の酵素の活性を測定してもよい。本発明の方法により得られる乾燥体は、天然状態で有している任意のタンパク質の少なくとも10%、好ましくは25%、さらに好ましくは50%、さらに好ましくは75%、さらに好ましくは90%、特に好ましくは95%以上が残っている。また、本発明の方法により得られる乾燥体は、天然状態で有している任意の酵素の酵素活性の少なくとも10%、好ましくは25%、さらに好ましくは50%、さらに好ましくは75%、さらに好ましくは90%、特に好ましくは95%以上が残っている。従って、本発明の方法により得られる乾燥体は、天然状態のタンパク質および/または核酸が部分的に残っているか、または大部分が残っている乾燥体である。
また、本発明の方法で乾燥させた微生物は一定期間の保存後も生存しているので、微生物を低コストで簡便に乾燥保存できる。
さらに、本発明は含水試料乾燥キットをも包含する。該キットは、少なくとも透湿性、吸湿性および耐熱性を有する多孔性材料を含み、さらに多孔質柔軟シートを含んでいてもよい。ここで、透湿性、吸湿性および耐熱性を有する多孔性材料ならびに多孔質柔軟シートの定義は前記のとおりである。特に、本発明の含水試料乾燥キットは家庭で簡単に天然状態の栄養成分、色彩および/または芳香を長期間にわたって保持し得る押し花やドライフラワーを作製することを目的としている。前述のように、用いる透湿性、吸湿性および耐熱性を有する多孔性材料の種類により、含水試料がさらされる温度が異なるので、含水試料の種類により乾燥時の温度を変えられるように、キット中に種類の異なる複数の透湿性、吸湿性および耐熱性を有する多孔性材料を含んでいてもよい。例えば、低温乾燥用多孔性材料としてフェルトまたはフリース、高温乾燥用多孔性材料として段ボールまたはクレープ紙があげられるので、本発明のキットがフェルトまたはフリースならびに段ボールまたはクレープ紙を含んでいれば、高温乾燥も低温乾燥も行うことができる。すなわち、本発明のキットは、低温乾燥および高温乾燥の両方を適宜選択できるキットも含む。押し花作製キットの場合、そのキットには板状の透湿性、吸湿性および耐熱性を有する多孔性材料、多孔質柔軟シートならびに含水試料の細胞および組織を破壊しない程度の圧力をかけるおもり等の手段を含む。おもりとしては、例えば段ボールを用いることができる。多孔性材料および多孔質柔軟シートの面積は乾燥させようとする対象の大きさによって異なるが、例えば、5〜30cm×5〜30cmの大きさの矩形のものを数枚ずつ含んでいればよいし、大き目のものを含ませ適宜それを折り畳んだり、切って用いるようにしてもよい。さらに、本発明のキットは、段ボール等の厚手の紙、耐熱性樹脂等の耐熱性材料ででき、マイクロ波を透過させ得る容器を含んでいてもよい。容器を含むことにより乾燥に用いる材料一式を容易に持ち運ぶことができるし、また一般家庭では通常は料理に用いている電子レンジをマイクロ波発生装置として用いるので、悪臭を発する含水試料等含水試料によっては電子レンジの床や壁に付着するのが望ましくない場合があり、この場合は容器に入れた状態で電子レンジに入れ乾燥を行えばよい。
本明細書は本願の優先権の基礎である日本国特許出願2001−306868号の明細書および/または図面に記載される内容を包含する。The present invention provides a method for drying cells and tissues of a natural water-containing sample and useful components contained in the sample without destroying them, for example, while maintaining the color and / or aroma of the natural water-containing sample. An object of the present invention is to provide a method for drying a water-containing sample quickly, efficiently and at low cost. Furthermore, the present invention provides a dry body in which cells and tissues of a water-containing sample and useful components contained therein are retained without being destroyed, for example, a dry body that retains the color and / or aroma of a water-containing sample in a natural state. Objective.
The present inventors have intensively studied to improve the rapid drying method of the water-containing sample developed earlier and to develop a drying method that can be performed easily and quickly at a lower cost. In the process, as a result of examining the drying mechanism of the rapid drying method of the moisture sample developed earlier, hygroscopic particles such as silica gel not only absorb the moisture evaporated from the moisture sample by microwave irradiation, It has been found that the evaporated water has a “chimney effect” in which it passes through the gap between the hygroscopic granules surrounding the water-containing sample and is released to the outside of the hygroscopic granules. Since the water molecules evaporated and released to the outside lose their motility and become difficult to be absorbed by the water-containing sample again during the cooling process after heating, rapid and complete drying of the water-containing sample can be achieved. However, in terms of exhibiting this “chimney effect”, hygroscopic granules such as silica gel may not release the water once evaporated completely, but may hold the vapor in the gap. There was a possibility that the water in the gap returned to the water-containing sample again during cooling. Therefore, the present inventors use a material that releases moisture evaporated from the water-containing sample to the outside in place of the hygroscopic granules and prevents the released water from being absorbed again into the water-containing sample. Therefore, it was considered that quick drying of a water-containing sample could be achieved more easily, and intensive studies were conducted on materials and drying methods. As a result, if the material has a certain moisture permeability, water molecules evaporated from the water-containing sample can be permeated and released without staying around the water-containing sample. If the material has a certain moisture-absorbing property, it is once permeated and released. It has been found that when a water molecule loses mobility, the water-containing sample that has been trapped in the water and dried can be prevented from reabsorbing moisture, and the present invention has been completed.
That is, the present invention
(1) A method for quickly drying a water-containing sample, comprising surrounding the outer surface of the water-containing sample with a porous material having moisture permeability, hygroscopicity, and heat resistance, placing the sample in a microwave generator, and irradiating the microwave.
(2) The outer surface of the water-containing sample is surrounded by a hygroscopic porous flexible sheet, and the periphery of the sheet is surrounded by a porous material having moisture permeability, hygroscopicity, and heat resistance, and is placed in a microwave generator and irradiated with microwaves. Quick drying method for water-containing samples, including
(3) The moisture-absorbing porous flexible sheet and the porous material having moisture permeability, hygroscopicity, and heat resistance are preliminarily heated by microwave irradiation in advance (1) or (2) the rapid drying method of the water-containing sample ,
(4) The rapid drying method of the water-containing sample according to any one of (1) to (3), wherein the water-containing sample is dried by irradiating the microwave in the microwave generator and then dried.
(5) The rapid drying method of a water-containing sample according to (4), wherein preheat drying is performed in a microwave generator,
(6) The rapid drying method for the water-containing sample according to any one of (1) to (3), wherein the porous material having moisture permeability and hygroscopicity is corrugated cardboard.
(7) The rapid drying method of the water-containing sample of (6), wherein the corrugated cardboard contains hygroscopic granules,
(8) The rapid drying method of the water-containing sample according to (1) to (3), wherein the ambient temperature of the water-containing sample immediately after microwave irradiation is less than 60 ° C.
(9) The rapid drying method of a water-containing sample according to (8), wherein the porous material having moisture permeability and hygroscopicity is felt or fleece,
(10) The rapid drying method of the water-containing sample according to any one of (1) to (9), wherein the microwave irradiation is performed until the water reduction rate in the water-containing sample reaches 95% or more.
(11) The rapid drying method of the water-containing sample according to (10), wherein the water-containing sample is a raw sample,
(12) The rapid drying method of the water-containing sample according to (11), wherein the raw sample is a plant body or a part thereof,
(13) The rapid drying method of a water-containing sample according to (11), wherein the raw sample is a microorganism and the dried microorganism is alive.
(14) Surround one petal of a plant with a candidate porous material, irradiate it with microwaves, measure the moisture reduction rate of the water-containing sample and the temperature in the vicinity of the water-containing sample at regular intervals, and reduce the water in 60 to 240 seconds Moisture permeability, hygroscopicity, and heat resistance suitable for the rapid drying method of a water-containing sample of (1), wherein a material whose rate is 100% and the temperature does not rise above 60 ° C. is selected as a material suitable for use in drying. A method for selecting a porous material having
(15) A rapid drying kit for a water-containing sample including a porous material having moisture permeability, hygroscopicity and heat resistance selected by the method of (14), and a porous flexible sheet,
(16) The rapid drying kit for a water-containing sample according to (14), wherein the porous material having moisture permeability and hygroscopicity is felt or fleece.
(17) A dried body of a water-containing sample in which cells and tissues produced by the method of (13) are not destroyed,
(18) A dried product of a water-containing sample, which retains the natural color and / or fragrance produced by the method of (13), and
(19) The dried body of the water-containing sample according to (17) or (18), wherein the dried body of the water-containing sample is a microorganism that can grow when cultured.
Hereinafter, the present invention will be described in detail.
The present invention is a rapid drying method for a water-containing sample comprising enclosing the outer surface of the water-containing sample with a porous material having moisture permeability and hygroscopicity and irradiating with microwaves.
The water-containing sample that can be dried in the present invention includes the whole plant and parts of plants such as flowers, leaves, stems, fruits and roots, arthropods such as insects and crustaceans, and arthropods such as insects and crustaceans. Live samples containing eggs, fish eggs, animal bodies such as animal flesh, skin and parts thereof, and microorganisms such as nematodes, protozoa, bacteria such as Escherichia coli and Bacillus subtilis, yeasts, algae, insect cells and animal cells , Hydrous mineral samples such as rocks, mud and sand. The use of the sample to be dried is not limited, and edible plants, edible animals, ornamental plants, plants / microorganisms for collecting useful components, microorganisms for research, cells and tissues, and contained useful components should be retained without being destroyed. It can be applied to any use as long as the sample is desirable. Of these, plants and their parts and microorganisms are particularly preferred. Further, the dried product dried by the method of the present invention retains not only the color in the natural state but also the aroma, so it is suitable for drying tea leaves, herbs and the like. Further, since the drying method of the present invention does not need to forcefully release moisture in the water-containing sample by compressing unlike the pressed flower method, it can be dried while maintaining the three-dimensional structure of the natural water-containing sample. . Therefore, a plant body having a complicated shape and a fragile plant body can be dried while maintaining the three-dimensional shape. In this respect, the method of the present invention is also suitable for the production of dried flowers. Moreover, the animal body dried by the method of the present invention and its cells and tissues are retained without being destroyed, and useful components contained in the sample before drying are also retained without being destroyed. Therefore, the animal body and the dried body thereof retain the color and flavor before drying. Furthermore, the microorganisms dried by the method of the present invention are retained without destroying the tissue, and useful components contained in the sample before drying are also retained without being destroyed. Therefore, the microorganism retains its biological activity, can be dried while alive, and can be grown by culture or the like after storage.
The present invention is a method of drying a water-containing sample by surrounding the water-containing sample with a porous material having moisture permeability, hygroscopicity, and heat resistance and irradiating with microwaves.
Here, surrounding the water-containing sample means that the entire periphery or almost the entire periphery of the water-containing sample is covered with a porous material having moisture permeability, hygroscopicity, and heat resistance. Preferably it is necessary for the majority to be in contact with the porous material. This is because water molecules evaporated from the water-containing sample are immediately absorbed into the porous material by contacting the water-containing sample with a porous material having moisture permeability, hygroscopicity, and heat resistance. Further, as described later, a porous flexible sheet may exist between the water-containing sample and the porous material. In order to surround the water-containing sample with the porous material, the water-containing sample may be wrapped when the porous material is rich in flexibility, and the water-containing sample may be inserted when the porous material lacks flexibility. When enclosing a hydrous sample, pressure may be applied to keep the petals and leaves of the plant flat, but the present invention aims to produce a dry body in which the pigment and / or aroma of the natural hydrous sample is retained. Therefore, the pressure of the strength that destroys the tissues and cells of the water-containing sample should not be applied. The pressure to keep the petals and leaves of the plant flat can be applied by pressing it with a weight. The moisture permeability of a material refers to a property that allows the water molecules evaporated from the material to permeate, and is also referred to as moisture permeability. The hygroscopic property of a material refers to the property that the material can retain water molecules that have lost mobility, and is also referred to as water absorption. If it has moisture permeability, moisture evaporated from the water-containing sample by microwave irradiation is easily transmitted, released from the moisture-permeable material surrounding the water-containing sample, and separated from the water-containing sample. Moreover, when water molecules that have evaporated and have heat are separated, heat hardly accumulates in the vicinity of the water-containing sample, and an increase in temperature in the vicinity of the water-containing sample can be suppressed. The moisture permeability (moisture permeability) can be measured by measuring the amount of water vapor (g) that permeates the moisture permeable material having a certain area under a certain condition for a certain time. The moisture permeability can be measured, for example, according to any of the A-1 method, the A-2 method, the A-3 method, or the A-4 method of the moisture permeability test method (JIS L 1099-1993) of JIS textiles. For example, in the A-1 method, a moisture-absorbing agent such as calcium chloride is put in a moisture permeable cup, the opening of the cup is covered with a material under test of a certain area, placed under a high humidity condition for a certain time, and the weight of the non-test material is The measurement is carried out by measuring the weight of the material to be tested again after a certain period of time. In the test method, moisture permeability (P A1 ) Is the expression {10 × (a 2 -A 1 )} / S A1 It is represented by Where a 2 -A 1 Indicates the amount of change (mg / h) in mass per hour of the material under test, S A1 Is the moisture permeable area (cm 2 ). P A1 The unit of g / m 2 . h. The moisture permeability of the material that can be used in the present invention is substantially the same as that of wool felt (for example, Nippon Felt Kogyo Co., Ltd., product number 227). It means ± 30%, preferably ± 20%, more preferably ± 10%, particularly preferably ± 5% with respect to the felt made. Furthermore, if it has hygroscopicity (water absorption), it absorbs and retains some of the water molecules that have evaporated and passed through the pores and water molecules that have lost their mobility during the cooling process after microwave irradiation. And water molecules can be prevented from being absorbed again into the water-containing sample. Water absorption can be performed, for example, according to a water absorption test method (JIS L 1907-1994) for JIS textiles. The test method includes a dropping method for measuring the water absorption rate, a bilek method, a sedimentation method, a method for measuring the water absorption rate, a method for measuring the maximum water absorption rate and the water absorption amount at the time of the maximum water absorption rate, You can test by the method. For example, the water absorption speed is determined by attaching a material to be tested of a certain size to the test piece holding frame, dropping water or sugar water from the burette onto the test material, and when the water droplet reaches the surface of the material, This is done by measuring the time until no more reflection occurs. The water absorption of the material that can be used in the present invention is substantially equivalent to wool felt (for example, Nippon Felt Kogyo Co., Ltd., product number 227), and is substantially equivalent to the value of moisture permeability in the above test method, It means ± 30%, preferably ± 20%, more preferably ± 10%, particularly preferably ± 5% based on wool felt. The heat resistance refers to a characteristic that is not easily affected by heat. In the present invention, it refers to a characteristic that does not melt, burn, or burn even when irradiated with microwaves. That is, having heat resistance in the present invention means resistance to microwave irradiation. For example, when it is directly irradiated with microwaves, it has heat resistance if it does not melt, burn or burn for 2 minutes, preferably 3 minutes, more preferably 5 minutes, more preferably 10 minutes. Further, when the water-containing sample is actually dried by the method of the present invention, water in the water-containing sample is evaporated by microwaves and generates heat. The material used in the present invention only needs to have heat resistance that does not cause alteration due to heat generation even when irradiated with microwaves for the time of microwave irradiation for drying by the method of the present invention. For example, when it is dried by the method of the present invention, it is a material that does not deteriorate even when irradiated with microwaves for the time required for drying the water-containing sample.For example, when microwaves are irradiated to dry the water-containing sample, It is said to have heat resistance if it does not melt, burn, or burn for 2 minutes, preferably 3 minutes, more preferably 5 minutes, more preferably 10 minutes. The porous material refers to a material having a large number of holes communicating from the front side to the back side of the material, and has moisture permeability, hygroscopicity, and heat resistance due to the presence of the holes. The size of the pore is not limited, but it is at least a size that allows water molecules to easily pass therethrough. FIG. 1 shows a schematic representation of the method of the present invention.
Furthermore, it is preferable that the material has flexibility and a small weight per unit volume or unit area so as not to break or deform the water-containing sample.
For example, as a porous material having moisture permeability, hygroscopicity, and heat resistance surrounding the water-containing sample of the present invention, a fibrous porous material can be mentioned. The fibrous porous material includes cloth and paper, and fibers themselves that are not molded as cloth may be used. Specifically, natural fibers such as wool (wool and cashmere, Angola, mohair, alpaca, camel, etc.), silk, cotton, hemp, etc., polyester, polystyrene, polyethylene terephthalate (PET), cupra, polypropylene , Nylon, rayon, acetate, vinylon, polyvinyl chloride, vinylden, acrylic, aramid, polyethylene, polyurethane, promix, polyclar, polyimide, alginate fiber, carbon fiber, ceramic fiber, etc. or any of these Examples thereof include cloth made of fibers and the like and these fibers themselves. Furthermore, felt, fleece, flannel (flannel), velour, woven felt such as a blanket with a felt surface made of felt, billiard cloth, nonwoven fabric or woven fabric such as a quilt core or domit core, and the like can be mentioned. Here, the felt is a fabric made by entwining fibers, a traditional felt made of wool, a synthetic felt such as a felt made of short fibers crimped to any kind of material, or a polyester. There is a felt made of fiber. A fleece is a cloth in which fibers are woven and densified, and its material is wool, polyester, or the like. Nell refers to a woven fabric using thick count yarn and raised on both sides or one side of a plain weave or twill weave, and velor refers to a fabric in which the fabric surface is fluffed and fluffed. Glass wool or quartz wool made of glass or quartz fiber is also used, and these materials are also hygroscopic because they can permeate water vapor and retain moisture in the pores, and are included in the fibrous porous material of the present invention. . Paper is required to have a certain thickness from the viewpoint of hygroscopicity, and in the case of thin paper, it may be used repeatedly. Although the total thickness is not limited, it is several mm to several cm, preferably 1 to 2 cm. Examples of paper include cardboard, crepe paper, filter paper, and the like. Here, the crepe paper refers to paper with wrinkle-like wrinkles, and may be either a wet crepe that wrinkles wet paper in the paper making process or a dry crepe that processes dry paper. Examples of crepe paper include paper towels and paper napkins. Corrugated cardboard also needs a certain thickness from the viewpoint of hygroscopicity. Although the required thickness varies depending on the type of corrugated cardboard, it is several mm to several cm, preferably 1 to 2 cm. In the case of thin corrugated cardboard, several sheets may be used in the same manner as paper. The cloth may be woven, non-woven or knit, and may be a natural cloth or a synthetic cloth. Moreover, a certain amount of thickness is required from the viewpoint of hygroscopicity, and the thickness is several mm to several cm, preferably 5 mm to 2 cm, and more preferably 5 mm to 1 cm. In the case of a thin cloth, it may be used in layers. When the cardboard is used, the cardboard may contain a hygroscopic granular material such as silica gel. Corrugated cardboard is obtained by pasting a liner on one or both sides of a corrugated medium core, and a hygroscopic granular material can be included between the central core and the liner.
Note that a porous material having moisture permeability, hygroscopicity, and heat resistance suitable for enclosing the water-containing sample when the present method is carried out can be selected as follows. That is, a water sample such as a flower or petal of a plant, for example, a petal of a pansy with a raw weight of 0.03 to 0.05 or a delphinium flower with a raw weight of 0.3 to 0.5 g is surrounded by a candidate material, When a microwave is irradiated using a microwave oven (for example, one having an output of 500 W to 600 W), the moisture reduction rate is 100% in 60 seconds to 240 seconds, and the moisture reduction rate is 95%. Is a material that does not show discoloration in water-containing samples. Here, the moisture reduction rate after microwave irradiation for a certain time is (weight of sample before drying−weight of sample when microwave irradiation is performed for a certain time) / (weight of sample before drying−weight of complete drying) (Weight of sample) × 100 (%).
It is possible to dry the water-containing sample by surrounding the water-containing sample to be dried using such a porous material having moisture permeability, hygroscopicity, and heat resistance and irradiating it with microwaves. At this time, it is desirable that a porous flexible sheet is interposed between the porous material having moisture permeability, hygroscopicity and heat resistance and the water-containing sample. Here, examples of the porous flexible sheet include thin and flexible papers such as crepe paper, Japanese paper, tissue paper, newspaper, and filter paper. The porous flexible sheet is also a porous material having moisture permeability, moisture absorption and heat resistance, but does not include cloth or cardboard, and is used in this specification to distinguish it from a porous material having moisture permeability, moisture absorption and heat resistance. In the book, the term porous flexible sheet is used. Depending on the embodiment of the present invention, a plurality of crepe papers may be used as a porous material having moisture permeability, moisture absorption, and heat resistance. In this case, the crepe paper has moisture permeability, moisture absorption, and heat resistance. It is also a porous material having a porous flexible sheet. One porous flexible sheet may be used, or a plurality of porous flexible sheets may be used. The water-containing sample to be dried is surrounded by a porous flexible sheet, and further surrounded by the porous material having moisture permeability, hygroscopicity and heat resistance, and irradiated with microwaves. At this time, the porous flexible sheet is partially brought into contact with the water-containing sample, preferably most of the water-containing sample. Here, contacting the majority means bringing 50% or more of the surface area of the water-containing sample into contact with the porous flexible sheet. Furthermore, the porous material having moisture permeability, hygroscopicity, and heat resistance located outside the porous flexible sheet is brought into contact with the porous flexible sheet partially, preferably most. Here, contacting the majority means contacting 50% or more of the surface area of the porous flexible sheet with the porous material. Since the porous flexible sheet is in contact with the water-containing sample and the porous material having moisture permeability, hygroscopicity and heat resistance is further in contact with the porous flexible sheet, the water-containing sample, the porous flexible sheet and the moisture-permeable, hygroscopic property And a passage of water molecules through the porous material having heat resistance is formed. Moisture evaporated from the water-containing sample is immediately absorbed by the porous flexible sheet, and then the moisture moves into the porous material having moisture permeability, hygroscopicity and heat resistance, and is released outside through the pores of the material. The Since the porous flexible sheet has sufficient flexibility, even a water-containing sample having a somewhat complicated shape can be easily brought into contact with the sample. However, in the case of a water-containing sample having a highly complex shape such as a plant flower itself or a plant body itself, it is not easy to bring the porous flexible sheet into contact with a part having a complicated shape of the water-containing sample. In this case, the porous flexible sheet may be cut into an appropriate size, and the fragments may be sandwiched, inserted, or tied into contact with the complicated shape portion of the water-containing sample. The size and shape of the fragment are not limited, and may be appropriately determined depending on the size and shape of the water-containing sample to be dried. For example, when petals overlap like rose flowers and dandelion flowers, cut a porous flexible sheet to make a fragment larger than the petal (for example, strip shape), and place the fragment between the petal and petal Just plug it in. The surroundings are further surrounded by a porous flexible sheet, and further surrounded by a porous material having moisture permeability, hygroscopicity and heat resistance, so that between the water-containing sample and the porous flexible sheet and between the porous flexible sheet and the moisture permeability, Good contact can be achieved with a porous material having hygroscopicity and heat resistance. When trying to dry a plant having a more complicated shape, etc., the porous flexible sheet is cut into threads or cut into small pieces, and they are used so as to surround the plant. Enclose with a quality flexible sheet. In the present specification, even when a piece of a porous flexible sheet is inserted or pinched in this manner and brought into contact with the water-containing sample, the water-containing sample is referred to as being surrounded by the porous flexible sheet.
In addition, what is necessary is just to bundle a fiber and to cover a porous flexible sheet, when using a fiber as a porous material which has moisture permeability, moisture absorption, and heat resistance. When a material other than corrugated cardboard is used as the porous material, the porous material may be further sandwiched by corrugated cardboard and dried. For example, a water-containing sample may be sandwiched between porous flexible sheets, further covered with a porous material having moisture permeability, hygroscopicity, and heat resistance, and then sandwiched between corrugated cardboard plates. The number of cardboards at this time is not limited, but the total thickness is about several mm to several cm, for example, about 2 mm to 15 mm.
The area of the porous material and porous flexible sheet having moisture permeability, hygroscopicity, and heat resistance used in the method of the present invention may be appropriately set depending on the size of the water-containing sample to be dried. Further, the area can be appropriately changed depending on whether the hydrated sample is used between the upper and lower sides or wrapped.
As the microwave generator used in the present invention, a commercially available household microwave oven may be used. A large-scale microwave generator can be used for industrially producing a large amount of a dried product. In this case, the dried sample of the hydrated sample is produced in a larger amount by moving the hydrated sample continuously into the microwave generator using a belt conveyor or the like and irradiating the microwave for a certain period of time. Can do. In the present invention, it is referred to as a microwave generator, which is also called a microwave heating furnace. In the present invention, when a water-containing sample is irradiated with microwaves, the microwaves are applied to dielectrically heat water molecules. (Microwave heating) Evaporation.
The microwave irradiation time varies depending on the volume of the water-containing sample to be dried, the water content, etc., and when the water-containing sample is a plant, it varies depending on the presence or absence of the surface cuticle layer, but may be about 10 to several hundred seconds. . For example, when a single Aoki leaf having a thick leaf and a cuticle layer is dried, the leaf can be sufficiently dried in about 60 seconds. In the case of microorganisms, for example, OD 650 In the case where a microscopic suspension of several micron to several tens of microliter of about 3 is impregnated or sandwiched in a filter paper which is a porous flexible paper, it takes about 10 seconds to several hundred seconds, preferably 30 seconds. 60 seconds may be sufficient. If the microwave irradiation time is too long, the water-containing sample may be discolored, which is not desirable. By appropriately changing the irradiation time according to the output of the microwave generator, a good dry body can be obtained. The moisture-containing sample to be used can be dried in advance by changing the microwave irradiation time, the dry state and the degree of discoloration can be investigated, and an appropriate irradiation time can be set, or a microwave can be irradiated for a short time. It is also possible to achieve an optimal dry state by repeatedly checking the dry state and the degree of discoloration. In the examples in this specification, the weight loss due to water evaporation during drying is measured, and when the weight does not decrease, that is, when the moisture reduction rate from the water-containing sample reaches 100%, the complete drying is completed. It is said. However, depending on the moisture-permeable and hygroscopic material used, the water-containing sample may be discolored when completely dried. Desirably, the dried body of the water-containing sample prepared by the method of the present invention is stored in a dry state in the presence of a desiccant or under low-humidity conditions. Is done. Therefore, when discoloration is observed, the microwave irradiation is stopped before reaching the complete drying, and after that, it may be stored in the presence of a desiccant or under low humidity conditions. In addition, when the dried sample of the water-containing sample of the present invention is used for decoration, not for food, drinking or preservation of biological resources, it is not always necessary to maintain a highly dry state. Even if it contains water, it is not a problem. Therefore, in this case, drying is stopped at an irradiation time that does not cause discoloration, and even after being stored under atmospheric conditions as it is, the natural state is maintained for a very long period of at least several months to several years without any practical problem. The color and fragrance of can be preserved. When the weight loss of the water-containing sample in the process of microwave irradiation ceases to be 100%, the water decrease rate after microwave irradiation for a certain period of time is (weight of sample before drying-microwave for a certain period of time) The weight of the sample at the time of irradiation) / (weight of the sample before drying-weight of the sample when complete drying is completed) × 100 (%). The moisture reduction rate of the dried body of the water-containing sample produced by the method of the present invention is preferably 95%, more preferably 98%, and particularly preferably 99%.
In addition, it is possible to prevent the water-containing sample from being exposed to a high temperature by appropriately selecting a porous material having moisture permeability, hygroscopicity, and heat resistance surrounding the water-containing sample. For example, when felt or fleece is used as the porous material, the water-containing sample can be prevented from being exposed to an excessively high temperature. This is thought to be because molecular motion is activated by microwave irradiation and water molecules evaporated and immediately enter the porous material without passing around the water-containing sample, and further pass through the material. At this time, water molecules in the substance irradiated with microwaves are released from the substance at a very high speed. The water molecules moving at a high speed and the “chimney effect” of the porous material combine to separate the water molecules without increasing the temperature of the water-containing sample. Microwaves increase the kinetic energy of water molecules in a substance and heat the substance by friction between water molecules, so if water molecules with increased kinetic energy are immediately separated from the substance, the temperature rise of the substance is It can be suppressed. That is, the method of the present invention can achieve drying at a low temperature. When drying is performed under the optimum conditions for suppressing the temperature increase of the method of the present invention, the temperature to which the water-containing sample is exposed is less than 100 ° C, preferably less than 90 ° C, more preferably less than 80 ° C, particularly preferably less than 70 ° C, Most preferably, it is less than 60 ° C. The temperature around the water-containing sample can be measured by taking out the water-containing sample and a porous material having moisture permeability, hygroscopicity and heat resistance surrounding it immediately after the microwave irradiation, and placing a temperature sensor such as a thermometer or thermocouple near the water-containing sample. Can be measured. The temperature measured by this method is not the exact temperature to which the water-containing sample is exposed when actually radiating microwaves, but is a measure of the temperature to which the raw sample is actually exposed. The temperature in the vicinity of the water-containing sample measured by the temperature measurement method when drying is performed under the optimum conditions for suppressing the temperature rise of the method of the present invention is less than 100 ° C, preferably less than 90 ° C, more preferably less than 80 ° C, particularly Preferably it is less than 70 degreeC, Most preferably, it is less than 60 degreeC.
The temperature at which the water-containing sample is exposed to some extent during drying can be controlled by the type of porous material having moisture permeability, hygroscopicity, and heat resistance. Some water-containing samples originally have a high water content or have a layer that prevents water evaporation on the surface and are difficult to dry. When such a water-containing sample is dried, it may be better to perform it under some high temperature conditions. By appropriately selecting the type of the porous material, the temperature during drying can be changed. For example, when a fleece or felt is used as the porous material, drying at a relatively low temperature can be achieved, and when cardboard or crepe paper is used, the porous material can be dried at a relatively high temperature.
In addition, before drying a water-containing sample, it is desirable that the porous material having moisture permeability, hygroscopicity, and heat resistance used for drying and / or the porous flexible sheet is irradiated with microwaves in advance. By irradiating with microwaves in advance, the porous material having moisture permeability, hygroscopicity and heat resistance and / or the porous flexible sheet is heated to some extent, and subsequent drying is performed quickly and efficiently. This heating is referred to as preheating, and depending on the kind of the porous material having moisture permeability, hygroscopicity and heat resistance and the porous flexible sheet to be used, it is preferably 60 to 90 seconds.
Further, it is desirable that after the microwave irradiation to the water-containing sample is finished, the dried water-containing sample is not immediately taken out from the microwave generator, but left as it is for a certain period of time, and then allowed to cool or be preheated. By leaving the heated water-containing sample, the porous material having moisture permeability, hygroscopicity and heat resistance and / or the porous flexible sheet in a microwave generator, the water-containing sample is slightly changed by the retained heat. The water remaining in the water further evaporates, and a good dry product is obtained. The preheating drying time is 5 to 10 minutes.
FIG. 2 shows the presumed principle of the drying method of the present invention. In FIG. 2, a block with diagonal lines represents a porous material having moisture permeability, hygroscopicity, and heat resistance, a circle represents a water molecule, and an arrow represents the movement of the water molecule. The movement of water molecules in the water-containing sample is activated by microwave irradiation, and is released from the water-containing sample at a high speed. The released water molecules pass through the pores in the moisture-permeable porous material surrounding the water-containing sample one after another while maintaining the high speed, and the flow of water molecules newly passes the water molecules released from the water-containing sample into the pores of the porous material. Water molecules are led out one after another (chimney effect). Once the water molecules have gone out, the kinetic energy decreases after the microwave irradiation is completed, and the water molecules are absorbed by the hygroscopic porous material and remain there. Alternatively, some of the water molecules evaporated from the water-containing sample are absorbed by the porous material and remain there when passing through the pores of the porous material. Water molecules once absorbed and retained in the porous material are not absorbed again into the water-containing sample.
As described above, the present invention is a method for quickly drying a water-containing sample, comprising surrounding the outer surface of the water-containing sample with a porous material having moisture permeability, hygroscopicity, and heat resistance, and placing the sample in a microwave generator. In the present invention, the outer surface of the water-containing sample is surrounded by a hygroscopic porous flexible sheet, and the periphery of the sheet is surrounded by a porous material having moisture permeability, hygroscopicity, and heat resistance. This is a rapid drying method for water-containing samples including irradiation with microwaves. Further, in the present invention, the water-containing sample is sandwiched between one and several porous flexible sheets, and the upper and lower portions are sandwiched with one to several porous materials and placed in a microwave generator to irradiate microwaves. Is a rapid drying method for water-containing samples containing
The present invention further includes a dried body of the water-containing sample obtained by the above drying method. Since the tissues and cells of the water-containing sample are not destroyed in the dried body, nutrient components, pigments and fragrance substances remain inside the dried body, and the color and / or fragrance in the natural state is retained for a long time. For example, anthocyan, which is a red to blue color pigment in plants, is unstable, and it is difficult to maintain the color of plants containing anthocyanes by drying methods such as the pressed stone method that compresses and dry plants. It was. However, the method of the present invention can retain the color for a long time even in plants containing anthocyan. Moreover, it has been reported that the phenol pigment contained in the plant turns black when left untreated, and it is considered that the blackening is caused by excessive heating during drying. According to the drying method of the present invention, the plant can be dried without being exposed to an excessively high temperature, so that the blackening of the phenol pigment due to heat can be suppressed. Whether the tissue or cells of the dried body of the present invention remains unbroken can be observed with a microscope. For example, whether the pigment remains in the dried body or whether vacuoles in the cell remain. Can be evaluated. Moreover, it can also evaluate by extracting a nutrient component, a pigment | dye, and an enzyme from a dried body, and measuring whether the activity is hold | maintained. Examples of plant pigments include chlorophyll, carotenoid, phenol pigment, betalain and the like in addition to the aforementioned anthocyan. Examples of aromatic components of plants include terpenes, thymol, carvacrol, cymene, pinene, linalool, and 1,8-shioner (eucalyptol). Moreover, there are vitamins such as ascorbic acid as nutritional components. In the drying method of the present invention, the nutrient components, pigments and aroma components of the plants containing them are partially, preferably mostly retained. Confirmation that these nutrients, pigments and / or fragrance components are retained is visually the same as the natural state color, or the natural state fragrance remains by olfaction Can be performed. In addition, the pigment component and / or fragrance component is confirmed to be retained by measuring the pigment component and / or fragrance component by a known chemical method, physical method, or biochemical method. Is possible. When the nutritional component, pigment component and / or fragrance component of the dried product obtained by the method of the present invention is measured by a known method, the dried product obtained by the method of the present invention is the natural nutrient component, pigment component and / or Or at least 10%, preferably 25%, more preferably 50%, more preferably 75%, more preferably 90%, particularly preferably 95% or more of the fragrance component remains. Therefore, in the dried body obtained by the method of the present invention, the tissues and cells are not destroyed, the vacuoles in the cells remain, and the nutrients, pigments and / or fragrance components that existed in the natural state remain. It is a dry body of the raw sample that remains partially or mostly remains. Furthermore, the dried product obtained by the method of the present invention retains some or most of proteins and nucleic acids such as enzymes and the like that have been retained in the natural state while maintaining the structure and activity in the natural state. For this reason, when the dried body is a microorganism, not only the nutrient components, pigment components and / or fragrance components in the natural state are retained, but also substances such as enzymes having biological activity are retained. It can be stored as a dry body without being killed. In this case, it is not necessary that all of the dry microorganisms are alive, and when the dried microbial population is dried for a certain period and then placed in the culture medium for microbial culture, the number of microorganisms sufficient to start growth survive. It only has to be. For example, 0.01% or more of the number of dry microorganisms, preferably 0.1% or more, more preferably 1% or more, more preferably 10% or more, more preferably 20% or more, more preferably 30% or more, Preferably, 40% or more, more preferably 50% or more, more preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, more preferably 90% or more should be alive. The microorganism dried by the method of the present invention is 5 days or more at 4 ° C., preferably 10 days or more, more preferably 1 month or more, more preferably 3 months or more, more preferably 6 months or more, more preferably 1 year. More preferably, more than 2 years, more preferably more than 3 years, more preferably more than 5 years, more preferably more than 10 years, more preferably more than 20 years. Growth can begin when placed in conditioned medium.
Furthermore, when insects and the like are dried by the method of the present invention, the dried body can be used as an insect specimen having a natural color. Furthermore, the eggs of arthropods such as insects and crustaceans and fish eggs dried by the method of the present invention can be hatched by placing them in water or under high humidity conditions.
The dried product obtained by the method of the present invention may be stored in the air as it is, and even in this case, the nutrient components, colors and / or aromas in the natural state are retained for a long time. In addition, when it is necessary to maintain a high degree of dryness, such as when used in the field of food and beverages, it can be stored in a sealed state together with a desiccant and the humidity can be controlled. May be stored in a low humidity state in a clean container or room.
Since the dried body obtained by the method of the present invention retains the nutrient components, colors and / or aromas in the natural state, it can be used as a decorative product or a decorative product with aroma. It can also be used as a fragrance. Furthermore, if tea etc. are dried, it can be utilized as dry tea. Furthermore, it can also be used as a scientific specimen such as a plant specimen. In particular, by controlling the kind of porous material having moisture permeability, hygroscopicity and heat resistance used in the method of the present invention and the microwave irradiation time, the temperature at which the water-containing sample is exposed can be prevented from becoming excessively high. Some or most of the proteins such as can be retained without denaturation. Therefore, the dried product dried in the present invention can be used as a biological experimental material equivalent to a water-containing sample. For example, undenatured proteins, nucleic acids and the like can be extracted from the dried product of the present invention. The presence of dried protein and / or nucleic acid can be confirmed by a known chemical method, physical method or biochemical method. For example, the specific protein that the raw sample to be dried has in the natural state may be quantified, or the activity of the specific enzyme that the natural sample has in the natural state may be measured. The dry body obtained by the method of the present invention is at least 10%, preferably 25%, more preferably 50%, more preferably 75%, more preferably 90%, especially 90%, in particular, of any protein possessed in the natural state. Preferably 95% or more remains. In addition, the dried product obtained by the method of the present invention has at least 10%, preferably 25%, more preferably 50%, more preferably 75%, more preferably more than 10% of the enzyme activity of any enzyme possessed in the natural state. Remains 90%, particularly preferably 95% or more. Accordingly, the dried body obtained by the method of the present invention is a dried body in which the protein and / or nucleic acid in the natural state is partially left or most of them are left.
Moreover, since the microorganisms dried by the method of the present invention survive after storage for a certain period, the microorganisms can be easily dried and stored at low cost.
Furthermore, the present invention also includes a water-containing sample drying kit. The kit includes a porous material having at least moisture permeability, hygroscopicity, and heat resistance, and may further include a porous flexible sheet. Here, the definitions of the porous material having moisture permeability, hygroscopicity, and heat resistance and the porous flexible sheet are as described above. In particular, the water-containing sample drying kit of the present invention is intended to produce a pressed flower or dried flower that can easily retain a nutrient component, color and / or aroma in a natural state for a long period of time at home. As mentioned above, the temperature at which the water-containing sample is exposed depends on the type of porous material having moisture permeability, hygroscopicity, and heat resistance, so that the drying temperature can be changed depending on the type of water-containing sample. A plurality of different porous materials having moisture permeability, hygroscopicity, and heat resistance may be included. For example, felt or fleece can be used as the low-temperature drying porous material, and corrugated cardboard or crepe paper can be used as the high-temperature drying porous material. Therefore, if the kit of the present invention includes felt or fleece and cardboard or crepe paper, high-temperature drying can be performed. Can also be dried at low temperatures. That is, the kit of the present invention includes a kit that can appropriately select both low temperature drying and high temperature drying. In the case of a pressed flower production kit, the kit is a plate-like moisture-permeable, hygroscopic and heat-resistant porous material, a porous flexible sheet, and a means such as a weight applying a pressure that does not destroy the cells and tissues of the water-containing sample. including. As the weight, for example, cardboard can be used. The areas of the porous material and the porous flexible sheet vary depending on the size of the object to be dried, but for example, the porous material and the porous flexible sheet may contain several rectangular pieces each having a size of 5 to 30 cm × 5 to 30 cm. It is also possible to include a large one and fold or cut it as appropriate. Furthermore, the kit of the present invention may be made of a thick paper such as cardboard, a heat resistant material such as a heat resistant resin, and may include a container capable of transmitting microwaves. By including a container, you can easily carry a set of materials used for drying, and in general households use microwave ovens that are usually used for cooking as microwave generators. In some cases, it may not be desirable to adhere to the floor or wall of the microwave oven. In this case, it may be placed in a container and dried.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2001-306868, which is the basis of the priority of the present application.
図1は、本発明の乾燥法の概略を示す図である。図1中、横線を引いたブロックは本発明の透湿性、吸湿性および耐熱性を有する多孔性材料を表す。白抜きのブロックは、吸湿性の多孔質柔軟シートを表す。
図2は、本発明の乾燥法の原理を示す図である。
図3は、実施例1で行った方法を示す図である。図3Aは、フェルト、フリースまたは段ボールを用いた方法、図3Bは、クレープ紙を用いた方法、図3Cはタオルを用いた方法を示す。図3中、横線を引いたブロックは本発明の透湿性、吸湿性および耐熱性を有する多孔性材料を示す。図3Cの多孔性材料であるタオルは4つ折りされていることを示す。白抜きのブロックは、吸湿性の多孔質柔軟シート(クレープ紙)を表す。
図4は、本発明の方法およびOK001法で乾燥させたデルフィニウムの花の写真である。図4AはOK001法、図4Bはフェルトを用いた方法、図4Cはフリースを用いた方法、図4Dはタオルを用いた方法、図4Eはクレープ紙を用いた方法、図4Fは段ボールを用いた方法で乾燥させたデルフィニウムである。FIG. 1 is a diagram showing an outline of the drying method of the present invention. In FIG. 1, the blocks with horizontal lines represent the porous material having moisture permeability, hygroscopicity and heat resistance according to the present invention. The white block represents a hygroscopic porous flexible sheet.
FIG. 2 is a diagram showing the principle of the drying method of the present invention.
FIG. 3 is a diagram illustrating the method performed in the first embodiment. FIG. 3A shows a method using felt, fleece or cardboard, FIG. 3B shows a method using crepe paper, and FIG. 3C shows a method using a towel. In FIG. 3, the blocks with horizontal lines indicate the porous material having moisture permeability, hygroscopicity and heat resistance according to the present invention. The towel, which is the porous material of FIG. 3C, is shown to be folded in four. A white block represents a hygroscopic porous flexible sheet (crepe paper).
FIG. 4 is a photograph of delphinium flowers dried by the method of the present invention and the OK001 method. 4A is the OK001 method, FIG. 4B is a method using felt, FIG. 4C is a method using fleece, FIG. 4D is a method using a towel, FIG. 4E is a method using crepe paper, and FIG. 4F is a cardboard. Delphinium dried by the method.
以下、実施例により本発明を説明するが、本発明はこれらの実施例により限定されない。
〔実施例1〕 デルフィニウムの花の乾燥
乾燥させる含水試料としては、青色のデルフィニウムの花1つ(花弁5枚)を用いた。乾燥前の生重量は、0.3〜0.5gであった。含水試料を覆う材料として、フェルト(羊毛製、日本フェルト工業株式会社、品番227または229(品番277と229は色違いで実質的には同製品)、厚さ約2mm)、フリース(ダイソー製、ポリエステル100%、厚さ約3mm)、段ボール(厚さ約3mm)、紙ナプキン(クレープ紙)およびタオル(綿100%、厚さ約1.25mm)を用いた。また、含水試料と多孔性材料の間に多孔質柔軟シートを置く場合は、クレープ紙を用いた。フェルト、フリース、段ボール、クレープ紙およびタオルを用いた実施例をそれぞれ、実施例1A、1B、1C、1Dおよび1Eとした。上から見たときの大きさはフェルトが15×19cm、フリースが10×15cm、段ボールが10×15cm、クレープ紙が19×30cm、タオルが2つ折りにして28×19cmであった。
フェルト、フリースおよび段ボールは図3Aに示すように、デルフィニウムの花弁の上下をクレープ紙ではさみ、さらに上下を4枚のフェルト、フリースまたは段ボールではさんで用いた。クレープ紙は図3Bに示すように、デルフィニウムの花弁の上下を4枚のクレープ紙ではさんで用いた。タオルは図3Cに示すように、デルフィニウムの花弁をクレープ紙ではさみ、さらに4つ折りのタオルではさんだ。ここで、上下とは電子レンジに入れる際の上下関係を示す。
次いで、このようにして準備した多孔質柔軟シートおよび透湿性、吸湿性および耐熱性を有する多孔性材料で囲まれた含水試料を市販の電子レンジ(岩谷産業(株)製、型番IMO600、出力600W)に入れ、マイクロ波を照射した。照射は、10秒から60秒の間歇照射を行い、照射後に温度計を用いて積層体の含水試料が存在する部分の温度を測定すると共に、含水試料の重量をバランス(SHIMAZU CORPORATION社製、型番D417400157)で測定した。この作業を繰り返し行った。含水試料の重量が減少しなくなった時点を乾燥完了時とした。また、この際色彩の変化等の外観の変化を観測した。含水試料の乾燥を行う前に、含水試料をはさむクレープ紙および上記材料は、マイクロ波を60秒照射して、予備加熱しておいた。なお、対照として特開2001−071695号公報に記載の方法(OK001法とする)でも乾燥を行った。すなわち、含水試料をティッシュで覆い、耐熱性容器中にシリカゲルとともにシリカゲルで覆われるようにして入れ、マイクロ波を照射した。対照乾燥法においては、含水試料のマイクロ波照射条件は前記の通りであるが、乾燥用材料(柔軟シートおよびシリカゲル)の予備加熱は行わなかった。
また、完全乾燥が完了し最終的にマイクロ波照射が終了した後、乾燥体は直ぐに電子レンジから取り出さず、5分から10分間放置し、余熱乾燥を行った。
表1にマイクロ波の照射時間ごとの含水試料の重量と温度変化を示した。温度は電子レンジ内部でのマイクロ波照射を停止した後に、電子レンジから含水試料、透湿性、吸湿性および耐熱性を有する多孔性材料および存在する場合は多孔質柔軟シートを取り出し、透湿性、吸湿性および耐熱性を有する多孔性材料および多孔質柔軟シートを開き、試料のあった近辺にアルコール温度計の測定部分を接触させ再び、透湿性、吸湿性および耐熱性を有する多孔性材料および多孔質柔軟シートを閉じ上から軽く押さえて温度計の目盛りを読んだ。マイクロ波照射の停止から温度測定までの時間は極力短くしているが(60秒〜180秒)、マイクロ波照射中の含水試料の実際の温度よりは低い可能性がある。
表1に示すように、対照乾燥法であるOK001法の乾燥完了が280秒であるのに対し、フェルトを用いた実施例1Aで320秒、フリースを用いた実施例1Bで200秒、段ボールを用いた実施例1Cで240秒、クレープ紙を用いた実施例1Dで180秒、タオルを用いた実施例1Eで120秒であった。各実施例における温度上昇は、OK001法が最高102℃、フェルトを用いた実施例1Aで最高51℃、フリースを用いた実施例1Bで56℃、段ボールを用いた実施例1Cで91℃、クレープ紙を用いた実施例1Dで96℃、タオルを用いた実施例1Eで94℃であった。含水試料の乾燥体の外観は段ボール(実施例1C)およびクレープ紙(実施例1D)を用いた場合に180秒で変色が認められた。対象乾燥法および実施例1A、1Bおよび1Eでは変色は認められなかった。
含水試料が天然状態の色彩および/または芳香を維持できるか否かは、含水試料が乾燥過程でどれ位の時間高温にさらされるかで決まり、タンパク質変性温度である約60℃以上の温度に長時間さらされるのは、好ましくない。この点で、フェルトおよびフリースは対照乾燥法であるOK001法と比較して乾燥にかかる時間は大差ないが、温度上昇はタンパク質変性温度以下であり、またタオルおよびクレープ紙は60℃以上の高温にさらされるが乾燥は迅速に終了する。また段ボールは比較的高温にさらされ乾燥完了までの時間も長いが、OK001法に比較すると時間は若干短く、また温度も低い。従って、乾燥時の含水試料へ与えるダメージが少ないという点で実施例1A〜1Eの方法は、いずれもOK001法より優れている。OK001法により乾燥したものは、乾燥終了時に全体的に変色が認められる。段ボール、クレープ紙およびタオルを用いた場合は、乾燥完了時に、花弁の縁が茶色に変色しているのが観察された。図4に本方法で乾燥させ約3ヶ月間保存したデルフィニウムの花の写真を示す。OK001法により乾燥したものは全体的に変色が認められる。また、段ボール、クレープ紙およびタオルを用いた方法により乾燥したものも、乾燥終了時と同様に花弁の縁の変色が認められる。
〔実施例2〕 予備加熱の乾燥に与える影響の検討
実施例1においては、予備過熱を行って含水試料の乾燥を行ったが、本実施例においては予備加熱の必要性を検討した。用いた含水試料は実施例1と同様にデルフィニウムの花弁であった。用いた透湿性吸湿性乾燥用材料は実施例1Aおよび1Bと同様にフェルト(実施例2A)およびフリース(実施例2B)であった。対照乾燥として、特開2001−071695号公報に記載の方法(OK001法)で乾燥を行った。OK001法も含めて予備加熱を行った場合と行わない場合で含水試料の乾燥を行った。また、含水試料と多孔性材料の間に多孔質柔軟シートとして、クレープ紙を置いた。含水試料の乾燥は、実施例1と同様にマイクロ波の間歇照射により行い、経時的に重量及び温度を測定した。マイクロ波照射終了後は、実施例1と同様に余熱乾燥を行った。
結果を表2に示した。
表2に示すように、対照乾燥法であるOK001法で、乾燥完了までの時間は予備加熱なしの場合は240秒、予備加熱ありの場合は270秒と予備加熱なしの場合の方が早く乾燥が完了した。フェルト(実施例2A)では予備加熱なしの場合が300秒、予備加熱ありの場合が180秒と予備加熱ありの場合の方が乾燥完了が早かった。フリース(実施例2B)では予備加熱なしの場合が240秒、予備加熱ありの場合が180秒と予備加熱ありの場合の方が若干乾燥完了が早かった。
OK001法では、予備加熱なしの場合は120秒照射で、予備加熱ありの場合は180秒照射で、色彩の変化が認められ、乾燥完了時には花弁全体が青紫色から赤紫色に変色した。また、フリースを用いた実施例では、予備加熱なしの場合、ありの場合ともに180秒で含水試料がやや茶色に変色した。但し、乾燥させたものの装飾的効果を減じるほどの変色ではなかった。フェルトを用いた場合は、乾燥完了後も色彩の変化は認められなかった。
〔実施例3〕 パンジーの花弁の乾燥
乾燥させる含水試料としては、紫色のパンジーの花弁1枚を用いた。乾燥前の生重量は、0.036〜0.044gであった。含水試料を覆う多孔性材料として、フェルト(羊毛製、日本フェルト工業株式会社、品番227または229、厚さ約2mm)、クレープ紙、段ボールを用いた。また、含水試料と多孔性材料の間に多孔質柔軟シートを置く場合は、クレープ紙を用いた。実施例3Aにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト1枚ずつではさんだ。実施例3Bにおいては、パンジーの花弁1枚の上下をフェルト1枚ずつではさんだ。実施例3Cにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト1枚ずつではさみ、さらにその上下を段ボール2枚ずつではさんだ。実施例3Dにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト1枚ずつではさみ、さらにその上のみに段ボール2枚をのせた。実施例3Eにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト2枚ずつではさんだ。実施例3Fにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト2枚ずつではさみ、さらにその上下を段ボール2枚ずつではさんだ。実施例3Gにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト3枚ずつではさんだ。実施例3Hにおいては、パンジーの花弁1枚の上下をクレープ紙4枚ずつではさみ、さらにフェルト4枚ずつではさんだ。対照として特開2001−071695号公報に記載の方法(OK001法とする)でも乾燥を行った。対照乾燥および実施例3Aおよび3Bでは、予備加熱をした場合としない場合で乾燥を行い、実施例3Cから3Gはいずれも予備加熱を行った。予備加熱は実施例1と同様の方法で行った。含水試料の乾燥は、実施例1と同様にマイクロ波の間歇照射により行い、経時的に重量及び温度を測定した。マイクロ波照射終了後は、実施例1と同様に余熱乾燥を行った。
結果を表3に示した。
予備加熱を行った場合と行わなかった場合で、行った場合の方が完全乾燥が完了するまでの時間がやや短かった。含水試料をクレープ紙で囲んだ方が完全乾燥が完了するまでの時間が短かった(実施例3Aおよび3B)。フェルトは1、2枚よりも3枚または4枚重ねた方が完全乾燥が完了するまでの時間が短かった(実施例3Fおよび3G)。乾燥時の温度は、対照乾燥法で80〜90℃以上に上昇したのに対して、実施例3Aから3Fでは約50℃以下であった。フェルトを上下4枚ずつ用いた実施例3Gではフェルトが3枚以下の場合に比べて、若干温度が高くなったが、60℃以下であった。実施例3においては、含水試料の変色は認められなかった。
この結果より、含水試料を多孔性柔軟シートで囲い、さらにフェルトを3枚ずつ上下に重ねた場合、完全乾燥が完了するまでの時間および温度上昇の点で良好な乾燥が達成できることがわかった。
〔実施例4〕 アオキの葉の乾燥
乾燥させる含水試料としては、アオキの葉1枚を用いた。乾燥前の生重量は、0.5〜0.7gであった。含水試料を覆う多孔性材料として、フリース(ダイソー製、ポリエステル100%、厚さ約3mm)、ポリプロピレン不織布(ダイソー製、厚さ約0.8mm)およびコルク板(ダイソー製、厚さ約2mmを用いた。含水試料と多孔性材料の間に多孔質柔軟シートを置く場合は、ティッシュ(株式会社ネピア社製)、キムワイプ(株式会社クレシア社製)またはクレープ紙を用いた。ティッシュおよびキムワイプの上からみた場合の大きさは、それぞれ20×23cmおよび12×22cmであった。実施例4Aは、含水試料の上下をティッシュ2枚ではさみ、さらにその上下をフリース4枚ずつではさんだ。実施例4Bは、含水試料の上下をクレープ紙2枚ではさみ、さらにその上下をフリース4枚ではさんだ。実施例4Cは、含水試料の上下をキムワイプ2枚ではさみ、さらにその上下をフリース4枚ではさんだ。実施例4Dは、含水試料の上下をキムワイプ2枚ではさみ、さらにその上下をポリプロピレン不織布16枚ではさんだ。実施例4Eは、含水試料の上下をキムワイプ2枚ではさみ、さらにその上下をコルク板4枚ではさんだ。上から見た場合のコルク板、ポリプロピレン不織布の大きさはどちらも13×18cmであった。対照として特開2001−071695号公報に記載の方法(OK001法)でも乾燥を行った。OK001法、実施例4C、実施例4Dおよび実施例4Eは、予備加熱をした場合としない場合とで行った。実施例4Aおよび4Bは予備加熱を行った。予備加熱は実施例1と同様の方法で行った。含水試料の乾燥は、実施例1と同様にマイクロ波の間歇照射により行い、経時的に重量及び温度を測定した。マイクロ波照射終了後は、実施例1と同様に余熱乾燥を行った。
結果を表4に示す。
完全乾燥が完了するまでの時間は、フリースを用い予備加熱を行った場合で330〜420秒、予備加熱を行わなかった場合で約600秒であった、ポリプロピレン不織布を用いた場合およびコルク板を用いた場合の完全乾燥が完了するまでの時間は未測定であるが、ポリプロピレンがほぼフリースと同等で、コルク板がそれよりも早い。乾燥時の温度は、フリースを用いた場合は50℃以下、ポリプロピレン不織布を用いた場合は60℃以下、コルク板を用いた場合はOK001法と同等で約90℃であった。
OK001法では、乾燥完了時に葉全体が黒変していた。また、コルク板およびポリプロピレン不織布を用いた場合は、乾燥完了時に葉の縁が黒変していた。また、フリースを用いた場合、予備加熱をしないときおよび予備加熱をした場合で多孔質柔軟シートとしてティッシュを用いたとき乾燥完了時に葉の縁が黒変していた。フリースを用いた場合で多孔質柔軟シートとしてクレープ紙またはキムワイプを用いたときは葉の変色は認められなかった。
〔実施例5〕 ポリエステル製の繊維性多孔性材料を用いての乾燥
乾燥させる含水試料としては、パセリを用いた。乾燥前の生重量は、0.3〜0.7gであった。含水試料を覆う多孔性材料として、ポリエステル100%のキルト芯(日本バイリーン株式会社、厚さ約10mm)、ポリエステル100%のドミット芯(日本バイリーン株式会社、厚さ約7mm)およびウール100%のフェルト作製用繊維(クローバー株式会社)を用いた。また、含水試料と多孔性材料の間の多孔質柔軟シートとしては、クレープ紙を用いた。
パセリの上下をクレープ紙ではさみ、さらに上下を4枚のキルト芯、2から4枚のドミット芯ではさんだ。フェルト作製用ウール繊維は、パセリの上下をクレープ紙ではさんだものの上下に、束ねたウール繊維(束の厚さが約10mm)をクレープ紙を覆うように置いた。
次いで、このようにして準備した多孔質柔軟シートおよび透湿性、吸湿性および耐熱性を有する多孔性材料で囲まれた含水試料を市販の電子レンジ(岩谷産業(株)製、型番IMO600、出力500W)に入れ、マイクロ波を照射した。照射は、90秒間行った。マイクロ波照射が終了した後、乾燥体は直ぐに電子レンジから取り出すか(余熱乾燥0分)、あるいは5分または10分間放置し、余熱乾燥を行った。ウール繊維の場合は、10分間放置し、余熱乾燥を行った。
表5、表6および表7に、それぞれキルト芯、ドミット芯およびウール繊維を用いた乾燥法の結果を示す。
表には、余熱時間それぞれの多孔性材料の重ね合せ枚数、乾燥前重量、乾燥後重量および水分除去率を示した。
いずれの材料でもパセリは、同程度の水分除去率を示し、乾燥後の変色等も認められなかった。
〔実施例6〕 各種素材の繊維性多孔性材料を用いての乾燥
繊維性多孔性材料として以下のものを用いた。
(1) ウール製不織布(ウール100%)
(2) 段ボール(厚さ8/3mmのものを3枚重ねで使用)
(3) 綿製(綿100%)コットンキルト綿(日本バイリーン株式会社製、型番KMW−1P)
(4) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット薄手タイプ(日本バイリーン株式会社製、型番QB−95)
(5) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット薄手タイプ(日本バイリーン株式会社製、型番TKS−35P)
(6) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット厚手タイプ(日本バイリーン株式会社製、型番KSP−120A)
(7) コットン&ポリエステルキルト芯(綿60%、ポリエステル40%)(KINKAME社製、型番480557)
(8) パッチワークキルト綿(黒色)(ポリエステル60%、レーヨン40%)(日本バイリーン株式会社製、型番MH−14−BKP)
上記繊維性多孔性材料は、すべて2枚重ねで用いた。
材料は、約0.2g〜0.6gのパセリを用いた。
乾燥方法は、実施例5とほぼ同様であるが、マイクロ波の照射を最初60秒間行い、次いで、30秒間の照射を間歇的に2から3回行うことにより乾燥した(トータルの乾燥時間は、120から180秒間)。間歇照射毎にパセリを取り出し、触覚により乾燥程度を判断すると共に、重量を測定した。
以下に、それぞれの材料についての乾燥結果を示す。表8から15は、それぞれ上記の(1)から(8)の繊維性多孔性材料に対応している。表において、乾燥過程のマイクロ波間歇照射の後に取り出したパセリの乾燥状態および/または重量を記載した。
表8から表15が示すように、いずれの繊維性多孔性材料を用いても良好に乾燥できた。
〔実施例7〕 繊維性多孔性材料の耐熱性(耐マイクロ波性)
各種繊維性多孔性材料の耐熱性(耐マイクロ波性)について検討を行った。
用いた繊維性多孔性材料は以下の通りであった。
(1) ウール製不織布(ウール100%)
(2) 段ボール(厚さ8/3mmのものを3枚重ねで使用)
(3) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット薄手タイプ(日本バイリーン株式会社製、型番QB−95)
(4) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット薄手タイプ(日本バイリーン株式会社製、型番TKS−35P)
(5) ポリエステル製(ポリエステル100%)パッチワークキルト綿 ドミット厚手タイプ(日本バイリーン株式会社製、型番KSP−120A)
(6) コットン&ポリエステルキルト芯(綿60%、ポリエステル40%)(KINKAME社製、型番480557)
(7) パッチワークキルト綿(黒色)(ポリエステル60%、レーヨン40%)(日本バイリーン株式会社製、型番MH−14−BKP)
上記繊維性多孔性材料の上下を段ボール(厚さ8/3mmを3枚)で挟み込み、これを500Wで60秒間加熱した。加熱後、材料を速やかに取り出し、変化を確認した。まだ乾燥していない場合は速やかに(平均15秒以内)電子レンジ内に戻し、更に500Wで60秒間加熱した。以後、材料に変化が現れるまで一分刻みで加熱した。材料から発煙もしくは異臭の発生があり次第、速やかに電子レンジを停止し、材料を取り出した。
また、段ボールで挟まずに、各材料を直接マイクロ波照射した。いずれの材料もマイクロ波を少なくとも10分、照射しても変化は認められなかった。
実施例5より、いずれの材料も耐熱性(耐マイクロ波性)を有していることがわかった。
〔実施例8〕 乾燥体の色素、芳香成分の分析
実施例5の方法のうち、本発明の方法で乾燥させたパセリ、および同様の方法で乾燥させた月桂樹の葉を分析に用いた。乾燥前の試料と乾燥後の試料について水分含量を調べ、パセリについては乾燥前後のアスコルビン酸含量を測定し、月桂樹の葉については、乾燥前後の1,8−シネオール(ユーカリプトール)の含量を測定した。測定は、財団法人 日本食品分析センターに委託して行った。また、コントロールとして凍結乾燥法により乾燥したサンプルについても測定を行った。測定は1から2サンプルについて行った。
含水試料 アスコルビン酸含量
パセリ(乾燥前) 0.78%
パセリ(乾燥後:本発明法) 0.79%
含水試料 1,8−シオネール含量
月桂樹の葉(乾燥前) 0.77%
月桂樹の葉(乾燥後:凍結乾燥) 0.81%
月桂樹の葉(乾燥後:本発明法) 0.79%
表中の値は、()内の状態の試料をさらに70℃で5時間乾燥した乾燥体重量ベースである。
表に示すように、本発明の方法で、パセリ中のアスコルビン酸および月桂樹の葉中の1,8−シネオールは分解されることなく保持されていた。
〔実施例9〕 微生物の乾燥
大腸菌の乾燥
大腸菌(Escherichia coli IAM1264株)を27℃で2日間培養し、生理食塩水にOD650=3になるように懸濁し、その8μlを薄手の直径6mmのペーパーディスクにのせた。大腸菌をのせたペーパーディスクをクレープ紙、ウール製フェルト、ダンボールで挟んで、30秒または60秒、家庭用電子レンジ(500W)を用いてマイクロ波を照射し、乾燥させた。マイクロ波照射後5分間余熱乾燥させ、PYS−2培地(ポリペプトン8g、酵母エキス3g、NaCl5gを蒸留水1000mlに溶解させたもの)に乾燥大腸菌を含むペーパーディスクを入れ、5日間27℃で培養し、大腸菌が増殖するかを調べた。保護剤有り無しで実験を行い、保護剤有りのものは菌体懸濁液中に10%スキムミルクおよび2%グルタミン酸ナトリウムを添加した。実験はN=3で行った。
結果を以下に示す。
照射時間 保護剤有 保護剤無
30秒 3/3 3/3
60秒 3/3 0/3
上記表中、3/3は3試料のうち、3試料が乾燥後の再培養で増殖したことを示す(以下の実験においても同様である)。
酵母の乾燥
上記の実験を大腸菌の代わりに酵母(Saccharomycescereviciae JCM7255T)について行った。但し、培地は市販のポテトデキストロース培地を用いた。
結果を以下に示す。
照射時間 保護剤有 保護剤無
30秒 2/3 0/3
60秒 0/3 0/3
乾燥大腸菌の保存
照射時間30秒で、保護剤有りで乾燥させた大腸菌を5日間4℃に保存した後に、培地に入れ増殖するかどうかを調べた。N=3で調べたところ3回の実験すべてで乾燥保存した大腸菌を再培養したところ増殖が認められた。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.
Example 1 Drying of Delphinium Flowers As a water-containing sample to be dried, one blue delphinium flower (5 petals) was used. The raw weight before drying was 0.3 to 0.5 g. As a material covering the water-containing sample, felt (manufactured by wool, Nippon Felt Kogyo Co., Ltd., product number 227 or 229 (product numbers 277 and 229 are substantially the same product in different colors), thickness of about 2 mm), fleece (manufactured by Daiso, Polyester 100%, thickness about 3 mm), cardboard (thickness about 3 mm), paper napkin (crepe paper) and towel (100% cotton, thickness about 1.25 mm) were used. Moreover, when placing the porous flexible sheet between the water-containing sample and the porous material, crepe paper was used. Examples using felt, fleece, corrugated cardboard, crepe paper and towel were designated as Examples 1A, 1B, 1C, 1D and 1E, respectively. When viewed from above, the felt was 15 × 19 cm, the fleece was 10 × 15 cm, the cardboard was 10 × 15 cm, the crepe paper was 19 × 30 cm, and the towel was folded in 28 × 19 cm.
As shown in FIG. 3A, felt, fleece, and corrugated cardboard were sandwiched between crepe paper and the upper and lower parts of Delphinium petals were sandwiched between four felts, fleece, or corrugated cardboard. As shown in FIG. 3B, the crepe paper was used by sandwiching four sheets of crepe paper above and below the petals of delphinium. As shown in FIG. 3C, the towel was sandwiched between crepe paper and a four-fold towel. Here, “upper and lower” refers to the upper and lower relationship when placed in a microwave oven.
Subsequently, a water-containing sample surrounded by the porous flexible sheet and the porous material having moisture permeability, hygroscopicity, and heat resistance prepared in this manner was placed in a commercially available microwave oven (manufactured by Iwatani Corporation, model number IMO600, output 600 W). ) And irradiated with microwaves. Irradiation is performed for 10 to 60 seconds, and after irradiation, the temperature of the portion where the moisture-containing sample of the laminate is present is measured using a thermometer, and the weight of the moisture-containing sample is balanced (manufactured by SHIMAZU CORPORATION, model number D417400157). This operation was repeated. The time when the weight of the water-containing sample was not reduced was defined as the completion of drying. At this time, changes in appearance such as color changes were observed. Prior to drying the water-containing sample, the crepe paper and the material sandwiching the water-containing sample were preheated by irradiation with microwaves for 60 seconds. As a control, drying was also performed by the method described in JP-A-2001-071695 (referred to as OK001 method). That is, the water-containing sample was covered with a tissue, placed in a heat-resistant container so as to be covered with silica gel, and irradiated with microwaves. In the control drying method, the microwave irradiation conditions of the water-containing sample were as described above, but the preheating of the drying material (soft sheet and silica gel) was not performed.
Moreover, after complete drying was completed and finally microwave irradiation was completed, the dried product was not immediately taken out from the microwave oven, but was left for 5 to 10 minutes to perform preheat drying.
Table 1 shows the weight and temperature change of the water-containing sample for each microwave irradiation time. After stopping microwave irradiation inside the microwave oven, remove the water-containing sample, porous material with moisture permeability, hygroscopicity and heat resistance, and porous flexible sheet, if present, from the microwave oven, moisture permeability, moisture absorption Open porous material and porous flexible sheet having heat resistance and heat resistance, and contact the measurement part of the alcohol thermometer near the sample and again, porous material and porous material having moisture permeability, hygroscopicity and heat resistance The flexible sheet was closed and lightly pressed from above to read the scale on the thermometer. Although the time from the stop of microwave irradiation to the temperature measurement is as short as possible (60 seconds to 180 seconds), it may be lower than the actual temperature of the water-containing sample during microwave irradiation.
As shown in Table 1, the completion of drying in the OK001 method, which is a control drying method, is 280 seconds, whereas in Example 1A using felt, 320 seconds, in Example 1B using fleece, 200 seconds, the corrugated board is used. It was 240 seconds for Example 1C used, 180 seconds for Example 1D using crepe paper, and 120 seconds for Example 1E using towels. The temperature rise in each example was 102 ° C. maximum in the OK001 method, 51 ° C. maximum in Example 1A using felt, 56 ° C. in Example 1B using fleece, 91 ° C. in Example 1C using cardboard, and crepe It was 96 ° C. in Example 1D using paper and 94 ° C. in Example 1E using towel. When the corrugated cardboard (Example 1C) and the crepe paper (Example 1D) were used, the appearance of the dried sample of the water-containing sample was discolored in 180 seconds. No discoloration was observed in the subject drying method and Examples 1A, 1B and 1E.
Whether or not the hydrated sample can maintain its natural color and / or fragrance depends on how long the hydrated sample is exposed to the high temperature during the drying process, and is long at a protein denaturation temperature of about 60 ° C. or higher. Exposure to time is undesirable. In this respect, felt and fleece are not much different in drying time from the control drying method OK001, but the temperature rise is below the protein denaturation temperature, and towels and crepe paper are heated above 60 ° C. Although it is exposed, drying is completed quickly. Corrugated cardboard is exposed to a relatively high temperature and takes a long time to complete drying, but the time is slightly shorter and the temperature is lower than that of the OK001 method. Therefore, the methods of Examples 1A to 1E are all superior to the OK001 method in that damage to the water-containing sample during drying is small. As for what dried by OK001 method, discoloration is recognized by the whole at the time of completion | finish of drying. When cardboard, crepe paper and towels were used, it was observed that the edges of the petals turned brown upon completion of drying. FIG. 4 shows a photograph of a delphinium flower dried by this method and stored for about 3 months. Discoloration is recognized as a whole in the product dried by the OK001 method. Moreover, the thing dried by the method using a corrugated cardboard, a crepe paper, and a towel also recognizes discoloration of the edge of a petal similarly to the time of completion | finish of drying.
[Example 2] Examination of influence of preheating on drying In Example 1, the preheating was performed to dry the water-containing sample, but in this example, the necessity of the preheating was examined. The water-containing sample used was a delphinium petal as in Example 1. The moisture permeable hygroscopic drying materials used were felt (Example 2A) and fleece (Example 2B) as in Examples 1A and 1B. As control drying, it dried by the method (OK001 method) as described in Unexamined-Japanese-Patent No. 2001-071695. The water-containing sample was dried with or without preheating including the OK001 method. Further, a crepe paper was placed as a porous flexible sheet between the water-containing sample and the porous material. The water-containing sample was dried by intermittent microwave irradiation as in Example 1, and the weight and temperature were measured over time. After the microwave irradiation, preheat drying was performed in the same manner as in Example 1.
The results are shown in Table 2.
As shown in Table 2, with the OK001 method, which is a control drying method, the time to completion of drying is 240 seconds without preheating, 270 seconds with preheating, and drying faster without preheating. Completed. In the felt (Example 2A), the drying was completed earlier in 300 seconds without preheating and 180 seconds with preheating and with preheating. In the fleece (Example 2B), when the preheating was not performed, 240 seconds was obtained, and when the preheating was performed, 180 seconds was obtained.
In the OK001 method, a change in color was observed after 120 seconds of irradiation with no preheating and 180 seconds of irradiation with preheating, and the entire petal changed from blue-violet to red-purple when drying was completed. Moreover, in the Example using a fleece, in the case where there was no preheating, in both cases, the water-containing sample turned slightly brown in 180 seconds. However, it was not discolored so as to reduce the decorative effect of the dried product. When felt was used, no color change was observed even after drying was completed.
[Example 3] Drying of pansy petals As a water-containing sample to be dried, one purple pansy petal was used. The raw weight before drying was 0.036 to 0.044 g. Felt (manufactured by wool, Nippon Felt Kogyo Co., Ltd., product number 227 or 229, thickness of about 2 mm), crepe paper and cardboard were used as the porous material covering the water-containing sample. Moreover, when placing the porous flexible sheet between the water-containing sample and the porous material, crepe paper was used. In Example 3A, the top and bottom of one pansy petal were sandwiched between four crepe papers and one felt piece. In Example 3B, the top and bottom of one pansy petal were sandwiched one by one. In Example 3C, one pansy petal was sandwiched between four pieces of crepe paper, one felt piece, and two pieces of corrugated board. In Example 3D, one pansy petal was sandwiched between four crepe sheets, one felt piece, and two cardboard pieces only on the top. In Example 3E, one pansy petal was sandwiched between four crepe sheets and two felt pieces. In Example 3F, one pansy petal was sandwiched between 4 pieces of crepe paper, 2 pieces of felt, and 2 pieces of cardboard were sandwiched between the top and bottom. In Example 3G, the top and bottom of one pansy petal were sandwiched between four pieces of crepe paper, and further three felt pieces. In Example 3H, one pansy petal was sandwiched between four crepe papers and four felt pieces. As a control, drying was also performed by the method described in JP-A-2001-071695 (referred to as OK001 method). In control drying and Examples 3A and 3B, drying was performed with and without preheating, and Examples 3C to 3G were all preheated. Preheating was performed in the same manner as in Example 1. The water-containing sample was dried by intermittent microwave irradiation as in Example 1, and the weight and temperature were measured over time. After the microwave irradiation, preheat drying was performed in the same manner as in Example 1.
The results are shown in Table 3.
When preheating was performed and when it was not performed, the time required for complete drying was slightly shorter when it was performed. The time until complete drying was shorter when the hydrated sample was surrounded by crepe paper (Examples 3A and 3B). The time required for complete drying was shorter when 3 or 4 felts were stacked than when 1 or 2 felts (Examples 3F and 3G). The temperature during drying rose to 80-90 ° C. or higher in the control drying method, whereas in Examples 3A to 3F, it was about 50 ° C. or lower. In Example 3G using four upper and lower felts, the temperature was slightly higher than in the case of three or less felts, but it was 60 ° C. or less. In Example 3, no discoloration of the water-containing sample was observed.
From this result, it was found that when the water-containing sample was surrounded by a porous flexible sheet and three felt pieces were stacked one on top of the other, good drying could be achieved in terms of time until complete drying and temperature increase.
[Example 4] Drying of Aoki leaves As a water-containing sample to be dried, one Aoki leaf was used. The raw weight before drying was 0.5 to 0.7 g. As a porous material that covers the water-containing sample, fleece (made by Daiso, 100% polyester, thickness about 3 mm), polypropylene nonwoven fabric (made by Daiso, thickness about 0.8 mm), and cork board (made by Daiso, thickness about 2 mm) are used. When placing a porous flexible sheet between a water-containing sample and a porous material, tissue (manufactured by Napier Co., Ltd.), Kimwipe (manufactured by Crecia Co., Ltd.) or crepe paper was used from above the tissue and Kimwipe. In the case of Example 4A, the top and bottom of the water-containing sample were sandwiched between two tissues, and the top and bottom were sandwiched by four fleeces. The upper and lower sides of the water-containing sample were sandwiched between two sheets of crepe paper, and the upper and lower sides were sandwiched between four sheets of fleece. The bottom is sandwiched between 2 sheets of Kimwipe, and the top and bottom are sandwiched between 4 sheets of fleece, and Example 4D is sandwiched between the top and bottom of a wet sample with 2 sheets of Kimwipe, and the top and bottom is sandwiched with 16 sheets of polypropylene nonwoven fabric. The wet sample was sandwiched between two Kimwipes and the top and bottom were sandwiched by four cork plates, both of which were 13 x 18 cm in size when viewed from above. Drying was also performed by the method (OK001 method) described in JP 2001-071695 A. The OK001 method, Example 4C, Example 4D and Example 4E were performed with and without preheating. 4A and 4B were preheated in the same manner as in Example 1. The water-containing sample was dried in the same manner as in Example 1. Carried out by intermittent irradiation, over time the weight and temperature were measured. Microwave irradiation after completion performed a residual heat drying in the same manner as in Example 1.
The results are shown in Table 4.
The time until complete drying was completed was 330 to 420 seconds when preheating was performed using a fleece, and about 600 seconds when preheating was not performed. The time to complete drying when used is not measured, but polypropylene is almost equivalent to fleece and cork board is faster. The drying temperature was 50 ° C. or less when using a fleece, 60 ° C. or less when using a polypropylene non-woven fabric, and about 90 ° C. equivalent to the OK001 method when using a cork board.
In the OK001 method, the entire leaf turned black when drying was completed. Moreover, when the cork board and the polypropylene nonwoven fabric were used, the edge of the leaf was blackened when the drying was completed. In addition, when the fleece was used, when the preheating was not performed and when the tissue was used as the porous flexible sheet when preheating was performed, the edge of the leaf was blackened when the drying was completed. When crepe paper or Kimwipe was used as the porous flexible sheet when fleece was used, no discoloration of the leaves was observed.
[Example 5] Drying using a polyester fibrous porous material Parsley was used as a water-containing sample to be dried. The raw weight before drying was 0.3 to 0.7 g. As a porous material for covering a water-containing sample, a quilt core made of 100% polyester (Nippon Vilene Co., Ltd., about 10 mm thick), a domit core made of 100% polyester (Nippon Vilene Co., Ltd., about 7 mm thick), and a felt made of 100% wool Fabrication fiber (Clover Co., Ltd.) was used. Further, crepe paper was used as the porous flexible sheet between the water-containing sample and the porous material.
The top and bottom of the parsley are sandwiched with crepe paper, and the top and bottom are sandwiched with 4 quilt cores and 2 to 4 domitt cores. The wool fibers for producing felt were placed on the top and bottom of the crepe paper sandwiched between the top and bottom of the parsley so that the bundled wool fibers (the thickness of the bundle was about 10 mm) covered the crepe paper.
Subsequently, a water-containing sample surrounded by the porous flexible sheet thus prepared and a porous material having moisture permeability, hygroscopicity, and heat resistance was obtained from a commercially available microwave oven (Iwatani Corp., model number IMO600, output 500 W). ) And irradiated with microwaves. Irradiation was performed for 90 seconds. After the microwave irradiation was completed, the dried product was immediately taken out of the microwave oven (preheated drying 0 minutes) or left for 5 minutes or 10 minutes to perform preheated drying. In the case of wool fiber, it was allowed to stand for 10 minutes and dried by preheating.
Tables 5, 6 and 7 show the results of drying methods using quilt cores, domit cores and wool fibers, respectively.
The table shows the number of superposed porous materials for each preheating time, the weight before drying, the weight after drying, and the moisture removal rate.
In any material, parsley showed a similar water removal rate, and no discoloration after drying was observed.
[Example 6] Drying using various kinds of fibrous porous materials The following were used as the fibrous porous materials.
(1) Wool nonwoven fabric (100% wool)
(2) Corrugated cardboard (Thickness of 8 / 3mm is used in 3 layers)
(3) Cotton (100% cotton) cotton quilt cotton (Nippon Vilene Co., Ltd., model number KMW-1P)
(4) Made of polyester (100% polyester) patchwork quilt cotton Domit thin type (Nippon Vilene Co., Ltd., model number QB-95)
(5) Made of polyester (100% polyester) patchwork quilt cotton Domit thin type (Nippon Vilene Co., Ltd., model number TKS-35P)
(6) Made of polyester (100% polyester) patchwork quilt cotton Domit thick type (Nippon Vilene Co., Ltd., model number KSP-120A)
(7) Cotton & polyester quilt core (60% cotton, 40% polyester) (KINKAME, model number 480557)
(8) Patchwork quilted cotton (black) (60% polyester, 40% rayon) (manufactured by Japan Vilene Co., Ltd., model number MH-14-BKP)
All the fibrous porous materials were used in a stack of two.
The material used was about 0.2-0.6 g of parsley.
The drying method is almost the same as that of Example 5, but the microwave irradiation was first performed for 60 seconds, and then 30 seconds of irradiation was intermittently performed 2 to 3 times (the total drying time is 120 to 180 seconds). The parsley was taken out for every intermittent irradiation, the degree of dryness was judged by touch, and the weight was measured.
Below, the drying result about each material is shown. Tables 8 to 15 correspond to the fibrous porous materials (1) to (8) described above, respectively. In the table, the dry state and / or weight of the parsley taken out after the microwave intermittent irradiation in the drying process is described.
As Tables 8 to 15 show, any fibrous porous material could be dried well.
[Example 7] Heat resistance (microwave resistance) of fibrous porous material
The heat resistance (microwave resistance) of various fibrous porous materials was examined.
The fibrous porous material used was as follows.
(1) Wool nonwoven fabric (100% wool)
(2) Corrugated cardboard (Thickness of 8 / 3mm is used in 3 layers)
(3) Made of polyester (100% polyester) patchwork quilt cotton Domit thin type (Nippon Vilene Co., Ltd., model number QB-95)
(4) Made of polyester (100% polyester) patchwork quilt cotton Domit thin type (Nippon Vilene Co., Ltd., model number TKS-35P)
(5) Made of polyester (100% polyester) patchwork quilt cotton Domit thick type (Nippon Vilene Co., Ltd., model number KSP-120A)
(6) Cotton & polyester quilt core (60% cotton, 40% polyester) (KINKAME, model number 480557)
(7) Patchwork quilted cotton (black) (60% polyester, 40% rayon) (manufactured by Japan Vilene Co., Ltd., model number MH-14-BKP)
The upper and lower sides of the fibrous porous material were sandwiched by corrugated cardboard (3 sheets of thickness 8/3 mm), and this was heated at 500 W for 60 seconds. After heating, the material was quickly removed and changes were confirmed. When it was not yet dried, it was quickly returned to the microwave oven (within 15 seconds on average) and further heated at 500 W for 60 seconds. Thereafter, heating was performed in 1 minute increments until the material appeared to change. As soon as smoke or a strange odor was generated from the material, the microwave oven was immediately stopped and the material was taken out.
Further, each material was directly irradiated with microwaves without being sandwiched between cardboards. None of the materials showed any change when irradiated with microwaves for at least 10 minutes.
From Example 5, it was found that any material had heat resistance (microwave resistance).
[Example 8] Analysis of pigment and aroma component of dried body Among the methods of Example 5, parsley dried by the method of the present invention and bay leaves dried by the same method were used for analysis. Examine the moisture content of the sample before and after drying, measure the ascorbic acid content before and after drying for parsley, and the content of 1,8-cineole (eucalyptol) before and after drying for bay leaves. It was measured. The measurement was commissioned to the Japan Food Analysis Center. As a control, measurement was also performed on a sample dried by a freeze-drying method. Measurements were made on 1 to 2 samples.
Water-containing sample Ascorbic acid content parsley (before drying) 0.78%
Parsley (after drying: method of the present invention) 0.79%
Water-containing sample 1,8-Shionel content bay leaves (before drying) 0.77%
Laurel leaves (after drying: freeze-dried) 0.81%
Laurel leaf (after drying: the method of the present invention) 0.79%
The values in the table are based on the weight of a dried product obtained by further drying the sample in the parentheses at 70 ° C. for 5 hours.
As shown in the table, in the method of the present invention, ascorbic acid in parsley and 1,8-cineole in bay leaves were retained without being decomposed.
[Example 9] Drying of microorganism E. coli Dry Escherichia coli ( Escherichia coli IAM1264 strain) was cultured at 27 ° C. for 2 days, suspended in physiological saline so that OD650 = 3, and 8 μl thereof was a thin 6 mm diameter paper. I put it on the disc. The paper disk on which E. coli was placed was sandwiched between crepe paper, wool felt and cardboard, and dried for 30 seconds or 60 seconds using a microwave oven (500 W) for microwave irradiation. After microwave irradiation, preheated for 5 minutes, put a paper disk containing dry Escherichia coli in PYS-2 medium (polypeptone 8g, yeast extract 3g, NaCl 5g dissolved in distilled water 1000ml) and incubate at 27 ° C for 5 days. It was examined whether Escherichia coli grew. Experiments were conducted with and without a protective agent. For those with a protective agent, 10% skim milk and 2% sodium glutamate were added to the cell suspension. The experiment was performed with N = 3.
The results are shown below.
Irradiation time With protective agent Without protective agent 30 seconds 3/3 3/3
60 seconds 3/3 0/3
In the above table, 3/3 indicates that 3 of the 3 samples grew by re-culture after drying (the same applies to the following experiments).
Drying of yeast The above experiment was carried out on yeast ( Saccharomyces cerevisiae JCM7255T) instead of E. coli. However, a commercially available potato dextrose medium was used as the medium.
The results are shown below.
Irradiation time With protective agent Without protective agent 30 seconds 2/3 0/3
60 seconds 0/3 0/3
Storage of dried E. coli E. coli dried with a protective agent at an irradiation time of 30 seconds was stored at 4 ° C. for 5 days, and then examined if it was put into a medium to grow. When N = 3 was examined, E. coli that had been dry-stored in all three experiments was re-cultured and growth was observed.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
本発明の方法によれば、従来の乾燥法に比べ、より迅速にかつ試料を高温にさらすことなく、含水試料をその細胞および組織ならびに含有する有用な成分を破壊しないで乾燥させることができる。本発明の方法により、含水試料の天然状態の栄養成分、色彩および/または芳香を有する乾燥体を得ることができる。また、本発明の方法により微生物を生存させたまま乾燥することができ、微生物の保存方法としても有用である。 According to the method of the present invention, it is possible to dry a water-containing sample without destroying its cells and tissues and useful components contained therein more quickly and without exposing the sample to a high temperature as compared with conventional drying methods. By the method of the present invention, a dried product having a nutrient component, color and / or aroma in a natural state of a water-containing sample can be obtained. Further, the method of the present invention allows the microorganisms to be dried while they are alive, and is useful as a method for preserving microorganisms.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002339618 | 2002-11-22 | ||
JP2002339618 | 2002-11-22 | ||
PCT/JP2003/014928 WO2004048866A1 (en) | 2002-11-22 | 2003-11-21 | Novel method of easily and rapidly drying hydrous sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2004048866A1 JPWO2004048866A1 (en) | 2006-03-23 |
JP4102883B2 true JP4102883B2 (en) | 2008-06-18 |
Family
ID=32375781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004555012A Expired - Lifetime JP4102883B2 (en) | 2002-11-22 | 2003-11-21 | Simple and quick drying method for new water-containing samples |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4102883B2 (en) |
AU (1) | AU2003284431A1 (en) |
WO (1) | WO2004048866A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009107960A (en) * | 2007-10-29 | 2009-05-21 | Yoshio Sugino | Method for drying |
JP4874379B2 (en) * | 2008-10-14 | 2012-02-15 | 正邦 玉木 | Method of pulverizing raw leaves of plants by microwave heating drying method and products of pulverizing fresh leaves |
JP5623714B2 (en) * | 2009-07-17 | 2014-11-12 | 三田 直樹 | Dry-processed plant seeds that can be stored for long periods at room temperature |
JP6179891B2 (en) * | 2013-05-29 | 2017-08-16 | 要 有持 | Production methods, processing methods, processed products and tea |
CN103493801B (en) * | 2013-09-18 | 2015-03-11 | 安徽师范大学 | Method for preparing herbarium specimens |
CN106369941A (en) * | 2016-08-30 | 2017-02-01 | 成都曼巴科技有限公司 | Microwave drying method for leaves and method for using leaves based on microwave drying method |
CN106797936B (en) * | 2017-01-23 | 2020-09-11 | 安徽科技学院 | Method for rapidly making dry leaf specimen of aquatic plant |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2708754B2 (en) * | 1987-09-10 | 1998-02-04 | 宣雄 杉野 | Drying method for pressed flowers |
JP2680321B2 (en) * | 1988-02-09 | 1997-11-19 | 俊幸 杉野 | Pressed flower heating drying method |
JPH07203950A (en) * | 1994-01-26 | 1995-08-08 | Kanegafuchi Chem Ind Co Ltd | Coated phaffia rhodozyma yeast and granulated substance thereof |
JP3644583B2 (en) * | 1999-05-28 | 2005-04-27 | 杉野 宣雄 | Method for producing pressed flower drying mat and pressed flower drying mat |
JP3472794B2 (en) * | 1999-07-02 | 2003-12-02 | 独立行政法人産業技術総合研究所 | Quick drying method of raw sample and storage method of dried body |
JP2001302401A (en) * | 2000-04-26 | 2001-10-31 | Setsuko Nishikawa | Method for producing pressed flower and pressed leaf, and device therefor |
-
2003
- 2003-11-21 AU AU2003284431A patent/AU2003284431A1/en not_active Abandoned
- 2003-11-21 WO PCT/JP2003/014928 patent/WO2004048866A1/en active Application Filing
- 2003-11-21 JP JP2004555012A patent/JP4102883B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
AU2003284431A1 (en) | 2004-06-18 |
JPWO2004048866A1 (en) | 2006-03-23 |
WO2004048866A1 (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6660901B2 (en) | Charcoal skin patch | |
JP4102883B2 (en) | Simple and quick drying method for new water-containing samples | |
KR20140084199A (en) | Improved method and apparatus for growing sprouts | |
CA2909333C (en) | Method for aging meat | |
Higuchi et al. | Development of biorational pest control formulation against longicorn beetles using a fungus, Beauveria brongniartii (Sacc.) Petch | |
CN110651032A (en) | Microbial culture device comprising a dehydrated polysaccharide hydrogel sheet | |
CN1787841A (en) | New product | |
KR100792610B1 (en) | Antibacterial mat using sheath of bamboo shoot | |
JP3472794B2 (en) | Quick drying method of raw sample and storage method of dried body | |
JP5623714B2 (en) | Dry-processed plant seeds that can be stored for long periods at room temperature | |
US5656343A (en) | Method of producing dried plants and other substrates and the product produced thereby | |
KR102066906B1 (en) | Insulation down sheet and manufacturing method thereof | |
CN105795044A (en) | Jujube scented tea and preparation method thereof | |
JP3037522U (en) | Duvet | |
CN201185797Y (en) | Multi-function composite quilt | |
CN108587188A (en) | The preparation method of lysozyme antibiotic film | |
JP5128197B2 (en) | Manufacturing method of sheet material | |
JP2013146268A (en) | Fibrous carrier containing bacillus subtilis and manufacturing method for fermented soybean food product using the same | |
CN104480033B (en) | Application of one plant of Paenibacillus polymyxa bacterial strain on vegetables and fruits are fresh-keeping | |
JPH062537Y2 (en) | Sheet for covering plants | |
JP6903333B2 (en) | Insulation sheet with sterilization and deodorant function and its manufacturing method | |
CN101766291A (en) | Method for preparing miniature active ginseng slices | |
CN107279265A (en) | The preparation method of crisp sweet grape | |
JP2003213553A (en) | Substrate sprayed with functional powder-containing slurry and method for producing the same | |
CN107136450A (en) | The preparation method of crisp sweet tea carrot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4102883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |