JP4102878B2 - High-temperature circulating fluidized bed particle velocity measuring device - Google Patents

High-temperature circulating fluidized bed particle velocity measuring device Download PDF

Info

Publication number
JP4102878B2
JP4102878B2 JP2004040676A JP2004040676A JP4102878B2 JP 4102878 B2 JP4102878 B2 JP 4102878B2 JP 2004040676 A JP2004040676 A JP 2004040676A JP 2004040676 A JP2004040676 A JP 2004040676A JP 4102878 B2 JP4102878 B2 JP 4102878B2
Authority
JP
Japan
Prior art keywords
temperature
fluidized bed
supply pipe
particles
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004040676A
Other languages
Japanese (ja)
Other versions
JP2005233460A (en
Inventor
博之 幡野
善三 鈴木
聡 松田
浩司 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004040676A priority Critical patent/JP4102878B2/en
Publication of JP2005233460A publication Critical patent/JP2005233460A/en
Application granted granted Critical
Publication of JP4102878B2 publication Critical patent/JP4102878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、粒子を用いた流動層により高温のガスを発生させるガス化装置、或いは流動層を用いた燃焼装置等における、高温循環流動層の粒子移動速度を測定するための高温循環流動層内粒子循環速度測定する装置に関する。 The present invention relates to the inside of a high-temperature circulating fluidized bed for measuring the particle moving speed of a high-temperature circulating fluidized bed in a gasifier that generates high-temperature gas by a fluidized bed using particles, or a combustion apparatus that uses a fluidized bed. on that equipment be measured particle circulation rate.

粒子を流動状態にしてその中に種々の物質を混入させ、その物質の処理を行う流動層利用処理装置が各種の分野で用いられており、特に粒子を高温にしてその中に物質を混入させて高温処理を行うことは石炭燃焼装置、石炭ガス化装置として、或いは廃棄物処理装置として、更には各種物質の乾燥装置として利用されている。   Fluidized bed utilizing treatment equipment is used in various fields in which particles are put into a fluidized state and various substances are mixed therein, and the substances are treated. In particular, the particles are mixed with substances at high temperatures. The high-temperature treatment is used as a coal combustion device, a coal gasification device, as a waste treatment device, or as a drying device for various substances.

図3には従来の流動層を利用した廃棄物熱分解ガス化炉の一例を模式的に示しており、ガス化炉1内に粒子状の流動媒体2を収容し、下方に配置した空気吹き込みノズル3から空気を流動粒子2内に高圧で供給し、流動粒子2を流動状態にしている。ガス化炉1の側壁からは樹脂材等の廃棄物4が流動状態の流動粒子2内に供給され、最初の着火後はその燃焼反応熱によって流動粒子2等が加熱される。その結果、廃棄物4の一部の燃焼反応が継続し、ガス化炉1内に投入された廃棄物4は炉内を高温の流動粒子2と共に高温循環流動層を形成し、炉内で攪拌混合されながら循環しつつ分解してガス化する。   FIG. 3 schematically shows an example of a waste pyrolysis gasification furnace using a conventional fluidized bed, in which a particulate fluidized medium 2 is accommodated in the gasification furnace 1, and an air blower disposed below is disposed. Air is supplied from the nozzle 3 into the fluidized particles 2 at a high pressure so that the fluidized particles 2 are in a fluid state. Waste 4 such as a resin material is supplied from the side wall of the gasification furnace 1 into the fluidized particles 2 in a fluid state, and after the first ignition, the fluidized particles 2 and the like are heated by the combustion reaction heat. As a result, a part of the combustion reaction of the waste 4 continues, and the waste 4 thrown into the gasification furnace 1 forms a high-temperature circulating fluidized bed together with the high-temperature fluidized particles 2 in the furnace and is stirred in the furnace. It is decomposed and gasified while circulating while being mixed.

ガス化炉1内における上記のような燃焼反応による燃焼排気ガス及び分解ガスは流動粒子及び燃焼残滓と共に炉内を上昇し、上部の排出口5からサイクロン式固気分離器6に入り、ここで流動粒子2を主成分とする固形物を分離して落下させ、その下方に配置される貯留室であり、また逆流循環防止室であるループシール室7内に貯留される。このような固気分離器6からその下方の室内に流動粒子が移動する部分はダウンカマー部8と称される。   Combustion exhaust gas and cracked gas due to the combustion reaction as described above in the gasification furnace 1 rise in the furnace together with fluid particles and combustion residue, and enter the cyclone solid-gas separator 6 from the upper discharge port 5. A solid material mainly composed of the fluidized particles 2 is separated and dropped, and is stored in a loop seal chamber 7 which is a storage chamber disposed below and is a backflow circulation prevention chamber. The part where the fluid particles move from the solid-gas separator 6 into the lower chamber is referred to as a downcomer section 8.

ループシール室7内の流動粒子2は、流動粒子導入孔9から再びガス化炉1内に導入され、前記作動を繰り返して循環する。また、サイクロン式固気分離器6の上部の排気口10からは分解ガスを主成分とするガスが排出され、ガスタービンやボイラー用燃焼器の燃料等に用いられ、それにより発電、更には温水供給等によるエネルギーの有効利用が図られる。   The fluidized particles 2 in the loop seal chamber 7 are again introduced into the gasification furnace 1 from the fluidized particle introduction holes 9 and circulate by repeating the above-described operation. A gas mainly composed of cracked gas is discharged from an exhaust port 10 at the top of the cyclone solid-gas separator 6 and used as fuel for a gas turbine or a boiler combustor, thereby generating electric power and further hot water. Effective use of energy by supply etc. is planned.

このような高温循環流動層による処理に際しては、流動粒子がどのように流動しているかを知ることは、所望の処理制御を行うために極めて重要であり、特に上記のような処理の継続によって、廃棄物の固形成分が次第に流動粒子内に混入し、流動物質が増加する一方、本来の流動粒子は次第に微細化して粉状になり、ガスと共に外部に排出されることにより減少する。これらの状態は廃棄物の種類やガス化炉1内の処理状態によって大きく異なるため、ガス化炉内で所望のガス化処理を行うためには現在流動している流動媒体の量を検出することにより、流動粒子の追加或いは抜き取り、廃棄物投入量の調整、炉内空気供給量の調整等の制御を行うことが重要となる。   In such a high-temperature circulating fluidized bed process, it is extremely important to know how the fluidized particles are flowing in order to perform desired process control. The solid component of the waste is gradually mixed into the fluidized particles and the fluidized material is increased. On the other hand, the original fluidized particles are gradually refined into a powder and are reduced by being discharged to the outside together with the gas. Since these states vary greatly depending on the type of waste and the treatment state in the gasification furnace 1, in order to perform a desired gasification treatment in the gasification furnace, the amount of the fluid medium that is currently flowing must be detected. Therefore, it is important to perform control such as addition or extraction of fluidized particles, adjustment of waste input amount, adjustment of furnace air supply amount, and the like.

上記のように流動粒子の循環量を検出する手段として種々の手法が提案され、用いられており、ガス化炉内の流動粒子を直接検出することもあるが、流動粒子の循環路において最も安定的に流動しているダウンカマー部8において流下する流動粒子の速度を測定することにより、ガス化炉1内において単位時間内に存在する流動粒子の量を検出することも行われている。   As described above, various methods have been proposed and used as means for detecting the circulating amount of fluidized particles, and the fluidized particles in the gasifier may be detected directly, but the most stable in the fluidized particle circulation path. The amount of flowing particles present in a unit time in the gasification furnace 1 is also detected by measuring the velocity of the flowing particles flowing down in the downcomer section 8 that is flowing.

ダウンカマー部8における流動粒子の速度を検出するには、例えば光電センサや光電スイッチ、赤外線センサ、レーザセンサなどの光センサを用いることが提案されている。また、ダウンカマー部下方のループシール室内に存在する流動粒子等の重量をロードセルによって計測することも提案されている(特開2003−185116号公報)。
特開2003−185116号公報
In order to detect the velocity of the flowing particles in the downcomer unit 8, it has been proposed to use an optical sensor such as a photoelectric sensor, a photoelectric switch, an infrared sensor, or a laser sensor. It has also been proposed to measure the weight of fluid particles and the like present in the loop seal chamber below the downcomer section with a load cell (Japanese Patent Laid-Open No. 2003-185116).
JP 2003-185116 A

高温循環流動層における粒子循環速度を測定する手法として前記のように種々の方法が提案されているが、いずれも高温で信頼性のある実用的な粒子循環量測定方法としては不十分であり、その手法は未だ確立しておらず、より信頼性のある実用的な粒子循環量の測定手法の開発が望まれている。特に光センサを用いる手法においては、燃焼炉では粒子の発光を利用してダウンカマーにおける降下速度が測定できるが、比較的低温で反応処理が行われるガス化炉では発光がそれほど大きくなく、そのままでは利用することができない。また、歪ゲージ等によって重量測定する場合には、センサの温度依存性が高く、補正が難しいという問題がある。   Various methods have been proposed as described above as a method for measuring the particle circulation rate in the high-temperature circulating fluidized bed, but both are insufficient as a reliable and practical method for measuring the amount of particle circulation at high temperatures, The method has not yet been established, and the development of a more reliable and practical method for measuring the amount of particle circulation is desired. In particular, in the method using an optical sensor, the rate of descent at the downcomer can be measured by using the light emission of particles in a combustion furnace, but the light emission is not so large in a gasification furnace where the reaction process is performed at a relatively low temperature. It cannot be used. Further, when measuring the weight with a strain gauge or the like, there is a problem that the temperature dependency of the sensor is high and correction is difficult.

したがって本発明は、高温循環流動層における粒子の循環速度を確実に、且つ容易に測定することができ、特に炉内の発光性に依存せず、比較的低温のガス化炉にも適用することができる高温循環流動層における粒子循環速度測定装置を提供することを目的とする。 Therefore, the present invention can reliably and easily measure the circulation rate of particles in a high-temperature circulating fluidized bed, and is not particularly dependent on the light emission in the furnace, and can be applied to a relatively low temperature gasification furnace. and to provide a particle circulation rate measuring TeiSo location at high temperature circulating fluidized bed that can.

本発明に係る高温循環流動層内粒子循環速度測定装置は、上記課題を解決するため、流動粒子と処理物質を流動状態で高温処理する高温循環流動層と、前記高温循環流動層の上部からの前記流動粒子と気体成分とを分離する分離器と、前記分離器から前記高温循環流動層の下部に前記分離器で分離した流動粒子を戻すダウンカマー部とにより流動粒子を循環させる流動粒子の循環路中に、その上流側から順に冷熱供給管と、酸素供給管と、上流側光学繊維プローブと、下流側光学繊維プローブとを互いに間隔を有して配置し、前記冷熱供給管と酸素供給管のいずれかを選択して用いることを特徴とする。 In order to solve the above-mentioned problem, the high-temperature circulating fluidized bed particle circulation velocity measuring apparatus according to the present invention provides a high-temperature circulating fluidized bed for high-temperature treatment of fluidized particles and a processing substance in a fluidized state, and Circulation of fluidized particles that circulates fluidized particles by a separator that separates the fluidized particles and gas components, and a downcomer unit that returns the fluidized particles separated by the separator from the separator to a lower part of the high-temperature circulating fluidized bed. A cooling heat supply pipe, an oxygen supply pipe , an upstream optical fiber probe, and a downstream optical fiber probe are arranged in the path at intervals from the upstream side, and the cold supply pipe and the oxygen supply pipe Any one of the above is selected and used .

本発明に係る他の高温循環流動層内粒子循環速度測定装置は、前記高温循環流動層内粒子循環速度測定装置において、前記熱供給源と上流側光学繊維プローブと下流側光学繊維プローブとを前記ダウンカマー部に配置したものである。   Another high-temperature circulating fluidized bed particle circulating velocity measuring device according to the present invention is the high-temperature circulating fluidized bed particle circulating velocity measuring device, wherein the heat supply source, the upstream optical fiber probe, and the downstream optical fiber probe are It is arranged in the downcomer section.

本発明に係る他の高温循環流動層内粒子循環速度測定装置は、前記高温循環流動層内粒子循環速度測定装置において、前記熱供給源は、内部に低温ガスを流す冷熱供給管としたものである。   Another high-temperature circulating fluidized bed particle circulating velocity measuring device according to the present invention is the above-described high-temperature circulating fluidized bed particle circulating velocity measuring device, wherein the heat supply source is a cold supply pipe for flowing a low-temperature gas therein. is there.

本発明に係る他の高温循環流動層内粒子循環速度測定装置は、前記高温循環流動層内粒子循環速度測定装置において、前記低温ガスを低温の窒素ガスとしたものである。   Another high-temperature circulating fluidized bed particle circulating velocity measuring device according to the present invention is the high-temperature circulating fluidized bed particle circulating velocity measuring device, wherein the low-temperature gas is a low-temperature nitrogen gas.

本発明は上記のように構成したので、高温循環流動層における粒子の循環速度を確実に、且つ容易に測定することができる。特に炉内の発光性に依存しないため、比較的低温のガス化炉にも適用可能となるという利点がある。   Since this invention was comprised as mentioned above, the circulation speed of the particle | grains in a high temperature circulating fluidized bed can be measured reliably and easily. In particular, since it does not depend on the light emission in the furnace, there is an advantage that it can be applied to a gasifier having a relatively low temperature.

本発明は、粒子の循環速度を確実に、且つ容易に測定し、特に炉内の発光性に依存せず比較的低温のガス化炉にも適用可能とするため、流動粒子と処理物質を流動状態で高温処理する高温循環流動層と、前記高温循環流動層の上部からの前記流動粒子と気体成分とを分離する分離器と、前記分離器から前記高温循環流動層の下部に前記分離器で分離した流動粒子を戻すダウンカマー部とにより流動粒子を循環させる流動粒子の循環路中に、その上流側から順に冷熱供給管と、酸素供給管と、上流側光学繊維プローブと、下流側光学繊維プローブとを互いに間隔を有して配置し、前記冷熱供給管と酸素供給管のいずれかを選択して用いることによって解決した。 The present invention reliably and easily measures the circulation rate of the particles, and can be applied to a relatively low temperature gasification furnace without depending on the light emission in the furnace. A high-temperature circulating fluidized bed for high-temperature treatment in a state; a separator for separating the fluidized particles and gas components from the upper part of the high-temperature circulating fluidized bed; and the separator from the separator to the lower part of the hot circulating fluidized bed. In the circulation path of the fluidized particles that circulate the fluidized particles by the downcomer unit that returns the separated fluidized particles, the cooling heat supply tube, the oxygen supply tube , the upstream optical fiber probe, and the downstream optical fiber in that order from the upstream side The problem has been solved by arranging the probes at intervals and selecting and using either the cold supply pipe or the oxygen supply pipe .

図1は前記図2に示したような高温循環流動層を用いる外部循環型流動床ガス化炉における、ダウンカマー部8に本発明の実施例を適用した例を示しており、前記のように固気分離器で分離された固形分、即ち、流動粒子を主成分とする流動媒体が図1(a)中上方から下方に流下する部分を示している。   FIG. 1 shows an example in which the embodiment of the present invention is applied to a downcomer section 8 in an external circulation type fluidized bed gasification furnace using a high-temperature circulating fluidized bed as shown in FIG. The part which the solid content isolate | separated with the solid-gas separator, ie, the fluid medium which has a fluid particle as a main component, flows down from the upper direction in Fig.1 (a) is shown.

図1に示す例においては、前記ダウンカマー部8の上流側から順に、流動粒子冷却用の冷熱源供給管15等の冷熱供給源、流動粒子を加熱するため流動粒子中に酸素を吹き込んで酸化させて高温化し、周囲の未燃成分や発生ガスの一部を燃焼させて流動粒子を加熱する酸素供給管16、前記酸素供給管16の下方L1の距離、また前記冷熱源供給管15からL2の距離に配置した上流側温度検出用光ファイバー17、その上流側温度検出用光ファイバー17から距離Lv下流の位置に下流側温度検出用光ファイバー18とを配置しており、温度検出用に光学繊維プローブとしての光ファイバーを利用している。   In the example shown in FIG. 1, in order from the upstream side of the downcomer section 8, a cooling heat source such as a cooling heat source supply pipe 15 for cooling the fluidized particles, and oxygen are blown into the fluidized particles to heat the fluidized particles. The oxygen supply pipe 16 that heats the flowing particles by burning a part of surrounding unburned components and generated gas, the distance L1 below the oxygen supply pipe 16, and the cold heat source supply pipe 15 to L2 An upstream temperature detecting optical fiber 17 arranged at a distance of L2 and a downstream temperature detecting optical fiber 18 at a distance Lv downstream from the upstream temperature detecting optical fiber 17 are arranged as an optical fiber probe for temperature detection. Of optical fiber.

冷熱源供給管15に対してはバルブ19を解放することにより冷却されている窒素ガスを、或いはバルブ23を解放することにより冷却用の水を供給可能とし、窒素ガスや水の供給時には冷熱源供給管15等の冷却によってその周囲を流下する流動粒子を冷却する。また、酸素供給管16に対してはバルブ20を開放することにより酸素、或いは空気を供給し、管に形成したノズル孔21から酸素或いは空気をダウンカマー部8内に噴出し、燃焼等の酸化反応によってこの部分を流下する流動粒子を瞬時に加熱することができる。   The cooling heat source supply pipe 15 can be supplied with nitrogen gas cooled by opening the valve 19 or with cooling water by releasing the valve 23. When supplying nitrogen gas or water, the cooling heat source is supplied. The flowing particles flowing down around the supply pipe 15 and the like are cooled. In addition, oxygen or air is supplied to the oxygen supply pipe 16 by opening the valve 20, and oxygen or air is injected into the downcomer section 8 from a nozzle hole 21 formed in the pipe to oxidize combustion or the like. The flowing particles flowing down this part by the reaction can be heated instantaneously.

上流側温度検出用光ファイバー17と下流側温度検出用光ファイバー18は共に、従来より広く用いられている光ファイバー式温度計測装置の光ファイバーをここに配置する。光ファイバー式温度計測装置としては種々のものが使用できるが、例えば特開2000−54013号公報に示されたような、高温の炉内の温度を測定する光ファイバー式温度測定装置を用いることができるが、比較的低温の物質でもその放射光を検出して温度を測定できるものが好ましい。   Both the upstream temperature detecting optical fiber 17 and the downstream temperature detecting optical fiber 18 are optical fibers of an optical fiber type temperature measuring device that has been widely used heretofore. Various optical fiber temperature measuring devices can be used. For example, an optical fiber temperature measuring device for measuring the temperature in a high-temperature furnace as disclosed in Japanese Patent Application Laid-Open No. 2000-54013 can be used. Even a relatively low temperature substance that can detect the radiation and measure the temperature is preferable.

上記のような装置において、その使用に際しては、流動粒子を冷却するときには、バルブを開放して冷熱源供給管内に冷却された窒素ガスや水を供給する。それにより冷熱源供給管15等は直ちに冷却され、周囲の流動粒子を主成分とする流動媒体を冷却する。このように冷却された流動媒体は降下し、上流側温度検出用光ファイバー17の周囲に到達するとき、上流側温度検出用光ファイバー17は周囲の流動媒体の急激な温度低下を検出する。更に、前記冷却された流動媒体が降下して下流側温度検出用光ファイバー18の周囲に到達すると、ここでも周囲の流動媒体の輝度変化から急激な温度低下を検出する。流動粒子はステファンボルツマン則により数百℃でも輻射によってかなりの光が放出されており、温度差によって輻射光の波長分布が異なるので、上記のような温度低下を容易に検出することができる。   In the apparatus as described above, when cooling the flowing particles, the valve is opened to supply the cooled nitrogen gas or water into the cold heat source supply pipe. Thereby, the cold heat source supply pipe 15 and the like are immediately cooled, and the fluid medium mainly composed of surrounding fluid particles is cooled. The fluid medium cooled in this manner descends and reaches the periphery of the upstream temperature detection optical fiber 17, and the upstream temperature detection optical fiber 17 detects a rapid temperature drop of the surrounding fluid medium. Further, when the cooled fluid medium descends and reaches the periphery of the downstream temperature detecting optical fiber 18, a rapid temperature drop is detected from the luminance change of the surrounding fluid medium. The flowing particles emit a considerable amount of light by radiation even at several hundreds of degrees C. according to the Stefan-Boltzmann rule, and the wavelength distribution of the radiation light varies depending on the temperature difference, so that the above temperature drop can be easily detected.

上流側温度検出用光ファイバー17と下流側温度検出用光ファイバー18との距離Lvは予め正確に計測しているので、上流側温度検出用光ファイバー17で温度低下を検出してから下流側温度検出用光ファイバー18で温度低下を検出するまでの時間差を測定することにより、ダウンカマー部8を流下する流動粒子の速度を検出することができる。また、このような流動粒子の速度の検出により、単位時間に循環流動している流動粒子等の流動媒体の量を知ることができ、それにより流動粒子の追加供給、或いは抜き出しの調整を行い、必要に応じてガス化炉内に投入する処理用廃棄物の量の制御も行うことができる。   Since the distance Lv between the upstream temperature detecting optical fiber 17 and the downstream temperature detecting optical fiber 18 is accurately measured in advance, the downstream temperature detecting optical fiber 17 is detected after the temperature drop is detected by the upstream temperature detecting optical fiber 17. By measuring the time difference until the temperature drop is detected at 18, the velocity of the flowing particles flowing down the downcomer portion 8 can be detected. In addition, by detecting the velocity of such fluidized particles, the amount of fluidized media such as fluidized particles that circulate and flow per unit time can be known, thereby performing additional supply of fluidized particles or adjustment of extraction, If necessary, it is possible to control the amount of processing waste put into the gasification furnace.

一方、ダウンカマー部を流下する流動粒子の速度を検出するに際し、前記のような冷熱供給源を用いないときには、バルブ20を開いて酸素供給管16に爆発下限界以下の酸素、或いは空気を供給し、ノズル孔21からダウンカマー部8内に噴出させる。それによりノズル孔21周囲のガスが着火燃焼し、あるいは流動粒子等がその温度によって局所的に急激に酸化して流動粒子等は直ちに加熱されて高温になる。   On the other hand, when detecting the velocity of the flowing particles flowing down the downcomer portion, when not using the cold source as described above, the valve 20 is opened and oxygen or air below the lower explosion limit is supplied to the oxygen supply pipe 16. Then, it is ejected from the nozzle hole 21 into the downcomer portion 8. As a result, the gas around the nozzle hole 21 is ignited and burned, or the fluid particles etc. are locally and rapidly oxidized by the temperature, and the fluid particles etc. are immediately heated to a high temperature.

このようにして高温になった流動粒子等の流動媒体は降下し、前記と同様に上流側温度検出用光ファイバー17の周囲に到達するとき、上流側温度検出用光ファイバー17は周囲の流動媒体の輝度変化から急激な温度上昇を検出する。更に、前記加熱された流動媒体が降下して下流側温度検出用光ファイバー18の周囲に到達すると、ここでも周囲の流動媒体の急激な温度上昇をその輝度変化によって検出する。それにより、上流側温度検出用光ファイバー17と下流側温度検出用光ファイバー18との距離Lvを通るのに要する流動粒子の時間を測定することにより、ダウンカマー部8を流下する流動粒子の速度を検出することができ、前記と同様の各種制御にこれを用いることができる。   The fluid medium such as fluid particles that have become high in this manner descends, and when reaching the periphery of the upstream temperature detection optical fiber 17 in the same manner as described above, the upstream temperature detection optical fiber 17 has a brightness of the surrounding fluid medium. A rapid temperature rise is detected from the change. Further, when the heated fluid medium falls and reaches the periphery of the downstream-side temperature detecting optical fiber 18, a rapid temperature rise of the surrounding fluid medium is again detected by the change in luminance. Accordingly, the velocity of the flowing particles flowing down the downcomer portion 8 is detected by measuring the time of the flowing particles required to pass the distance Lv between the upstream temperature detecting optical fiber 17 and the downstream temperature detecting optical fiber 18. And can be used for various controls similar to those described above.

図1に示すように、冷熱供給源としての冷熱供給管15等と、温熱供給源としての酸素供給管16を両方配置して、必要に応じていずれかを選択して使用する場合には、冷熱供給管を上流に配置し、酸素供給管16の使用時に高温に晒されないようにする。また、図1に示す例においては冷熱供給管15等の冷熱供給源と酸素供給管16の両方を予め設けた例を示したが、いずれか片方を選択して配置し、それのみを用いて測定しても良いことは当然である。   As shown in FIG. 1, when both the cold supply pipe 15 and the like as a cold supply source and the oxygen supply pipe 16 as a hot supply source are arranged and any one is selected and used as necessary, A cold heat supply pipe is disposed upstream so that the oxygen supply pipe 16 is not exposed to high temperatures when used. Further, in the example shown in FIG. 1, an example in which both the cold heat supply source such as the cold heat supply pipe 15 and the oxygen supply pipe 16 are provided in advance is shown, but either one is selected and arranged, and only that is used. Of course, it may be measured.

冷熱供給管への窒素の供給等の冷熱供給、及び酸素供給管16への酸素の供給は、前記のような温度計測を行うために必要な短時間のみで充分であり、したがって各管のバルブはパルス作動的な短時間の開放のみで前記速度検出を行うことができる。   The supply of cold heat, such as the supply of nitrogen to the cold supply pipe, and the supply of oxygen to the oxygen supply pipe 16 are sufficient for only the short time required for the temperature measurement as described above, and therefore the valves of the respective pipes are used. The speed detection can be performed only by a short time opening that is pulse-operated.

また、冷熱供給源及び温熱供給源としては種々の熱源及び各種の熱源供給手段を採用することができ、例えば図2に示すようにダウンカマー部8の上流側に熱源流体供給管22を配置して、バルブ23を開放することにより低温流体或いは高温流体を供給するように構成することもできる。ここで熱源流体供給管22に低温流体を供給するときには、前記図1に示す実施例において冷熱源供給管15に低温の窒素を流したとき等と同様に作用する。また、熱源供給管22に高温流体を供給するときには、前記実施例において酸素供給管16に酸素を供給したときと同様に作用するので、前記と同様に上流側温度検出用光ファイバー16と下流側温度検出用光ファイバー17との温度変化検出時間差から、内部を流下する流動粒子速度を検出する。   Further, various heat sources and various heat source supply means can be adopted as the cold heat supply source and the warm heat supply source. For example, as shown in FIG. 2, a heat source fluid supply pipe 22 is disposed upstream of the downcomer unit 8. Thus, it is possible to supply a low-temperature fluid or a high-temperature fluid by opening the valve 23. Here, when the low-temperature fluid is supplied to the heat source fluid supply pipe 22, it acts in the same manner as when the low-temperature nitrogen is supplied to the cold heat source supply pipe 15 in the embodiment shown in FIG. Further, when the high-temperature fluid is supplied to the heat source supply pipe 22, it acts in the same manner as when oxygen is supplied to the oxygen supply pipe 16 in the above embodiment, so that the upstream-side temperature detecting optical fiber 16 and the downstream-side temperature are the same as described above. From the temperature change detection time difference with the detection optical fiber 17, the velocity of the flowing particles flowing down the inside is detected.

本発明は、高温の流動層の中に処理物質を入れて処理を行う、例えば石炭燃焼装置、石炭ガス化装置、廃棄物処理装置、乾燥装置等の広範囲の分野に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a wide range of fields such as a coal combustion device, a coal gasification device, a waste treatment device, and a drying device that perform processing by putting a processing substance in a high-temperature fluidized bed.

本発明の実施例の説明図であり、(a)は主要部の模式図、(b)は(a)のB−B部分の断面図、(c)は同C−C部分の断面図、(d)は同D−D部分の断面図、(e)は同E−E部分の断面図である。It is explanatory drawing of the Example of this invention, (a) is a schematic diagram of a principal part, (b) is sectional drawing of the BB part of (a), (c) is sectional drawing of the CC part, (D) is sectional drawing of the DD part, (e) is sectional drawing of the EE part. 本発明の他の実施例の模式図である。It is a schematic diagram of the other Example of this invention. 本発明が適用される高温循環流動層を用いたガス化装置の例を示す図である。It is a figure which shows the example of the gasification apparatus using the hot circulating fluidized bed to which this invention is applied.

符号の説明Explanation of symbols

8 ダウンカマー部
15 冷熱源供給管
16 酸素供給管
17 上流側温度検出用光ファイバー
18 下流側温度検出用光ファイバー
19 バルブ
20 バルブ
21 ノズル孔
8 Downcomer section 15 Cold source supply pipe 16 Oxygen supply pipe 17 Optical fiber for upstream side temperature detection 18 Optical fiber for downstream side temperature detection 19 Valve 20 Valve 21 Nozzle hole

Claims (4)

流動粒子と処理物質を流動状態で高温処理する高温循環流動層と、前記高温循環流動層の上部からの前記流動粒子と気体成分とを分離する分離器と、前記分離器から前記高温循環流動層の下部に前記分離器で分離した流動粒子を戻すダウンカマー部とにより流動粒子を循環させる流動粒子の循環路中に、その上流側から順に冷熱供給管と、酸素供給管と、上流側光学繊維プローブと、下流側光学繊維プローブとを互いに間隔を有して配置し、前記冷熱供給管と酸素供給管のいずれかを選択して用いることを特徴とする高温循環流動層内粒子循環速度測定装置。 A high-temperature circulating fluidized bed for high-temperature treatment of the fluidized particles and the processing substance in a fluidized state; a separator for separating the fluidized particles and gas components from the upper part of the high-temperature circulating fluidized bed; and the high-temperature circulating fluidized bed from the separator In the circulation path of the fluidized particles for circulating the fluidized particles by the downcomer part for returning the fluidized particles separated by the separator to the lower part of the tube , a cooling heat supply pipe, an oxygen supply pipe, and an upstream optical fiber in order from the upstream side A high-temperature circulating fluidized bed particle circulation rate measuring device , wherein a probe and a downstream optical fiber probe are arranged with a space therebetween, and either the cold supply pipe or the oxygen supply pipe is selected and used. . 前記冷熱供給管と酸素供給管と上流側光学繊維プローブと下流側光学繊維プローブとを前記ダウンカマー部に配置したことを特徴とする請求項1記載の高温循環流動層内粒子循環速度測定装置。 The high-temperature circulating fluidized bed particle circulation rate measuring apparatus according to claim 1, wherein the cold heat supply pipe, the oxygen supply pipe , the upstream optical fiber probe, and the downstream optical fiber probe are arranged in the downcomer section. 前記冷熱供給管には、内部に低温ガスを流すことを特徴とする請求項1記載の高温循環流動層内粒子循環速度測定装置。 Wherein the cold supply pipe, hot circulating fluidized bed particles circulation rate measuring apparatus according to claim 1, wherein the score flow of cold gas in the interior. 前記低温ガスは低温の窒素ガスであることを特徴とする請求項記載の高温循環流動層内粒子循環速度測定装置。 4. The high-temperature circulating fluidized bed particle circulating velocity measuring apparatus according to claim 3, wherein the low-temperature gas is a low-temperature nitrogen gas.
JP2004040676A 2004-02-17 2004-02-17 High-temperature circulating fluidized bed particle velocity measuring device Expired - Lifetime JP4102878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040676A JP4102878B2 (en) 2004-02-17 2004-02-17 High-temperature circulating fluidized bed particle velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040676A JP4102878B2 (en) 2004-02-17 2004-02-17 High-temperature circulating fluidized bed particle velocity measuring device

Publications (2)

Publication Number Publication Date
JP2005233460A JP2005233460A (en) 2005-09-02
JP4102878B2 true JP4102878B2 (en) 2008-06-18

Family

ID=35016608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040676A Expired - Lifetime JP4102878B2 (en) 2004-02-17 2004-02-17 High-temperature circulating fluidized bed particle velocity measuring device

Country Status (1)

Country Link
JP (1) JP4102878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675211U (en) * 1993-04-02 1994-10-25 久喜 小川 clip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274124B2 (en) 2005-01-11 2009-06-03 株式会社Ihi Method and apparatus for measuring fluid circulation rate of circulating fluidized bed combustion apparatus
JP4667286B2 (en) * 2006-03-30 2011-04-06 日本碍子株式会社 High-temperature flow sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675211U (en) * 1993-04-02 1994-10-25 久喜 小川 clip

Also Published As

Publication number Publication date
JP2005233460A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
CN102171514B (en) Slag melting burner apparatus
JP2008057935A (en) Stoker type incinerator and its combustion control method
RU2670506C2 (en) Start-up torch
JP2009179790A (en) Start-up method for coal gasifier and start-up device
TW212223B (en) Pyrolyzing and incinerating treatment equipment for wastes
KR20110052545A (en) Method and device for igniting and operating burners when gasifying carbon-containing fuels
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
Yang et al. Movement and combustion characteristics of densified rice hull pellets in a fluidized bed combustor at elevated pressures
JP4474429B2 (en) Waste incinerator and incineration method
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
JP4102878B2 (en) High-temperature circulating fluidized bed particle velocity measuring device
JP2008150463A (en) Two-stage entrained bed gasification oven and method for controlling operation of the same
TWI701339B (en) Melting and refining furnace for cold iron source and operation method of melting and refining furnace
EP1956292B1 (en) Secondary combustion method and unit in incineration system
JP3887149B2 (en) Stoker furnace and incineration method using the same
JP2009047318A (en) Operation method of rotary kiln
JP2018040533A (en) Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
Tong et al. Experimental investigation on effects of central air jet on the bluff-body stabilized premixed methane-air flame
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
KR101351962B1 (en) Air supplying device for emergency burning inner cdq chamber and method for supplying air using the same
CN109642726A (en) For the method in the pre- hot fluid in furnace upstream
Zhang Oxy-coal combustion: Stability of coaxial pulverized coal flames in oxygen/carbon dioxide environments
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP5472847B2 (en) Steam volume control device for waste melting furnace equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4102878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term