JP4101843B2 - Heat source device and control method thereof - Google Patents

Heat source device and control method thereof Download PDF

Info

Publication number
JP4101843B2
JP4101843B2 JP2006014069A JP2006014069A JP4101843B2 JP 4101843 B2 JP4101843 B2 JP 4101843B2 JP 2006014069 A JP2006014069 A JP 2006014069A JP 2006014069 A JP2006014069 A JP 2006014069A JP 4101843 B2 JP4101843 B2 JP 4101843B2
Authority
JP
Japan
Prior art keywords
heat
hot water
heating
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006014069A
Other languages
Japanese (ja)
Other versions
JP2006112785A (en
Inventor
浩 市川
秀人 小池
貴也 太田
幹雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2006014069A priority Critical patent/JP4101843B2/en
Publication of JP2006112785A publication Critical patent/JP2006112785A/en
Application granted granted Critical
Publication of JP4101843B2 publication Critical patent/JP4101843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、単一の熱源により暖房、給湯、浴槽追焚等の多用途化を実現した熱源装置及びその制御方法に関する。
The present invention relates to a heat source device that realizes versatility such as heating, hot water supply, bath tub retreat, and the like by a single heat source, and a control method thereof.

ガスや石油等の燃焼熱を加熱源とする給湯装置は給湯と浴槽水の追焚に用いられている。また、給湯装置で得られる温水を暖房熱源に用いた暖房装置が実用化されている。給湯と浴槽追焚とを併用する給湯装置として、特開昭57−184850号「風呂追焚き装置を備えた給湯装置」等があり、これは、温水循環させるボイラと、循環管路に分岐してそれぞれ給湯用熱交換器と追焚用熱交換器とを配置し、分配弁を動作させて給湯用もしくは追焚用の熱交換器へ温水を流して、給湯又は暖房を独立して作動させているにすぎない。また、暖房と給湯とを併用したものとして、特開平11−108442号「燃焼装置」等がある。これは、上水を熱交換器によって加熱し、その一部を循環させる給湯装置で、給湯循環路に暖房用熱交換器と追焚用熱交換器を付設して、上水の持つ熱量を利用して暖房及び追焚を行うことができる。
特開昭57−184850号公報 特開平11−108442号公報
A hot water supply apparatus that uses combustion heat of gas, oil, or the like as a heating source is used for the hot water and bath water. In addition, a heating apparatus using hot water obtained by a hot water supply apparatus as a heating heat source has been put into practical use. As a hot water supply device using both hot water supply and bath tub retreat, there is JP-A-57-184850 “hot water supply device equipped with a bath renewal device”, etc., which is divided into a boiler for circulating hot water and a circulation line. A heat exchanger for hot water supply and a heat exchanger for reheating are respectively arranged, the distribution valve is operated, hot water is supplied to the heat exchanger for hot water supply or reheating, and hot water supply or heating is operated independently. It ’s just that. Japanese Patent Application Laid-Open No. 11-108442 “Combustion device” and the like are a combination of heating and hot water supply. This is a hot water supply device that heats clean water with a heat exchanger and circulates a part of it. A heating heat exchanger and a heat exchanger for heating are installed in the hot water supply circuit, and the amount of heat of the clean water is reduced. It can be used for heating and memorial.
JP-A-57-184850 JP-A-11-108442

ところで、暖房、給湯、浴槽追焚等を実現するには、熱交換器、燃焼部及びファンモータその他の附属機器を設置し、暖房、給湯及び追焚を連動させるための管路が複雑化する。このため、給湯設備が大型化、大重量化し、設置スペースの確保や複数の作業者による作業が必要である。   By the way, in order to realize heating, hot water supply, bath tub retreat, etc., a heat exchanger, a combustor, a fan motor and other attached devices are installed, and the pipeline for linking heating, hot water supply and retreat is complicated. . For this reason, the hot water supply facilities are increased in size and weight, and it is necessary to secure an installation space and work by a plurality of workers.

斯かる要請に対し、本発明者は、熱源の単一化及び配管構成の簡略化とともに単一の熱源で暖房、給湯、浴槽追焚等の多用途、多機能化を実現した熱源装置を提案している。   In response to such a request, the present inventor has proposed a heat source device that realizes multi-purpose and multi-functionality such as heating, hot water supply, bath tub retreat, etc. with a single heat source while simplifying the heat source and piping configuration. is doing.

そこで、本発明の目的は、斯かる熱源装置に関し、出湯側で高温水と水とを混合する混合弁の動作異常の継続を防止することにある。 Therefore, purpose of the present invention relates to such a heat source device, it is to prevent the abnormal operation of the continuous mixing valve for mixing the hot water and water tapping side.

記目的を達成するため、本発明の第1の側面は、熱媒を溜めるタンクと、前記熱媒を循環させる暖房負荷と、第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、熱源と、前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、前記第1の熱交換手段の入側における前記主回路に設置されて前記タンクの前記熱媒を前記主回路側に流すポンプと、前記第2の熱交換手段により加熱された前記給湯水と上水とを混合させる混合弁と、前記混合弁の動作異常を検出する検出手段と、暖房要求、給湯要求又は浴槽水加熱要求を受け、暖房要求により前記第1の開閉弁、給湯要求により前記第2の開閉弁、浴槽水加熱要求により前記第3の開閉弁を開くとともに前記ポンプを駆動し、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し、前記暖房要求、前記給湯要求及び前記浴槽水加熱要求が必要とする熱量を求め、この熱量に応じて前記ポンプの回転数を制御するとともに、前記検出手段が前記混合弁の動作異常を検出した場合に、前記第2の熱交換手段に対する前記熱媒の循環動作、前記熱源の加熱動作、又は出湯動作の何れかの動作又は2以上の動作を停止させる制御手段とを備えることである。 To achieve the above Symbol object, a first aspect of the present invention includes a tank for storing the heating medium, and heating load for circulating the heating medium, comprising a first on-off valve, the first on-off valve is opened The heat medium is circulated from the tank to the heating load and returned to the tank, the heat source, and the heat medium connected to the main circuit is circulated to heat the heat source to the heat. A first heat exchanging means for exchanging heat with the medium; a second on-off valve branched from the outlet side of the first heat exchanging means of the main circuit and directly connected to the tank; When the valve is opened, the heating medium flows from the main circuit and is returned to the tank, and the hot water supply and heating circuit is connected to the hot water supply and heating circuit, and the heat of the heating medium flowing through the hot water supply and heating circuit is heated. A second heat exchanging means for exchanging heat with water and a branch from the outlet side of the first heat exchanging means of the main circuit And a third on-off valve directly connected to the tank, and when the third on-off valve is opened, the heating medium flows from the main circuit and returns to the tank. A third heat exchanging means connected to the additional heat circuit and exchanging heat of the heat medium flowing through the additional heat circuit to the bath water; and the main heat input side of the first heat exchanging means. A pump installed in a circuit for flowing the heating medium of the tank to the main circuit side, a mixing valve for mixing the hot water and hot water heated by the second heat exchange means, and a mixing valve Detection means for detecting an operation abnormality and a heating request, a hot water supply request or a bath water heating request, the first on-off valve by a heating request, the second on-off valve by a hot water request, and the third on by a bath water heating request. Open the on-off valve and drive the pump, and the first on-off valve The heating medium of the tank is flowed to the heating load through the first heat exchange means in the main circuit, and when the second on-off valve is opened, the heating medium of the tank is When the third on-off valve is opened, the heat medium in the tank is transferred to the first heat exchange means through the first heat exchange means in the main circuit. Flowing through the heat exchange means to the third heat exchange means and returning it to the tank, the amount of heat required by the heating request, the hot water supply request and the bath water heating request is obtained, and the rotation speed of the pump is determined according to the amount of heat. And when the detection means detects an abnormal operation of the mixing valve, any one of the circulation operation of the heating medium, the heating operation of the heat source , or the hot water operation for the second heat exchange means Or stop two or more actions It is to comprise a that control means.

また、上記目的を達成するため、本発明の第2の側面は、熱媒を溜めるタンクと、前記熱媒を循環させる暖房負荷と、第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、熱源と、前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、前記第1の熱交換手段の入側における前記主回路に設置されて前記タンクの前記熱媒を前記主回路側に流すポンプと、前記第2の熱交換手段により加熱された前記給湯水と上水とを混合させる混合弁と、前記混合弁の動作異常を検出する検出手段と、前記第1の開閉弁、前記第2の開閉弁、前記第3の開閉弁、前記ポンプの駆動、前記ポンプを制御する制御手段とを含む熱源装置の制御方法であって、暖房要求、給湯要求又は浴槽水加熱要求を受け、暖房要求により前記第1の開閉弁、給湯要求により前記第2の開閉弁、浴槽水加熱要求により前記第3の開閉弁を開くとともに前記ポンプを駆動し、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し、前記暖房要求、前記給湯要求及び前記浴槽水加熱要求が必要とする熱量を求め、この熱量に応じて前記ポンプの回転数を制御するとともに、前記検出手段が前記混合弁の動作異常を検出した場合に、前記第2の熱交換手段に対する前記熱媒の循環動作、前記熱源の加熱動作、又は出湯動作の何れかの動作又は2以上の動作を停止させる処理を含むことである。 In order to achieve the above object, a second aspect of the present invention includes a tank for storing a heat medium, a heating load for circulating the heat medium, and a first on-off valve, When opened, the heating medium is circulated from the tank to the heating load, returned to the tank, a main circuit, a heat source, connected to the main circuit, the heating medium is circulated, and the heat of the heat source is A first heat exchanging means for exchanging heat with the heat medium; a second on-off valve branched from the outlet side of the first heat exchanging means of the main circuit and directly connected to the tank; When the on-off valve is opened, the heating medium flows from the main circuit and is returned to the tank.The hot water heating circuit is connected to the hot water heating circuit, and the heat of the heating medium flowing through the hot water heating circuit is A second heat exchanging means for exchanging heat with hot water, and an outlet side of the first heat exchanging means of the main circuit. A third on-off valve that is branched and directly connected to the tank, and when the third on-off valve is opened, the heating medium flows from the main circuit and returns to the tank; Third heat exchange means connected to the additional heat circuit and exchanging heat of the heat medium flowing through the additional heat circuit to bath water, and the inlet side of the first heat exchange means A pump installed in the main circuit to flow the heating medium of the tank to the main circuit side, a mixing valve for mixing the hot water and hot water heated by the second heat exchange means, and the mixing valve Control of the heat source device, including detection means for detecting an operation abnormality of the first and second on-off valves, the second on-off valve, the third on-off valve, driving of the pump, and control means for controlling the pump a method, heating demand, receiving the hot water demand or bath water heating demand, the heating demand When the first on-off valve is opened, the second on-off valve is opened by a hot water supply request, the third on-off valve is opened by a bath water heating request, the pump is driven, and the first on-off valve is opened. The heating medium in the tank is in the main circuit when the second on-off valve is opened by flowing the heating medium in the tank to the heating load through the first heat exchange means in the main circuit. When flowing through the first heat exchanging means to the second heat exchanging means, and the third on-off valve is opened, the heat medium in the tank is passed through the first heat exchanging means in the main circuit. While flowing to the third heat exchange means and returning to the tank, the amount of heat required by the heating request, the hot water supply request, and the bath water heating request is obtained, and the rotation speed of the pump is controlled according to the amount of heat. , The detecting means operates the mixing valve When an abnormality is detected, the circulating operation of the heating medium to the second heat exchange means, heating operation of the heat source, or it include any operation or processing for stopping the two or more operations of pouring operation .

請求項又は請求項に係る本発明によれば、水と湯とを混合させる混合弁の故障による異常動作の継続を防止できる。 According to the first or second aspect of the present invention, it is possible to prevent continuation of abnormal operation due to a failure of a mixing valve that mixes water and hot water.

本発明の実施の形態を図面に示した実施例を参照して詳細に説明する。   Embodiments of the present invention will be described in detail with reference to examples shown in the drawings.

図1は本発明の熱源装置の実施例を示している。この熱源装置には、熱源機2が備えられるとともに、暖房負荷3に熱を供給する暖房回路4と、一般給湯等の給湯加熱を行う給湯回路6と、浴槽94の浴槽水(=BR、BG)の加熱を行う風呂回路8とを備えている この実施例の暖房回路4は、熱媒としての温水10(=KW、OW)を循環させる循環路であって、この循環路を流れる温水10の持つ熱が給湯回路6及び風呂回路8側の熱源となっている。   FIG. 1 shows an embodiment of a heat source device of the present invention. The heat source device is provided with a heat source device 2, a heating circuit 4 that supplies heat to the heating load 3, a hot water supply circuit 6 that performs hot water heating such as general hot water supply, and bathtub water (= BR, BG) of the bathtub 94 The heating circuit 4 of this embodiment is a circulation path for circulating hot water 10 (= KW, OW) as a heating medium, and the hot water 10 flowing through this circulation path is provided. Is the heat source on the hot water supply circuit 6 and bath circuit 8 side.

熱源機2には、単一の熱源11が設置され、この熱源11には、例えば、石油、燃料ガスを燃焼させるバーナの燃焼熱、電熱、エンジンや燃料電池の排熱が用いられる。例えば、熱源11にバーナを用いた場合には、燃料ガスの燃焼量はその供給によって調整することができる。   A single heat source 11 is installed in the heat source device 2, and for this heat source 11, for example, combustion heat of a burner that burns oil or fuel gas, electric heat, or exhaust heat of an engine or a fuel cell is used. For example, when a burner is used as the heat source 11, the amount of combustion of the fuel gas can be adjusted by supplying the burner.

そして、暖房回路4には、熱源11の熱と温水10との熱交換を行う第1の熱交換手段として暖房用熱交換器21が設置されているとともに、蓄熱手段として膨張タンク26、圧送手段としての循環ポンプ28が設置されている。熱交換器21は燃焼ガスの顕熱回収用熱交換器に潜熱回収用熱交換器を併用してもよい。循環ポンプ28は、加熱需要に応じて段階的又は連続的にポンプ回転数が制御される。   The heating circuit 4 is provided with a heating heat exchanger 21 as a first heat exchanging means for exchanging heat between the heat of the heat source 11 and the hot water 10, and an expansion tank 26 as a heat accumulating means and a pressure feeding means. A circulation pump 28 is installed. The heat exchanger 21 may use a latent heat recovery heat exchanger in combination with a sensible heat recovery heat exchanger for combustion gas. The circulation pump 28 has its pump rotation speed controlled stepwise or continuously according to the heating demand.

この暖房回路4は、暖房負荷3側に温水10を流す主回路30、給湯用の上水Wを加熱する給湯与熱回路32、浴槽水を加熱する追焚与熱回路34等を備えている。主回路30から温水10の供給を受ける暖房負荷3には、高温水HDの供給を受ける高温暖房負荷3A、低温水LDの供給を受ける低温暖房負荷3Bが設置され、これら高温暖房負荷3A、低温暖房負荷3Bは、単一又は複数の負荷構成である。高温暖房負荷3Aには、高温水HDが開閉弁35を介して直送されるが、低温暖房負荷3Bには、バイパス管44を通じて流れる膨張タンク26側の温水10と分岐管48を通じて分配された高温水HDとを合流させて得られる低温水LDが開閉弁37を通じて供給される。バイパス管44には、温水10の供給量を調整する低温調整弁62が設けられている。そして、暖房負荷3を循環した温水DBは膨張タンク26に戻される。   The heating circuit 4 includes a main circuit 30 for flowing the hot water 10 to the heating load 3 side, a hot water supply / heating circuit 32 for heating the hot water W for hot water supply, an additional heating circuit 34 for heating the bath water, and the like. . The heating load 3 that receives the supply of the hot water 10 from the main circuit 30 is provided with a high temperature heating load 3A that receives the supply of the high temperature water HD and a low temperature heating load 3B that receives the supply of the low temperature water LD. The heating load 3B has a single or a plurality of load configurations. High temperature water HD is directly sent to the high temperature heating load 3A through the open / close valve 35, but the low temperature heating load 3B is supplied with the hot water 10 on the side of the expansion tank 26 flowing through the bypass pipe 44 and the high temperature distributed through the branch pipe 48. Low temperature water LD obtained by joining the water HD is supplied through the on-off valve 37. The bypass pipe 44 is provided with a low temperature adjustment valve 62 that adjusts the supply amount of the hot water 10. Then, the hot water DB circulated through the heating load 3 is returned to the expansion tank 26.

給湯与熱回路32は、熱交換器21の出口側管路から分岐されて第2の熱交換手段である給湯用熱交換器66を循環させて高温水HDを膨張タンク26に流す回路であって、高温水HDの分配ないし切換手段としての分配弁68等を備えている。   The hot water supply and heating circuit 32 is a circuit that is branched from the outlet side pipe of the heat exchanger 21 and circulates the hot water supply heat exchanger 66 that is the second heat exchange means to flow the high-temperature water HD to the expansion tank 26. In addition, a distribution valve 68 or the like is provided as means for distributing or switching the high-temperature water HD.

また、追焚与熱回路34は、熱交換器21の出口側管路から分岐されて第3の熱交換手段である追焚用熱交換器72を循環させて膨張タンク26に戻す回路であって、高温水HDの分配ないし切換手段としての開閉弁74等を備えている。熱交換器72は螺旋状の一次側管路を二次側管路が接続された筒状容器に設置した熱交換器であって、この螺旋管路に熱媒としての温水10を流し、その周囲を流れる浴槽水と熱交換する。即ち、分配弁68、開閉弁74は、暖房回路4、給湯回路6又は風呂回路8への熱供給を切り換える切換手段を構成している。   The reheating heat circuit 34 is a circuit that branches from the outlet side pipe of the heat exchanger 21 and circulates a reheating heat exchanger 72 that is a third heat exchanging means to return it to the expansion tank 26. In addition, an on-off valve 74 is provided as a means for distributing or switching the high-temperature water HD. The heat exchanger 72 is a heat exchanger in which a spiral primary side pipe is installed in a cylindrical container to which a secondary side pipe is connected, and hot water 10 as a heat medium is caused to flow through the spiral pipe. Exchanges heat with the bath water flowing around. That is, the distribution valve 68 and the on-off valve 74 constitute switching means for switching the heat supply to the heating circuit 4, the hot water supply circuit 6, or the bath circuit 8.

また、給湯回路6は、暖房回路4と独立した回路であって、上水Wを熱交換器66に流して熱媒としての高温水HDとの熱交換により加熱し、高温水HWとして給湯栓等から給湯させる。   Moreover, the hot water supply circuit 6 is a circuit independent of the heating circuit 4, and flows hot water W through the heat exchanger 66 and heats it by heat exchange with the high temperature water HD as a heat medium, and as a high temperature water HW, a hot water tap Let hot water supply from etc.

また、風呂回路8は、暖房回路4と独立した回路を構成し、浴槽94に溜められている浴槽水を循環ポンプ100を運転して浴槽94から熱交換器72に導き、熱媒としての高温水HDとの熱交換により加熱した後、浴槽94に戻す回路である。また、風呂回路8と給湯回路6との間には、切換弁106を介して給湯管108が接続されており、給湯回路6から浴槽94への給湯が行われる。   Moreover, the bath circuit 8 constitutes a circuit independent of the heating circuit 4, operates the circulation pump 100 to guide the bathtub water stored in the bathtub 94 from the bathtub 94 to the heat exchanger 72, and generates a high temperature as a heat medium. It is a circuit that returns to the bathtub 94 after heating by heat exchange with the water HD. A hot water supply pipe 108 is connected between the bath circuit 8 and the hot water supply circuit 6 via a switching valve 106, and hot water is supplied from the hot water supply circuit 6 to the bathtub 94.

この熱源装置の動作及び特徴事項を列挙すれば、次の通りである。   The operation and features of this heat source device are listed as follows.

a 熱源装置の基本動作
図2のフローチャートに示すように、運転要求があると(S201)、現熱量演算を行い(S202)、次に、必要熱量演算を行い(S203)、現熱量と必要熱量との間に差があるか否かを判定する(S204)。この熱量差に応じて循環ポンプ28に必要なポンプ回転数が設定された後(S205)、熱源11の熱量制御として例えば、燃焼制御を行う(S206)。
a. Basic operation of heat source apparatus As shown in the flowchart of FIG. 2, when there is an operation request (S201), current heat amount calculation is performed (S202), then necessary heat amount calculation is performed (S203), and the current heat amount and required heat amount are calculated. It is determined whether or not there is a difference between (S204). After the pump speed required for the circulation pump 28 is set in accordance with this heat amount difference (S205), for example, combustion control is performed as heat amount control of the heat source 11 (S206).

b 給湯単独動作
入水温度、給湯流量及び設定温度から必要熱量を演算し、図3に示すように、給湯必要熱量を実現する必要流量が得られる循環ポンプ28のポンプ回転数を求め、そのデータを記憶手段に記憶する。そのデータに基づき、給湯必要熱量に必要なポンプ回転数に制御し、連続燃焼中も、常に入水温度、流量、出湯温度を監視し、必要な熱量を得るためのポンプ回転数を維持する。
b Hot Water Supply Single Operation Calculates the required heat quantity from the incoming water temperature, the hot water supply flow rate and the set temperature, and as shown in FIG. 3, obtains the pump rotation speed of the circulation pump 28 that provides the required flow rate for realizing the required hot water supply heat quantity, and obtains the data Store in the storage means. Based on the data, the pump rotational speed required for the required amount of hot water supply is controlled, and even during continuous combustion, the incoming water temperature, flow rate, and hot water temperature are constantly monitored, and the pump rotational speed for obtaining the required heat quantity is maintained.

そして、給湯受熱側は、出湯温度等が設定温度に到達するように、流量調整を行う。   Then, the hot water supply heat receiving side adjusts the flow rate so that the tapping temperature etc. reaches the set temperature.

また、この場合、膨張タンク26内の温水10を高温水化して一定温度に保っておけば、これを熱媒として利用でき、給湯の加熱速度の向上(即湯性)を図ることができる。即ち、燃焼を開始してから熱交換器66内の水温上昇を待つと、所定温度の給湯を得るためにある程度の時間を要するのに対し、膨張タンク26の温水温度を高く保持しておけば、その熱量を利用して所望の給湯温度までの立上げ時間を短縮できる。   In this case, if the hot water 10 in the expansion tank 26 is heated to a constant temperature and maintained at a constant temperature, it can be used as a heat medium, and the heating rate of hot water supply (immediate hot water property) can be improved. That is, when waiting for a rise in the water temperature in the heat exchanger 66 after starting combustion, it takes a certain amount of time to obtain hot water of a predetermined temperature, but if the hot water temperature in the expansion tank 26 is kept high. The start-up time to the desired hot water supply temperature can be shortened by utilizing the amount of heat.

c 暖房単独動作
図4は、暖房要求端末個数、暖房必要熱量と循環ポンプ28の回転数を示している。そこで、暖房端末、即ち、暖房負荷3側のリモコン装置等からの暖房の動作要求個数、暖房必要熱量を確認し、その熱量データから、循環ポンプ28の回転数を変更する。
c Heating Single Operation FIG. 4 shows the number of terminals requiring heating, the amount of heat required for heating, and the number of rotations of the circulation pump 28. Therefore, the number of heating operation requests and the amount of heat required for heating from the heating terminal, that is, the remote control device on the side of the heating load 3 are confirmed, and the rotation speed of the circulation pump 28 is changed from the heat amount data.

d 追焚単独動作
追焚要求があった場合、開閉弁74を開いて温水10(OW)を熱交換器72側に流し、温水10と浴槽水との熱交換を行う。この場合、循環ポンプ28の回転数は所定熱量が得られる所定回転数に維持する。この場合、施工条件によって、熱交換量が低い場合には、例えば、制御手段で循環ポンプ28の回転数を変化させ、熱交換量を上昇させてもよい。
d Remembrance single operation When there is a renewal request, the on-off valve 74 is opened and the hot water 10 (OW) is allowed to flow to the heat exchanger 72 side to exchange heat between the hot water 10 and the bath water. In this case, the rotational speed of the circulation pump 28 is maintained at a predetermined rotational speed at which a predetermined amount of heat is obtained. In this case, when the heat exchange amount is low depending on the construction conditions, for example, the rotation number of the circulation pump 28 may be changed by the control means to increase the heat exchange amount.

e 給湯、暖房及び追焚の同時運転動作
給湯、暖房、追焚の同時運転動作では、その場合の必要熱量に対して必要なポンプ回転数データを予め求めておき、例えば、図5に示すように、必要熱量が得られるようにポンプ回転数を制御する。この場合の必要熱量の演算は、例えば、後述の式(1)で求めることができる。
e Simultaneous operation operation of hot water supply, heating and renewal In simultaneous operation operation of hot water supply, heating and renewal, necessary pump rotation speed data for the required heat quantity in that case is obtained in advance, for example, as shown in FIG. In addition, the number of revolutions of the pump is controlled so that the necessary amount of heat is obtained. The calculation of the required heat quantity in this case can be calculated | required by formula (1) mentioned later, for example.

f 保温動作
膨張タンク26内の温水10の保温は、図6のフローチャートに示すように、循環ポンプ28の運転を行い(S301)、熱交換器21の出側温度が所定温度、例えば、80℃以下か否かを判定し(S302)、所定温度以下の場合には熱源11を燃焼させて暖房燃焼制御を実行し(S303)、再び、出側温度が所定温度、例えば、80℃以上か否かを判定し(S304)、所定温度、例えば、80℃以上に到達したとき、熱源11の熱量制御として例えば、燃焼停止とする(S305)。このような動作の繰返しにより、膨張タンク26及び暖房回路4内の温水10の温度を所定温度に保温させることができ、放熱による温度低下を防止でき、給湯、暖房又は追焚の移行時の昇温特性を高めることができる。
f Insulation operation The insulation of the warm water 10 in the expansion tank 26 is performed by operating the circulation pump 28 as shown in the flowchart of FIG. 6 (S301), and the outlet temperature of the heat exchanger 21 is a predetermined temperature, for example, 80 ° C. It is determined whether or not the temperature is equal to or lower (S302). If the temperature is equal to or lower than the predetermined temperature, the heat source 11 is combusted and the heating combustion control is executed (S303). When the temperature reaches a predetermined temperature, for example, 80 ° C. or higher, for example, combustion is stopped as the heat amount control of the heat source 11 (S305). By repeating such an operation, the temperature of the hot water 10 in the expansion tank 26 and the heating circuit 4 can be kept at a predetermined temperature, a temperature drop due to heat dissipation can be prevented, and the temperature rise during the transition to hot water supply, heating, or memorial service can be prevented. Temperature characteristics can be improved.

次に、図7及び図8は本発明の熱源装置の具体的な実施例を示し、図7は熱源機側の構成、図8は制御部及び暖房負荷側の構成を示している。   Next, FIGS. 7 and 8 show specific examples of the heat source device of the present invention, FIG. 7 shows the configuration on the heat source unit side, and FIG. 8 shows the configuration on the control unit and heating load side.

この熱源装置には、単一のケーシングで構成される熱源機2が備えられるとともに、前記実施例と同様に、暖房回路4、給湯回路6及び風呂回路8が構成されている。   This heat source device is provided with a heat source device 2 constituted by a single casing, and a heating circuit 4, a hot water supply circuit 6 and a bath circuit 8 are constituted as in the above-described embodiment.

熱源機2には、単一の熱源として例えば、バーナ12が設置されている。このバーナ12には、燃料元弁14及び比例弁16を備えた燃料供給管18を通じて燃料ガスGが供給されているとともに、給気ファン20によって燃焼用空気が供給されている。燃料ガスGの燃焼、燃焼停止は燃料元弁14の開閉、燃料ガスGの燃焼量は比例弁16の開度調整による供給調整で行われる。暖房回路4に流れる温水10の循環量の増減が温度センサ60の検出温度に生じるので、熱交換器22の出口側温度を例えば、80℃になるようにバーナ12の燃焼量を調整すれば、熱量供給の最適化を図ることができる。   For example, a burner 12 is installed in the heat source unit 2 as a single heat source. The burner 12 is supplied with a fuel gas G through a fuel supply pipe 18 provided with a fuel main valve 14 and a proportional valve 16, and is supplied with combustion air by an air supply fan 20. Combustion and combustion stop of the fuel gas G are performed by opening and closing the fuel main valve 14, and the amount of combustion of the fuel gas G is adjusted by supply adjustment by adjusting the opening of the proportional valve 16. Since the increase / decrease of the circulation amount of the hot water 10 flowing through the heating circuit 4 occurs at the temperature detected by the temperature sensor 60, if the combustion amount of the burner 12 is adjusted so that the outlet side temperature of the heat exchanger 22 becomes 80 ° C., for example, The amount of heat supply can be optimized.

そして、暖房回路4には、バーナ12を熱源とする第1の熱交換手段として暖房用熱交換器22、24が設置されているとともに、蓄熱手段として膨張タンク26、圧送手段としての循環ポンプ28が設置されている。熱交換器22は燃焼ガスの顕熱回収用、熱交換器24は潜熱回収用である。循環ポンプ28はその駆動手段に例えば、直流モータが用いられ、加熱需要に応じて段階的又は連続的に回転数を制御することができる。   The heating circuit 4 is provided with heating heat exchangers 22 and 24 as first heat exchange means using the burner 12 as a heat source, an expansion tank 26 as heat storage means, and a circulation pump 28 as pressure feed means. Is installed. The heat exchanger 22 is for recovering combustion gas sensible heat, and the heat exchanger 24 is for recovering latent heat. The circulation pump 28 uses, for example, a DC motor as its driving means, and can control the rotational speed stepwise or continuously according to the heating demand.

この暖房回路4は、暖房負荷側に温水10を流す主回路30、給湯用の上水Wを加熱する給湯与熱回路32、浴槽水を加熱する追焚与熱回路34等を備えている。即ち、膨張タンク26の温水10は、循環ポンプ28を通して矢印A、B方向に主回路30を流れ、熱交換器24及び熱交換器22を経て例えば、80℃程度に加熱された後、高温水回路36を通じてヘッダ38からファンコンベクタ等の高温放熱器40、42に流れるとともに、矢印C方向にバイパス管44を通して低温水回路46に流れる。膨張タンク26は暖房回路4への温水10を供給するとともに、温水10を以て蓄熱し、暖房回路4内の圧力を大気へ開放する手段である。そして、高温水回路36と低温水回路46との間には、分岐管48が設けられ、バイパス管44を通じて流れる温水10と高温水HDとを合流させて得た低温水LDが低温水回路46からヘッダ47を経て床暖房パネル等の低温放熱器49、50、52に流れる。高温放熱器40、42及び低温放熱器49、50、52に循環して合流した温水DBは、ヘッダ54を経て主回路30の一部である暖房水戻し回路56で合流し、膨張タンク26に戻る。主回路30には熱交換器24の入口側温度を検出する温度センサ58、熱交換器22の出口側温度を検出する温度センサ60、低温水回路46には温度センサ61、バイパス管44には流量制御手段として低温調整弁62、分岐管48には膨張タンク26側の温水10(低温水)が高温水HD側に混じり込むのを防止する手段として逆止弁64が設けられている。また、低温水回路46と膨張タンク26との間には、低温水戻し回路65が設けられて低温水LDが矢印D方向に膨張タンク26に戻される。   The heating circuit 4 includes a main circuit 30 for flowing the hot water 10 to the heating load side, a hot water supply / heating circuit 32 for heating the hot water W for hot water supply, a supplementary heating circuit 34 for heating the bath water, and the like. That is, the hot water 10 in the expansion tank 26 flows through the main circuit 30 in the directions of arrows A and B through the circulation pump 28, and is heated to, for example, about 80 ° C. through the heat exchanger 24 and the heat exchanger 22. It flows from the header 38 through the circuit 36 to the high-temperature radiators 40 and 42 such as fan convectors, and flows in the direction of arrow C through the bypass pipe 44 to the low-temperature water circuit 46. The expansion tank 26 is means for supplying hot water 10 to the heating circuit 4, storing heat with the hot water 10, and releasing the pressure in the heating circuit 4 to the atmosphere. A branch pipe 48 is provided between the high temperature water circuit 36 and the low temperature water circuit 46, and the low temperature water LD obtained by joining the hot water 10 flowing through the bypass pipe 44 and the high temperature water HD is the low temperature water circuit 46. To a low-temperature heat radiator 49, 50, 52 such as a floor heating panel. The hot water DB that circulates and joins the high-temperature radiators 40 and 42 and the low-temperature radiators 49, 50, and 52 merges in the heating water return circuit 56 that is a part of the main circuit 30 via the header 54, and enters the expansion tank 26. Return. The main circuit 30 has a temperature sensor 58 for detecting the inlet side temperature of the heat exchanger 24, the temperature sensor 60 for detecting the outlet side temperature of the heat exchanger 22, the low temperature water circuit 46 has a temperature sensor 61, and the bypass pipe 44 has The low-temperature control valve 62 is provided as a flow control means, and the check pipe 64 is provided in the branch pipe 48 as a means for preventing hot water 10 (low-temperature water) on the expansion tank 26 side from being mixed into the high-temperature water HD side. A low temperature water return circuit 65 is provided between the low temperature water circuit 46 and the expansion tank 26 so that the low temperature water LD is returned to the expansion tank 26 in the direction of arrow D.

給湯与熱回路32は、熱交換器22の出口側管路から分岐されて第2の熱交換手段である給湯用熱交換器66を経て矢印E方向に高温水HDを膨張タンク26に流す回路であって、高温水HDの分配手段である分配弁68、循環流量を検出する循環流量センサ70等を備えている。熱交換器66には、例えば、プレートを交互に配置して異なる2液を通水させることにより熱交換を行うプレート式熱交換器が用いられている。また、追焚与熱回路34は、熱交換器22の出口側管路から分岐されて第3の熱交換手段である追焚用熱交換器72を経て矢印F方向に高温水HDを暖房水戻し回路56で合流させ、膨張タンク26に戻す回路であって、高温水HDの分配手段である開閉弁74等を備えている。熱交換器72は螺旋状の一次側管路を二次側管路が接続された筒状容器に設置した熱交換器であって、この螺旋管路に熱媒としての温水10を流し、その周囲を流れる浴槽水と熱交換する。即ち、分配弁68、開閉弁74は、暖房回路4、給湯回路6又は風呂回路8への熱供給を切り換える切換手段を構成している。   The hot water supply and heating circuit 32 is a circuit that branches from the outlet side pipe of the heat exchanger 22 and flows the high-temperature water HD to the expansion tank 26 in the direction of arrow E through the hot water supply heat exchanger 66 that is the second heat exchange means. In addition, a distribution valve 68 serving as a means for distributing the high-temperature water HD, a circulation flow rate sensor 70 for detecting a circulation flow rate, and the like are provided. As the heat exchanger 66, for example, a plate heat exchanger that performs heat exchange by alternately arranging plates and passing two different liquids is used. Further, the reheating heat circuit 34 branches from the outlet side pipe of the heat exchanger 22 and passes through the reheating heat exchanger 72 as the third heat exchanging means, and supplies the high temperature water HD in the direction of arrow F to the heating water. The circuit is joined by the return circuit 56 and returned to the expansion tank 26, and includes an on-off valve 74 or the like that is a means for distributing the high-temperature water HD. The heat exchanger 72 is a heat exchanger in which a spiral primary side pipe is installed in a cylindrical container to which a secondary side pipe is connected, and hot water 10 as a heat medium is caused to flow through the spiral pipe. Exchanges heat with the bath water flowing around. That is, the distribution valve 68 and the on-off valve 74 constitute switching means for switching the heat supply to the heating circuit 4, the hot water supply circuit 6, or the bath circuit 8.

また、給湯回路6は、暖房回路4と独立した回路であって、上水Wを矢印G、H、I方向に熱交換器66に流して熱媒としての高温水HDとの熱交換により加熱し、高温水HWとして給湯栓76等から給湯管78を通じて給湯させる。この給湯回路6には、給水温度を検出する温度センサ80、水流検出及び水量検出をする水量センサ82、熱交換器66の出口側温度を検出する温度センサ84、出湯量を制御する水量制御弁86、出湯温度を検出する温度センサ88が設置され、低温側の上水Wと高温水HWとを混合して出湯温度を調整する手段としてバイパス管90が設けられているとともに、このバイパス管90には低温側の上水W及び高温水HWの混合比率を調整する混合弁92が設けられている。   The hot water supply circuit 6 is a circuit independent of the heating circuit 4 and is heated by flowing heat water W in the directions of arrows G, H, and I to the heat exchanger 66 and exchanging heat with the high-temperature water HD as a heat medium. Then, hot water is supplied as hot water HW through the hot water supply pipe 78 from the hot water tap 76 or the like. The hot water supply circuit 6 includes a temperature sensor 80 for detecting the temperature of the supplied water, a water amount sensor 82 for detecting the water flow and the amount of water, a temperature sensor 84 for detecting the outlet side temperature of the heat exchanger 66, and a water amount control valve for controlling the amount of discharged hot water. 86, a temperature sensor 88 for detecting the tapping temperature is provided, and a bypass pipe 90 is provided as means for adjusting the tapping temperature by mixing the low temperature side clean water W and the high temperature water HW. Is provided with a mixing valve 92 for adjusting the mixing ratio of the low temperature side clean water W and the high temperature water HW.

また、風呂回路8は、暖房回路4と独立した回路を構成し、浴槽94に溜められている浴槽水96を浴槽94の循環口98から矢印J方向に流し、熱交換器72で熱媒としての高温水HDとの熱交換により加熱した後、矢印K方向に流して浴槽94に戻す手段であって、浴槽水96を熱交換器72を通して強制的に循環させる循環ポンプ100、追焚温度を検出する温度センサ102、浴槽94内の水位を検出する水位センサ104等が設けられている。BRは追焚往き、BGは追焚戻しの各温水である。また、風呂回路8と給湯回路6との間には、切換弁106を介して給湯管108が接続されており、給湯回路6から浴槽94への給湯が行われる。この給湯管108には、給湯量を検出する水量センサ110、上水W側と浴槽水96とを分離する分離手段として縁切り装置112が設けられている。   The bath circuit 8 constitutes a circuit independent of the heating circuit 4, and the bath water 96 stored in the bathtub 94 is caused to flow from the circulation port 98 of the bathtub 94 in the direction of arrow J, and is used as a heat medium by the heat exchanger 72. Is a means for flowing back in the direction of the arrow K and returning it to the bathtub 94 after it is heated by heat exchange with the hot water HD of the circulation pump 100 for forcibly circulating the bathtub water 96 through the heat exchanger 72, and a memorial temperature. A temperature sensor 102 for detecting, a water level sensor 104 for detecting the water level in the bathtub 94, and the like are provided. BR is the remembrance and BG is the warm water for remembrance return. A hot water supply pipe 108 is connected between the bath circuit 8 and the hot water supply circuit 6 via a switching valve 106, and hot water is supplied from the hot water supply circuit 6 to the bathtub 94. The hot water supply pipe 108 is provided with a water amount sensor 110 for detecting the amount of hot water supply, and an edge cutting device 112 as separation means for separating the water W side and the bathtub water 96.

また、給湯管108と膨張タンク26との間には、給湯管108側から温水10を補給する補給管114が設けられ、この補給管114には開閉弁116が設けられている。膨張タンク26には、温水10の水位を検出するレベルセンサ118、120、122が設けられ、レベルセンサ118は中立電極で、レベルセンサ120で低レベルL1 、レベルセンサ122で高レベルL2 が検出される。 A replenishment pipe 114 for replenishing hot water 10 from the hot water supply pipe 108 side is provided between the hot water supply pipe 108 and the expansion tank 26, and an open / close valve 116 is provided in the replenishment pipe 114. The expansion tank 26 is provided with level sensors 118, 120, 122 for detecting the water level of the hot water 10. The level sensor 118 is a neutral electrode, and the level sensor 120 has a low level L 1 and the level sensor 122 has a high level L 2. Detected.

そして、熱源機2側には主制御部124及び外部制御部126が設けられ、これら主制御部124及び外部制御部126はコンピュータで構成され、制御演算動作を行う手段としてCPU、制御プログラムや制御情報を記憶する記憶手段としてRAM、ROM、EEPROM等を備えており、主制御部124側には追焚熱量変更スイッチ128の他、液晶、蛍光表示管、LED、ブラウン管よりなる表示部130、運転指令、温度設定情報等を入力するためのスイッチ群131が設けられている。主制御部124には、温度センサ58、60、61、80、84、88、102、レベルセンサ118、120、122、水量センサ82、110、水位センサ104等の検出信号が制御情報として取り込まれ、この主制御部124から燃料元弁14、比例弁16、循環ポンプ28、100、分配弁68、開閉弁74、116、低温調整弁62、水量制御弁86、混合弁92、切換弁106、給気ファン20の駆動モータ等に対して制御出力が加えられる。また、主制御部124には、給湯用のリモコン装置132が接続されているとともに、浴槽94側に設置されたリモコン装置134が接続されている。リモコン装置132には、スイッチ群131の中、又は他のスイッチとして暖房スイッチが設けられており、この暖房スイッチの操作によって暖房運転に移行するか否かが切り換えられる。この暖房スイッチの操作は、特定の放熱器40〜52を選択するものではなく、全暖房負荷の暖房運転に入る準備としてバーナ12を燃焼させ、熱交換器22、24による熱交換によって熱媒としての温水10を加熱するものであるのに対し、リモコン装置134や後述のリモコン装置142、144、146の暖房スイッチによる個別負荷の暖房運転の指令又はその切換えを行うものであるが、リモコン装置132側の暖房スイッチが操作されていなくても、各リモコン装置134等は個別の暖房負荷を選定して暖房運転に移行させることができるものである。リモコン装置132側の暖房スイッチの操作と、リモコン装置134等の暖房スイッチの操作との相違は、前者が全体暖房負荷、後者が個別暖房負荷に対応していることである。   A main control unit 124 and an external control unit 126 are provided on the heat source device 2 side, and the main control unit 124 and the external control unit 126 are configured by a computer, and a CPU, a control program, and a control as a means for performing a control operation. RAM, ROM, EEPROM, etc. are provided as storage means for storing information. On the main control unit 124 side, in addition to the additional heat amount change switch 128, a display unit 130 made of liquid crystal, fluorescent display tube, LED, cathode ray tube, operation A switch group 131 for inputting commands, temperature setting information, and the like is provided. Detection signals from the temperature sensors 58, 60, 61, 80, 84, 88, 102, level sensors 118, 120, 122, water volume sensors 82, 110, water level sensor 104, etc. are taken into the main controller 124 as control information. From the main control unit 124, the fuel main valve 14, the proportional valve 16, the circulation pumps 28 and 100, the distribution valve 68, the on-off valves 74 and 116, the low temperature adjusting valve 62, the water amount control valve 86, the mixing valve 92, the switching valve 106, A control output is applied to the drive motor of the air supply fan 20 and the like. In addition, a remote controller 132 for hot water supply is connected to the main controller 124, and a remote controller 134 installed on the bathtub 94 side is connected. The remote control device 132 is provided with a heating switch in the switch group 131 or as another switch, and whether or not to shift to the heating operation is switched by operating the heating switch. The operation of the heating switch does not select a specific radiator 40 to 52, but burns the burner 12 as a preparation for entering the heating operation of the entire heating load, and serves as a heat medium by heat exchange by the heat exchangers 22 and 24. The warm water 10 is heated, while the individual load heating operation is commanded or switched by the heating switch of the remote control device 134 or the remote control devices 142, 144, and 146 described later. Even if the heating switch on the side is not operated, each remote control device 134 or the like can select individual heating loads and shift to the heating operation. The difference between the operation of the heating switch on the remote control device 132 side and the operation of the heating switch such as the remote control device 134 is that the former corresponds to the overall heating load and the latter corresponds to the individual heating load.

主制御部124と外部制御部126とは通信ケーブル136を介して接続され、外部制御部126には放熱器40、42に設置された高温暖房制御部138、140、放熱器49に無線又は有線で連係されたリモコン装置142が設けられているとともに、各制御部138、140にはリモコン装置144、146が設けられている。この実施例では、放熱器50、52の操作には浴室側に設置されたリモコン装置134が用いられ、その動作又は動作停止がリモコン装置134によって切り換えられる。   The main control unit 124 and the external control unit 126 are connected via a communication cable 136, and the external control unit 126 is connected to the high-temperature heating control units 138 and 140 installed in the radiators 40 and 42, and the radiator 49 is wirelessly or wired. Are connected to each other, and the control units 138 and 140 are provided with remote control devices 144 and 146, respectively. In this embodiment, the remote control device 134 installed on the bathroom side is used for the operation of the radiators 50 and 52, and its operation or operation stop is switched by the remote control device 134.

次に、制御動作を総括的に説明すると、膨張タンク26の温水10は循環ポンプ28によって熱交換器22及び熱交換器24に圧送され、バーナ12の燃焼によって得た燃焼ガスの顕熱及び潜熱を以て加熱される。バーナ12の燃焼開始時には、温度センサ58の検出温度Ti、設定温度Ts及び循環ポンプ28の回転数Rに相当する流量Qを主制御部124の記憶手段から読み出し、燃焼号数を演算する。比例弁16は演算号数に相当する開度に調整され、燃焼量に調整される。即ち、フィードフォワード制御が実行される。ここで、周知のように、燃焼号数は、式(1)で求められる。   Next, the control operation will be described generally. The hot water 10 in the expansion tank 26 is pumped to the heat exchanger 22 and the heat exchanger 24 by the circulation pump 28, and the sensible heat and latent heat of the combustion gas obtained by the burner 12 combustion. It is heated with. At the start of combustion of the burner 12, the detected temperature Ti of the temperature sensor 58, the set temperature Ts, and the flow rate Q corresponding to the rotational speed R of the circulation pump 28 are read from the storage means of the main control unit 124, and the combustion number is calculated. The proportional valve 16 is adjusted to an opening degree corresponding to the calculation number, and adjusted to the combustion amount. That is, feedforward control is executed. Here, as is well known, the combustion number is obtained by equation (1).

号数=(Ts−Ti)×Q/25 ・・・(1)       Number = (Ts−Ti) × Q / 25 (1)

熱交換器22の出口側温度は温度センサ60で検出され、その検出温度が例えば80℃付近に到達したとき、温度センサ60の検出温度が所定温度例えば、80℃になるように比例弁16の開度が調整される。即ち、フィードフォワード制御からフィードバック制御に切り換えられる。   The outlet side temperature of the heat exchanger 22 is detected by the temperature sensor 60. When the detected temperature reaches, for example, around 80 ° C., the proportional valve 16 is set so that the detected temperature of the temperature sensor 60 becomes a predetermined temperature, for example, 80 ° C. The opening is adjusted. That is, the feedforward control is switched to the feedback control.

熱交換器22で得られた高温水HDは、高温水回路36を通じて放熱器40、42側に供給されるとともに、分岐管48を通じて低温水回路46側にも流れる。この低温水回路46側には、バイパス管44側から加熱前の温水10が流れ込んでいるので、低温水LDが放熱器49、50、52側に供給される。この場合、温度センサ61によって低温水LD側の温度が検出され、その検出温度が例えば、60℃になるように、水量制御弁としての低温調整弁62の開度が調整される。そして、各放熱器40〜52を通過した温水10は、暖房水戻し回路56を通じて膨張タンク26に帰還する。   The high-temperature water HD obtained by the heat exchanger 22 is supplied to the radiators 40 and 42 through the high-temperature water circuit 36 and also flows to the low-temperature water circuit 46 side through the branch pipe 48. Since the hot water 10 before heating flows into the low temperature water circuit 46 side from the bypass pipe 44 side, the low temperature water LD is supplied to the radiators 49, 50 and 52 side. In this case, the temperature sensor 61 detects the temperature on the low temperature water LD side, and the opening degree of the low temperature adjustment valve 62 as the water amount control valve is adjusted so that the detected temperature becomes, for example, 60 ° C. Then, the hot water 10 that has passed through the radiators 40 to 52 returns to the expansion tank 26 through the heating water return circuit 56.

また、熱交換器66の二次側に給湯回路6を通じて流れる上水Wは、熱交換器66で高温水HDとの熱交換により加熱され、給湯管78を通じて給湯される。この場合、給水温度は温度センサ80で検出され、その給水量即ち、給湯量は水量センサ82で検出され、また、出湯温度は温度センサ88で検出され、その出湯温度に応じてバーナ12の燃焼量が制御される。   Further, the clean water W flowing through the hot water supply circuit 6 to the secondary side of the heat exchanger 66 is heated by heat exchange with the high-temperature water HD in the heat exchanger 66 and hot water is supplied through the hot water supply pipe 78. In this case, the temperature of the water supply is detected by the temperature sensor 80, the amount of water supply, that is, the amount of hot water supply is detected by the water amount sensor 82, the temperature of the hot water is detected by the temperature sensor 88, and the burner 12 burns according to the temperature of the hot water. The amount is controlled.

また、循環ポンプ100によって熱交換器72に流れる浴槽水96は、熱媒としての温水10と熱交換が行われながら、風呂回路8に循環して加熱される。この場合、浴槽水96の水位は水位センサ104、その温度は温度センサ102で検出される。   The bathtub water 96 flowing to the heat exchanger 72 by the circulation pump 100 is circulated and heated to the bath circuit 8 while heat exchange with the hot water 10 as the heat medium is performed. In this case, the water level of the bathtub water 96 is detected by the water level sensor 104, and the temperature thereof is detected by the temperature sensor 102.

そして、膨張タンク26の水位はレベルセンサ118〜122で検出され、低レベルL1 が検出された場合には開閉弁116を開いて給湯回路6から上水Wが供給され、高レベルL2 まで補給される。 The water level in the expansion tank 26 is detected by the level sensor 118 to 122, clean water W from the hot water supply circuit 6 by opening the on-off valve 116 is supplied when the low level L 1 is detected, to a high level L 2 To be replenished.

次に、高温暖房運転、低温暖房運転、給湯運転、追焚運転及び保温運転の各動作について説明する。   Next, each operation of the high temperature heating operation, the low temperature heating operation, the hot water supply operation, the memorial operation and the heat insulation operation will be described.

(1)高温暖房運転
例えば、高温暖房制御部138のリモコン装置144の運転スイッチが投入されると、高温暖房運転モードに移行する。即ち、放熱器40内に熱媒である高温水HDを通過させる開閉弁が開くとともに、図示しないファンが回転を開始する。このとき、高温暖房制御部138から外部制御部126に暖房運転指令が発せられ、外部制御部126からその暖房運転指令を表す命令コードが主制御部124に転送されると、主制御部124は暖房動作を開始する。
(1) High temperature heating operation For example, when the operation switch of the remote control device 144 of the high temperature heating control unit 138 is turned on, the high temperature heating operation mode is entered. That is, an on-off valve that allows the high-temperature water HD that is a heat medium to pass through the radiator 40 is opened, and a fan (not shown) starts rotating. At this time, when a heating operation command is issued from the high-temperature heating control unit 138 to the external control unit 126 and a command code representing the heating operation command is transferred from the external control unit 126 to the main control unit 124, the main control unit 124 Start heating operation.

循環ポンプ28及び給気ファン20が運転され、燃料元弁14、比例弁16を開いてバーナ12の燃焼を開始し、温度センサ60の検出温度が例えば、80℃となるように比例弁16の開度を調整する。高温水HDは放熱器40に循環した後、低温度の温水DBとなって膨張タンク26に戻る。室温が設定温度に到達すると、主制御部124は放熱器40の内部にある開閉弁を閉止して高温水HDの循環を停止し、室温が所定温度まで低下したとき、再び、その開閉弁を開いて再び高温水HDの循環を開始し、所定温度の暖房を行う。   The circulation pump 28 and the air supply fan 20 are operated, the fuel main valve 14 and the proportional valve 16 are opened to start the combustion of the burner 12, and the detected temperature of the temperature sensor 60 is, for example, 80 ° C. Adjust the opening. The high temperature water HD circulates in the radiator 40 and then returns to the expansion tank 26 as a low temperature hot water DB. When the room temperature reaches the set temperature, the main control unit 124 closes the on-off valve in the radiator 40 to stop the circulation of the high-temperature water HD. When the room temperature drops to the predetermined temperature, the main control unit 124 again opens the on-off valve. Open and start circulation of the high-temperature water HD again to perform heating at a predetermined temperature.

(2)低温暖房運転
この実施例では、低温暖房に必要な放熱器49、50、52が設置されているが、リモコン装置134、142側の運転スイッチによって低温暖房運転モードに移行する。即ち、放熱器49と、放熱器50、52とは独立して低温水LDの供給が開始され、この場合、放熱器49への低温水LDの供給切換えはリモコン装置142側の暖房スイッチによって操作され、放熱器50、52への低温水LDの供給切換えは、リモコン装置134側の暖房スイッチの切換えによって操作される。
(2) Low-temperature heating operation In this embodiment, radiators 49, 50, and 52 required for low-temperature heating are installed, but the operation mode is switched to the low-temperature heating operation mode by the operation switch on the remote control device 134, 142 side. That is, the supply of the low temperature water LD is started independently of the radiator 49 and the radiators 50 and 52. In this case, the supply switching of the low temperature water LD to the radiator 49 is operated by the heating switch on the remote control device 142 side. The supply switching of the low-temperature water LD to the radiators 50 and 52 is operated by switching the heating switch on the remote control device 134 side.

この低温暖房運転では、リモコン装置134、142より暖房指令があると、外部制御部126又は主制御部124によりヘッダ47側の開閉弁148、150が選択的に開かれ、主制御部124は循環ポンプ28及び給気ファン20の運転を開始し、バーナ12の燃焼動作及びその制御が行われる。この場合、高温暖房運転と異なり、バイパス管44にある低温調整弁62が開かれ、温度センサ60の検出温度が例えば、80℃となるように比例弁16の開度が調整される。そして、温度センサ61により低温水LDの温度が検出され、その検出温度が例えば、60℃となるように低温調整弁62の開度が調整される。放熱器49、50、52を循環した温水DBは暖房水戻し回路56から膨張タンク26に戻る。   In this low temperature heating operation, when there is a heating command from the remote control devices 134, 142, the external control unit 126 or the main control unit 124 selectively opens the on-off valves 148, 150 on the header 47 side, and the main control unit 124 circulates. The operation of the pump 28 and the air supply fan 20 is started, and the combustion operation of the burner 12 and its control are performed. In this case, unlike the high-temperature heating operation, the low-temperature adjustment valve 62 in the bypass pipe 44 is opened, and the opening degree of the proportional valve 16 is adjusted so that the temperature detected by the temperature sensor 60 becomes 80 ° C., for example. Then, the temperature of the low temperature water LD is detected by the temperature sensor 61, and the opening degree of the low temperature adjustment valve 62 is adjusted so that the detected temperature becomes, for example, 60 ° C. The hot water DB that has circulated through the radiators 49, 50, 52 returns from the heating water return circuit 56 to the expansion tank 26.

(3)給湯運転
リモコン装置132又はリモコン装置134の運転スイッチの操作の後、カランやシャワー等を開栓したとき、浴槽94への湯張りを行うときの動作である。給湯栓76を開くと、水流が発生するが、この水流は水量センサ82で検出される。このとき、循環ポンプ28、給気ファン20等を動作させてバーナ12の燃焼を開始し、リモコン装置132又はリモコン装置134に記憶された設定温度と、温度センサ88の検出温度、水量センサ82の検出水量により、要求出湯号数が式(1)から演算される。この演算号数分の熱量を温水KWから上水Wに与えるため、熱交換器66が必要な温水KWの流量を確保する必要がある。そこで、分配弁68を演算号数に対応する開度にして流量を確保し、暖房運転、追焚運転の併用による温度変動の影響を受けずに、給湯温度が設定温度になるように制御する。
(3) Hot-water supply operation This is an operation for filling the bathtub 94 with hot water after the operation switch of the remote-control device 132 or the remote-control device 134 is operated and then the currant or shower is opened. When the hot water tap 76 is opened, a water flow is generated, and this water flow is detected by the water amount sensor 82. At this time, the circulation pump 28, the air supply fan 20, etc. are operated to start the combustion of the burner 12, and the set temperature stored in the remote control device 132 or the remote control device 134, the detected temperature of the temperature sensor 88, and the water amount sensor 82 The required hot water number is calculated from the equation (1) based on the detected water amount. In order to give the amount of heat corresponding to the number of computations from the warm water KW to the clean water W, it is necessary to ensure the flow rate of the warm water KW that the heat exchanger 66 requires. Therefore, the flow rate is secured by setting the distribution valve 68 to an opening corresponding to the arithmetic number, and the hot water supply temperature is controlled to be the set temperature without being affected by temperature fluctuation due to the combined use of the heating operation and the memorial operation. .

この場合、熱交換器66からの出湯温度は温度センサ88により検出され、温度センサ88の検出温度が設定温度に一致するように混合弁92の開度を調整する。また、出湯量が過剰となる場合には水量制御弁86の開度を絞り、適正出湯量に制御する。   In this case, the temperature of the hot water from the heat exchanger 66 is detected by the temperature sensor 88, and the opening of the mixing valve 92 is adjusted so that the detected temperature of the temperature sensor 88 matches the set temperature. In addition, when the amount of tapping water becomes excessive, the opening of the water amount control valve 86 is throttled to control the amount of tapping water appropriately.

(4)追焚運転
リモコン装置134より追焚指令が発せられると、追焚運転モードに移行する。開閉弁74を開き、循環ポンプ28、給気ファン20等を運転し、バーナ12を燃焼させる。温度センサ60の検出温度が例えば、80℃になるように比例弁16の開度を調整する。追焚与熱回路34を通して温水OWが熱交換器72に流れ、循環ポンプ100の運転を開始すると、浴槽水96が熱交換器72に循環されるので、温水OWで浴槽水96が加熱されて浴槽94内に循環する。浴槽水96の温度は温度センサ102により検出され、その検出温度が設定温度と一致したときには循環ポンプ100を停止し、開閉弁74を閉じて追焚動作を終了する。
(4) Mourning operation When a memorial command is issued from the remote control device 134, a transition to the memorial operation mode is made. The on-off valve 74 is opened, the circulation pump 28, the air supply fan 20, etc. are operated, and the burner 12 is combusted. The opening degree of the proportional valve 16 is adjusted so that the temperature detected by the temperature sensor 60 is 80 ° C., for example. When the hot water OW flows to the heat exchanger 72 through the additional heat circuit 34 and the operation of the circulation pump 100 is started, the bathtub water 96 is circulated to the heat exchanger 72, so that the bathtub water 96 is heated by the hot water OW. Circulates in the bathtub 94. The temperature of the bath water 96 is detected by the temperature sensor 102. When the detected temperature coincides with the set temperature, the circulation pump 100 is stopped, the on-off valve 74 is closed, and the chasing operation is finished.

(5)保温運転
給湯運転、追焚運転、暖房運転の温水需要がないとき、保温運転モードに移行する。即ち、温水需要が生じたとき、加熱温度の上昇効率を高める必要から、所定時間だけ膨張タンク26及び暖房回路4内の温水10を所定温度、例えば、80℃に高める保温動作を行う。給湯需要が生じたとき、バーナ12が燃焼を開始するまで、暖房回路4及び膨張タンク26内に蓄積された温水熱量を給湯運転、追焚運転、暖房運転に使用することができる。
(5) Thermal insulation operation When there is no hot water demand for hot water supply operation, memorial operation, or heating operation, the mode is shifted to the thermal insulation operation mode. That is, when there is a demand for hot water, since it is necessary to increase the efficiency of raising the heating temperature, a warming operation is performed to raise the hot water 10 in the expansion tank 26 and the heating circuit 4 to a predetermined temperature, for example, 80 ° C. for a predetermined time. When a hot water supply demand occurs, the amount of hot water stored in the heating circuit 4 and the expansion tank 26 can be used for the hot water supply operation, the reheating operation, and the heating operation until the burner 12 starts combustion.

この場合、給湯、追焚、暖房の各運転動作が終了しても、引き続き循環ポンプ28の運転を維持し、熱交換器24、22によって所定温度、例えば、80℃まで高められた温水10は給湯与熱回路32の管路を通じて膨張タンク26に循環し、膨張タンク26内の温水10が高温水HDの温度例えば、80℃に高められる。この温度は温度センサ60で検出し、その検出温度が例えば、80℃を越えるとき、燃料元弁14を閉止してバーナ12の燃焼を停止し、その検出温度が例えば78℃まで低下したとき、燃料元弁14を開いてバーナ12の燃焼を開始し、暖房回路4の管路内の温水温度を例えば、80℃付近に保温維持する。この保温運転は、その開始から所定時間の経過後、バーナ12の燃焼を停止し、循環ポンプ28を停止する。   In this case, even if each operation of hot water supply, renewal, and heating ends, the operation of the circulation pump 28 is continuously maintained, and the hot water 10 raised to a predetermined temperature, for example, 80 ° C. by the heat exchangers 24 and 22 is It circulates to the expansion tank 26 through the pipe line of the hot water supply / heat circuit 32, and the hot water 10 in the expansion tank 26 is raised to the temperature of the high temperature water HD, for example, 80 ° C. This temperature is detected by the temperature sensor 60. When the detected temperature exceeds 80 ° C., for example, the fuel main valve 14 is closed to stop the combustion of the burner 12, and when the detected temperature decreases to 78 ° C., for example. The fuel source valve 14 is opened and combustion of the burner 12 is started, and the hot water temperature in the pipe line of the heating circuit 4 is maintained at, for example, about 80 ° C. In this heat retaining operation, after a predetermined time has elapsed from the start, combustion of the burner 12 is stopped and the circulation pump 28 is stopped.

次に、図9に示すフローチャートを参照して基本的制御動作を説明すると、ステップS1〜S5は給湯、追焚、暖房指令によって温水循環加熱が行われるルーチン、ステップS6〜S11は、給湯、追焚、暖房動作が終了して保温動作に移行し、温水循環加熱が停止するまでのルーチンである。   Next, the basic control operation will be described with reference to the flowchart shown in FIG. 9. Steps S1 to S5 are routines in which hot water circulation heating is performed by hot water supply, reheating, and heating commands, and steps S6 to S11 are hot water supply, additional heat treatment, and so on. This is a routine from the end of the heating operation to the heat retention operation until the hot water circulation heating stops.

ステップS1では、リモコン装置132、134、142、144、146より給湯、湯張り、追焚、暖房等の制御指令を受けたか否かを判定する。ステップS2では、リモコン装置134、142、144、146にて予約された運転開始時間が到来したか否かを判定する。ステップS3では、循環ポンプ28を運転し、バーナ12の燃焼を開始して、温水循環を行う。   In step S1, it is determined whether or not a control command such as hot water supply, hot water filling, chasing, heating, or the like has been received from the remote control devices 132, 134, 142, 144, and 146. In step S2, it is determined whether or not the operation start time reserved by remote control devices 134, 142, 144, and 146 has arrived. In step S3, the circulation pump 28 is operated, combustion of the burner 12 is started, and hot water circulation is performed.

そして、ステップS4では熱交換器22、24によって加熱された温水を熱交換器66、熱交換器72、放熱器40、42、49、50、52の何れか1つ、又は2以上に供給する。熱交換器66に流れる温水KWは上水Wを加熱して高温水HWを出湯する。また、熱交換器72に流れる温水OWは浴槽水BRを加熱し、加熱された浴槽水BGとして浴槽94に流れ、浴槽94の浴槽水96を攪拌して昇温される。また、高温水HDは放熱器40、42、低温水LDは放熱器49、50、52に流れ、その放熱によって暖房が行われる。そして、ステップS5では、各リモコン装置等の指令により給湯、追焚、暖房等の動作の総てが停止したか否かを判定する。   In step S4, the hot water heated by the heat exchangers 22 and 24 is supplied to any one or more of the heat exchanger 66, the heat exchanger 72, the radiators 40, 42, 49, 50, and 52. . The hot water KW flowing through the heat exchanger 66 heats the clean water W to discharge hot water HW. Moreover, the hot water OW which flows into the heat exchanger 72 heats the bathtub water BR, flows into the bathtub 94 as heated bathtub water BG, and the bathtub water 96 of the bathtub 94 is stirred and heated. The high temperature water HD flows to the radiators 40 and 42, and the low temperature water LD flows to the radiators 49, 50, and 52, and heating is performed by the heat radiation. In step S5, it is determined whether or not all operations such as hot water supply, chasing, and heating have been stopped according to commands from each remote control device or the like.

ステップS6では、保温待機時間tのタイマー計測を開始し、ステップS7では、循環ポンプ28の運転とバーナ12の燃焼を継続させ、膨張タンク26及び暖房回路4に流れる温水を所定温度、例えば、80℃に加熱する制御を行う。そして、ステップS8では、各リモコン装置等から給湯、追焚、暖房等の何れかの指令が出されたか否かを判定する。指令が出されたとき、ステップS9に移行して保温待機時間tの計測を終了し、ステップS4へ移行する。ステップS4では、保温循環された温水は、バーナ12の燃焼により所定の出湯温度として例えば、80℃に昇温するまでの間、給湯、追焚又は暖房加熱に供される。   In step S6, timer measurement of the warming standby time t is started, and in step S7, the operation of the circulation pump 28 and the combustion of the burner 12 are continued, and the hot water flowing through the expansion tank 26 and the heating circuit 4 is heated to a predetermined temperature, for example, 80 Control to heat to ℃. In step S8, it is determined whether or not any command such as hot water supply, chasing or heating is issued from each remote control device or the like. When the command is issued, the process proceeds to step S9, the measurement of the warming standby time t is finished, and the process proceeds to step S4. In step S4, the hot water that has been circulated and kept warm is supplied to hot water supply, reheating, or heating until the temperature rises to, for example, 80 ° C. as a predetermined hot water temperature by combustion of the burner 12.

そして、ステップS10では保温待機時間tを経過したか否かが判定され、保温待機時間tが経過したとき、ステップS11では燃料元弁14と比例弁16とを閉止し、循環ポンプ28を停止して温水加熱循環を停止する。   In step S10, it is determined whether or not the warming standby time t has elapsed. When the warming standby time t has elapsed, in step S11, the fuel source valve 14 and the proportional valve 16 are closed, and the circulation pump 28 is stopped. Stop hot water heating circulation.

次に、図10〜図15に示すフローチャートを参照して給湯運転、暖房運転、追焚運転等の制御動作に伴う循環ポンプ28の回転数制御を説明する。a〜fは各フローチャート間の連結子を示す。   Next, the rotational speed control of the circulation pump 28 associated with control operations such as a hot water supply operation, a heating operation, and a memorial operation will be described with reference to flowcharts shown in FIGS. a to f indicate connectors between the flowcharts.

この熱源装置では、温水需要に応じてポンプ回転数を変更し、この回転数の変更に伴うバーナ12の燃焼量を増減させて、各熱交換器22、24、66、72等に適切な温水熱量を供給し、特に、給湯動作では設定温度との誤差を低減する必要から、上水Wを加熱するに必要な温水流量を確保し、残余の温水熱量を追焚、暖房等に分配している。即ち、暖房運転や追焚運転等で熱量不足が生じても、給湯側には給湯加熱に必要な温水熱量を確保している。   In this heat source device, the number of revolutions of the pump is changed in accordance with the demand for hot water, the amount of combustion of the burner 12 accompanying the change in the number of revolutions is increased and decreased, and hot water appropriate for each heat exchanger 22, 24, 66, 72, etc. In order to supply the amount of heat, especially in hot water supply operation, it is necessary to reduce the error from the set temperature, so the flow rate of hot water required to heat the tap water W is secured, and the remaining amount of hot water is distributed to memorial, heating, etc. Yes. That is, even if a shortage of heat occurs due to heating operation or renewal operation, the hot water heat amount necessary for hot water heating is secured on the hot water supply side.

ステップS21〜S25、S47〜S49は、給湯要求号数に応じて分配弁68の開度を変更して熱交換器66へ上水Wの加熱に必要な量の温水10を供給するルーチンである。給湯号数が12号未満であればステップS21〜S25を実行し、12号以上であればステップS47〜S49を実行する。   Steps S <b> 21 to S <b> 25 and S <b> 47 to S <b> 49 are routines in which the opening degree of the distribution valve 68 is changed according to the number of hot water supply requests and the amount of hot water 10 necessary for heating the clean water W is supplied to the heat exchanger 66. . If the hot water supply number is less than 12, steps S21 to S25 are executed, and if it is 12 or more, steps S47 to S49 are executed.

また、ステップS26、S29、S30、ステップS50、S53、S54は、追焚動作、あるいは給湯、追焚が同時に動作したときのポンプ回転数の制御ルーチンである。   Steps S26, S29, S30, Steps S50, S53, and S54 are control routines for the pump rotation speed when the chasing operation or hot water supply and chasing are simultaneously performed.

また、ステップS26〜S28のルーチン、ステップS26、S29、S31、S28へと続くルーチン、あるいはステップS50〜S52のルーチン、ステップS50、S53、S55、S52へ続くルーチンは、リモコン装置134の暖房スイッチの投入によって行う暖房時のポンプ回転数を示すルーチンである。   In addition, the routine following steps S26 to S28, the routine following steps S26, S29, S31, and S28, or the routine following steps S50 to S52, and the routine following steps S50, S53, S55, and S52 are performed by the heating switch of the remote control device 134. It is a routine which shows the rotation speed of the pump at the time of heating performed by charging.

また、ステップS32〜S41は、暖房運転、あるいは12号未満の給湯と暖房が運転されている場合、リモコン等からの指令数から判定した低温暖房端末あるいは高温暖房端末の稼働数に基づき、ポンプ回転数を変更するルーチンであり、ステップS42〜S46は、給湯、追焚、暖房運転が行われるとき、暖房端末の稼働数に応じてポンプ回転数を変更するルーチンである。   Steps S32 to S41 are based on the number of operating low-temperature heating terminals or high-temperature heating terminals determined from the number of commands from a remote controller or the like when heating operation or hot water supply and heating less than 12 is operated. This is a routine for changing the number, and steps S42 to S46 are routines for changing the number of rotations of the pump in accordance with the number of operating heating terminals when hot water supply, chasing, or heating operation is performed.

また、ステップS56〜S60は、12号以上の給湯と暖房が運転されているときに、低温暖房端末あるいは高温暖房端末の稼働数に基づき、ポンプ回転数を変更するルーチンであり、また、ステップS61〜S63は、12号以上の給湯、追焚、暖房運転が行われるとき、暖房端末の稼働数に応じてポンプ回転数を変更するルーチンである。   Steps S56 to S60 are routines for changing the pump rotation speed based on the number of operating low-temperature heating terminals or high-temperature heating terminals when hot water supply and heating of No. 12 or more are being operated, and step S61. -S63 is a routine for changing the pump rotation speed according to the number of operating heating terminals when hot water supply, chasing, or heating operation of No. 12 or more is performed.

次に、この制御動作を順を追って説明すると、ステップS21では、給湯運転要求の有無を判定する。この給湯運転要求の有無は水量センサ82の検出流量により判断する。給湯運転要求がある場合には、ステップS22に移行し、設定温度、入水温度及び入水量から必要な給湯要求号数、即ち、ガス燃焼量を演算する。この給湯要求号数は式(1)から演算することができる。この給湯要求号数によって分配弁68の開度が決定され、分配弁68の開度はその号数により所定段階例えば、2段階であって、12号未満は12号を得られる最低の所定流量となる弁開度、12号以上は24号まで得られる最高所定流量となる弁開度であり、両者共に実験値から求められたものである。また、給湯要求号数の演算値から、段階的ではなく各々の要求号数を連続的に制御してもよい。その際、給湯要求号数の演算値に対して、循環流量センサ70の循環量を予め実験で求めた給湯要求能力を確保できる最低循環流量になるように分配弁68の開度を連続的に調整する。分配弁68を連続的に調整することにより、余剰能力を風呂給湯や暖房に分配できるので、連続的開度調整は、段階的開度調整に比べて合理的な給湯、暖房運転が可能である。   Next, this control operation will be described in order. In step S21, it is determined whether there is a hot water supply operation request. The presence or absence of this hot water supply operation request is determined by the flow rate detected by the water amount sensor 82. When there is a hot water supply operation request, the process proceeds to step S22, and a required hot water supply request number, that is, a gas combustion amount is calculated from the set temperature, the incoming water temperature, and the incoming water amount. The number of hot water supply requests can be calculated from equation (1). The opening degree of the distribution valve 68 is determined by the number of hot water supply requests, and the opening degree of the distribution valve 68 is in a predetermined step, for example, two steps depending on the number, and the minimum predetermined flow rate at which the number 12 is obtained is less than 12 The valve opening No. 12 or more is the valve opening that gives the maximum predetermined flow rate obtained up to No. 24, both of which were obtained from experimental values. Moreover, you may control each request | requirement number continuously from the calculated value of a hot-water supply request | requirement number not stepwise. At that time, with respect to the calculated value of the number of hot water supply requests, the opening of the distribution valve 68 is continuously set so that the circulation amount of the circulation flow sensor 70 is the minimum circulation flow rate that can ensure the required hot water supply capacity obtained in advance through experiments. adjust. By adjusting the distribution valve 68 continuously, the surplus capacity can be distributed to bath hot water and heating. Therefore, the continuous opening adjustment enables more reasonable hot water supply and heating operation than the stepwise opening adjustment. .

ステップS22で給湯能力を例えば、12号以上と判断した場合には、図13に示すフローチャートのステップS47に移行し、分配弁68を24号の給湯が得られる循環流量となる弁開度Cに調整し、また、ステップS22で給湯能力が12号未満と判断した場合には、ステップS23に移行し、分配弁68を12号の給湯を得るに必要な循環流量となる弁開度Bに調整する。   If it is determined in step S22 that the hot water supply capacity is, for example, No. 12 or higher, the flow proceeds to step S47 in the flowchart shown in FIG. If it is determined that the hot water supply capacity is less than No. 12 in Step S22, the process proceeds to Step S23, and the distribution valve 68 is adjusted to a valve opening B that is a circulation flow rate required to obtain No. 12 hot water supply. To do.

ここで、弁開度と給湯能力及び循環流量の関係は、表1の通りである。   Here, the relationship between the valve opening degree, the hot water supply capacity, and the circulation flow rate is as shown in Table 1.

Figure 0004101843
Figure 0004101843

この表1において、各弁開度A〜Cは、給湯入水温度が30℃まで上昇しても、上記号数を確保できる循環流量(与熱流量)に相当するものである。   In Table 1, each valve opening degree A to C corresponds to a circulation flow rate (heat flow rate) that can secure the number of upper symbols even when the hot water supply water temperature rises to 30 ° C.

ステップS24では、追焚運転、暖房運転の要求があるか否かを外部制御部126や各リモコン装置134、142、144、146の出力から判断する。これらの要求がない場合には、ステップS25に移行し、ポンプ回転数を所定回転数、例えば、3300rpmに固定する。この場合、12号未満の給湯で出湯しているか、又はプリポンプ、ポストポンプの状態が考えられ、ポンプ回転数は固定値となる。   In step S24, it is determined from the outputs of the external control unit 126 and the remote control devices 134, 142, 144, and 146 whether or not there is a request for a chasing operation or a heating operation. If there is no such request, the process proceeds to step S25, and the pump speed is fixed to a predetermined speed, for example, 3300 rpm. In this case, the hot water is discharged with a hot water supply of less than No. 12, or the state of the pre-pump and the post-pump is considered, and the pump rotational speed is a fixed value.

また、追焚運転又は暖房運転の要求がある場合、ステップS26に移行し、追焚運転要求か否かをリモコン装置134の出力から判断する。追焚運転要求がない場合には、ステップS27に移行し、暖房要求が個別暖房負荷か否かを判断する。ここで、個別暖房負荷とは、特定の放熱器40、42、49、50、52の1又は2以上であって、これらの暖房負荷が特定されない場合を個別以外、即ち、全体暖房負荷として判断する。この実施例では、放熱器50、52は独立した負荷ではなく、制御側からみれば単独負荷である。個別暖房負荷の場合は、全体暖房負荷からみれば要求熱量が小さくなるので、12号未満の給湯とし、出湯運転と暖房運転、又は暖房運転単独の状態となる。このとき、暖房要求が個別暖房負荷でない場合、その要求暖房個数が判断できないので、ステップS28に移行し、最大の要求熱量を想定してポンプ回転数を上限値、例えば、4100rpmに固定する。   If there is a request for the chasing operation or the heating operation, the process proceeds to step S26, and it is determined from the output of the remote control device 134 whether the chasing operation is requested. When there is no memorial operation request | requirement, it transfers to step S27 and it is judged whether a heating request | requirement is an individual heating load. Here, the individual heating load is one or more of the specific radiators 40, 42, 49, 50, and 52, and the case where these heating loads are not specified is determined as other than individual, that is, the entire heating load. To do. In this embodiment, the radiators 50 and 52 are not independent loads but are single loads as viewed from the control side. In the case of an individual heating load, since the required amount of heat becomes small when viewed from the overall heating load, the hot water supply is less than No. 12, and the hot water operation and the heating operation or the heating operation alone are set. At this time, if the heating request is not an individual heating load, the required number of heating cannot be determined, so the process proceeds to step S28, and the pump rotation speed is fixed to an upper limit value, for example, 4100 rpm, assuming the maximum required heat amount.

ステップS27で個別運転要求の場合には、図11に示すフローチャートのステップS32に移行する。この場合の回転数選定は図11に示すフローチャートの通りである。   In the case of an individual operation request in step S27, the process proceeds to step S32 in the flowchart shown in FIG. The rotation speed selection in this case is as shown in the flowchart of FIG.

そして、ステップS26で追焚運転要求があった場合にはステップS29に移行し、ステップS29では、暖房運転要求の有無を外部制御部126や各リモコン装置134、142、144、146等から判断し、暖房運転要求がない場合には、ステップS30に移行し、ポンプ回転数を所定回転数、例えば、3500rpmに固定する。この場合、12号未満の給湯とし、出湯運転及び追焚運転、又は追焚運転単独の状態である。追焚運転の場合には、ポンプ回転数を変化させず、固定値とする。追焚運転(風呂側の熱交換)は、沸上げ開始から終了の間にポンプ回転数を増減させる必要がなく、固定回転とする。この固定回転数は、沸上げに必要な所定熱量に対応するポンプ回転数を実験値から求めたものである。   If there is a memorial operation request in step S26, the process proceeds to step S29. In step S29, the presence or absence of a heating operation request is determined from the external control unit 126, each remote control device 134, 142, 144, 146, or the like. If there is no heating operation request, the process proceeds to step S30, and the pump speed is fixed at a predetermined speed, for example, 3500 rpm. In this case, it is a hot water supply less than No. 12, and is a state of a hot water operation and a memorial operation, or a memorial operation alone. In the case of memorial operation, the pump rotation speed is not changed and is set to a fixed value. The memorial operation (heat exchange on the bath side) is fixed rotation without the need to increase or decrease the pump rotation speed from the start to the end of boiling. The fixed rotational speed is obtained by experimentally determining the pump rotational speed corresponding to a predetermined amount of heat necessary for boiling.

ステップS29で暖房運転要求があった場合には、ステップS31でその暖房要求が個別暖房負荷であるか否かを判断し、個別負荷要求でない場合には、上述の通り、要求暖房個数が判断できないため、ステップS28に移行し、ポンプ回転数は上限値として例えば、4100rpmに固定される。   If there is a heating operation request in step S29, it is determined in step S31 whether the heating request is an individual heating load. If not, the required number of heating cannot be determined as described above. Therefore, the process proceeds to step S28, and the pump rotational speed is fixed at, for example, 4100 rpm as an upper limit value.

そして、ステップS27で個別運転要求の場合には、図11に示すステップS32に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS34に移行し、ポンプ回転数を下限値、例えば、3300rpmに設定し、また、暖房要求が1系統以外の場合にはステップS35に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS36に移行し、ポンプ回転数を下限値、例えば、3300rpmに設定し、また、暖房要求が2系統以外の場合にはステップS37に移行し、暖房要求が3系統以外があるか否かを判断し、3系統の場合にはステップS38に移行し、ポンプ回転数を所定値、例えば、3500rpmに設定し、また、暖房要求が3系統以外の場合にはステップS39に移行し、暖房要求が4系統以外があるか否かを判断し、4系統の場合にはステップS40に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が4系統以外の場合にはステップS41に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。   And in the case of an individual operation request | requirement by step S27, it transfers to step S32 shown in FIG. 11, it is judged whether a heating request | requirement has other than 1 system | strain, and in the case of 1 system | strain, it transfers to step S34, The pump speed is set to a lower limit value, for example, 3300 rpm, and if the heating request is other than one system, the process proceeds to step S35, and it is determined whether the heating request is other than two systems. In this case, the process proceeds to step S36, and the pump speed is set to a lower limit value, for example, 3300 rpm. If the heating request is other than two systems, the process proceeds to step S37, and whether there is a heating request other than three systems. If there are three systems, the process proceeds to step S38, the pump speed is set to a predetermined value, for example, 3500 rpm, and if the heating request is other than three systems, the process proceeds to step S39. Then, it is determined whether there are any heating requests other than four systems. If there are four systems, the process proceeds to step S40, the pump speed is set to a predetermined value, for example, 3800 rpm, and the heating request is four systems. Otherwise, the process proceeds to step S41, and the pump speed is set to an upper limit value, for example, 4100 rpm.

また、ステップS31で個別運転要求の場合には、図12に示すステップS42に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS43に移行し、ポンプ回転数を所定値、例えば、3600rpmに設定し、また、暖房要求が1系統以外の場合にはステップS44に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS45に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が2系統以外の場合にはステップS46に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。   Moreover, in the case of an individual operation request | requirement by step S31, it transfers to step S42 shown in FIG. 12, it is judged whether a heating request | requirement has other than 1 system | strain, and in the case of 1 system | strain, it transfers to step S43, The pump speed is set to a predetermined value, for example, 3600 rpm, and if the heating request is other than one system, the process proceeds to step S44, and it is determined whether the heating request is other than two systems. In the case, the process proceeds to step S45, the pump speed is set to a predetermined value, for example, 3800 rpm, and if the heating request is other than two systems, the process proceeds to step S46, and the pump speed is set to an upper limit value, for example, Set to 4100 rpm.

また、図10のステップS22で給湯能力が12号以上と判断した場合には、図13のステップS47で分配弁68を24号の給湯を得るに必要な循環流量となる弁開度Cに調整した後、ステップS48に移行する。ステップS48では、追焚運転、暖房運転の要求があるか否かを外部制御部126や各リモコン装置134、142、144、146の出力から判断する。これらの要求がない場合には、ステップS49に移行し、ポンプ回転数を所定回転数、例えば、3500rpmに固定する。この場合、12号以上で出湯しているので、ポンプ回転数は固定値となる。   If it is determined in step S22 of FIG. 10 that the hot water supply capacity is No. 12 or higher, the distribution valve 68 is adjusted to a valve opening C which is a circulation flow rate necessary for obtaining hot water of No. 24 in step S47 of FIG. Then, the process proceeds to step S48. In step S48, it is determined from the outputs of the external control unit 126 and the remote control devices 134, 142, 144, and 146 whether or not there is a request for a chasing operation or a heating operation. If there is no such request, the process proceeds to step S49, and the pump rotational speed is fixed to a predetermined rotational speed, for example, 3500 rpm. In this case, since the hot water is discharged from No. 12 or more, the pump rotational speed is a fixed value.

また、追焚運転又は暖房運転の要求がある場合、ステップS50に移行し、追焚運転要求か否かをリモコン装置134の出力から判断する。追焚運転要求がない場合には、ステップS51に移行し、暖房要求が個別運転要求か否かを判断し、個別要求運転でない場合にはステップS52に移行する。ステップS52では、12号以上の給湯とし、出湯運転と暖房運転の状態となり、個別要求運転でない場合には要求暖房個数が判断できないため、ポンプ回転数を上限値、例えば、4100rpmに固定する。   If there is a request for the chasing operation or the heating operation, the process proceeds to step S50, and it is determined from the output of the remote control device 134 whether the chasing operation is requested. If there is no memorial operation request, the process proceeds to step S51, where it is determined whether the heating request is an individual operation request, and if not, the process proceeds to step S52. In step S52, hot water supply of No. 12 or more is used, and the hot water supply operation and the heating operation are performed. When the operation is not an individual request operation, the required number of heating cannot be determined, so the pump rotation speed is fixed to an upper limit value, for example, 4100 rpm.

ステップS51で個別運転要求の場合には、図14に示すフローチャートのステップS56に移行する。この場合の回転数選定は図14のフローチャートの通りである。   In the case of an individual operation request in step S51, the process proceeds to step S56 in the flowchart shown in FIG. The rotation speed selection in this case is as shown in the flowchart of FIG.

ステップS50では、追焚運転要求があるか否かをリモコン装置134の出力から判定し、追焚運転要求があった場合には、ステップS53に移行し、暖房運転要求か否かを外部制御部126や各リモコン装置142、144、146の出力から判断する。暖房運転要求がない場合には、ステップS54に移行する。ステップS54では、12号以上の給湯とし、出湯運転及び追焚運転の状態となり、この場合、回転数を変化させることなく、固定値となる。追焚運転(風呂側の熱交換)は、沸上げ開始から終了の間にポンプ回転数を増減させる必要がないため固定回転数とする。このとき、この固定回転数は、所定熱量を得るに必要な回転数を実験値から求めたものである。   In step S50, it is determined from the output of the remote control device 134 whether there is a follow-up operation request. If there is a follow-up operation request, the process proceeds to step S53, where it is determined whether there is a heating operation request. 126 and the output of each remote control device 142, 144, 146. When there is no heating operation request, the process proceeds to step S54. In step S54, hot water supply of No. 12 or more is set, and a hot water supply operation and a memorial operation state are set. In this case, a fixed value is obtained without changing the rotation speed. In the memorial operation (bath-side heat exchange), it is not necessary to increase / decrease the pump speed between the start and end of boiling, so the speed is fixed. At this time, the fixed rotational speed is obtained from an experimental value for the rotational speed necessary to obtain a predetermined amount of heat.

また、ステップS53で暖房運転要求があった場合にはステップS55に移行し、ステップS55では、暖房運転要求が個別運転要求か否かを判断する。この場合、12号以上の給湯として出湯運転、暖房運転及び追焚運転の状態である。そのとき、暖房要求が個別運転要求でない場合には、要求暖房個数が判断できないため、ステップS52に移行し、ポンプ回転数を上限値、例えば、4100rpmに固定する。   If there is a heating operation request in step S53, the process proceeds to step S55, and in step S55, it is determined whether the heating operation request is an individual operation request. In this case, the hot water supply of No. 12 or more is in the state of a hot water operation, a heating operation, and a memorial operation. At that time, if the heating request is not an individual operation request, the required number of heating cannot be determined, so the process proceeds to step S52, and the pump speed is fixed to an upper limit value, for example, 4100 rpm.

そして、ステップS51で個別要求運転の場合には、図14に示すステップS56に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS57に移行し、ポンプ回転数を所定値、例えば、3500rpmに設定し、また、暖房要求が1系統以外の場合にはステップS58に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS59に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が2系統以外の場合にはステップS60に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。   Then, in the case of individual request operation in step S51, the process proceeds to step S56 shown in FIG. 14, and it is determined whether there is a heating request other than one system, and in the case of one system, the process proceeds to step S57, The pump speed is set to a predetermined value, for example, 3500 rpm, and if the heating request is other than one system, the process proceeds to step S58 to determine whether the heating request is other than two systems. In this case, the process proceeds to step S59, the pump speed is set to a predetermined value, for example, 3800 rpm, and if the heating request is other than two systems, the process proceeds to step S60, and the pump speed is set to an upper limit value, for example, Set to 4100 rpm.

そして、ステップS55で個別運転要求の場合には、図15に示すステップS61に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS62に移行し、ポンプ回転数を所定値、例えば、4000rpmに設定し、また、暖房要求が1系統以外の場合にはステップS63に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。この場合、12号以上の給湯として出湯運転、暖房運転及び追焚運転の状態である。   And in the case of an individual operation request | requirement by step S55, it transfers to step S61 shown in FIG. 15, judges whether a heating request | requirement has other than 1 system | strain, and in the case of 1 system | strain, it transfers to step S62, The pump rotational speed is set to a predetermined value, for example, 4000 rpm. If the heating request is other than one system, the process proceeds to step S63, and the pump rotational speed is set to an upper limit value, for example, 4100 rpm. In this case, the hot water supply of No. 12 or more is in the state of a hot water operation, a heating operation and a memorial operation.

なお、図11、図12、図14、図15に示す各フローチャートは、リモコン装置等から暖房要求個数(要求系統数)を判断し、各個数に応じた回転数を選定するものである。暖房要求個数は低温/高温両者共に1系統と判断する。各々に応じた回転数は実験値から求められたものであるが、これは1系統に必要な機外揚程を満足できる回転数であって、具体的値はガス供給会社等の基準を満足できるものである。   In addition, each flowchart shown in FIG.11, FIG.12, FIG.14, FIG.15 judges the number of heating request | requirements (number of request | requirement systems) from a remote control apparatus etc., and selects the rotation speed according to each number. The number of heating requests is determined to be one system for both low and high temperatures. The number of rotations corresponding to each is obtained from experimental values, but this is the number of rotations that can satisfy the external lift required for one system, and the specific value can satisfy the standards of gas supply companies, etc. Is.

次に、図16〜図19に示すフローチャートを参照して給湯制御動作を説明する。g、hは各フローチャートの連結子を示している。   Next, the hot water supply control operation will be described with reference to the flowcharts shown in FIGS. “g” and “h” indicate connectors in each flowchart.

ステップS71〜S76は給湯開始前の混合弁92の故障検出ルーチンであり、ステップS71、S78〜S81は、上水Wの流水が検出されたときに、要求号数を演算して分配弁68の開度を変更するルーチンである。要求号数を満足する熱量を熱交換器66へ供給して、給湯HWの温度を安定化させる。また、ステップS82は、温水が循環されているか否かを判断するルーチンである。   Steps S71 to S76 are a failure detection routine for the mixing valve 92 before the start of hot water supply. Steps S71 and S78 to S81 calculate the required number when the flowing water of the clean water W is detected. This is a routine for changing the opening. The amount of heat that satisfies the required number is supplied to the heat exchanger 66 to stabilize the temperature of the hot water supply HW. Step S82 is a routine for determining whether hot water is being circulated.

ステップS82〜S83、S86〜S90は所定温度例えば、80℃の温水10が循環中の給湯動作である。温水が循環中であれば、熱交換器66の付近に滞留していた上水Wが加熱保温されている。この滞留水と上水Wの混合により迅速な出湯が可能となり、かつ、循環中の温水KWによって即座に上水Wを昇温することができる。このルーチンでは、即時出湯のために混合弁92、水量制御弁86を制御して、上水Wを設定温度に調整する。   Steps S82 to S83 and S86 to S90 are hot water supply operations in which hot water 10 at a predetermined temperature, for example, 80 ° C. is circulating. If the hot water is circulating, the clean water W staying in the vicinity of the heat exchanger 66 is heated and kept warm. By mixing the retained water and the clean water W, quick hot water can be discharged, and the warm water WW can be immediately heated by the circulating warm water KW. In this routine, the mixing valve 92 and the water amount control valve 86 are controlled for immediate hot water to adjust the clean water W to a set temperature.

ステップS73〜S76は、混合弁92の故障時の処理ルーチンを示す。給湯温度の調整は混合弁92の開度調整に依存する。混合弁92の故障によって、高温給湯がなされるおそれがあるので、給湯準備中あるいは給湯停止時に混合弁92が正常か否かを判定し、異常が検出されたときには、給湯を禁止する。   Steps S <b> 73 to S <b> 76 show a processing routine at the time of failure of the mixing valve 92. The adjustment of the hot water supply temperature depends on the adjustment of the opening degree of the mixing valve 92. Since there is a possibility that hot water supply is performed due to a failure of the mixing valve 92, it is determined whether or not the mixing valve 92 is normal during hot water preparation or when hot water supply is stopped, and hot water supply is prohibited when an abnormality is detected.

また、ステップS85は、温水が循環していないときの給湯のコールドスタート時の給湯処理ルーチンを示す。即ち、温水を昇温させ、この温水の熱量により熱交換器66を加熱するため、設定温度の給湯HWの出湯までにタイムラグが生じる。そこで、温水KWの昇温を早めるためにポンプ回転数を制御し、かつ熱交換器66での給湯HWの昇温を高めるため、混合弁92を一時的に閉鎖する。   Step S85 shows a hot water supply processing routine at the time of cold start of hot water supply when hot water is not circulating. That is, since the temperature of the hot water is raised and the heat exchanger 66 is heated by the amount of heat of the hot water, a time lag occurs until the hot water supply of the hot water supply HW at the set temperature. Therefore, the mixing valve 92 is temporarily closed in order to control the pump rotation speed in order to increase the temperature of the hot water KW and to increase the temperature of the hot water supply HW in the heat exchanger 66.

各動作をステップに沿って説明すると、この給湯運転制御において、水量制御弁86は、出湯量を最大規制値に移行させ、混合弁92は、出湯温度を設定温度に移行させる。また、水量制御弁86は常時最大規制値になるように出湯量を規制し、混合弁92は出湯温度が設定温度範囲内になるまで混合動作をする。   Each operation will be described along the steps. In this hot water supply operation control, the water amount control valve 86 shifts the amount of discharged hot water to the maximum regulation value, and the mixing valve 92 shifts the temperature of discharged hot water to the set temperature. Further, the water amount control valve 86 regulates the amount of hot water so that it always becomes the maximum restriction value, and the mixing valve 92 performs the mixing operation until the temperature of the hot water falls within the set temperature range.

ステップS71では、水量センサ82が流水を検出したか否かを判断し、流水がない場合には、ステップS72に移行して水量制御弁86を開動作させ、ステップS73に移行して混合弁92の開度を全開位置まで開いた後、ステップS74に移行し、全開リミットを検出したか否かを判断し、全開リミットを検出しない場合、ステップS75に移行し、所定時間、例えば、10秒間だけ待機し、その時間内に全開リミットを検出しない場合、ステップS76に移行して混合弁92に異常があるとして異常アラームを発生させる。   In step S71, it is determined whether or not the water amount sensor 82 has detected flowing water. If there is no flowing water, the flow proceeds to step S72 to open the water amount control valve 86, and the flow proceeds to step S73 to move the mixing valve 92. After opening the opening to the fully open position, the process proceeds to step S74, where it is determined whether or not the fully open limit is detected. If the fully open limit is not detected, the process proceeds to step S75, and only for a predetermined time, for example, 10 seconds. If the full-open limit is not detected within that time, the process proceeds to step S76, and an abnormality alarm is generated assuming that the mixing valve 92 is abnormal.

所定時間内に全開リミットを検出した場合には、ステップS77に移行してステップS71に戻る。即ち、燃焼停止時は混合弁92を全開にして待機し、弁動作開始後所定時間内にリミット検出で動作を終了する。   If the fully open limit is detected within the predetermined time, the process proceeds to step S77 and returns to step S71. That is, when the combustion is stopped, the mixing valve 92 is fully opened to stand by, and the operation is terminated by detecting a limit within a predetermined time after starting the valve operation.

また、ステップS78では、給水温度、流量、設定温度等から給湯要求号数を演算し、ステップS79に移行して給湯要求号数を判断する。即ち、ステップS79では、給湯要求号数が所定号数未満例えば、12号未満か否かを判断し、所定号数未満の場合にはステップS80に移行して分配弁68を所定弁開度として弁開度Bに設定し、給湯号数未満でない場合にはステップS81に移行して分配弁68を所定弁開度として弁開度Cに設定する。この場合、各給湯能力にあった弁開度を選定しており、給湯要求号数に対して分配弁68の開度は連続的に動かしてもよく、分配弁68の弁開度は予め実験値で求めた要求号数を満足する最低循環流量を確保できる弁開度とする。   In step S78, the hot water supply request number is calculated from the water supply temperature, flow rate, set temperature, etc., and the process proceeds to step S79 to determine the hot water supply request number. That is, in step S79, it is determined whether or not the hot water supply request number is less than a predetermined number, for example, less than 12, and if it is less than the predetermined number, the process proceeds to step S80 and the distribution valve 68 is set to a predetermined valve opening. When the valve opening degree B is set and the number is not less than the hot water supply number, the process proceeds to step S81 and the distribution valve 68 is set to the valve opening degree C as a predetermined valve opening degree. In this case, the valve opening degree corresponding to each hot water supply capacity is selected, and the opening degree of the distribution valve 68 may be continuously moved with respect to the number of hot water supply requests. The valve opening is such that a minimum circulating flow rate that satisfies the required number of values obtained can be secured.

そして、ステップS82では、暖房温水循環制御(他動作等)が開始されているか否かを判断し、暖房温水循環制御が開始されている場合にはステップS83に移行し、混合弁92を動作させる。また、暖房温水循環制御が開始されていない場合には、ステップS84に移行して暖房温水循環制御を開始し、その開始の後、ステップS85に移行してコールドスタート制御を行い、ステップS83に移行する。   In step S82, it is determined whether heating / warm water circulation control (other operations, etc.) is started. If heating / warm water circulation control is started, the process proceeds to step S83 to operate the mixing valve 92. . If the heating / warm water circulation control has not been started, the process proceeds to step S84 to start the heating / warm water circulation control. After that, the process proceeds to step S85 to perform the cold start control, and the process proceeds to step S83. To do.

ステップS83では、混合弁92を動作させて給湯温度に一致させる。このとき、混合弁92は温度センサ88、温度センサ80の検出出力、入水量、設定温度から予め実験で求められた弁開度に調整する。この場合、ステップS83では、混合弁92をステップS78で求めた要求号数を基に予め実験等で求めた基礎データを記憶手段であるROMから読み出して所定温度になるように混合弁92を動作する制御即ち、フィードフォワード制御を行う。   In step S83, the mixing valve 92 is operated to match the hot water supply temperature. At this time, the mixing valve 92 is adjusted to the valve opening previously obtained by experiment from the detection output of the temperature sensor 88 and the temperature sensor 80, the amount of incoming water and the set temperature. In this case, in step S83, the mixing valve 92 is operated so that the basic data obtained by experiments or the like in advance based on the required number obtained in step S78 is read from the ROM, which is the storage means, and reaches a predetermined temperature. Control, i.e., feedforward control.

また、ステップS86では水量制御が最大流量以上か否かを判断し、最大流量以上である場合にはステップS87に移行して水量を最大値に規制する。即ち、ステップS86、S87では、給湯量が水量制御弁86で給湯可能な最大流量を超えているとき、最大流量までに弁開度を規制する。但し、給湯量が最大流量未満なら弁開度を維持する。この場合、最大流量は、   In step S86, it is determined whether or not the water amount control is greater than or equal to the maximum flow rate. If the flow rate is greater than or equal to the maximum flow rate, the flow proceeds to step S87 to restrict the water amount to the maximum value. That is, in steps S86 and S87, when the hot water supply amount exceeds the maximum flow rate at which hot water can be supplied by the water amount control valve 86, the valve opening degree is regulated to the maximum flow rate. However, if the amount of hot water supply is less than the maximum flow rate, the valve opening is maintained. In this case, the maximum flow rate is

最大流量=
{(給湯温度−給水温度)/(設定温度−給水温度)}×検出流量
・・・(2)
で与えられる。
Maximum flow rate =
{(Hot water temperature-Feed water temperature) / (Set temperature-Feed water temperature)} x Detection flow rate
... (2)
Given in.

そして、ステップS88では温水温度が設定温度±αの温度範囲に到達したか否かを判定し、この温度範囲に到達していない場合にはステップS89に移行し、温水温度が設定温度になるように混合弁92の開度を微調節し、温水温度を設定温度±αの温度範囲に到達させる。この場合、ステップS88の動作だけでは設定温度に達しない場合、温度センサ88の検出温度が設定温度範囲内になるように混合弁92を動作させる制御即ち、フィードバック制御を行う。   In step S88, it is determined whether or not the hot water temperature has reached the temperature range of the set temperature ± α. If not, the process proceeds to step S89 so that the hot water temperature becomes the set temperature. Then, the opening degree of the mixing valve 92 is finely adjusted so that the hot water temperature reaches the set temperature ± α. In this case, when the set temperature is not reached only by the operation of step S88, the control for operating the mixing valve 92 so that the temperature detected by the temperature sensor 88 falls within the set temperature range, that is, feedback control is performed.

ステップS88で出湯温度が設定温度範囲内に達したと判断されたとき、ステップS90に移行して水量制御弁86及び混合弁92の開度を維持し、ステップS71に戻る。   When it is determined in step S88 that the tapping temperature has reached the set temperature range, the process proceeds to step S90, the opening degree of the water amount control valve 86 and the mixing valve 92 is maintained, and the process returns to step S71.

次に、ステップS84の暖房温水循環制御は、図18に示すように、ステップS91で熱交換器24の入側温度を温度センサ58で検出した後、ステップS92に移行し、ポンプ回転数を演算した後、ポンプ運転を開始する。この場合、予め基礎実験で求めたポンプ回転数から流量を演算し、熱交換器22の出側温度が所定温度、例えば、80℃となるようなポンプ回転数で運転し、温水温度を例えば、80℃に迅速に到達させることができる。   Next, as shown in FIG. 18, in the heating / warm water circulation control in step S84, the temperature on the inlet side of the heat exchanger 24 is detected by the temperature sensor 58 in step S91, and then the process proceeds to step S92 to calculate the pump rotation speed. After that, the pump operation is started. In this case, the flow rate is calculated from the pump rotational speed obtained in advance in the basic experiment, and the outlet temperature of the heat exchanger 22 is operated at a predetermined rotational speed, for example, 80 ° C., and the hot water temperature is, for example, 80 ° C. can be reached quickly.

ステップS93では燃焼制御を開始し、ステップS94では熱交換器22の出側温度を温度センサ60で検出し、その検出温度が所定温度以上か否かを判定し、所定温度に温水温度が到達したとき、ステップS95に移行してポンプ回転数制御から演算した回転数で運転を行う。この場合、熱交換後の温水温度が所定温度まで達したら、通常のポンプ回転数の決定制御で決定したポンプ回転数で運転を行う。   In step S93, combustion control is started. In step S94, the outlet temperature of the heat exchanger 22 is detected by the temperature sensor 60, and it is determined whether or not the detected temperature is equal to or higher than a predetermined temperature, and the hot water temperature has reached the predetermined temperature. In step S95, the operation is performed at the rotational speed calculated from the pump rotational speed control. In this case, when the hot water temperature after heat exchange reaches a predetermined temperature, the operation is performed at the pump speed determined by the normal pump speed determination control.

また、図17に示すフローチャートのステップS85のコールドスタート制御では、図19に示すように、ステップS101で混合弁92の湯側を全開状態にした後、ステップS102に移行して出湯温度が所定温度に到達したか否かを判定する。出湯温度が所定温度に到達するまで、混合弁92の湯側を開き、出湯温度が所定温度に到達したとき、コールドスタート制御を終了する。この場合、コールドスタート時、所定温度、例えば、37℃までは混合弁92の湯側を全開にして立上りを向上させた後、所定温度に到達したとき、通常制御に移行させる。   Further, in the cold start control in step S85 of the flowchart shown in FIG. 17, as shown in FIG. 19, after the hot water side of the mixing valve 92 is fully opened in step S101, the process proceeds to step S102 and the hot water temperature is set to a predetermined temperature. It is determined whether or not. The hot water side of the mixing valve 92 is opened until the hot water temperature reaches a predetermined temperature, and when the hot water temperature reaches the predetermined temperature, the cold start control is terminated. In this case, at the time of cold start, the hot water side of the mixing valve 92 is fully opened up to a predetermined temperature, for example, 37 ° C. to improve the rise, and when the predetermined temperature is reached, the normal control is started.

次に、本発明の熱源装置の他の実施例について説明する。   Next, another embodiment of the heat source device of the present invention will be described.

図20は、本発明の熱源装置の危険防止制御の実施例を示している。この熱源装置において、危険防止制御は、混合弁92が故障した場合に最高設定温度以上の高温出湯を防止する制御である。給湯回路6に流れる上水Wを熱媒である温水10を用いて加熱する熱交換は、間接熱交換であるため、熱交換器66が沸騰するおそれがない低流量出湯が可能であるが、混合弁92が故障して閉じられると、低流量出湯となり、バイパス管90を通過する上水(冷水)Wが混合しないため、出湯温度が高温化し、温水10の温度と同等の最大80℃程度の高温出湯になるおそれがある。   FIG. 20 shows an embodiment of the danger prevention control of the heat source device of the present invention. In this heat source device, the danger prevention control is a control for preventing hot hot water having a temperature higher than the maximum set temperature when the mixing valve 92 fails. The heat exchange that heats the clean water W flowing through the hot water supply circuit 6 using the hot water 10 that is a heat medium is indirect heat exchange, so that low-flow hot water without the possibility of boiling the heat exchanger 66 is possible. When the mixing valve 92 is closed due to failure, the hot water is discharged at a low flow rate, and the hot water (cold water) W passing through the bypass pipe 90 is not mixed. There is a risk of hot hot water.

この高温出湯を防止するには、混合弁92が閉故障であることを検知した場合、分配弁68を閉止することにより、熱量移動の遮断、即ち、熱湯を遮断し、給湯及び熱交換を停止すれば、上水Wに対する与熱熱量がないので、給湯温度の高温化を回避できるものの、給湯回路6がバイパス管90を用いているため、給湯与熱を停止しても、暖房回路4側を沸騰させるおそれがある。そこで、風呂回路8側の開閉弁74を開き、破線で示すように、追焚与熱回路34をバイパス迂回路として用いれば、暖房回路4の沸騰を回避できる。この場合、循環ポンプ100を運転しない限り、浴槽94側の浴槽水96が熱くなることはない。   In order to prevent this high temperature hot water, when it is detected that the mixing valve 92 is closed, the distribution valve 68 is closed to shut off heat transfer, that is, hot water is cut off, and hot water supply and heat exchange are stopped. Then, since there is no amount of heat to be supplied to the clean water W, it is possible to avoid an increase in the hot water supply temperature, but the hot water supply circuit 6 uses the bypass pipe 90. There is a risk of boiling. Therefore, if the on-off valve 74 on the side of the bath circuit 8 is opened and the additional heating circuit 34 is used as a bypass bypass as shown by the broken line, boiling of the heating circuit 4 can be avoided. In this case, unless the circulating pump 100 is operated, the bathtub water 96 on the bathtub 94 side does not become hot.

また、他の制御として、混合弁92の閉故障を検知した場合、水量制御弁86を閉じて出湯を強制的に停止する。この場合、水量制御弁86の閉止機能が故障した場合を想定し、水量制御弁86の故障時は、バーナ12の燃焼を停止させれば、安全性をより高めることができる。   As another control, when a closing failure of the mixing valve 92 is detected, the water amount control valve 86 is closed to forcibly stop the hot water. In this case, it is assumed that the closing function of the water amount control valve 86 is broken, and when the water amount control valve 86 is broken, the safety can be further improved by stopping the combustion of the burner 12.

この危険防止制御を図21に示すフローチャートを参照して説明すると、ステップS401で混合弁92に異常があるか否かを検出する。即ち、混合弁92の異常検出方法は、通常ならば閉又は開リミット(限界角度)に到達できる十分な所定時間後、何れかのリミットを主制御部124側で検知できない場合を異常ありと判断する。他の検出方法として、水量センサ82の検出出力や、リモコン装置の運転要求等から給湯運転停止と判断した場合には、混合弁92は全開方向へ動作することになる。そのとき、所定時間経過後、混合弁92から開リミットを検出できない場合には同様に異常ありと判断する。   If this danger prevention control is demonstrated with reference to the flowchart shown in FIG. 21, it will be detected whether the mixing valve 92 has abnormality in step S401. In other words, the abnormality detection method for the mixing valve 92 is determined to be abnormal if any limit cannot be detected by the main control unit 124 after a predetermined time that normally reaches the closed or open limit (limit angle). To do. As another detection method, when it is determined that the hot water supply operation is stopped from the detection output of the water amount sensor 82, the operation request of the remote control device, or the like, the mixing valve 92 operates in the fully open direction. At that time, if the open limit cannot be detected from the mixing valve 92 after a predetermined time has elapsed, it is similarly determined that there is an abnormality.

ステップS401で混合弁92に異常があると判断した場合には、ステップS402で熱源の動作、この実施例では、燃焼を一時停止させる。そして、ステップS403では、水量制御弁86を閉止させ、給湯出湯を停止することにより高温出湯を防止する。この結果、利用者が高温出湯に晒されることがない。   If it is determined in step S401 that there is an abnormality in the mixing valve 92, the operation of the heat source, in this embodiment, combustion is temporarily stopped in step S402. In step S403, the hot water discharge is prevented by closing the water amount control valve 86 and stopping the hot water supply hot water. As a result, the user is not exposed to high temperature hot water.

また、ステップS404、S405では、水量制御弁86の故障を検出する。即ち、ステップS404では水量制御弁86の閉止動作から所定時間、例えば、10秒が経過したか否かを判定し、10秒以内ではステップS405に移行し、ステップS405では、水量制御弁86が故障により出湯を閉止できない場合には高温出湯をする危険があるので、水量制御弁86の閉リミット検出を行い、水量制御弁86の閉止の有無を確認する。その閉止動作開始から10秒以内に閉止が確認されない場合、ステップS406に移行し、水量制御弁86及び混合弁92の双方の故障(ダブル故障)と判断して燃焼完全停止とし、その故障アラームを発生して異常を告知する。熱源の燃焼の停止により、確実に高温出湯を回避できる。   In steps S404 and S405, a failure of the water amount control valve 86 is detected. That is, in step S404, it is determined whether or not a predetermined time, for example, 10 seconds has elapsed since the closing operation of the water amount control valve 86, and within 10 seconds, the process proceeds to step S405, and in step S405, the water amount control valve 86 fails. When the hot water cannot be closed due to the above, there is a risk of hot hot water hot water, so the closing limit of the water amount control valve 86 is detected to check whether or not the water amount control valve 86 is closed. If the closing is not confirmed within 10 seconds from the start of the closing operation, the process proceeds to step S406, it is determined that both the water amount control valve 86 and the mixing valve 92 have failed (double failure), and the combustion is completely stopped. Announces anomalies. By stopping combustion of the heat source, high temperature hot water can be reliably avoided.

そして、ステップS407では、開閉弁74を開くことで、追焚与熱回路34をバイパス迂回路として機能させ、ステップS408では、分配弁68を所定の開度、この場合、熱交換器66側を閉止(弁開度A)とすることにより流量を零にし、熱交換器66への熱量搬送を遮断し、ステップS409では表示部130にアラーム点灯を行い、混合弁92の異常を告知する。また、ステップS410では給湯運転以外の暖房及び追焚運転の再開が可能となり、燃焼を再開させる。   In step S407, the on-off valve 74 is opened to cause the additional heat circuit 34 to function as a bypass bypass. In step S408, the distribution valve 68 is opened at a predetermined opening, in this case, the heat exchanger 66 side. By setting the valve to the closed position (valve opening A), the flow rate is reduced to zero, the heat transfer to the heat exchanger 66 is interrupted, and in step S409, an alarm is turned on on the display unit 130 to notify the abnormality of the mixing valve 92. Moreover, in step S410, heating other than the hot water supply operation and the renewal operation can be resumed, and combustion is resumed.

このような制御を行えば、図7に示す熱源装置の構成を利用して高温出湯を防止でき、安全性を高めることができる。なお、ステップS407、408は、ステップS402とステップS403との間に設けて同様の処理を行ってもよい。   If such control is performed, the structure of the heat source device shown in FIG. 7 can be used to prevent high temperature hot water and safety can be improved. Note that steps S407 and 408 may be provided between step S402 and step S403 to perform the same processing.

次に、図22は、本発明の熱源装置の低温往き温度の安定化制御の実施例を示している。高温暖房負荷及び低温暖房負荷に対応する高低二温度の暖房装置では、膨張タンク26の温水温度が支配的であるため、低温負荷に対する温水LDの低温往き温度が要求温度から大幅にずれることを防止するため、低温往き温度の安定性を向上させる制御を行う。   Next, FIG. 22 shows an embodiment of stabilization control of the low temperature going temperature of the heat source device of the present invention. In the high and low temperature heating device corresponding to the high temperature heating load and the low temperature heating load, the hot water temperature of the expansion tank 26 is dominant, so that the low temperature going temperature of the hot water LD with respect to the low temperature load is prevented from greatly deviating from the required temperature. Therefore, control is performed to improve the stability of the low temperature temperature.

熱交換器22、24で発生させた高温水HDと、この高温水HDに膨張タンク26側の温水10を混合して低温水LDとが得られ、高温水HDは高温暖房負荷、低温水LDは低温暖房負荷に供給される。ここで、低温往き温度は、高温水HDと温水10の混合によって得ているが、温水10と、高温水HDとを混合させる際に、高温水HDより膨張タンク26側の温水10の圧力が高いため、圧力不均衡が両者の混合比に影響を与え、低温往き温度が温水10側の温水温度によって変化し、ばらつくおそれがある。例えば、膨張タンク26側の温水温度を50℃、高温水HD側の温度を80℃とすると、圧力均衡を図るための固定オリフィスを設置しても、膨張タンク26の温水温度が10℃だけ下がると、低温往き温度は50℃となり、低温水LDを所定温度として例えば60℃に設定することができないおそれがある。   The high temperature water HD generated in the heat exchangers 22 and 24 and the high temperature water HD are mixed with the hot water 10 on the expansion tank 26 side to obtain the low temperature water LD. The high temperature water HD is the high temperature heating load, the low temperature water LD. Is supplied to a low-temperature heating load. Here, the low temperature going temperature is obtained by mixing the high temperature water HD and the hot water 10, but when the hot water 10 and the high temperature water HD are mixed, the pressure of the hot water 10 on the expansion tank 26 side from the high temperature water HD is increased. Since the pressure is high, the pressure imbalance affects the mixing ratio of the two, and the low temperature going-back temperature may vary depending on the hot water temperature on the hot water 10 side and may vary. For example, when the hot water temperature on the expansion tank 26 side is 50 ° C. and the temperature on the high temperature water HD side is 80 ° C., the hot water temperature in the expansion tank 26 is lowered by 10 ° C. even if a fixed orifice for pressure balancing is installed. Then, the low temperature going temperature becomes 50 ° C., and there is a possibility that the low temperature water LD cannot be set to, for example, 60 ° C. as a predetermined temperature.

そこで、この実施例では固定オリフィスに代えて低温調整弁62を設置したものである。このような低温調整弁62を設置すれば、膨張タンク26の温水温度が低い場合には低温調整弁62の開度を絞って流量を抑え、膨張タンク26の温水温度が高い場合には低温調整弁62の開度を開いて流量を増大させれば、低温水LDを設定温度60℃に制御することができる。   Therefore, in this embodiment, a low temperature adjusting valve 62 is installed instead of the fixed orifice. If such a low temperature adjusting valve 62 is installed, when the hot water temperature of the expansion tank 26 is low, the opening degree of the low temperature adjusting valve 62 is reduced to suppress the flow rate, and when the hot water temperature of the expansion tank 26 is high, the low temperature adjustment is performed. If the opening of the valve 62 is opened to increase the flow rate, the low temperature water LD can be controlled to a set temperature of 60 ° C.

この低温調整弁62を用いた低温往き温度の安定化制御を図23に示すフローチャートを参照して説明すると、ステップS501では、低温往き温度が、設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断する。このとき、低温往き温度は温度センサ61から読み取り、設定温度は各リモコン装置、外部制御部126に設定されている。低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内の場合には、ステップS502に移行して現在の弁開度を維持し、設定温度の所定温度範囲外の場合には、ステップS503に移行する。   The stabilization control of the low temperature going temperature using the low temperature adjusting valve 62 will be described with reference to the flowchart shown in FIG. 23. In step S501, the low temperature going temperature is within a predetermined temperature range of the set temperature, for example, ± 1 ° C. Judge whether it is within or not. At this time, the low-temperature forward temperature is read from the temperature sensor 61, and the set temperature is set in each remote control device and the external control unit 126. When the low temperature going temperature is within a predetermined temperature range of the set temperature, for example, within ± 1 ° C., the process proceeds to step S502 to maintain the current valve opening, and when it is outside the predetermined temperature range of the set temperature, The process proceeds to step S503.

ステップS503では、低温往き温度が設定温度以下か否かを判断し、低温往き温度が設定温度より低い場合にはステップS504に移行し、低温往き温度が設定温度より高い場合にはステップS505に移行する。ステップS504では、低温調整弁62の開度を閉方向に調整し、より高温側の温水量を増やすことで設定温度に近付ける。そして、ステップS506では、再び、低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断し、その範囲内にある場合には、ステップS508に移行して現在の弁開度を維持し、ステップS501に戻る。また、低温往き温度が設定温度の所定温度範囲外、例えば、±1℃以外の場合には、ステップS507に移行し、低温調整弁62の閉リミットを検出したか否かを判断し、ステップS503に戻る。   In step S503, it is determined whether or not the low-temperature forward temperature is lower than the set temperature. If the low-temperature forward temperature is lower than the set temperature, the process proceeds to step S504. If the low-temperature forward temperature is higher than the set temperature, the process proceeds to step S505. To do. In step S504, the opening degree of the low temperature adjustment valve 62 is adjusted in the closing direction, and the temperature is brought close to the set temperature by increasing the amount of hot water on the higher temperature side. In step S506, it is determined again whether or not the low-temperature going-out temperature is within a predetermined temperature range of the set temperature, for example, within ± 1 ° C. If it is within that range, the process proceeds to step S508 and the current The valve opening is maintained, and the process returns to step S501. On the other hand, when the low temperature going-out temperature is outside the predetermined temperature range of the set temperature, for example, other than ± 1 ° C., the process proceeds to step S507, and it is determined whether or not the closed limit of the low temperature adjusting valve 62 is detected, and step S503 is performed. Return to.

また、ステップS505では、低温調整弁62の開度を開方向に調整し、より高温側の温水量を減らすことで設定温度に近付ける。そして、ステップS509では、再び、低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断し、その範囲内にある場合には、ステップS511に移行して現在の弁開度を維持し、ステップS501に戻る。また、低温往き温度が設定温度の所定温度範囲外、例えば、±1℃以外の場合には、ステップS510に移行し、低温調整弁62の閉リミットを検出したか否かを判断し、ステップS501に戻る。   Moreover, in step S505, the opening degree of the low temperature adjustment valve 62 is adjusted in the opening direction, and the hot water amount on the higher temperature side is reduced to approach the set temperature. In step S509, it is determined again whether or not the low-temperature going-out temperature is within a predetermined temperature range of the set temperature, for example, within ± 1 ° C. If it is within that range, the process proceeds to step S511 and the current The valve opening is maintained, and the process returns to step S501. On the other hand, when the low temperature going-out temperature is outside the predetermined temperature range of the set temperature, for example, other than ± 1 ° C., the process proceeds to step S510, and it is determined whether or not the closed limit of the low temperature adjusting valve 62 is detected, and step S501. Return to.

そして、ステップS507で低温調整弁62の閉リミット、ステップS510でその開リミットを検出した場合には開度調整が困難であるので、調整動作を停止させ、ステップS507ではステップS508、ステップS510ではステップS511に移行して現状の開度を維持する。   If the close limit of the low-temperature regulating valve 62 is detected in step S507 and the open limit is detected in step S510, the opening degree adjustment is difficult, so the adjustment operation is stopped. In step S507, step S508, and in step S510, step The process proceeds to S511 to maintain the current opening degree.

このような安定化制御を行えば、低温暖房負荷に対する低温水LDの温度を所定温度に安定化させることができ、温度変化による不都合を回避することができる。   By performing such stabilization control, the temperature of the low-temperature water LD with respect to the low-temperature heating load can be stabilized at a predetermined temperature, and inconvenience due to temperature change can be avoided.

なお、実施例では、暖房回路4に流す熱媒として水を例に取って説明したが、不凍液、その他の液体等を用いてもよい。   In the embodiment, water has been described as an example of the heat medium flowing through the heating circuit 4, but an antifreeze liquid, other liquids, or the like may be used.

以上説明したように、上記実施の形態の熱源装置によれば、次の効果が得られる。
a 燃焼熱や電熱、排熱等の単一の熱源を用いて熱媒を加熱し、その熱媒の熱を暖房負荷、上水加熱、浴槽水の追焚等の多用途化、多機能化を実現できる。単一の熱源で加熱した熱媒が持つ熱を暖房負荷、第2の熱交換手段又は第3の熱交換手段側に選択的に切り換えて供給するので、熱交換の高効率化、配管路の簡略化、設備の軽量化、コンパクト化とともに、設備コストの低減や設置作業の簡略化を実現することができる。配管路の簡略化により、暖房、給湯及び追焚回路の低圧損化を図ることができる。
b 燃料ガス等の燃焼熱を熱源に用いた場合、燃焼時間を縮小して高効率化を図ることができるとともに、低Nox化、ポンプ消費電力の低減を図ることができる。
c ポンプの回転数を制御することで、熱媒加熱を制御することができ、加熱需要に即応することができる。温水需要の変動に伴い、循環温水量を可変するため、各温水需要に対して適切な温水量を供給できる。
d 潜熱回収による熱交換で熱媒の加熱を高効率化することができる。
e タンク内の熱媒を保温することで、その熱量を給湯、暖房、浴槽追焚きに利用することができ、給湯の加熱速度を高めることができ、給湯の迅速化を図ることができる。給湯に必要な温水量を予め確保できるので、浴槽水の追焚、暖房等の温水需要が生じても給湯温度変動を抑制でき、安定給湯が可能である。
f 給湯需要と暖房用の放熱又は浴槽水の追焚との熱分配により、熱的損失を抑制でき、高効率化を実現できる。
As described above, according to the heat source device of the above embodiment, the following effects can be obtained.
a Heating medium is heated using a single heat source such as combustion heat, electric heat, exhaust heat, etc., and the heat of the heat medium is versatile and multifunctional, such as heating load, water heating, bath water Can be realized. Since the heat of the heating medium heated by a single heat source is selectively switched and supplied to the heating load, the second heat exchange means or the third heat exchange means, the heat exchange is highly efficient and the piping Along with simplification, equipment weight reduction, and compactness, it is possible to reduce equipment costs and simplify installation work. By simplifying the piping, it is possible to reduce the low pressure loss of the heating, hot water supply, and remedy circuits.
b When combustion heat such as fuel gas is used as a heat source, the combustion time can be reduced to increase the efficiency, and the Nox can be reduced and the pump power consumption can be reduced.
c Heat medium heating can be controlled by controlling the number of revolutions of the pump, and the demand for heating can be met immediately. As the hot water demand varies, the circulating hot water amount is varied, so that an appropriate hot water amount can be supplied for each hot water demand.
d Heating of the heat medium can be made highly efficient by heat exchange by latent heat recovery.
e By keeping the heat medium in the tank warm, the amount of heat can be used for hot water supply, heating, and bathtub reheating, the heating speed of hot water supply can be increased, and hot water supply can be speeded up. Since the amount of hot water required for hot water supply can be secured in advance, even when hot water demand such as bath water replenishment or heating occurs, fluctuations in hot water supply temperature can be suppressed and stable hot water supply is possible.
f Thermal distribution can be suppressed and high efficiency can be realized by heat distribution between hot water supply demand and heat radiation for heating or renewal of bathtub water.

本発明は、単一の熱源により暖房、給湯、浴槽追焚等の多用途化を実現した熱源装置に関し、熱媒温度の急激な変化の防止や、出湯側にある混合弁異常の継続回避等に利用でき、有用である。
The present invention relates to a heat source device that realizes versatility such as heating, hot water supply, bath tub retreat, etc. with a single heat source, preventing abrupt changes in heat medium temperature, continuing avoidance of mixing valve abnormality on the outlet side, etc. Available and useful.

本発明の熱源装置を示す図である。It is a figure which shows the heat-source apparatus of this invention. 基本動作を示すフローチャートである。It is a flowchart which shows a basic operation. 給湯必要熱量−ポンプ回転数を示す特性図である。It is a characteristic view which shows the amount of hot water supply required-pump rotation speed. 給湯必要熱量、暖房要求端末個数−ポンプ回転数を示す特性図である。It is a characteristic view which shows the amount of heat required for hot water supply and the number of heating request terminals-pump rotation speed. 給湯、暖房、追焚必要熱量−ポンプ回転数を示す特性図である。It is a characteristic view which shows hot water supply, heating, and the amount of additional heat required-pump rotation speed. 保温動作を示すフローチャートである。It is a flowchart which shows heat retention operation | movement. 本発明の実施例である熱源装置の熱源機側の構成を示す図である。It is a figure which shows the structure by the side of the heat source machine of the heat source apparatus which is an Example of this invention. 本発明の実施例における熱源装置の制御系及び暖房負荷側の構成を示す図である。It is a figure which shows the control system of the heat-source apparatus in the Example of this invention, and the structure by the side of a heating load. 本発明の実施例である熱源装置の基本的な制御動作を示すフローチャートである。It is a flowchart which shows the basic control operation | movement of the heat-source apparatus which is an Example of this invention. ポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows pump rotation speed determination control. 図10に続くポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows the pump speed determination control following FIG. 図10に続くポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows the pump speed determination control following FIG. 図10に続くポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows the pump speed determination control following FIG. 図13に続くポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows the pump speed determination control following FIG. 図13に続くポンプ回転数決定制御を示すフローチャートである。It is a flowchart which shows the pump speed determination control following FIG. 給湯運転動作を示すフローチャートである。It is a flowchart which shows hot water supply driving | operation operation | movement. 図16に続く給湯運転動作を示すフローチャートである。It is a flowchart which shows the hot water supply driving | operation operation | movement following FIG. 暖房温水循環制御を示すフローチャートである。It is a flowchart which shows heating hot water circulation control. コールドスタート制御を示すフローチャートである。It is a flowchart which shows cold start control. 危険防止制御の実施例を示す図である。It is a figure which shows the Example of danger prevention control. 危険防止制御を示すフローチャートである。It is a flowchart which shows danger prevention control. 低温調整制御の実施例を示す図である。It is a figure which shows the Example of low temperature adjustment control. 低温調整制御を示すフローチャートである。It is a flowchart which shows low-temperature adjustment control.

符号の説明Explanation of symbols

3 暖房負荷
3A 高温暖房負荷
3B 低温暖房負荷
4 暖房回路(循環路)
10 温水(熱媒)
11 熱源(加熱手段)
12 バーナ(加熱手段)
21、22 熱交換器(熱交換手段)
24 熱交換器(熱交換手段、潜熱回収熱交換手段)
26 膨張タンク
28 循環ポンプ
40、42、49、50、52 放熱器(暖房負荷)
66 熱交換器(第2の熱交換手段)
68 分配弁(供給切換手段)
72 熱交換器(第3の熱交換手段)
74 開閉弁(供給切換手段)
124 主制御部
3 Heating load 3A High temperature heating load 3B Low temperature heating load 4 Heating circuit (circulation path)
10 Hot water (heat medium)
11 Heat source (heating means)
12 Burner (heating means)
21, 22 Heat exchanger (heat exchange means)
24 heat exchanger (heat exchange means, latent heat recovery heat exchange means)
26 Expansion tank 28 Circulation pump 40, 42, 49, 50, 52 Radiator (heating load)
66 Heat exchanger (second heat exchange means)
68 Distribution valve (supply switching means)
72 heat exchanger (third heat exchange means)
74 On-off valve (supply switching means)
124 Main control unit

Claims (2)

熱媒を溜めるタンクと、
前記熱媒を循環させる暖房負荷と、
第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、
熱源と、
前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、
前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、
前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、
前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、
前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、
前記第1の熱交換手段の入側における前記主回路に設置されて前記タンクの前記熱媒を前記主回路側に流すポンプと、
前記第2の熱交換手段により加熱された前記給湯水と上水とを混合させる混合弁と、
前記混合弁の動作異常を検出する検出手段と、
暖房要求、給湯要求又は浴槽水加熱要求を受け、暖房要求により前記第1の開閉弁、給湯要求により前記第2の開閉弁、浴槽水加熱要求により前記第3の開閉弁を開くとともに前記ポンプを駆動し、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し、前記暖房要求、前記給湯要求及び前記浴槽水加熱要求が必要とする熱量を求め、この熱量に応じて前記ポンプの回転数を制御するとともに、前記検出手段が前記混合弁の動作異常を検出した場合に、前記第2の熱交換手段に対する前記熱媒の循環動作、前記熱源の加熱動作、又は出湯動作の何れかの動作又は2以上の動作を停止させる制御手段と、
備えたことを特徴とする熱源装置。
A tank for storing heat medium,
A heating load for circulating the heat medium;
A main circuit comprising a first on-off valve, and when the first on-off valve is opened, circulates the heating medium from the tank to the heating load and returns the tank to the tank;
A heat source,
A first heat exchanging means connected to the main circuit for circulating the heat medium and exchanging heat of the heat source to the heat medium;
The main circuit includes a second on-off valve that is branched from the outlet side of the first heat exchanging means and is directly connected to the tank. When the second on-off valve is opened, the heat from the main circuit A hot water supply and heating circuit for flowing a medium and returning it to the tank;
A second heat exchanging means connected to the hot water supply / heat circuit, for exchanging heat of the heat medium flowing through the hot water supply / heat circuit with hot water;
The main circuit is branched from the outlet side of the first heat exchanging means and is directly connected to the tank, and includes a third on-off valve. When the third on-off valve is opened, the heat is supplied from the main circuit. An additional heat circuit for flowing the medium and returning it to the tank;
A third heat exchanging means connected to the additional heat circuit, for exchanging heat of the heat medium flowing in the additional heat circuit to bath water;
A pump installed in the main circuit on the entry side of the first heat exchanging means to flow the heat medium of the tank to the main circuit side;
A mixing valve for mixing the hot water heated by the second heat exchange means and clean water ;
Detecting means for detecting abnormal operation of the mixing valve;
Upon receiving a heating request, a hot water supply request, or a bath water heating request, the first on-off valve is opened by a heating request, the second on-off valve is opened by a hot water request, the third on-off valve is opened by a bath water heating request, and the pump is And when the first on-off valve is opened, the heating medium of the tank is caused to flow to the heating load through the first heat exchange means in the main circuit, and the second on-off valve is opened. The heat medium in the tank flows through the first heat exchanging means in the main circuit to the second heat exchanging means, and the heat of the tank is opened when the third on-off valve is opened. The medium is passed through the first heat exchanging means in the main circuit to the third heat exchanging means and returned to the tank, and the amount of heat required by the heating request, the hot water supply request, and the bath water heating request is obtained. Depending on the amount of heat, the pump It controls the rotation number, when the detection means detects abnormal operation of the mixing valve, circulation operation of the heating medium to the second heat exchange means, heating operation of the heat source, or any tapping operation Control means for stopping the operation or two or more operations ;
Heat source apparatus comprising the.
熱媒を溜めるタンクと、
前記熱媒を循環させる暖房負荷と、
第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、
熱源と、
前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、
前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、
前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、
前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、
前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、
前記第1の熱交換手段の入側における前記主回路に設置されて前記タンクの前記熱媒を前記主回路側に流すポンプと、
前記第2の熱交換手段により加熱された前記給湯水と上水とを混合させる混合弁と、
前記混合弁の動作異常を検出する検出手段と、
前記第1の開閉弁、前記第2の開閉弁、前記第3の開閉弁、前記ポンプの駆動、前記ポンプを制御する制御手段とを含む熱源装置の制御方法であって、
暖房要求、給湯要求又は浴槽水加熱要求を受け、暖房要求により前記第1の開閉弁、給湯要求により前記第2の開閉弁、浴槽水加熱要求により前記第3の開閉弁を開くとともに前記ポンプを駆動し、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し、前記暖房要求、前記給湯要求及び前記浴槽水加熱要求が必要とする熱量を求め、この熱量に応じて前記ポンプの回転数を制御するとともに、前記検出手段が前記混合弁の動作異常を検出した場合に、前記第2の熱交換手段に対する前記熱媒の循環動作、前記熱源の加熱動作、又は出湯動作の何れかの動作又は2以上の動作を停止させる処理を含むことを特徴とする熱源装置の制御方法。
A tank for storing heat medium,
A heating load for circulating the heat medium;
A main circuit comprising a first on-off valve, and when the first on-off valve is opened, circulates the heating medium from the tank to the heating load and returns the tank to the tank;
A heat source,
A first heat exchanging means connected to the main circuit for circulating the heat medium and exchanging heat of the heat source to the heat medium;
The main circuit includes a second on-off valve that is branched from the outlet side of the first heat exchanging means and is directly connected to the tank. When the second on-off valve is opened, the heat from the main circuit A hot water supply and heating circuit for flowing a medium and returning it to the tank;
A second heat exchanging means connected to the hot water supply / heat circuit, for exchanging heat of the heat medium flowing through the hot water supply / heat circuit with hot water;
The main circuit is branched from the outlet side of the first heat exchanging means and is directly connected to the tank, and includes a third on-off valve. When the third on-off valve is opened, the heat is supplied from the main circuit. An additional heat circuit for flowing the medium and returning it to the tank;
A third heat exchanging means connected to the additional heat circuit, for exchanging heat of the heat medium flowing in the additional heat circuit to bath water;
A pump installed in the main circuit on the entry side of the first heat exchanging means to flow the heat medium of the tank to the main circuit side;
A mixing valve for mixing the hot water heated by the second heat exchange means and clean water;
Detecting means for detecting abnormal operation of the mixing valve;
A control method of a heat source device including the first on-off valve, the second on-off valve, the third on-off valve, driving of the pump, and control means for controlling the pump ,
Upon receiving a heating request, a hot water supply request, or a bath water heating request, the first on-off valve is opened by a heating request, the second on-off valve is opened by a hot water request, the third on-off valve is opened by a bath water heating request, and the pump is And when the first on-off valve is opened, the heating medium of the tank is caused to flow to the heating load through the first heat exchange means in the main circuit, and the second on-off valve is opened. The heat medium in the tank flows through the first heat exchanging means in the main circuit to the second heat exchanging means, and the heat of the tank is opened when the third on-off valve is opened. The medium is passed through the first heat exchanging means in the main circuit to the third heat exchanging means and returned to the tank, and the amount of heat required by the heating request, the hot water supply request, and the bath water heating request is obtained. Depending on the amount of heat, the pump It controls the rotation number, when the detection means detects abnormal operation of the mixing valve, circulation operation of the heating medium to the second heat exchange means, heating operation of the heat source, or any tapping operation the method of the heat source device which comprises a process of stopping the operation or two or more operations.
JP2006014069A 2006-01-23 2006-01-23 Heat source device and control method thereof Expired - Lifetime JP4101843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014069A JP4101843B2 (en) 2006-01-23 2006-01-23 Heat source device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014069A JP4101843B2 (en) 2006-01-23 2006-01-23 Heat source device and control method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001319870A Division JP3833511B2 (en) 2001-10-17 2001-10-17 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2006112785A JP2006112785A (en) 2006-04-27
JP4101843B2 true JP4101843B2 (en) 2008-06-18

Family

ID=36381434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014069A Expired - Lifetime JP4101843B2 (en) 2006-01-23 2006-01-23 Heat source device and control method thereof

Country Status (1)

Country Link
JP (1) JP4101843B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875923B2 (en) * 2006-05-16 2012-02-15 リンナイ株式会社 Hot water storage hot water supply system
JP2008008589A (en) * 2006-06-30 2008-01-17 Osaka Gas Co Ltd Latent heat recovery type heating device
JP4249766B2 (en) * 2006-08-10 2009-04-08 リンナイ株式会社 Heat source machine
US9557752B2 (en) * 2010-02-24 2017-01-31 Purpose Company Limited Hot water supply apparatus and heat medium control method
JP5921418B2 (en) * 2012-11-20 2016-05-24 大阪瓦斯株式会社 Heat source device construction method, heat source device and hot water storage system
JP6796382B2 (en) * 2016-02-10 2020-12-09 野村マイクロ・サイエンス株式会社 Heating water manufacturing method and manufacturing system
CN109564007B (en) * 2016-07-26 2021-06-22 株式会社能率 Heating hot water supply device
JP6745039B2 (en) * 2016-11-25 2020-08-26 株式会社ノーリツ Heating water heater
JP2018185082A (en) * 2017-04-25 2018-11-22 株式会社ノーリツ Heating/hot water supplying device

Also Published As

Publication number Publication date
JP2006112785A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4101845B2 (en) Heat source device and control method thereof
JP4101843B2 (en) Heat source device and control method thereof
JP3833511B2 (en) Heat source equipment
KR20060050501A (en) Heat pumped water heating and heating apparaturs
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP2010276220A (en) Hot water supply system
JP4752347B2 (en) Hot water storage water heater
JP2005098628A (en) Heat source water supply system
JP5192778B2 (en) Hot water heater
JP5140634B2 (en) Hot water storage hot water supply system and cogeneration system
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP2023075363A (en) Hot water supply method, hot water supply system and program
WO2016042312A1 (en) A domestic water and space heating system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP4875948B2 (en) Hot water storage hot water supply system and cogeneration system
JP2007040553A (en) Storage type hot water supply device
JP5638480B2 (en) Heat source equipment
JP3887754B2 (en) Hot water storage type hot water supply apparatus and control method thereof
JP5982238B2 (en) Hot water storage water heater
JP2019219156A (en) Storage water heater
JP7310690B2 (en) Storage hot water heater
JP2019117010A (en) Hot water supply heating system
JP6403631B2 (en) Hot water storage unit
JP2006162101A (en) Heat pump water heater
JP5989481B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250