JP4101479B2 - Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine - Google Patents

Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine Download PDF

Info

Publication number
JP4101479B2
JP4101479B2 JP2001190910A JP2001190910A JP4101479B2 JP 4101479 B2 JP4101479 B2 JP 4101479B2 JP 2001190910 A JP2001190910 A JP 2001190910A JP 2001190910 A JP2001190910 A JP 2001190910A JP 4101479 B2 JP4101479 B2 JP 4101479B2
Authority
JP
Japan
Prior art keywords
welding
setting
signal
circuit
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001190910A
Other languages
Japanese (ja)
Other versions
JP2003001417A (en
JP2003001417A5 (en
Inventor
孝典 大西
真也 岡本
太志 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2001190910A priority Critical patent/JP4101479B2/en
Publication of JP2003001417A publication Critical patent/JP2003001417A/en
Publication of JP2003001417A5 publication Critical patent/JP2003001417A5/ja
Application granted granted Critical
Publication of JP4101479B2 publication Critical patent/JP4101479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アーク加工機の各加工条件を表示する加工条件表示装置に関する。
【0002】
【従来の技術】
以下、従来技術のアーク溶接機、アーク切断機等のアーク加工機の代表例としてアーク溶接機を選択し、図2に示すアーク溶接機の溶接条件表示装置の接続図について説明する。図2において、直流電源主回路DPSは交流電源を直流に変換して直流電力を供給し、2次側切換回路STRは、上記直流電力を交流電力に変換して非消耗性電極1と被加工物2との間に交流電力を供給する。出力電流検出回路IDは、出力電流を検出して出力電流検出信号Idを出力する。ドライバ回路DRは、ドライバ回路駆動信号DPsを直流電源主回路DPSが駆動できる直流電源駆動信号Drにレベル変換して出力する。また、2次側ドライバ回路DSは、2次側ドライバ回路駆動信号STrを2次側切換回路が駆動できる2次側ドライバ駆動信号Dsにレベル変換して出力する。
【0003】
溶接条件設定部WCEは、予め定めた値の溶接電流設定信号Wiを設定する溶接電流設定回路WI、パルス電流設定信号Piを設定するパルス電流設定回路PI、クレータ電流設定信号Ciを設定するクレータ電流設定回路CI、初期電流設定信号Eiを設定する初期電流設定回路EI、パルス周波数設定信号Pfを設定するパルス周波数設定回路PF、アップスロープ時間設定信号Atを設定するアップスロープ時間設定回路AT、ダウンスロープ時間設定信号Dtを設定するダウンスロープ時間設定回路DT、アフタフロー設定信号Afを設定するアフタフロー設定回路AF及びクリーニング幅設定信号Clを設定するクリーニング幅設定回路CLで形成されている。
【0004】
溶接方法設定部WCSは、TIG溶接又は直流手溶接のどちらかを選択する溶接法設定信号Wsを出力する溶接法設定回路WS、パルス電流有り又は無しのどちらかを選択するパルス設定信号Psを出力するパルス設定回路PS、直流溶接又は交流溶接のどちらかを選択する直流・交流溶接設定信号DAsを出力する直流・交流溶接設定回路DAS及びクレータフィラ有り又は無しのどちらかを選択するクレータ設定信号Csを出力するクレータ設定回路CSで形成されている。
【0005】
出力指令値制御部OWCは、直流溶接指令制御回路DC、直流パルス溶接指令制御回路DPC、交流溶接指令制御回路AC及び交流パルス溶接指令制御回路APCで形成されている。
【0006】
直流溶接指令制御回路DCは、溶接電流設定信号Wi、クレータ電流設定信号Ci、初期電流設定信号Ei、アップスロープ時間設定信号At及びダウンスロープ時間設定信号Dtの値に応じて直流溶接指令制御信号Dcを発生して出力し、直流パルス溶接指令制御回路DPCは、溶接電流設定信号Wi、パルス電流設定信号Pi、クレータ電流設定信号Ci、初期電流設定信号Ei、パルス周波数設定信号Pf、アップスロープ時間設定信号At及びダウンスロープ時間設定信号Dtの値に応じて直流パルス溶接指令制御信号DPcを発生して出力する。
【0007】
交流溶接指令制御回路ACは、溶接電流設定信号Wi、クレータ電流設定信号Ci、初期電流設定信号Ei、アップスロープ時間設定信号At、ダウンスロープ時間設定信号Dt及びクリーニング幅設定信号Clの値に応じて交流溶接指令制御信号Acを発生して出力し、交流パルス溶接指令制御回路APCは、溶接電流設定信号Wi、パルス電流設定信号Pi、クレータ電流設定信号Ci、初期電流設定信号Ei、パルス周波数設定信号Pf、アップスロープ時間設定信号At、ダウンスロープ時間設定信号Dt及びクリーニング幅設定信号Clの値に応じて交流パルス溶接指令制御信号APcを発生して出力する。
【0008】
制御処理演算回路CDCは、溶接方法設定部WCSによって設定される溶接法設定信号Ws、パルス設定信号Ps、直流・交流溶接設定信号DAs及びクレータ設定信号Csの各設定信号に応じて、出力指令値制御部OWCから入力される直流溶接指令制御信号Dc、直流パルス溶接指令制御信号DPc、交流溶接指令制御信号Ac及び交流パルス溶接指令制御信号APcのどれかを選択する。さらに、上記制御処理演算回路CDCは、起動信号Tsが入力されると動作を開始してドライバ回路駆動信号DPs及び2次側ドライブ回路駆動信号STrを出力する。
【0009】
図3は、図2に示す従来技術のアーク溶接機の動作を示すタイミング図であり、溶接条件としては、直流TIG溶接でパルス無しでクレータ有りに設定されている。図3(A)は、直流TIG溶接の出力電流Ioを示し、図3(B)は、起動スイッチTSから出力する起動信号Tsを示す。図3(C)は、溶接法設定回路WSから出力するTIG溶接及び直流手溶接を選択する溶接法設定信号Wsを示し、HighレベルのときにTIG溶接、Lowレベルのときに直流手溶接を選択する。図3(D)は、パルス設定回路PSから出力するパルス電流有り又は無しのどちらかを選択するパルス設定信号Psを示し、Highレベルのときにパルス有り、Lowレベルのときにパルス無しを選択する。図3(E)は、直流・交流溶接設定回路DASから出力する直流溶接又は交流溶接のどちらかを選択する直流・交流溶接設定信号DAsを示し、Highレベルのときに交流溶接、Lowレベルのときに直流溶接を選択する。図3(F)は、クレータ設定回路CSから出力するクレータフィラ有り又は無しのどちらかを選択するクレータ設定信号Csを示し、Highレベルのときにクレータフィラ有り、Lowレベルのときにクレータフィラ無しを選択する。図3(G)は、2次側ドライバ回路DSを駆動する2次側ドライバ回路駆動信号STrを示し、図3(H)は、ドライバ回路DRを駆動するドライバ回路駆動信号Drを示す。
【0010】
図3に示す溶接待機期間T1中に、溶接方法設定部WCSから制御処理演算回路CDCに、図3(C)に示す溶接法設定信号WsをHighレベル、図3(D)に示すパルス設定信号PsをLowレベル、図3(E)に示す直流・交流溶接設定信号DAsをLowレベル、図3(F)に示すクレータ設定信号CsをHighレベルにして設定して入力すると、制御処理演算回路CDCは上記出力指令値制御部OWCから出力される各出力信号のうち直流溶接指令制御信号Dcを選択して入力する。
【0011】
図3(B)に示す時刻t=taにおいて、起動信号Tsが制御処理演算回路CDCに入力されると動作を開始して、図3(G)に示す2次側ドライブ回路駆動信号STrをHighレベルにして、2次側切換回路を常時導通させて直流電源として動作し、図示を省略した直流溶接指令制御信号Dcの値に応じて、図3(A)に示す直流TIG溶接の出力電流Ioを出力する。
【0012】
【発明が解決しようとする課題】
従来技術のアーク加工機では、加工条件を確認するにはアーク加工機のフロントパネル等の予め定めた位置に配設された、加工条件設定用切換スイッチの各設定位置を目視で確認する作業が必要であり、遠方からの確認が困難で誤認が起こりやすかった。また、加工作業中の加工条件の変化を逐次確認することんができないため、度々生じる加工作業中の加工条件変更の必要性に対して、各切換スイッチの設定ミス及び不必要な設定を行って加工不良を起こす原因となっていた。
【0013】
【課題を解決するための手段】
出願時請求項1の装置の発明は、一次スイッチから形成されるインバータ回路によって直流電力を高周波交流パルス電圧に変換し、上記高周波交流パルス電圧を主変圧器によってアーク加工に適した電圧に変換し、上記主変圧器の出力電圧を2次整流回路によって再度直流電力に変換して電力を電極と被加工物との間に供給する加工条件表示装置を備えたアーク加工機において、予め定めた値の各加工条件設定値を設定する加工条件設定部WCEと、予め定めた加工方法を設定する加工方法設定部WCSと、上記加工条件設定部WCE及び加工方法設定部WCSの各設定値に応じて、加工待機期間T1の間は加工待機表示指示信号CDrを出力し、加工動作期間T2の間は演算処理を行ってドライバ回路駆動信号DPsを出力する第2の制御処理演算回路CDC2と、上記加工待機期間T1の間は加工待機表示指示信号CDrの値に応じて、加工条件設定項目の各表示器を選択して加工条件を表示する加工条件表示部WLEDとを具備した加工条件表示装置を備えたアーク加工機である。
【0014】
出願時請求項2の装置の発明は、一次スイッチから形成されるインバータ回路によって直流電力を高周波交流パルス電圧に変換し、上記高周波交流パルス電圧を主変圧器によってアーク加工に適した電圧に変換し、上記主変圧器の出力電圧を2次整流回路によって再度直流電力に変換して電力を電極と被加工物との間に供給する加工条件表示装置を備えたアーク加工機において、予め定めた値の各加工条件設定値を設定する加工条件設定部WCEと、予め定めた加工方法を設定する加工方法設定部WCSと、上記加工条件設定部WCE及び加工方法設定部WCSの各設定値に応じて、加工待機期間T1の間は加工待機表示指示信号CDrを出力し、加工動作期間T2の間は演算処理を行って加工動作表示指示信号CDs及びドライバ回路駆動信号DPsを出力する第2の制御処理演算回路CDC2と、上記加工待機期間T1の間は加工待機表示指示信号CDrの値に応じて、加工条件設定項目の各表示器を選択して加工条件を表示し、上記加工動作期間T2の間は加工動作表示指示信号CDsの値に応じて、加工動作中の加工条件の変化を逐次表示する加工条件表示部WLEDとを具備した加工条件表示装置を備えたアーク加工機である。
【0015】
出願時請求項3の装置の発明は、出願時請求項1及び出願時請求項2の加工条件表示部WLEDが、発光ダイオード、ランプ又はELランプによって形成される加工条件表示装置を備えたアーク加工機である。
【0016】
出願時請求項4の装置の発明は、図1に示すようにアーク溶接機の予め定めた位置に配設された溶接条件表示部WLEDの各表示器を目視するだけで容易に溶接条件設定項目を確認できるアーク溶接機の溶接条件表示装置であって、交流電源を直流に変換して直流電力を供給する直流電源主回路DPSと2次側切換回路STRによって上記直流電力を交流電力に変換して非消耗性電極1と被加工物2との間に交流電力を供給するアーク溶接機の溶接条件表示装置において、予め定めた値の各溶接条件設定値を設定する溶接条件設定部WCEと、上記溶接条件設定部WCEの各設定信号の値に応じて出力指令値を作成する出力指令値制御部OWCと、予め定めた溶接方法を設定する溶接方法設定部WCSと、上記溶接方法設定部WCSによって設定された溶接方法に応じて、溶接待機期間T1の間は溶接出力指令値制御部OWCから出力される出力指令値制御信号の選択及び溶接待機表示指示信号CDrを出力し、溶接動作期間T2の間は演算処理を行ってドライバ回路駆動信号DPs、2次側ドライブ回路駆動信号STrを出力する第2の制御処理演算回路CDC2と、溶接待機表示指示信号CDrの値に応じて、溶接条件表示部WLEDの各表示器を選択して駆動させる表示指示駆動回路IOCと、上記表示指示駆動回路IOCの出力信号に応じて溶接条件設定項目の各表示器を溶接待機期間T1の間表示する溶接条件表示部WLEDとを具備したアーク溶接機の溶接条件表示装置である。
【0017】
出願時請求項5の装置の発明は、図1に示すようにアーク溶接機の予め定めた位置に配設された溶接条件表示部WLEDの各表示器を目視するだけで容易に溶接条件設定項目を確認できるアーク溶接機の溶接条件表示装置であって、交流電源を直流に変換して直流電力を供給する直流電源主回路DPSと2次側切換回路STRによって上記直流電力を交流電力に変換して非消耗性電極1と被加工物2との間に交流電力を供給するアーク溶接機の溶接条件表示装置において、予め定めた値の各溶接条件設定値を設定する溶接条件設定部WCEと、上記溶接条件設定部WCEの各設定信号の値に応じて出力指令値を作成する出力指令値制御部OWCと、予め定めた溶接方法を設定する溶接方法設定部WCSと、上記溶接方法設定部WCSによって設定された溶接方法に応じて、溶接待機期間T1の間は溶接出力指令値制御部OWCから出力される出力指令値制御信号の選択及び溶接待機表示指示信号CDrを出力し、溶接動作期間T2の間は演算処理を行ってドライバ回路駆動信号DPs、2次側ドライブ回路駆動信号STr及び溶接動作表示指示信号CDsを出力する第2の制御処理演算回路CDC2と、溶接待機表示指示信号CDr及び溶接動作表示指示信号CDsの値に応じて、溶接条件表示部WLEDの各表示器を選択して駆動させる表示指示駆動回路IOCと、上記溶接待機表示指示信号CDrの値に応じて溶接待機期間T1の間は選択した溶接条件設定項目の各表示器を表示させ、上記溶接動作期間T2の間は溶接動作表示指示信号CDsの値に応じて溶接動作中の溶接条件の変化を逐次表示する溶接条件表示部WLEDとを具備したアーク溶接機の溶接条件表示装置である。
【0018】
出願時請求項6の装置の発明は、図1に示すようにアーク溶接機の予め定めた位置に配設された溶接条件表示部WLEDの各表示器を目視するだけで容易に溶接条件設定項目を確認できるアーク溶接機の溶接条件表示装置であって、交流電源を直流に変換して直流電力を供給する直流電源主回路DPSと2次側切換回路STRによって上記直流電力を交流電力に変換して非消耗性電極1と被加工物2との間に交流電力を供給するアーク溶接機の溶接条件表示装置において、溶接電流値を設定する溶接電流設定回路WI、パルス電流値を設定するパルス電流設定回路PI、クレータ電流値を設定するクレータ電流設定回路CI、初期電流値を設定する初期電流設定回路EI、パルス周波数を設定するパルス周波数設定回路PF、アップスロープ時間を設定するアップスロープ時間設定回路AT、ダウンスロープ時間を設定するダウンスロープ時間設定回路DT、アフタフローを設定するアフタフロー設定回路AF及びクリーニング幅を設定するクリーニング幅設定回路CLとで形成された溶接条件設定部WCEと、上記溶接条件設定部WCEの各設定信号の値に応じて直流溶接指令値を作成する直流溶接指令制御回路DC、直流パルス溶接指令値を作成する直流パルス溶接指令制御回路DPC、交流溶接指令値を作成する交流溶接指令制御回路AC及び交流パルス溶接指令値を作成する交流パルス溶接指令制御回路APCとで形成された出力指令値制御部OWCと、TIG溶接又は直流手溶接のどちかを選択する溶接法設定回路WS、パルス電流有り又はパルス電流無しのどちらかを選択するパルス設定回路PS、直流溶接又は交流溶接のどちらかを選択する直流・交流溶接設定回路DAS及びクレータフィラ有り又はクレータフィラ無しのどちらかを選択するクレータ設定回路CSとで形成された溶接方法設定部WCSと、溶接方法設定部WCSによって設定された溶接方法に応じて、出力指令値制御部OWCから出力される出力指令値制御信号の選択及び演算処理をして溶接待機表示指示信号CDr、ドライバ回路駆動信号DPs、2次側ドライブ回路駆動信号STr及び溶接動作表示指示信号CDsを出力する第2の制御処理演算回路CDC2と、溶接待機表示指示信号CDr及び溶接動作表示指示信号CDsの値に応じて、溶接条件表示部WLEDの各表示器を選択して駆動させる表示指示駆動回路IOCと、上記溶接待機表示指示信号CDrの値に応じて溶接待機期間T1の間は溶接条件設定項目の各表示器を表示させ、上記溶接動作期間T2の間は溶接動作表示指示信号CDsの値に応じて、溶接動作中の溶接条件の変化を逐次表示する溶接条件表示部WLEDとを具備したアーク溶接機の溶接条件表示装置である。
【0019】
出願時請求項7の装置の発明は、出願時請求項4、出願時請求項5及び出願時請求項6の溶接条件表示部WLEDが、図5に示すように、表示指示駆動回路IOCから出力される溶接電流表示信号WIdによって駆動する溶接電流表示器WID、パルス電流表示信号PIdによって駆動するパルス電流表示器PID、クレータ電流表示信号CIdによって駆動するクレータ電流表示器CID、初期電流表示信号EIdによって駆動する初期電流表示器EID、交流溶接表示信号ADdによって駆動する交流溶接表示器ADD、パルス周波数表示信号PFdによって駆動するパルス周波数表示器PFD、アップスロープ表示信号ATdによって駆動するアップスロープ表示器ATD、ダウンスロープ表示信号DTdによって駆動するダウンスロープ表示器DTD、直流溶接表示信号DDdによって駆動する直流溶接表示器DDD及びクリーニング表示信号CLdによって駆動するクリーニング表示器CLDによって形成されたアーク溶接機の溶接条件表示装置である。
【0020】
出願時請求項8の装置の発明は、出願時請求項4、出願時請求項5、出願時請求項6及び出願時請求項7の溶接条件表示部WLEDが、発光ダイオード、ランプ又はELランプによって形成されるアーク溶接機の溶接条件表示装置である。
【0021】
【発明の実施の形態】
図1は、当該出願に係る発明の特徴を最も良く表す図である。後述する図4と同じなので、説明は図4で後述する。
【0022】
本発明の実施の形態は、図1に示すように溶接機の予め定めた位置に配設された溶接条件表示部WLEDの各表示器を目視するだけで容易に溶接条件設定項目を確認できるアーク溶接機の溶接条件表示装置であって、交流電源を直流に変換して直流電力を供給する直流電源主回路DPSと2次側切換回路STRによって上記直流電力を交流電力に変換して非消耗性電極1と被加工物2との間に交流電力を供給するアーク溶接機の溶接条件表示装置において、溶接電流値を設定する溶接電流設定回路WI、パルス電流値を設定するパルス電流設定回路PI、クレータ電流値を設定するクレータ電流設定回路CI、初期電流値を設定する初期電流設定回路EI、パルス周波数を設定するパルス周波数設定回路PF、アップスロープ時間を設定するアップスロープ時間設定回路AT、ダウンスロープ時間を設定するダウンスロープ時間設定回路DT、アフタフローを設定するアフタフロー設定回路AF及びクリーニング幅を設定するクリーニング幅設定回路CLとで形成された溶接条件設定部WCEと、上記溶接条件設定部WCEの各設定信号の値に応じて直流溶接指令値を作成する直流溶接指令制御回路DC、直流パルス溶接指令値を作成する直流パルス溶接指令制御回路DPC、交流溶接指令値を作成する交流溶接指令制御回路AC及び交流パルス溶接指令値を作成する交流パルス溶接指令制御回路APCとで形成された出力指令値制御部OWCと、TIG溶接又は直流手溶接のどちかを選択する溶接法設定回路WS、パルス電流有り又はパルス電流無しのどちらかを選択するパルス設定回路PS、直流溶接又は交流溶接のどちらかを選択する直流・交流溶接設定回路DAS及びクレータフィラ有り又はクレータフィラ無しのどちらかを選択するクレータ設定回路CSとで形成された溶接方法設定部WCSと、溶接方法設定部WCSによって設定された溶接方法に応じて、出力指令値制御部OWCから出力される出力指令値制御信号の選択及び演算処理をして溶接待機表示指示信号CDr、ドライバ回路駆動信号DPs、2次側ドライブ回路駆動信号STr及び溶接動作表示指示信号CDsを出力する第2の制御処理演算回路CDC2と、溶接待機表示指示信号CDr及び溶接動作表示指示信号CDsの値に応じて、溶接条件表示部WLEDの各表示器を選択して駆動させる表示指示駆動回路IOCと、上記溶接待機表示指示信号CDrの値に応じて溶接待機期間T1の間は溶接条件設定項目の各表示器を表示させ、上記溶接動作期間T2の間は溶接動作表示指示信号CDsの値に応じて、溶接動作中の溶接条件の変化を逐次表示する溶接条件表示部WLEDとを具備したアーク溶接機の溶接条件表示装置である。
【0023】
【実施例】
以下、本発明のアーク溶接機、アーク切断機等のアーク加工機の代表例としてアーク溶接機を選択し、図4に示すアーク溶接機の溶接条件表示装置の接続図について説明する。同図において、図2と同一の符号は同一動作を行うので説明は省略して相違する動作について説明する。
【0024】
第2の制御処理演算回路CDC2は、溶接方法設定部WCSによって設定される溶接法設定信号Ws、パルス設定信号Ps、直流・交流溶接設定信号DAs及びクレータ設定信号Csの値に応じて、出力指令値制御部OWCから入力される直流溶接指令制御信号Dc、直流パルス溶接指令制御信号DPc、交流溶接指令制御信号Ac及び交流パルス溶接指令制御信号APcのどれかを選択するとともに溶接待機表示指示信号CDrを出力する。また、起動スイッチTSから起動信号Tsが入力されると、上記第2の制御処理演算回路CDC2は演算を開始して、ドライバ回路駆動信号DPs及び2次側ドライブ回路駆動信号STrを出力し、上記溶接待機表示指示信号CDrの出力を停止するとともに溶接動作表示指示信号CDsを出力する。
【0025】
表示指示駆動回路IOCは、溶接待機表示指示信号CDr及び溶接動作表示指示信号CDsに応じて、後述する溶接条件表示部WLEDの各表示器を選択して駆動させる。
【0026】
図5に示す溶接条件表示部WLEDは、表示指示駆動回路IOCから出力する溶接電流表示信号WIdによって駆動される溶接電流表示器WID、パルス電流表示信号PIdによって駆動するパルス電流表示器PID、クレータ電流表示信号CIdによって駆動するクレータ電流表示器CID、初期電流表示信号EIdによって駆動する初期電流表示器EID、交流溶接表示信号ADdによって駆動する交流溶接表示器ADD、パルス周波数表示信号PFdによって駆動するパルス周波数表示器PFD、アップスロープ表示信号ATdによって駆動するアップスロープ表示器ATD、ダウンスロープ表示信号DTdによって駆動するダウンスロープ表示器DTD、直流溶接表示信号DDdによって駆動する直流溶接表示器DDD及びクリーニング表示信号CLdによって駆動するクリーニング表示器CLDによって形成されている。
【0027】
図6は、図4に示す本発明のアーク溶接機の溶接条件表示装置の動作を示すタイミング図であり、溶接条件として直流TIG溶接でパルス無しでクレータ有りに設定されている。図6(A)は、直流TIG溶接の出力電流Ioを示し、図6(B)は、起動スイッチTSから出力する起動信号Tsを示す。図6(C)は、溶接法設定回路WSから出力するTIG溶接及び直流手溶接を選択する溶接法設定信号Wsを示し、HighレベルのときにTIG溶接、Lowレベルのときに直流手溶接を選択する。図6(D)は、パルス設定回路PSから出力するパルス電流有り又は無しのどちらかを選択するパルス設定信号Psを示し、Highレベルのときにパルス有り、Lowレベルのときにパルス無しを選択する。図6(E)は、直流・交流溶接設定回路DASから出力する直流溶接又は交流溶接のどちらかを選択する直流・交流溶接設定信号DAsを示し、Highレベルのときに交流溶接、Lowレベルのときに直流溶接を選択する。図6(F)は、クレータ設定回路CSから出力するクレータフィラ有り又は無しのどちらかを選択するクレータ設定信号Csを示し、Highレベルのときにクレータフィラ有り、Lowレベルのときにクレータフィラ無しを選択する。
【0028】
図6(G)は、表示指示駆動回路IOCから出力して初期電流表示器EIDを駆動する初期電流表示信号EIdを示し、図6(H)は、表示指示駆動回路IOCから出力してアップスロープ表示器ATDを駆動するアップスロープ表示信号ATdを示し、図6(I)は、表示指示駆動回路IOCから出力して溶接電流表示器WIDを駆動する溶接電流表示信号WIdを示す。また、図6(J)は、表示指示駆動回路IOCから出力して直流溶接表示器DDDを駆動する直流溶接表示信号DDdを示し、図6(K)は、表示指示駆動回路IOCから出力してダウンスロープ表示器DTDを駆動するダウンスロープ表示信号DTdを示し、図6(L)は、表示指示駆動回路IOCから出力してクレータ電流表示器CLDを駆動するクレータ電流表示信号CLdを示す。
【0029】
図6に示す溶接待機期間T1に、溶接方法設定部WCSから第2の制御処理演算回路CDC2に、図6(C)に示す溶接法設定信号WsをHighレベル、図6(D)に示すパルス設定信号PsをLowレベル、図6(E)に示す直流・交流溶接設定信号DAsをLowレベル、図6(F)に示すクレータ設定信号CsをHighレベルに設定すると、上記第2の制御処理演算回路CDC2は溶接方法として直流TIG溶接で、パルス無し、クレータ有りの溶接条件を認識する。
【0030】
第2の制御処理演算回路CDC2が溶接待機期間T1において、表示指示駆動回路IOCに図示省略の溶接待機表示指示信号CDrを入力すると、上記入力信号の値に応じて、上記表示指示駆動回路IOCは、図6(G)に示す、初期電流表示信号EIdを出力して溶接条件表示部WLEDの初期電流表示器EIDを点灯させ、図6(H)に示す、アップスロープ表示信号ATdを出力してアップスロープ表示器ATDを点灯させ、図6(I)に示す、溶接電流表示信号WIdを出力して溶接電流表示器WIDを点灯させる。さらに、図6(J)に示す、直流溶接表示信号DDdを出力して直流溶接表示器DDDを点灯させ、図6(K)に示す、ダウンスロープ表示信号DTdを出力してダウンスロープ表示器DTDを点灯させ、図6(L)に示す、クレータ電流表示信号CIdを出力してクレータ電流表示器CIDを点灯させて、溶接待機期間T1の間、溶接条件を表示する。
【0031】
図6(B)に示す時刻t=taにおいて、起動信号Tsが第2の制御処理演算回路CDC2に入力すると演算を開始して、表示指示駆動回路IOCに図示省略の溶接動作表示指示信号CDsを入力する。上記表示指示駆動回路IOCは溶接動作表示指示信号CDsが入力されると、上記溶接動作表示指示信号CDsに応じて、図6(G)に示す、初期電流期間t1の間、初期電流表示信号EIdを出力して溶接条件表示部WLEDの初期電流表示器EIDを点灯させ、図6(H)に示す、アップスロープ期間t2の間、アップスロープ表示信号ATdを出力してアップスロープ表示器ATDを点灯させ、図6(I)に示す、溶接電流期間t3の間、溶接電流表示信号WIdを出力して溶接電流表示器WIDをさせる。また、図6(K)に示す、ダウンスロープ期間t4の間、ダウンスロープ表示信号DTdを出力してダウンスロープ表示器DTDを点灯させ、図6(L)に示す、クレータ電流期間t5の間、クレータ電流表示信号CIdを出力してクレータ電流表示器CIDを点灯させて溶接条件表示部WLEDの各表示器によって、図6(A)に示す、溶接動作期間T2の溶接状態の変化を逐次表示することができる。
【0032】
上記溶接条件表示部WLEDの各表示器には、通常発光ダイオードが使用されているが、発光行ダイオードの代わりにランプ又はELランプを使用してもよい。
【0033】
本発明のアーク溶接機の溶接条件表示装置として、TIG溶接機で動作の詳細説明を行ったが、CO2/MAG溶接機、MIG溶接機、サブマージ溶接機及びプラズマ切断機においても本発明の溶接条件表示装置は使用可能である。
【発明の効果】
本発明の加工条件表示装置を備えたアーク加工機において、アーク加工機の予め定めた位置に配設された加工条件表示部の表示器(発光ダイオード)の点灯をかなりの遠方から目視で容易に加工条件設定項目が確認できる。また、加工作業中の加工条件の変化を発光ダイオードの点灯で逐次確認することが可能になったために、加工作業中に生じる加工条件変更作業が従来と比較して正確に実施でき、設定ミス等による溶接不良の防止が期待できる。
【図面の簡単な説明】
【図1】図1は、当該出願に係る発明の特徴を最もよく表す図である。
【図2】図2は、アーク加工機の代表例の従来技術のアーク溶接機の溶接条件表示装置の接続図である。
【図3】図2に示す、従来技術のアーク溶接機の動作を示すタイミング図である。
【図4】図4は、アーク加工機の代表例の本発明のアーク溶接機の溶接条件表示装置の接続図である。
【図5】図5は、図4に示す溶接条件表示部の詳細図である。
【図6】図4に示す、本発明のアーク溶接機の溶接条件表示装置の動作を示すタイミング図である。
【符号の説明】
1 非消耗性電極
2 被加工物
AC 交流溶接指令制御回路
AF アフタフロー設定回路
AT アップスロープ時間設定回路
ADD 交流・直流切換表示器
APC 交流パルス溶接指令制御回路
ATD アップスロープ表示器
CI クレータ電流設定回路
CL クリーニング幅設定回路
CS クレータ設定回路
CID クレータ電流表示器
CLD クリーニング表示器
CDC 制御処理演算回路
CDC2 第2の制御処理演算回路
DC 直流溶接指令制御回路
DS 2次側ドライバ回路
DT ダウンスロープ設定回路
DR ドライバ回路
DAS 直流・交流溶接設定回路
DDD 直流溶接表示器
DPC 直流パルス溶接指令制御回路
DPS 直流電源主回路
DTD ダウンスロープ表示器
EI 初期電流設定回路
EID 初期電流表示器
ID 出力電流検出回路
IOC 表示指示駆動回路
OWC 出力指令値制御部
PS パルス設定回路
PF パルス周波数設定回路
PI パルス電流設定回路
PFD パルス周波数表示器
PID パルス電流表示器
STR 2次側切換回路
TS 起動スイッチ
WI 溶接電流設定回路
WS 溶接法設定回路
WCE 溶接条件設定部(加工条件設定部)
WCS 溶接方法設定部(加工方法設定部)
WID 溶接電流表示器
WLED 溶接条件表示部(加工条件表示部)
Ac 交流溶接指令制御信号
Af アフタフロー設定信号
At アップスロープ時間設定信号
APc 交流パルス溶接指令制御信号
Ci クレータ電流設定信号
Cl クリーニング幅設定信号
Cs クレータ設定信号
CDr 溶接待機表示指示信号(加工待機表示指示信号)
CDs 溶接動作表示指示信号(加工動作表示指示信号)
Dc 直流溶接指令制御信号
Dr 直流電源駆動信号
Ds 2次側ドライバ駆動信号
Dt ダウンスロープ設定信号
DAs 直流・交流溶接設定信号
DPc 直流パルス溶接指令制御信号
DPs ドライバ回路駆動信号
Ei 初期電流設定信号
Id 出力電流検出信号
IOc 溶接条件表示信号
Pf パルス周波数設定信号
Pi パルス電流設定信号
Ps パルス設定信号
STr 2次側ドライブ回路駆動信号
Ts 起動信号
Wi 溶接電流設定信号
Ws 溶接法設定信号
T1 溶接待機期間(加工待機期間)
T2 溶接動作期間(加工動作期間)
t1 初期電流期間
t2 アップスロープ期間
t3 溶接電流期間
t4 ダウンスロープ期間
t5 クレータ電流期間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machining condition display device that displays each machining condition of an arc machine.
[0002]
[Prior art]
Hereinafter, an arc welding machine will be selected as a representative example of arc processing machines such as arc welding machines and arc cutting machines of the prior art, and a connection diagram of the welding condition display device of the arc welding machine shown in FIG. 2 will be described. In FIG. 2, a DC power source main circuit DPS converts AC power into DC and supplies DC power, and a secondary side switching circuit STR converts the DC power into AC power to convert the non-consumable electrode 1 and the workpiece. AC power is supplied to the object 2. The output current detection circuit ID detects the output current and outputs an output current detection signal Id. The driver circuit DR converts the level of the driver circuit drive signal DPs into a DC power supply drive signal Dr that can be driven by the DC power supply main circuit DPS, and outputs it. The secondary side driver circuit DS converts the level of the secondary side driver circuit drive signal STr into a secondary side driver drive signal Ds that can be driven by the secondary side switching circuit, and outputs the secondary side driver drive signal Ds.
[0003]
The welding condition setting unit WCE includes a welding current setting circuit WI for setting a welding current setting signal Wi having a predetermined value, a pulse current setting circuit PI for setting a pulse current setting signal Pi, and a crater current for setting a crater current setting signal Ci. Setting circuit CI, initial current setting circuit EI for setting initial current setting signal Ei, pulse frequency setting circuit PF for setting pulse frequency setting signal Pf, up slope time setting circuit AT for setting up slope time setting signal At, down slope A down-slope time setting circuit DT for setting the time setting signal Dt, an afterflow setting circuit AF for setting the afterflow setting signal Af, and a cleaning width setting circuit CL for setting the cleaning width setting signal Cl are formed.
[0004]
The welding method setting unit WCS outputs a welding method setting circuit WS that outputs a welding method setting signal Ws for selecting either TIG welding or DC manual welding, and a pulse setting signal Ps for selecting whether or not a pulse current is present. Pulse setting circuit PS to perform, DC / AC welding setting signal DAS to output DC / AC welding setting signal DAs for selecting either DC welding or AC welding, and crater setting signal Cs to select with or without crater filler Is formed by a crater setting circuit CS.
[0005]
The output command value control unit OWC is formed by a DC welding command control circuit DC, a DC pulse welding command control circuit DPC, an AC welding command control circuit AC, and an AC pulse welding command control circuit APC.
[0006]
The DC welding command control circuit DC is a DC welding command control signal Dc according to the values of the welding current setting signal Wi, the crater current setting signal Ci, the initial current setting signal Ei, the up slope time setting signal At, and the down slope time setting signal Dt. The DC pulse welding command control circuit DPC generates a welding current setting signal Wi, a pulse current setting signal Pi, a crater current setting signal Ci, an initial current setting signal Ei, a pulse frequency setting signal Pf, and an upslope time setting. A DC pulse welding command control signal DPc is generated and output according to the values of the signal At and the down slope time setting signal Dt.
[0007]
The AC welding command control circuit AC is responsive to the values of the welding current setting signal Wi, the crater current setting signal Ci, the initial current setting signal Ei, the up slope time setting signal At, the down slope time setting signal Dt, and the cleaning width setting signal Cl. An AC welding command control signal Ac is generated and output. The AC pulse welding command control circuit APC includes a welding current setting signal Wi, a pulse current setting signal Pi, a crater current setting signal Ci, an initial current setting signal Ei, and a pulse frequency setting signal. An AC pulse welding command control signal APc is generated and output according to the values of Pf, up slope time setting signal At, down slope time setting signal Dt, and cleaning width setting signal Cl.
[0008]
The control processing arithmetic circuit CDC outputs an output command value in accordance with each setting signal of the welding method setting signal Ws, pulse setting signal Ps, DC / AC welding setting signal DAs and crater setting signal Cs set by the welding method setting unit WCS. One of DC welding command control signal Dc, DC pulse welding command control signal DPc, AC welding command control signal Ac, and AC pulse welding command control signal APc inputted from control unit OWC is selected. Further, when the activation signal Ts is input, the control processing arithmetic circuit CDC starts operation and outputs a driver circuit drive signal DPs and a secondary side drive circuit drive signal STr.
[0009]
FIG. 3 is a timing chart showing the operation of the prior art arc welder shown in FIG. 2, and the welding conditions are set to be crater without pulse in DC TIG welding. 3A shows the output current Io of DC TIG welding, and FIG. 3B shows the start signal Ts output from the start switch TS. FIG. 3C shows a welding method setting signal Ws for selecting TIG welding and DC manual welding output from the welding method setting circuit WS. TIG welding is selected when the level is High, and DC manual welding is selected when the level is Low. To do. FIG. 3D shows a pulse setting signal Ps for selecting the presence or absence of a pulse current output from the pulse setting circuit PS. The pulse setting signal Ps is selected when the level is High, and no pulse is selected when the level is Low. . FIG. 3 (E) shows a DC / AC welding setting signal DAs for selecting either DC welding or AC welding output from the DC / AC welding setting circuit DAS. Select DC welding. FIG. 3 (F) shows a crater setting signal Cs for selecting whether or not there is a crater filler output from the crater setting circuit CS, and indicates that there is a crater filler when the level is High and no crater filler when the level is Low. select. FIG. 3G shows a secondary driver circuit drive signal STr for driving the secondary driver circuit DS, and FIG. 3H shows a driver circuit drive signal Dr for driving the driver circuit DR.
[0010]
During the welding standby period T1 shown in FIG. 3, the welding method setting signal Ws shown in FIG. 3C is set to the high level and the pulse setting signal shown in FIG. When Ps is set to Low level, the DC / AC welding setting signal DAs shown in FIG. 3E is set to Low level, and the crater setting signal Cs shown in FIG. 3F is set to High level, the control processing arithmetic circuit CDC is input. Selects and inputs the DC welding command control signal Dc among the output signals output from the output command value control unit OWC.
[0011]
When the activation signal Ts is input to the control processing arithmetic circuit CDC at time t = ta shown in FIG. 3B, the operation starts, and the secondary side drive circuit drive signal STr shown in FIG. The secondary side switching circuit is always turned on to operate as a DC power source, and the output current Io of the DC TIG welding shown in FIG. 3A is shown in accordance with the value of the DC welding command control signal Dc (not shown). Is output.
[0012]
[Problems to be solved by the invention]
In the prior art arc machine, in order to check the machining conditions, it is necessary to visually check each setting position of the machining condition setting changeover switch disposed at a predetermined position such as the front panel of the arc machine. It was necessary, it was difficult to confirm from a distance, and misidentification was likely to occur. In addition, since it is impossible to check the changes in the machining conditions during the machining operation one after another, setting errors and unnecessary settings of each changeover switch are made in response to the necessity of changing the machining conditions during the machining work that occurs frequently. It was a cause of processing defects.
[0013]
[Means for Solving the Problems]
The invention of the apparatus of claim 1 at the time of filing of the invention converts DC power into a high-frequency AC pulse voltage by an inverter circuit formed from a primary switch, and converts the high-frequency AC pulse voltage into a voltage suitable for arc machining by a main transformer. In an arc machine equipped with a machining condition display device for converting the output voltage of the main transformer into DC power again by a secondary rectifier circuit and supplying power between the electrode and the workpiece, a predetermined value The machining condition setting unit WCE for setting each machining condition set value, the machining method setting unit WCS for setting a predetermined machining method, and the set values of the machining condition setting unit WCE and the machining method setting unit WCS In the second control, the machining standby display instruction signal CDr is output during the machining standby period T1, and the driver circuit drive signal DPs is output during the machining operation period T2 by performing arithmetic processing. During the processing standby period T1, the arithmetic operation circuit CDC2 and a processing condition display unit WLED that displays each processing condition by selecting each display of processing condition setting items according to the value of the processing standby display instruction signal CDr. An arc processing machine provided with a processing condition display device provided.
[0014]
The invention of the apparatus of claim 2 at the time of filing of the invention converts DC power into a high-frequency AC pulse voltage by an inverter circuit formed from a primary switch, and converts the high-frequency AC pulse voltage into a voltage suitable for arc machining by a main transformer. In an arc machine equipped with a machining condition display device for converting the output voltage of the main transformer into DC power again by a secondary rectifier circuit and supplying power between the electrode and the workpiece, a predetermined value The machining condition setting unit WCE for setting each machining condition set value, the machining method setting unit WCS for setting a predetermined machining method, and the set values of the machining condition setting unit WCE and the machining method setting unit WCS The machining standby display instruction signal CDr is output during the machining standby period T1, and the machining operation display instruction signal CDs and the driver circuit drive are performed during the machining operation period T2 by performing arithmetic processing. In accordance with the value of the second control processing arithmetic circuit CDC2 that outputs the signal DPs and the processing standby period instruction signal CDr during the processing standby period T1, each display of the processing condition setting item is selected and processing conditions are set. And a machining condition display device including a machining condition display unit WLED that sequentially displays changes in machining conditions during the machining operation according to the value of the machining operation display instruction signal CDs during the machining operation period T2. Arc machine.
[0015]
The invention of the apparatus of claim 3 at the time of filing is an arc machining provided with a machining condition display device in which the processing condition display portion WLED of claim 1 at the time of filing and claim 2 at the time of filing is formed by a light emitting diode, lamp or EL lamp. Machine.
[0016]
The invention of the apparatus of claim 4 at the time of filing is a welding condition setting item that can be easily set by simply observing each indicator of the welding condition display portion WLED disposed at a predetermined position of the arc welder as shown in FIG. A welding condition display device for an arc welder that can confirm the above-mentioned DC power is converted into AC power by a DC power source main circuit DPS that supplies DC power by converting AC power into DC and a secondary side switching circuit STR. In a welding condition display device for an arc welding machine that supplies AC power between the non-consumable electrode 1 and the workpiece 2, a welding condition setting unit WCE that sets each welding condition setting value of a predetermined value; An output command value control unit OWC that creates an output command value according to the value of each setting signal of the welding condition setting unit WCE, a welding method setting unit WCS that sets a predetermined welding method, and the welding method setting unit WCS By In accordance with the determined welding method, during the welding standby period T1, the selection of the output command value control signal output from the welding output command value control unit OWC and the welding standby display instruction signal CDr are output, and during the welding operation period T2. In accordance with the value of the second control processing arithmetic circuit CDC2 that performs arithmetic processing and outputs the driver circuit driving signal DPs and the secondary side driving circuit driving signal STr, and the welding standby display instruction signal CDr, A display instruction drive circuit IOC for selecting and driving each display of the WLED, and a welding condition display for displaying each display of welding condition setting items during the welding standby period T1 in accordance with an output signal of the display instruction drive circuit IOC. It is the welding condition display apparatus of the arc welding machine which comprised the part WLED.
[0017]
The invention of the apparatus of claim 5 at the time of filing is a welding condition setting item that can be easily set by simply observing each indicator of the welding condition display portion WLED arranged at a predetermined position of the arc welder as shown in FIG. A welding condition display device for an arc welder that can confirm the above-mentioned DC power is converted into AC power by a DC power source main circuit DPS that supplies DC power by converting AC power into DC and a secondary side switching circuit STR. In a welding condition display device for an arc welding machine that supplies AC power between the non-consumable electrode 1 and the workpiece 2, a welding condition setting unit WCE that sets each welding condition setting value of a predetermined value; An output command value control unit OWC that creates an output command value according to the value of each setting signal of the welding condition setting unit WCE, a welding method setting unit WCS that sets a predetermined welding method, and the welding method setting unit WCS By In accordance with the determined welding method, during the welding standby period T1, the selection of the output command value control signal output from the welding output command value control unit OWC and the welding standby display instruction signal CDr are output, and during the welding operation period T2. A second control processing arithmetic circuit CDC2 that performs arithmetic processing to output a driver circuit drive signal DPs, a secondary drive circuit drive signal STr, and a welding operation display instruction signal CDs, a welding standby display instruction signal CDr, and a welding operation Between the display instruction drive circuit IOC that selects and drives each indicator of the welding condition display unit WLED according to the value of the display instruction signal CDs, and the welding standby period T1 according to the value of the welding standby display instruction signal CDr. Displays each indicator of the selected welding condition setting item, and during the welding operation period T2, the welding condition during the welding operation according to the value of the welding operation display instruction signal CDs is displayed. A welding condition display device of an arc welding machine; and a welding condition displaying portion WLED which sequentially displays a change of.
[0018]
The invention of the apparatus of claim 6 at the time of filing is a welding condition setting item that can be easily set by simply observing each indicator of the welding condition display portion WLED disposed at a predetermined position of the arc welder as shown in FIG. A welding condition display device for an arc welder that can confirm the above-mentioned DC power is converted into AC power by a DC power source main circuit DPS that supplies DC power by converting AC power into DC and a secondary side switching circuit STR. In a welding condition display device for an arc welder that supplies AC power between the non-consumable electrode 1 and the workpiece 2, a welding current setting circuit WI that sets a welding current value, and a pulse current that sets a pulse current value Setting circuit PI, crater current setting circuit CI for setting a crater current value, initial current setting circuit EI for setting an initial current value, pulse frequency setting circuit PF for setting a pulse frequency, upslope The up slope time setting circuit AT for setting the interval, the down slope time setting circuit DT for setting the down slope time, the after flow setting circuit AF for setting the after flow, and the cleaning width setting circuit CL for setting the cleaning width are formed. Welding condition setting unit WCE, DC welding command control circuit DC that creates a DC welding command value according to the values of the setting signals of welding condition setting unit WCE, and DC pulse welding command control circuit that creates a DC pulse welding command value Output command value control unit OWC formed by DPC, AC welding command control circuit AC for creating AC welding command value and AC pulse welding command control circuit APC for creating AC pulse welding command value, and TIG welding or DC manual welding Welding method setting circuit WS for selecting either, with or without pulse current Welding method formed by a pulse setting circuit PS to be selected, a DC / AC welding setting circuit DAS for selecting either DC welding or AC welding, and a crater setting circuit CS for selecting either crater filler or no crater filler In accordance with the setting unit WCS and the welding method set by the welding method setting unit WCS, the selection of the output command value control signal output from the output command value control unit OWC and the calculation process are performed, and the welding standby display instruction signal CDr, A second control processing arithmetic circuit CDC2 that outputs a driver circuit drive signal DPs, a secondary drive circuit drive signal STr, and a welding operation display instruction signal CDs, a welding standby display instruction signal CDr, and a welding operation display instruction signal CDs. In response, the display instruction drive circuit IOC for selecting and driving each indicator of the welding condition display section WLED, Each indicator of the welding condition setting item is displayed during the welding standby period T1 according to the value of the contact standby display instruction signal CDr, and during the welding operation period T2, according to the value of the welding operation display instruction signal CDs, It is a welding condition display device of an arc welding machine provided with a welding condition display unit WLED that sequentially displays a change in welding conditions during a welding operation.
[0019]
The invention of the device of claim 7 at the time of filing is the output of the welding condition display unit WLED of claim 4 at the time of filing, claim 5 at the time of filing and claim 6 at the time of filing from the display instruction drive circuit IOC as shown in FIG. Welding current indicator WID driven by welding current display signal WId, pulse current indicator PID driven by pulse current display signal PId, crater current indicator CID driven by crater current display signal CId, and initial current display signal EId. An initial current indicator EID to be driven, an AC welding indicator ADD to be driven by an AC welding indicator signal ADd, a pulse frequency indicator PFD to be driven by a pulse frequency indicator signal PFd, an upslope indicator ATD to be driven by an upslope indicator signal ATd, Downslope driven by downslope display signal DTd Flop indicator DTD, a welding condition display device of an arc welding machine, which is formed by the cleaning indicator CLD driven by a DC welding indicator DDD and cleaning display signal CLd driven by a DC welding display signal ddd.
[0020]
The invention of the device of claim 8 at the time of filing of the invention is that the welding condition indicator WLED of claim 4 at the time of filing, claim 5 at the time of filing, claim 6 at the time of filing and claim 7 at the time of filing is a light emitting diode, lamp or EL lamp. It is a welding condition display apparatus of the arc welding machine formed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram that best represents the features of the invention according to the application. Since it is the same as FIG. 4 described later, the description will be described later with reference to FIG.
[0022]
In the embodiment of the present invention, as shown in FIG. 1, an arc for easily confirming welding condition setting items simply by visually observing each indicator of the welding condition display unit WLED disposed at a predetermined position of the welding machine. A welding condition display device for a welding machine, wherein the DC power is converted into AC power by a DC power source main circuit DPS for supplying AC power by converting AC power into DC and a secondary side switching circuit STR, and is non-consumable. In a welding condition display device of an arc welder that supplies AC power between the electrode 1 and the workpiece 2, a welding current setting circuit WI that sets a welding current value, a pulse current setting circuit PI that sets a pulse current value, A crater current setting circuit CI for setting a crater current value, an initial current setting circuit EI for setting an initial current value, a pulse frequency setting circuit PF for setting a pulse frequency, and an upslope time are set. Welding condition setting section WCE formed by up slope time setting circuit AT, down slope time setting circuit DT for setting down slope time, after flow setting circuit AF for setting after flow, and cleaning width setting circuit CL for setting cleaning width A DC welding command control circuit DC that creates a DC welding command value according to the value of each setting signal of the welding condition setting unit WCE, a DC pulse welding command control circuit DPC that creates a DC pulse welding command value, and an AC welding command Output command value control unit OWC formed by AC welding command control circuit AC for creating values and AC pulse welding command control circuit APC for creating AC pulse welding command values, and selecting either TIG welding or DC manual welding Welding method setting circuit WS, pulse to select either with or without pulse current Welding method setting unit WCS formed by constant circuit PS, DC / AC welding setting circuit DAS for selecting either DC welding or AC welding, and crater setting circuit CS for selecting either with or without crater filler In accordance with the welding method set by the welding method setting unit WCS, the selection of the output command value control signal output from the output command value control unit OWC and the calculation processing are performed, and the welding standby display instruction signal CDr, the driver circuit drive According to the values of the second control processing arithmetic circuit CDC2 that outputs the signal DPs, the secondary drive circuit drive signal STr, and the welding operation display instruction signal CDs, the welding standby display instruction signal CDr, and the welding operation display instruction signal CDs, Display instruction drive circuit IOC for selecting and driving each indicator of the welding condition display section WLED, and the welding standby display instruction Each indicator of the welding condition setting item is displayed during the welding standby period T1 according to the value of the signal CDr, and during the welding operation period T2, the welding operation is being performed according to the value of the welding operation display instruction signal CDs. It is a welding condition display device of an arc welding machine provided with a welding condition display unit WLED that sequentially displays changes in welding conditions.
[0023]
【Example】
Hereinafter, an arc welding machine is selected as a representative example of an arc processing machine such as an arc welding machine or an arc cutting machine of the present invention, and a connection diagram of a welding condition display device of the arc welding machine shown in FIG. 4 will be described. In the figure, the same reference numerals as those in FIG.
[0024]
The second control processing arithmetic circuit CDC2 outputs an output command according to the values of the welding method setting signal Ws, the pulse setting signal Ps, the DC / AC welding setting signal DAs, and the crater setting signal Cs set by the welding method setting unit WCS. DC welding command control signal Dc, DC pulse welding command control signal DPc, AC welding command control signal Ac, and AC pulse welding command control signal APc input from value control unit OWC are selected and welding standby display instruction signal CDr Is output. When the start signal Ts is input from the start switch TS, the second control processing operation circuit CDC2 starts operation, and outputs the driver circuit drive signal DPs and the secondary side drive circuit drive signal STr. The output of the welding standby display instruction signal CDr is stopped and the welding operation display instruction signal CDs is output.
[0025]
The display instruction drive circuit IOC selects and drives each indicator of the welding condition display unit WLED described later according to the welding standby display instruction signal CDr and the welding operation display instruction signal CDs.
[0026]
The welding condition display unit WLED shown in FIG. 5 includes a welding current display WID driven by a welding current display signal WId output from the display instruction drive circuit IOC, a pulse current display PID driven by a pulse current display signal PId, and a crater current. Crater current display CID driven by display signal CId, initial current display EID driven by initial current display signal EId, AC welding display ADD driven by AC welding display signal ADd, pulse frequency driven by pulse frequency display signal PFd Display PFD, Upslope display ATD driven by upslope display signal ATd, Downslope display DTD driven by downslope display signal DTd, DC welding display DDD driven by DC welding display signal DDd, and cleaner It is formed by the cleaning indicator CLD driven by grayed display signal CLd.
[0027]
FIG. 6 is a timing chart showing the operation of the welding condition display device of the arc welder of the present invention shown in FIG. 4, and the welding condition is set to be crater without pulse in DC TIG welding. 6A shows the output current Io of direct current TIG welding, and FIG. 6B shows the start signal Ts output from the start switch TS. FIG. 6C shows a welding method setting signal Ws for selecting TIG welding and DC manual welding output from the welding method setting circuit WS. TIG welding is selected when the level is High, and DC manual welding is selected when the level is Low. To do. FIG. 6D shows a pulse setting signal Ps for selecting whether or not there is a pulse current output from the pulse setting circuit PS. The pulse setting signal Ps is selected when the level is High, and no pulse is selected when the level is Low. . FIG. 6E shows a DC / AC welding setting signal DAs for selecting either DC welding or AC welding output from the DC / AC welding setting circuit DAS. When the level is High, AC welding is set, and when the level is Low. Select DC welding. FIG. 6F shows a crater setting signal Cs for selecting whether or not there is a crater filler output from the crater setting circuit CS, and indicates that there is a crater filler at the high level and no crater filler at the low level. select.
[0028]
FIG. 6G shows an initial current display signal EId output from the display instruction drive circuit IOC to drive the initial current indicator EID, and FIG. 6H shows an up slope output from the display instruction drive circuit IOC. An up slope display signal ATd for driving the display ATD is shown, and FIG. 6I shows a welding current display signal WId for driving the welding current display WID output from the display instruction drive circuit IOC. FIG. 6J shows a DC welding display signal DDd output from the display instruction drive circuit IOC to drive the DC welding display DDD, and FIG. 6K outputs from the display instruction drive circuit IOC. A down slope display signal DTd for driving the down slope display DTD is shown, and FIG. 6L shows a crater current display signal CLd output from the display instruction drive circuit IOC to drive the crater current display CLD.
[0029]
In welding standby period T1 shown in FIG. 6, welding method setting signal Ws shown in FIG. 6 (C) is set to High level, and the pulse shown in FIG. 6 (D) is sent from welding method setting unit WCS to second control processing arithmetic circuit CDC2. When the setting signal Ps is set to the Low level, the DC / AC welding setting signal DAs shown in FIG. 6 (E) is set to the Low level, and the crater setting signal Cs shown in FIG. 6 (F) is set to the High level, the second control processing calculation is performed. The circuit CDC2 recognizes the welding conditions with no pulse and with a crater by direct current TIG welding as a welding method.
[0030]
When the second control processing arithmetic circuit CDC2 inputs a welding standby display instruction signal CDr (not shown) to the display instruction driving circuit IOC in the welding standby period T1, the display instruction driving circuit IOC is in accordance with the value of the input signal. 6G, the initial current display signal EId shown in FIG. 6G is output to turn on the initial current display EID of the welding condition display section WLED, and the upslope display signal ATd shown in FIG. 6H is output. The up-slope display ATD is turned on, and a welding current display signal WId shown in FIG. 6 (I) is output to turn on the welding current display WID. Further, the DC welding display signal DDd shown in FIG. 6 (J) is output to turn on the DC welding display DDD, and the down slope display signal DTd shown in FIG. 6 (K) is output to output the down slope display DTD. Is turned on, and the crater current display signal CId shown in FIG. 6 (L) is output to turn on the crater current indicator CID, and the welding conditions are displayed during the welding standby period T1.
[0031]
When the activation signal Ts is input to the second control processing arithmetic circuit CDC2 at time t = ta shown in FIG. 6B, the calculation is started, and a welding operation display instruction signal CDs (not shown) is supplied to the display instruction driving circuit IOC. input. When the welding operation display instruction signal CDs is input, the display instruction drive circuit IOC receives an initial current display signal EId during the initial current period t1 shown in FIG. 6G according to the welding operation display instruction signal CDs. Is output to light up the initial current indicator EID of the welding condition indicator WLED, and during the up slope period t2 shown in FIG. 6 (H), the up slope indicator signal ATd is output to turn on the up slope indicator ATD. Then, during the welding current period t3 shown in FIG. 6 (I), the welding current display signal WId is output to cause the welding current indicator WID. Further, during the downslope period t4 shown in FIG. 6 (K), the downslope display signal DTd is output to light the downslope display DTD, and during the crater current period t5 shown in FIG. 6 (L). The crater current display signal CId is output, the crater current display CID is turned on, and changes in the welding state during the welding operation period T2 shown in FIG. 6A are sequentially displayed by the respective indicators of the welding condition display unit WLED. be able to.
[0032]
A light emitting diode is normally used for each indicator of the welding condition display section WLED, but a lamp or an EL lamp may be used instead of the light emitting row diode.
[0033]
As the welding condition display device of the arc welding machine of the present invention, the detailed operation of the TIG welding machine has been described. However, the welding conditions of the present invention also apply to a CO2 / MAG welding machine, an MIG welding machine, a submerged welding machine, and a plasma cutting machine. The display device can be used.
【The invention's effect】
In the arc machine equipped with the machining condition display device of the present invention, it is easy to visually illuminate the indicator (light emitting diode) of the machining condition display unit arranged at a predetermined position of the arc machine from a considerable distance. The processing condition setting items can be confirmed. In addition, since it is now possible to check changes in machining conditions during machining operations sequentially by turning on the light emitting diodes, the machining condition change operations that occur during machining operations can be carried out more accurately than in the past, setting errors, etc. It can be expected to prevent welding defects due to.
[Brief description of the drawings]
FIG. 1 is a diagram that best represents the features of the invention according to the application;
FIG. 2 is a connection diagram of a welding condition display device of a conventional arc welding machine as a typical example of an arc machining machine.
FIG. 3 is a timing diagram showing the operation of the prior art arc welder shown in FIG. 2;
FIG. 4 is a connection diagram of a welding condition display device for an arc welder according to the present invention as a representative example of an arc machine.
FIG. 5 is a detailed view of a welding condition display section shown in FIG.
6 is a timing chart showing the operation of the welding condition display device for the arc welder of the present invention shown in FIG.
[Explanation of symbols]
1 Non-consumable electrode
2 Workpiece
AC AC welding command control circuit
AF Afterflow setting circuit
AT up slope time setting circuit
ADD AC / DC switching indicator
APC AC pulse welding command control circuit
ATD Upslope display
CI crater current setting circuit
CL cleaning width setting circuit
CS crater setting circuit
CID crater current indicator
CLD cleaning indicator
CDC control processing arithmetic circuit
CDC2 second control processing arithmetic circuit
DC DC welding command control circuit
DS secondary side driver circuit
DT down slope setting circuit
DR driver circuit
DAS DC / AC welding setting circuit
DDD DC welding indicator
DPC DC pulse welding command control circuit
DPS DC power supply main circuit
DTD Down slope indicator
EI initial current setting circuit
EID initial current indicator
ID output current detection circuit
IOC display instruction drive circuit
OWC output command value controller
PS pulse setting circuit
PF pulse frequency setting circuit
PI pulse current setting circuit
PFD pulse frequency indicator
PID pulse current indicator
STR secondary side switching circuit
TS start switch
WI welding current setting circuit
WS welding method setting circuit
WCE welding condition setting part (processing condition setting part)
WCS welding method setting part (processing method setting part)
WID welding current indicator
WLED Welding condition display part (Processing condition display part)
Ac AC welding command control signal
Af Afterflow setting signal
At Up Slope time setting signal
APc AC pulse welding command control signal
Ci crater current setting signal
Cl cleaning width setting signal
Cs Crater setting signal
CDr Welding standby display instruction signal (machining standby display instruction signal)
CDs Welding operation display instruction signal (machining operation display instruction signal)
Dc DC welding command control signal
Dr DC power supply drive signal
Ds Secondary side driver drive signal
Dt Down slope setting signal
DAs DC / AC welding setting signal
DPc DC pulse welding command control signal
DPs Driver circuit drive signal
Ei Initial current setting signal
Id Output current detection signal
IOc Welding condition display signal
Pf Pulse frequency setting signal
Pi pulse current setting signal
Ps pulse setting signal
STr Secondary side drive circuit drive signal
Ts start signal
Wi welding current setting signal
Ws Welding method setting signal
T1 Welding standby period (processing standby period)
T2 Welding operation period (machining operation period)
t1 Initial current period
t2 Upslope period
t3 Welding current period
t4 Down slope period
t5 Crater current period

Claims (1)

交流電源を直流に変換して直流電力を供給する直流電源主回路と、2次側切換回路によって前記直流電力を交流電力に変換して非消耗性電極と被加工物との間に交流電力を供給するアーク溶接機の溶接条件表示装置において、予め定めた複数の溶接条件を設定する溶接条件設定部と、予め定めた溶接方法を設定する溶接方法設定部と、前記溶接方法設定部によって設定した溶接方法に応じて溶接待機中は前記溶接条件設定部からの溶接条件設定信号を選択すると共に溶接待機表示指示信号を出力し、前記溶接動作中は前記直流電源主回路及び2次側切換回路を制御すると共に溶接動作表示指示信号を出力する第2の制御処理演算回路と、前記アーク溶接機の予め定めた位置に配設し、前記溶接待機中は前記溶接待機表示指示信号に応じて前記溶接条件設定信号に対応する表示器を点灯させて各溶接条件の設定項目を表示し、前記溶接動作中は前記溶接動作表示指示信号に応じて前記溶接条件設定信号が変化すると対応する表示器を逐次点灯させて溶接動作状態を表示する溶接条件表示部と、を備えたことを特徴とするアーク溶接機の溶接条件表示装置。A DC power supply main circuit that converts AC power into DC and supplies DC power, and the DC power is converted into AC power by a secondary side switching circuit, and AC power is generated between the non-consumable electrode and the workpiece. In the welding condition display device of the arc welding machine to be supplied, a welding condition setting unit for setting a plurality of predetermined welding conditions, a welding method setting unit for setting a predetermined welding method, and the welding method setting unit are set. Depending on the welding method, during welding standby, a welding condition setting signal from the welding condition setting unit is selected and a welding standby display instruction signal is output. During the welding operation, the DC power supply main circuit and the secondary side switching circuit are switched on. A second control processing arithmetic circuit for controlling and outputting a welding operation display instruction signal and a predetermined position of the arc welder, and during the welding standby, according to the welding standby display instruction signal A display corresponding to the welding condition setting signal is turned on to display setting items for each welding condition, and during the welding operation, when the welding condition setting signal changes according to the welding operation display instruction signal, a corresponding indicator is displayed. A welding condition display unit for an arc welding machine, comprising: a welding condition display unit that sequentially turns on and displays a welding operation state.
JP2001190910A 2001-06-25 2001-06-25 Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine Expired - Lifetime JP4101479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190910A JP4101479B2 (en) 2001-06-25 2001-06-25 Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190910A JP4101479B2 (en) 2001-06-25 2001-06-25 Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine

Publications (3)

Publication Number Publication Date
JP2003001417A JP2003001417A (en) 2003-01-08
JP2003001417A5 JP2003001417A5 (en) 2004-12-24
JP4101479B2 true JP4101479B2 (en) 2008-06-18

Family

ID=19029608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190910A Expired - Lifetime JP4101479B2 (en) 2001-06-25 2001-06-25 Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine

Country Status (1)

Country Link
JP (1) JP4101479B2 (en)

Also Published As

Publication number Publication date
JP2003001417A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP6221076B2 (en) Arc welding control method and arc welding apparatus
CN101058124B (en) Polarity switching control method for consumable electrode AC pulse arc welding
US6051806A (en) Power supply apparatus for welders and method of manufacturing same
JP6596669B2 (en) Control method of arc welding
US20080053978A1 (en) Welder with positional heat control and method of using same
CA2475314C (en) Method and apparatus of electronic selection of an output mode of a welding power source
JP2006082091A (en) Power supply device for welding machine
JP5919399B2 (en) Apparatus and method for initiating an arc welding process that involves pulsing the wire prior to the start of the arc
EP3815827A2 (en) Systems and methods to provide welding-type arc starting and stabilization with reduced open circuit voltage
JP4101479B2 (en) Arc processing machine equipped with processing condition display device and welding condition display device for arc welding machine
JP4980297B2 (en) Power supply for welding machine
CN103418888A (en) Method for controlling ac pulse electric arc welding
RU2293000C2 (en) Two-stage electric arc welding set and method of electric arc welding (versions)
JP2003019556A (en) Remote control device provided with welding condition indicating function in arc welder
CN103317209A (en) Electric arc welding device
JP5446340B2 (en) Composite welding apparatus and composite welding method
JP2007038290A (en) Selective control method of welding condition
JP2008207215A (en) Method for detecting/controlling constriction in consumable electrode arc welding
JP4312999B2 (en) Arc start control method.
JP2873716B2 (en) Starting AC arc
KR102134488B1 (en) 2 wire welding control method
KR200287067Y1 (en) Inverter welding machine combined use gouging
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JP2005144453A (en) Arc welding machine
JP6974915B2 (en) Non-consumable electrode type arc welding method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250