JP4101078B2 - Sulfur compound gas detector - Google Patents

Sulfur compound gas detector Download PDF

Info

Publication number
JP4101078B2
JP4101078B2 JP2003036829A JP2003036829A JP4101078B2 JP 4101078 B2 JP4101078 B2 JP 4101078B2 JP 2003036829 A JP2003036829 A JP 2003036829A JP 2003036829 A JP2003036829 A JP 2003036829A JP 4101078 B2 JP4101078 B2 JP 4101078B2
Authority
JP
Japan
Prior art keywords
gas detection
gas
sulfur compound
component
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003036829A
Other languages
Japanese (ja)
Other versions
JP2004245726A (en
Inventor
奎千 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2003036829A priority Critical patent/JP4101078B2/en
Publication of JP2004245726A publication Critical patent/JP2004245726A/en
Application granted granted Critical
Publication of JP4101078B2 publication Critical patent/JP4101078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄化合物ガス検知素子に関する。
【0002】
【従来の技術】
ガスの吸脱着により抵抗値が変化する金属酸化物半導体(酸化スズ)に電極を接続し、抵抗値を測定することでガスの有無を検出するようにした半導体ガス検知素子が従来からガス漏れ警報器等として使用されている。
【0003】
一方、最近ではトイレやキッチン等の住居内におけるオートベンチレーション(自動換気)を行なうためのガスセンサの開発が要望されている。つまり、トイレやキッチン等の悪臭成分の主なものには、硫化水素及びメルカプタン類が含まれており、快適な住環境を維持するにはこれらのガス濃度が数ppb〜数百ppbの範囲で検出できるガス検知素子が必要とされる。しかしながら従来の金属酸化物半導体ガス検知素子によって検出可能な下限濃度は数百ppbよりも高かった。
【0004】
そこで、特許文献1,2には、スズのアルコキシド溶液を絶縁基板に塗布した後、アルコキシド溶液を熱分解して酸化スズ膜を形成し、この酸化スズ膜に別の金属(通常、酸化物の形態となっている)を添加して、ガス検出感度を高めるようにした提案がなされている。
【0005】
しかし、上述した方法では、ガス感度は比較的良好であるものの雰囲気を硫化水素から空気に切り替えた時の回復応答性が好ましくない。一方、センサ温度を400℃まで高めれば回復応答性は良くなるが、今度は急激にガス感度が低下する。回復応答性を高めるためにセンサを加熱するヒートクリーンニングも知られているが、この場合には連続測定ができず、またヒートクリーンニング用の別回路が必要となる等の難点があった。
【0006】
上記課題を解決すべく、硫黄系ガスが吸脱着する金属酸化物半導体の主体を酸化タングステンとし、この金属酸化物に加える添加物を貴金属から選ばれる少なくとも1種としたガス検知素子が開発されている(特許文献3参照)。
【0007】
つまり、ガス検知素子の主体となる金属酸化物を従来の酸化スズから酸性の強い酸化タングステンに変えることで、硫化水素、メルカプタン類等の硫黄系ガスに対する感度が大幅に向上するとされており、これにより、ガス感度の低下等の問題が緩和され、数ppb〜数百ppbの範囲で硫黄系ガスを検出できるガス検知素子が得られるものと考えられている。
【0008】
【特許文献1】
特開昭63−313048号公報
【特許文献2】
特開昭63−313049号公報
【特許文献3】
特開平06−18467号公報
【0009】
【発明が解決しようとする課題】
しかし、上述の硫黄化合物ガス検知素子によると、感度出力は向上され、数ppb〜数百ppbの範囲で硫黄系ガスに対しても有意な出力が得られるものの、他の雑ガスとの選択性は十分とはいえず、実用に十分なものであるとはいえず、未だ改良の余地があった。
【0010】
従って、本発明の目的は、上記実情に鑑み、酸化タングステン半導体を主成分とする感応層を備えた硫黄化合物ガス検知素子の硫黄化合物ガス感度を向上させ、数ppb〜数百ppbの範囲で硫黄系ガスを検出可能とするとともに、ガス選択性を向上させ、実用に耐えるガス検知素子を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明の硫黄化合物ガス検知素子の特徴構成は、
鉛成分及び銅成分を添加してある酸化タングステン半導体を主成分とする感応層を備え、前記鉛成分の添加量に対する前記銅成分の添加量の比が(Pb:Cu)=(4:1)である点にあり、
前記鉛成分の添加量が前記酸化タングステンに対して、0.2mol%〜4mol%であり、
前記銅成分の添加量が前記酸化タングステンに対して、0.05mol%〜1mol%であることが好ましい。
【0012】
尚、タングステンに対する鉛の成分比率等は、各金属原子のモル比により求め、mol%としてあらわすものとする。
【0013】
〔作用効果〕
つまり、本発明の硫黄化合物ガス検知素子によると、酸化タングステンによる硫黄化合物ガスに対する感度向上に加えて、鉛によって硫黄化合物に対する選択的な感度向上がはかられる。また、前記鉛による硫黄化合物検出感度の向上に加えて、銅を含有した場合に、その感度上昇度は、相乗的に大きくなり、さらに、ガス検出応答時間も短くなる。またさらに、鉛(Pb)成分の添加量に対する銅(Cu)成分の添加量の比が(Pb:Cu)=(4:1)程度としてあると、硫黄化合物ガスに対する感度及び選択性が高いガス検知素子が得られる。こうして、実用に耐える高性能な硫黄化合物ガス検知素子を提供することができるようになった。尚、本発明の場合、ガス検知素子が空気を検知したときの抵抗に対して、ガス検知素子が被検知ガスを含有する検知対象ガスを検知したときの抵抗比としての抵抗変化率として感度をあらわしている。
【0014】
鉛成分の添加量としては、添加量が少なすぎると触媒効果が十分発揮されないために、0.2mol%以上であることが好ましく、
添加量が多くなるにつれて感応層全体としての長期安定性、生産上の品質安定性が低下しやすくなることから4mol%以下であることが好ましい。
【0015】
た、銅成分の添加量としては、添加量が少なければ触媒効果が現れにくくなるため、0.05mol%以上とすることが好ましく、添加量を増やすに従い、出力値自体が低下する傾向が観測されるので、mol%以下とすることが望ましいことが実験的に確認されている。
【0016】
尚、一般的に本発明における鉛成分は、酸化タングステンを主成分とする感応層に鉛化合物の溶液を含浸させた後、焼成して酸化物の形態で担持させるが、これに限らず、種々の化合物の形態で担持させてあってもよく、酸化物と同様の活性を有する形態で担持させてあっても良い。これら、種々の鉛化合物の形態で担持される鉛を鉛成分と呼ぶものとする。
【0017】
また、本発明にいう硫黄化合物とは、硫化水素、メチルメルカプタン、ブチルメルカプタン、ジメチルスルフィド等、硫黄を含有して種々のガス検知素子に対して同様のガス検知特性を示す化合物群を指すものとする。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、本発明の硫黄化合物ガス検知素子1は、アルミナ基板表面に櫛型電極1aを設け、櫛型電極1a上に酸化タングステンを主成分とする金属酸化物半導体ペーストを塗布し、600℃で2時間焼成して感応層1bを設けてある。また、前記アルミナ基板の裏面には、白金薄膜ヒーター1cが設けられ、ガス検知素子の動作温度を維持するために用いられる。
さらに、前記感応層1bには、硝酸鉛等の鉛成分の水溶液を含浸した後、550℃で0.5時間焼成し鉛成分を担持させてある。硝酸鉛の含浸量は、所定濃度の硝酸鉛水溶液を前記感応層にキャピラリーを用いて一定量を少量づつ滴下して含浸させることにより、その滴下量から調整することができる。また、同様に銅成分についても、硝酸銅等の銅成分の水溶液を含浸、焼成して前記感応層に担持させることができる。
ここでは、2mol%の硝酸鉛および、硝酸銅の水溶液を用いて、酸化タングステンに対して、0.2mol%〜4mol%の鉛含浸量、鉛含有量に対する銅含有量の比が、(Pb:Cu)=(4:1)〜(1:4)となる銅含有量となるように触媒担持層を形成させた。
尚、前記鉛成分および銅成分は、焼成により、酸化物の形態で前記感応層に担持されているものと考えられる。
【0019】
ガス検知装置は、上述の硫黄化合物ガス検知素子1を、図2に示すように、ガス検知回路2に組み込み、ガス検知出力が得られるように構成する。また、前記硫黄化合物ガス検知素子から得られたガス検知出力は、制御部3に入力されて、硫黄化合物濃度が警報を要するレベルに達しているかどうかの判断がなされる。ここで、警報を要すると判断された場合、前記制御部3は警報部4に対して警報信号を出力し、前記警報部4において警報ブザー、警報音声等を鳴動させる。
【0020】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
(1) 鉛成分担持
上述の硫黄化合物ガス検知素子1として、酸化タングステンを主成分とする感応層1bに0.7mol%の鉛成分を担持させたものを用い、種々のガス成分に対するガス検知特性を調べたところ図3(イ)のようになった。また、鉛を担持せず、酸化タングステンのみからなる感応層を備えたガス検知素子についても同様にガス検知特性を調べたところ、図3(ロ)のようになった。尚、ガス検知特性は、ガス検知素子の被検知ガスを含む検知対象ガス中における抵抗値(Rg)と被検知ガスを含まない清浄空気中における抵抗値(Rair)との比(Rair/Rg)として求められる抵抗変化率(感度)の被検知ガス濃度依存性として求める。
【0021】
図3(ロ)より、鉛を担持せず、酸化タングステンを主成分とする感応層を備えたガス検知素子は、たとえば、トルエン(CCH)、エチルベンゼン(C)、トリメチルベンゼン(C(CH)等の芳香族揮発性有機化合物(VOC)ガス等、種々のガス成分に対して、数百ppb程度(1ppm以下)の濃度であっても、高い感度を呈することがよみとれるが、そのガス検知特性は、種々のガス成分に対して類似の傾向を示すものとなっており、特定のガスを選択的に検知することが困難なものであることがわかる。特に硫黄化合物に対しては、他のガス成分よりも抵抗変化率があまり変化しないために十分な感度が得られにくい。
【0022】
これに対して、鉛成分を担持させてある本発明の硫黄化合物ガス検知素子は、図3(イ)に示すように、硫黄化合物の一例である硫化水素に対して特に数百ppb程度(1ppm以下)の濃度であっても、高い感度を呈するとともに、高い選択性を示すことがわかる。
【0023】
つぎに、硫黄化合物濃度100ppbとしてこのガス検知素子の抵抗変化率の鉛成分担持量依存性を調べたところ図4のようになった。図4より、鉛成分の担持量を種々変更して得られた硫黄化合物ガス検知素子は、いずれも高い抵抗変化率を示すことが読みとれ、特に、図3(イ)を参照すると抵抗変化率が6以上の高い値を示している場合は、高濃度の芳香族VOCガス成分に比べても低濃度の硫黄化合物ガスの検知感度が高く設定されていることがわかるが、鉛成分の担持量を変化させても広い範囲で抵抗変化率6以上を実現している。そのため、硫黄化合物ガス検知素子として有効に利用できることがわかる。
尚、鉛成分の添加量が少なすぎると触媒効果が十分発揮されないことと、鉛成分の添加量が多くなるにつれて感応層全体としての長期安定性、生産上の品質安定性が低下しやすくなることから0.2〜4mol%が好ましく、特に、0.4〜3mol%の担持量で高い抵抗変化率を示していると考えられる。
【0024】
(2) 銅成分担持
先の実施例における鉛成分の担持量を0.7mol%に固定し、銅成分の担持量を種々変更したガス検知素子(Pb:Cu)=(4:1)〜(1:4)を作製し、それぞれのガス検知素子の硫黄化合物(硫化水素)ガスに対する感度特性を調べたところ図5のようになった。
図5より、鉛を担持してある酸化タングステンを主成分とするガス検知素子は、銅成分を担持することにより、抵抗変化率が上昇し、また、さらに銅担持量を増加させることにより、抵抗変化率は下降傾向に向かうことがわかった。
そのため、前記銅成分は感応層に担持される鉛成分に対して(Pb:Cu)=(4:1)当量程度添加されることが好ましい。前述の図4の関係等に基づけば、前記酸化タングステンの感応層に対しては、0.05mol%〜1mol%の担持量が特に好ましいことがわかった。
また、このようなガス検知素子は、出力の応答時間が十分とはいえない場合があって、このような別の側面からも、さらなる改善が望まれているが、この範囲では被検知ガスに対する応答速度も改善されていることが確認されている。
また、上述のガス検知素子で(Pb:Cu)=(4:1)のもの(Pb&Cu)について、ガス検知特性を調べたところ、図6のようになった。図6より、鉛成分のみを担持させた場合(Pb)に比べ、銅成分の担持により、硫黄化合物(ここでは硫化水素(H2S)を例示してある)に対する抵抗変化率は大きく向上し、逆に、芳香族VOC成分(ここではトリメチルベンゼンを例示してある)に対する抵抗変化率が大きく低下している。そのため、検知対象ガス中の硫黄化合物ガスに対する選択性が大きく高められていることがわかる。
【図面の簡単な説明】
【図1】硫黄化合物ガス検知素子の一部断面斜視図
【図2】ガス検知装置の概略図
【図3】本発明の硫黄化合物ガス検知素子のガス検知特性を示すグラフ
【図4】本発明の硫黄化合物ガス検知素子の鉛成分添加量依存性を示す図
【図5】本発明の硫黄化合物ガス検知素子の銅成分添加量依存性を示す図
【図6】本発明の硫黄化合物ガス検知素子のガス検知特性を示すグラフ
【符号の説明】
1 硫黄化合物ガス検知素子
1a 櫛形電極
1b 感応層
2 ガス検知回路
3 制御部
4 警報部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sulfur compound gas detection element.
[0002]
[Prior art]
A semiconductor gas detection element that detects the presence or absence of gas by connecting an electrode to a metal oxide semiconductor (tin oxide) whose resistance value changes due to gas adsorption and desorption has been conventionally detected. It is used as a container.
[0003]
On the other hand, recently, development of a gas sensor for performing auto ventilation (automatic ventilation) in a residence such as a toilet or a kitchen has been demanded. That is, the main malodorous components such as toilets and kitchens contain hydrogen sulfide and mercaptans, and these gas concentrations range from several ppb to several hundred ppb to maintain a comfortable living environment. A gas sensing element that can be detected is needed. However, the lower limit concentration detectable by the conventional metal oxide semiconductor gas sensing element was higher than several hundred ppb.
[0004]
Therefore, in Patent Documents 1 and 2, after applying an alkoxide solution of tin to an insulating substrate, the alkoxide solution is thermally decomposed to form a tin oxide film, and another metal (usually an oxide of oxide) is formed on the tin oxide film. Have been proposed to increase gas detection sensitivity.
[0005]
However, in the method described above, the gas sensitivity is relatively good, but the recovery response when the atmosphere is switched from hydrogen sulfide to air is not preferable. On the other hand, if the sensor temperature is increased to 400 ° C., the recovery responsiveness is improved, but this time the gas sensitivity is drastically lowered. Heat cleaning for heating the sensor to improve recovery response is also known, but in this case, continuous measurement cannot be performed and another circuit for heat cleaning is required.
[0006]
In order to solve the above problems, a gas detection element has been developed in which the main component of the metal oxide semiconductor to which sulfur-based gas is adsorbed and desorbed is tungsten oxide and the additive added to the metal oxide is at least one selected from precious metals. (See Patent Document 3).
[0007]
In other words, the sensitivity to sulfur-based gases such as hydrogen sulfide and mercaptans is greatly improved by changing the metal oxide that is the main component of the gas detection element from conventional tin oxide to highly acidic tungsten oxide. Therefore, it is considered that problems such as a decrease in gas sensitivity are alleviated and a gas detection element capable of detecting a sulfur-based gas in a range of several ppb to several hundred ppb is obtained.
[0008]
[Patent Document 1]
JP-A-63-313048 [Patent Document 2]
JP-A-63-313049 [Patent Document 3]
Japanese Patent Laid-Open No. 06-18467
[Problems to be solved by the invention]
However, according to the above-described sulfur compound gas detection element, the sensitivity output is improved and a significant output can be obtained even for a sulfur-based gas in the range of several ppb to several hundred ppb, but selectivity with other miscellaneous gases. However, it was not sufficient for practical use, and there was still room for improvement.
[0010]
Therefore, in view of the above circumstances, the object of the present invention is to improve the sulfur compound gas sensitivity of a sulfur compound gas detection element having a sensitive layer mainly composed of a tungsten oxide semiconductor, and to reduce sulfur in the range of several ppb to several hundred ppb. An object of the present invention is to provide a gas detection element capable of detecting a system gas and improving gas selectivity to withstand practical use.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the characteristic configuration of the sulfur compound gas detection element of the present invention is:
A sensitive layer mainly composed of a tungsten oxide semiconductor to which a lead component and a copper component are added is provided, and the ratio of the added amount of the copper component to the added amount of the lead component is (Pb: Cu) = (4: 1) In that point,
Relative amount said tungsten oxide of the lead component, Ri 0.2mol% ~4mol% der,
The amount of the copper component added is preferably 0.05 mol% to 1 mol% with respect to the tungsten oxide .
[0012]
The component ratio of lead to tungsten is determined by the molar ratio of each metal atom and is expressed as mol%.
[0013]
[Function and effect]
That is, according to the sulfur compound gas detection element of the present invention, in addition to improving the sensitivity to sulfur compound gas by tungsten oxide, selective sensitivity to sulfur compounds can be improved by lead . In addition to improving the sulfur compounds sensitivity by pre Kinamari, when containing copper, the increased sensitivity of synergistically increased, further, is also shortened gas detection response time. Furthermore, when the ratio of the addition amount of the copper (Cu) component to the addition amount of the lead (Pb) component is about (Pb: Cu) = (4: 1), the gas having high sensitivity and selectivity to the sulfur compound gas. A sensing element is obtained. Thus, a high-performance sulfur compound gas detecting element that can withstand practical use can be provided. In the case of the present invention, the sensitivity as the resistance change rate as the resistance ratio when the gas detection element detects the detection target gas containing the gas to be detected with respect to the resistance when the gas detection element detects air. Appears.
[0014]
As the addition amount of the lead component, if the addition amount is too small, the catalytic effect is not sufficiently exhibited.
Since the long-term stability as a whole sensitive layer and the quality stability in production tend to decrease as the amount added increases, it is preferably 4 mol% or less.
[0015]
Also, the addition amount of the copper component, since the addition amount becomes the catalyst effect is less likely to appear the less, preferably greater than or equal to 0.05 mol%, in accordance with increasing the addition amount tends to output value itself decreases observed Therefore, it has been experimentally confirmed that it is desirable to make it 1 mol% or less.
[0016]
In general, the lead component in the present invention is impregnated with a solution of a lead compound in a sensitive layer mainly composed of tungsten oxide, and then baked and supported in the form of an oxide. The compound may be supported in the form of the above compound, or may be supported in the form having the same activity as that of the oxide. These leads supported in the form of various lead compounds are called lead components.
[0017]
In addition, the sulfur compound referred to in the present invention refers to a compound group containing sulfur and having similar gas detection characteristics for various gas detection elements, such as hydrogen sulfide, methyl mercaptan, butyl mercaptan, and dimethyl sulfide. To do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the sulfur compound gas detection element 1 of the present invention is provided with a comb-shaped electrode 1a on the surface of an alumina substrate, and a metal oxide semiconductor paste mainly composed of tungsten oxide is applied on the comb-shaped electrode 1a. The sensitive layer 1b is provided by baking at 600 ° C. for 2 hours. A platinum thin film heater 1c is provided on the back surface of the alumina substrate and is used to maintain the operating temperature of the gas detection element.
Further, the sensitive layer 1b is impregnated with an aqueous solution of a lead component such as lead nitrate and then baked at 550 ° C. for 0.5 hour to carry the lead component. The amount of lead nitrate impregnated can be adjusted by dropping a predetermined amount of a lead nitrate aqueous solution into the sensitive layer in small amounts using a capillary to impregnate the lead layer. Similarly, the copper component can also be supported on the sensitive layer by impregnating and baking an aqueous solution of a copper component such as copper nitrate.
Here, using a 2 mol% lead nitrate and copper nitrate aqueous solution, the lead impregnation amount of 0.2 mol% to 4 mol% with respect to tungsten oxide, and the ratio of the copper content to the lead content is (Pb: The catalyst support layer was formed so that the copper content was Cu) = (4: 1) to (1: 4).
In addition, it is thought that the said lead component and copper component are carry | supported by the said sensitive layer by the form of an oxide by baking.
[0019]
As shown in FIG. 2, the gas detection device is configured to incorporate the above-described sulfur compound gas detection element 1 in the gas detection circuit 2 and obtain a gas detection output. The gas detection output obtained from the sulfur compound gas detection element is input to the control unit 3 to determine whether or not the sulfur compound concentration has reached a level requiring an alarm. Here, when it is determined that an alarm is required, the control unit 3 outputs an alarm signal to the alarm unit 4, and the alarm unit 4 sounds an alarm buzzer, an alarm sound, and the like.
[0020]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(1) Lead component support As the above-described sulfur compound gas detection element 1, a gas detection characteristic for various gas components is obtained by using a sensitive layer 1b mainly composed of tungsten oxide and supporting 0.7 mol% of a lead component. As a result, it was as shown in FIG. Further, when the gas detection characteristics of a gas detection element that does not carry lead and has a sensitive layer made of only tungsten oxide were examined in the same manner, it was as shown in FIG. The gas detection characteristic is a ratio (Rair / Rg) of the resistance value (Rg) in the detection target gas including the detection gas of the gas detection element and the resistance value (Rair) in clean air not including the detection gas. The resistance change rate (sensitivity) obtained as follows is determined as the dependency of the gas to be detected.
[0021]
As shown in FIG. 3 (b), the gas detection element that does not support lead and has a sensitive layer mainly composed of tungsten oxide includes, for example, toluene (C 6 H 5 CH 3 ), ethylbenzene (C 6 H 5 C 2). H 5), trimethylbenzene (C 6 H 3 (CH 3 ) 3) aromatic volatile organic compounds such as (VOC) gas or the like, for the various gas components, at concentrations of a few hundred ppb order (1 ppm or less) Even in such a case, it can be seen that it exhibits high sensitivity, but its gas detection characteristics show similar tendencies for various gas components, making it difficult to selectively detect specific gases. You can see that In particular, for sulfur compounds, the resistance change rate does not change much as compared with other gas components, so that it is difficult to obtain sufficient sensitivity.
[0022]
On the other hand, the sulfur compound gas detection element of the present invention in which a lead component is supported is particularly about several hundred ppb (1 ppm) with respect to hydrogen sulfide, which is an example of a sulfur compound, as shown in FIG. It can be seen that even with the following concentrations, high sensitivity is exhibited and high selectivity is exhibited.
[0023]
Next, when the sulfur compound concentration is 100 ppb, the dependence of the resistance change rate of the gas detection element on the amount of the lead component supported is examined, and the result is as shown in FIG. From FIG. 4, it can be read that the sulfur compound gas detection elements obtained by variously changing the loading amount of the lead component show a high rate of change in resistance. In particular, referring to FIG. When a high value of 6 or more is shown, it can be seen that the detection sensitivity of the low concentration sulfur compound gas is set higher than that of the high concentration aromatic VOC gas component. Even if it is changed, a resistance change rate of 6 or more is realized in a wide range. Therefore, it turns out that it can utilize effectively as a sulfur compound gas detection element.
In addition, if the amount of lead component added is too small, the catalytic effect will not be sufficiently exerted, and as the amount of lead component added increases, the long-term stability of the sensitive layer as a whole and the quality stability in production are likely to deteriorate. From 0.2 to 4 mol% is preferable, and it is considered that a high rate of change in resistance is particularly exhibited at a supported amount of 0.4 to 3 mol%.
[0024]
(2) Copper component loading Gas sensing elements (Pb: Cu) = (4: 1) to (4: 1) in which the loading amount of the lead component in the previous embodiment is fixed to 0.7 mol% and the loading amount of the copper component is variously changed. 1: 4) was prepared, and the sensitivity characteristics of each gas detection element to sulfur compound (hydrogen sulfide) gas were examined, and the result was as shown in FIG.
As shown in FIG. 5, the gas detection element mainly composed of tungsten oxide supporting lead increases the rate of change in resistance by supporting the copper component, and further increases the resistance by increasing the amount of supported copper. It turns out that the rate of change tends to a downward trend.
Therefore, it is preferable that the copper component is added in an amount equivalent to (Pb: Cu) = (4: 1) equivalent to the lead component supported on the sensitive layer. Based on the relationship of FIG. 4 described above, it was found that a supported amount of 0.05 mol% to 1 mol% is particularly preferable for the tungsten oxide sensitive layer.
Further, such a gas detection element may not have a sufficient output response time, and further improvement is desired from such another aspect. It has been confirmed that the response speed is also improved.
Further, when the gas detection characteristics of the above-described gas detection element (Pb: Cu) = (4: 1) (Pb & Cu) were examined, it was as shown in FIG. FIG. 6 shows that the resistance change rate with respect to the sulfur compound (here, hydrogen sulfide (H 2 S)) is greatly improved by supporting the copper component as compared with the case where only the lead component is supported (Pb). On the contrary, the resistance change rate with respect to the aromatic VOC component (trimethylbenzene is illustrated here) is greatly reduced. Therefore, it turns out that the selectivity with respect to the sulfur compound gas in detection object gas is improved greatly.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view of a sulfur compound gas detection element. FIG. 2 is a schematic view of a gas detection device. FIG. 3 is a graph showing gas detection characteristics of the sulfur compound gas detection element of the present invention. FIG. 5 is a graph showing the dependency of the sulfur component gas detection element on the amount of lead component added. FIG. 5 is a graph showing the copper component addition amount dependency of the sulfur compound gas detection element of the present invention. Graph showing gas detection characteristics
DESCRIPTION OF SYMBOLS 1 Sulfur compound gas detection element 1a Comb electrode 1b Sensing layer 2 Gas detection circuit 3 Control part 4 Alarm part

Claims (2)

鉛成分及び銅成分を添加してある酸化タングステン半導体を主成分とする感応層を備えた硫黄化合物ガス検知素子であって、
前記鉛成分の添加量に対する前記銅成分の添加量の比が(Pb:Cu)=(4:1)である硫黄化合物ガス検知素子
A sulfur compound gas sensing element including a sensitive layer mainly composed of a tungsten oxide semiconductor to which a lead component and a copper component are added ,
The sulfur compound gas detection element whose ratio of the addition amount of the said copper component with respect to the addition amount of the said lead component is (Pb: Cu) = (4: 1) .
前記鉛成分の添加量が前記酸化タングステンに対して、0.2mol%〜4mol%であり、
前記銅成分の添加量が前記酸化タングステンに対して、0.05mol%〜1mol%である請求項1に記載の硫黄化合物ガス検知素子。
Relative amount said tungsten oxide of the lead component, Ri 0.2mol% ~4mol% der,
The sulfur compound gas detection element according to claim 1, wherein an addition amount of the copper component is 0.05 mol% to 1 mol% with respect to the tungsten oxide .
JP2003036829A 2003-02-14 2003-02-14 Sulfur compound gas detector Expired - Fee Related JP4101078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036829A JP4101078B2 (en) 2003-02-14 2003-02-14 Sulfur compound gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036829A JP4101078B2 (en) 2003-02-14 2003-02-14 Sulfur compound gas detector

Publications (2)

Publication Number Publication Date
JP2004245726A JP2004245726A (en) 2004-09-02
JP4101078B2 true JP4101078B2 (en) 2008-06-11

Family

ID=33021815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036829A Expired - Fee Related JP4101078B2 (en) 2003-02-14 2003-02-14 Sulfur compound gas detector

Country Status (1)

Country Link
JP (1) JP4101078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662274U (en) * 1993-02-05 1994-09-02 株式会社フジタ Ball check valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080090419A (en) * 2005-12-12 2008-10-08 넥스테크 머티리얼스, 엘티디. Ceramic h2s sensor
US8653839B2 (en) 2009-07-17 2014-02-18 Caterpillar Inc. Zinc oxide sulfur sensors and method of using said sensors
US8638111B2 (en) 2010-06-17 2014-01-28 Caterpillar Inc. Zinc oxide sulfur sensor measurement system
CN111665278A (en) * 2020-06-02 2020-09-15 李锦安 Hydrogen sulfide gas sensor for medical inspection waste pre-alarming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662274U (en) * 1993-02-05 1994-09-02 株式会社フジタ Ball check valve

Also Published As

Publication number Publication date
JP2004245726A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US9945803B2 (en) Gas detecting device and method thereof
JP3097287B2 (en) Gas sensor and method of manufacturing the same
EP0197629B1 (en) Alcohol selective gas sensor
JP4101078B2 (en) Sulfur compound gas detector
JP2921032B2 (en) Ammonia gas sensor
JP3191420B2 (en) Gas sensor
Yamazoe et al. Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air
JP4022822B2 (en) Thin film gas sensor
JP3518800B2 (en) Gas sensor and gas detection device
JP2016017741A (en) Gas detecting device, and gas detecting method
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2020056726A (en) Gas sensor
JP3171745B2 (en) Substrate type semiconductor gas sensor and gas detector
JP2921033B2 (en) Hydrogen sulfide gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JPH08122288A (en) Gas detection element
JP3203120B2 (en) Substrate type semiconductor gas sensor and gas detector
JP4382245B2 (en) Gas sensor and gas detector
JPS5925001Y2 (en) Carbon monoxide gas selection detection element
JP3534351B2 (en) High temperature detection type CO gas detection element
JPH07218461A (en) Gas sensor driving method and gas detecting method using the same
JP2002286672A (en) Gas detector and gas detection method
JP3171774B2 (en) Gas detection element
JPH05142177A (en) Gas sensor
JP2024018688A (en) detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees