JP4101017B2 - Adsorption device and adsorption method - Google Patents

Adsorption device and adsorption method Download PDF

Info

Publication number
JP4101017B2
JP4101017B2 JP2002309646A JP2002309646A JP4101017B2 JP 4101017 B2 JP4101017 B2 JP 4101017B2 JP 2002309646 A JP2002309646 A JP 2002309646A JP 2002309646 A JP2002309646 A JP 2002309646A JP 4101017 B2 JP4101017 B2 JP 4101017B2
Authority
JP
Japan
Prior art keywords
adsorption
electrode
plane
electrodes
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002309646A
Other languages
Japanese (ja)
Other versions
JP2004146585A (en
Inventor
謙 前平
耕 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002309646A priority Critical patent/JP4101017B2/en
Publication of JP2004146585A publication Critical patent/JP2004146585A/en
Application granted granted Critical
Publication of JP4101017B2 publication Critical patent/JP4101017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は静電吸着装置に関し、特に、絶縁性の基板上にデバイスパターンが形成された吸着対象物を吸着する吸着装置に関する。
【0002】
【従来の技術】
図9符号121はガラス基板等の絶縁基板の吸着に用いられる従来技術の吸着装置を示している。この吸着装置121は、支持体125と、支持体125表面に配置された第一、第二の電極126、127と、第一、第二の電極126、127表面を覆う保護層130とを有している。
【0003】
吸着装置121の保護層130が形成された側の面に絶縁基板を載置し、第一、第二の電極126、127にそれぞれ正負の電圧を印加すると、第一、第二の電極126、127間に電界が形成される。
一般に、不均一な電場E中に分極率αの誘電体を置いたとき、その誘電体には、単位面積当たり次式で表されるグラディエント力が働く。
【0004】
f = 1/2・α・grad(E2)
第一、第二の電極126、127はパターニングにより共に櫛状にされ、その歯の部分が互いに噛み合うように配置されており、互いに隣接する第一、第二の電極126、127の間の距離が非常に小さくなっている。その結果、絶縁基板がその表面に載置されたときに、上式のgrad(E2)が大きくなっている。
【0005】
絶縁基板は上述したグラディエント力を受け、基板の裏面全面が吸着装置121表面に吸着され、結果として吸着装置121に保持される。
ところで、実際の製造工程では絶縁基板上には配線やトランジスタ等の導体が形成されていることが多く、そのような導体と、ガラス基板のような絶縁体とが混在するものを吸着する場合、吸着力の面内分布が不均一になり、吸着の安定性が低いという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上記従来技術の要求に応じるために創作されたものであり、その目的は、導体と絶縁体とが混在した吸着対象物を吸着する場合に、吸着力の面内分布が均一になる吸着装置を提供することである。
【0007】
【課題を解決するための手段】
本発明者等は吸着対象物として、一辺が50cmの矩形のガラス基板からなり、配線が形成されていない吸着対象物と、ガラス基板の一面に配線が形成された吸着対象物の2種類を用意した。
【0008】
それらの吸着対象物を、配線が形成されていない面(載置面)を下側に向けた状態で電極126、127上に配置し、載置面を第一、第二の電極126、127表面から0〜1.2mm離した状態で吸着させ、吸着力を測定した。尚、吸着装置121の第一、第二の電極126、127の櫛の歯の幅は3mmであり、その間隔は1mmであった。
【0009】
図10は電極126、127表面から載置面までの距離(離間距離)と、吸着力との関係を示すグラフであり、同図の符号L1は配線が形成された吸着対象物の吸着力の変化を示し、符号L2は配線が形成されていない場合の吸着対象物の吸着力の変化を示している。
【0010】
図10から明らかなように、配線を有する吸着対象物は配線を有しない吸着対象物に比べて吸着力が大きく、また、配線を有する場合と、配線を有しない場合のいずれの場合であっても離間距離が大きくなるほど吸着力が小さくなっている。例えば、吸着力が1kPaとなる離間距離に着目すると、配線を有しない吸着対象物では離間距離が約0.2mmであったのに対し、配線を有する吸着対象物では離間距離が約0.6mmと大きくなっている。
【0011】
これらのことから、配線のような導体を有する部分の離間距離を、導体を有しない部分よりも大きくすれば、導体を有する部分と導体を有しない部分とで吸着力の差がなくなり、吸着力の面内分布が均一となると考えられる。
【0012】
上記知見に基づいてなされた請求項1記載の発明は、装置本体を有し、前記装置本体は支持体と、前記支持体上に配置された第一の電極と、前記第一の電極に隣接して配置された第二の電極とを有し、前記装置本体の載置面上に絶縁基板を配置して前記第一の電極と前記第二の電極に正電圧と負電圧を印加すると、前記絶縁基板が吸着されるように構成された吸着装置であって、前記装置本体は、前記第一、第二の電極の上端が第一の平面に位置する凸部と、前記第一、第二の電極の上端が第二の平面に位置する凹部とを有し、前記第一の平面と前記載置面との距離は、前記第二の平面と前記載置面との距離よりも小さくされ、前記凸部は格子状に配置され、前記凹部は前記凸部の間に行列状に配置された吸着装置である。
請求項2記載の発明は、装置本体を有し、前記装置本体は支持体と、前記支持体上に配置された第一の電極と、前記第一の電極に隣接して配置された第二の電極とを有し、前記装置本体の載置面上に絶縁基板を配置して前記第一の電極と前記第二の電極に正電圧と負電圧を印加すると、前記絶縁基板が吸着されるように構成された吸着装置であって、前記装置本体は、前記第一、第二の電極の上端が第一の平面に位置する凸部と、前記第一、第二の電極の上端が第二の平面に位置する凹部とを有し、前記第一の平面と前記載置面との距離は、前記第二の平面と前記載置面との距離よりも小さくされた吸着装置によって、絶縁物領域と、前記絶縁物領域よりも導体が密集配置されたデバイス領域と、を有する前記絶縁基板を吸着する吸着方法であって、前記凹部は吸着対象の前記絶縁基板が有するデバイス領域の直下に配置し、前記凸部は吸着対象の前記絶縁基板が有する絶縁物領域の直下に配置しておく吸着方法である。
【0013】
本発明は上記のように構成されており、装置本体の凹部は、装置本体の基準となる位置からの平面的な距離が、絶縁基板の基準となる位置からデバイス領域までの平面的な距離とが等しくなる位置に形成されているので、基準となる位置同士が互いに対向するように吸着装置と絶縁基板の位置合わせを行い、絶縁基板を吸着装置に載置すると、デバイス領域が凹部上に載置されるようになっている。
【0014】
デバイス領域が位置する部分では載置面から導電膜表面までの距離が凹部の深さ分離れているので、第一、第二の電極に電圧を印加したときに発生する吸着力が小さくなる。
【0015】
【発明の実施の形態】
以下で図面を参照し、本発明の実施形態について説明する。
図1の符号1と、符号10は本発明の一実施形態の真空処理装置であるスパッタリング装置と、吸着装置をそれぞれ示している。
【0016】
図2、図3の符号20はこの吸着装置10で吸着される吸着対象物を示している。吸着対象物20は高純度石英ガラスからなる絶縁基板21を有しており、その片面には、パターニングされたITO(インジウム錫酸化物)薄膜等の導電膜が配置されている。
【0017】
導電膜は絶縁基板21の表面の所定領域に密集して形成されている。図2、3の符号25は導電膜が密集した領域であるデバイス領域を示しており、同図の符号26はデバイス領域の間に位置する領域であって、デバイス領域以外の領域である絶縁物領域を示しており、デバイス領域25は複数個互いに離間して位置している。
【0018】
ここでは、デバイス領域25は2個乃至複数個が等間隔に横一列に並べられ、横一列に並べられたデバイス領域25の一群が互いに平行に、かつ等間隔で並べれられている。即ち、絶縁基板21上のデバイス領域25は行列状に配置されている。デバイス領域25の間の格子状の部分は絶縁物領域26であり、該絶縁物領域26には導電膜が配置されていないか、あるいは、配置されていてもその密度が極少なく配置されている。
【0019】
図4はこのような20を吸着する吸着装置10の平面図を示し、図5は図4のA−A切断線断面図を、図6は図4のB−B切断線断面図をそれぞれ示している。
図4〜6を参照し、吸着装置10は装置本体14と保護層13とを有している。尚、図4では保護層13が省略されている。装置本体14は支持体11と、第一、第二の電極15a、15bと、凹部12とを有している。
【0020】
支持体11はセラミックのような絶縁材料の板で構成されている。第一、第二の電極15a、15bはタングステン(W)のような導電材料の薄膜(導電膜)で構成されており、その導電膜は支持体11の片面に密着配置されている。
【0021】
凹部12は、支持体11の導電膜が配置された面に形成された孔と、後述するように、その孔の底面上に配置された第一、第二の電極15a、15bとで構成されている。
【0022】
凹部12の支持体11上の平面的な位置は、上述したデバイス領域25の絶縁基板21上の平面的な位置と対応する位置に配置されており、上述したように、デバイス領域25は行列状に配置されているので、凹部12も行列状に配置されている。
【0023】
凹部12の周囲、又は凹部12間の部分を凸部16とすると、この凸部16は絶縁物領域26に対応して格子状になっており、凹部12の底面と凸部16の先端には第一、第二の電極15a、15bを構成する導電膜が配置されている。
【0024】
第一、第二の電極15a、15bは上述した導電膜のパターニングによってそれぞれ櫛状のパターンに形成されている。第一、第二の電極15a、15bの櫛の歯はそれぞれ複数個が設けられ、各櫛の歯は、直線状になっている。第一の電極15aの櫛状のパターンと、第二の電極15bの櫛状のパターンは互いに分離されており、第一、第二の電極15a、15bは互いに絶縁されている。
【0025】
第一、第二の電極15a、15bの櫛の歯は、凹部12が並んだ横一列の方向又は縦の一方向のいずれか一方の方向に平行に延びている。第一の電極15aの櫛の歯と第二の電極15bの櫛の歯は、凸部16上にのみ延びているものと、凸部16上と凹部12上の両方にまたがって延びているものそれぞれ両方が含まれる。
【0026】
第一の電極15aの櫛の歯部分と、第二の電極15bの櫛の歯部分は互いに噛み合うように配置されており、従って、第一の電極15aの歯と第二の電極15bの歯が交互に並んでいる。
【0027】
凸部16上のどの位置でも第一の電極15aの櫛の歯と、第二の電極15bの櫛の歯が隣接して配置されており、かつ、それらの櫛の歯の幅と間隔は一定になっている。即ち、凸部16上では、第一、第二の電極15a、15bの互いに隣接する部分が均一に分布されているので、第一、第二の電極15a、15bに正負の電圧が印加されると、凸部16を構成する支持体11上の第一、第二の電極15a、15bの表面近傍位置には均一な電界が形成されるようになっている。
【0028】
また、ここでは各凹部12内にも第一、第二の電極15a、15bが凸部16にある第一、第二の電極15a、15bと同じ間隔を空けて配置されており、凹部12を構成する支持体11上の第一、第二の電極15a、15b間の表面近傍位置には均一な電界が形成されるが、凹部12の電界は凸部16と同じ高さでは凸部16の電界よりも小さくなる。
【0029】
保護層13は二酸化ケイ素(SiO2)のような絶縁材料の薄膜で構成されている。第一、第二の電極15a、15bの表面はこの保護層13で覆われており、上述した吸着対象物20は保護層13に接触するので、第一、第二の電極15a、15bは保護されるようになっている。
【0030】
図1に示すスパッタリング装置1は真空槽2を有しており、上述した吸着装置10は保護層13が形成された面を天井側に向けられた状態で真空槽2内の底壁側に配置されている。
【0031】
上述したスパッタリング装置1を用いて吸着対象物20を処理するには、先ず、真空槽2に接続された真空排気系8を起動し、真空槽2内に所定圧力の真空雰囲気を形成した後、その真空雰囲気を維持したまま、吸着対象物20を真空槽2内に搬入する。
【0032】
吸着対象物20のデバイス領域25が形成された面を上側に向けた状態で、吸着対象物20と吸着装置10とを相対的に位置合わせし、絶縁基板21のデバイス領域25が形成された側とは反対側の面である載置面29を、凸部16上の保護層13表面に接触させ、吸着対象物20を吸着装置10上に載置すると、図7に示すように、デバイス領域25直下に凹部12が配置され、絶縁物領域26直下に凸部16が配置される。
【0033】
凸部16は支持体11の平坦な面と、膜厚一定な導電膜とで構成されるため、各凸部16の先端の導電膜表面は同じ第一の平面18に位置する。また、凹部12を構成する孔はそれぞれ深さが均一であり、凹部12はその孔と、膜厚一定な導電膜とで構成されるため、各凹部12の底面の導電膜表面はそれぞれ同じ第二の平面19に位置する。
【0034】
保護層13の膜厚は一定になっており、載置面29は凸部16上の保護層13表面に接触するため、載置面29は第一、第二の平面18、19に対して並行であり、また、接触面29から第一の平面19までの離間距離W1は接触面29から第二の平面19までの離間距離W2に比べて凹部12の深さ分だけ小さくなっている。
【0035】
上述したように、デバイス領域25のように導体密度が大きい場合の吸着力は、絶縁物領域26にように導体密度が小さい場合の吸着力よりも大きくなるが、導体密度が大きい場合であっても離間距離が大きくなれば吸着力が小さくなる。
【0036】
予め、絶縁基板21の膜厚と材質は分かっており、載置面29から第二の平面19までの離間距離W2がデバイス領域25にかかる吸着力と、絶縁物領域26にかかる吸着力が略等しくなるように、凹部12の深さが深くなっている。
【0037】
従って、静電チャック電源7を起動し、第一、第二の電極15a、15bに正負の電圧を印加すると、デバイス領域25と絶縁物領域26は同じ大きさの吸着力で吸着され、吸着対象物20は吸着装置10に安定して保持される。
【0038】
吸着装置10には不図示の加熱手段が設けられており、吸着対象物20が吸着装置10に密着した状態で吸着装置10を加熱すると、吸着対象物20が所定温度に加熱される。
【0039】
次いで、真空槽2内にアルゴン(Ar)ガスのようなスパッタガスを導入しながら、真空槽2内に所定圧力の真空雰囲気を維持し、スパッタ電源6を起動し、ターゲット5に電圧を印加すると、ターゲット5がスパッタリングされ、吸着対象物20に薄膜が成長する。
【0040】
薄膜が所定膜厚まで成長したところでスパッタリングを停止し、次いで、第一、第二の電極15a、15bへの電圧印加を停止すると、吸着力が解除され、成膜処理後の吸着対象物20を吸着装置10から持ち上げることができる。
【0041】
以上は、支持体11の孔と、膜厚が一定な導電膜とで凹部12が構成された場合について説明したが、本発明はこれに限定されるものではない。
図8の符号50は本発明他の例の吸着装置を示している。この吸着装置50は、装置本体54と、保護層53とを有している。
【0042】
装置本体54は、その表面と裏面が平坦な支持体51と、支持体51の平坦な表面に形成された第一、第二の電極55a、55bとを有しており、第一、第二の電極55a、55bを構成する導電膜の膜厚は一定ではない。
【0043】
上述した吸着装置10では、支持体11の孔と、膜厚一定な導電膜とで凹部12が構成されていたが、この吸着装置50では、導電膜の膜厚が薄い部分52と、導電膜の膜厚が厚い部分56があり、膜厚の薄い部分52は上述したような吸着対象物20のデバイス領域25に対応する位置に配置され、膜厚の厚い部分56は絶縁物領域26に対応する位置に配置されているので、吸着対象物20と吸着装置50とを相対的に位置合わせした後、第一、第二の電極55a、55b表面に形成された保護層53の表面に、載置面29を接触させ、吸着対象物20を載置すれば、膜厚の薄い部分52上にデバイス領域25が配置され、膜厚の厚い部分56上に絶縁物領域26が配置される。
【0044】
保護層53は膜厚の薄い部分52と厚い部分56を覆うように形成されている。保護層53の表面は平坦になっており、支持体51の平坦な表面から保護層53の平坦な表面までの距離は均一になっている。従って、保護層53の平坦な表面に載置面29を密着させたとき、載置面29から膜厚の厚い部分56までの距離は、載置面29から膜厚の薄い部分52までの距離よりも小さくなる。
【0045】
即ち、この吸着装置50の膜厚の薄い部分52と、膜厚の厚い部分56は、図4〜5に示した吸着装置10の凹部12と凸部16に相当する。この吸着装置50においても、膜厚の厚い部分56の先端が位置する第一の平面58から載置面29までの距離は、膜厚の薄い部分52の底面が位置する第二の平面59から載置面29までの距離が、図10に示すような、一定電圧で吸着力が等しくなる離間距離で形成できれば、吸着対象物20にかかる吸着力は面内分布が均一になる。
【0046】
図8の符号L1は保護層53の平坦な表面から、膜厚の厚い部分56の電極55a、55b表面までの距離を示し、符号L2は保護層53の平坦な表面から膜厚の薄い部分52の電極55a、55b表面までの距離を示している。例えば、図10において全面の吸着力を1kPaで均一にするためには、距離L1を0.7mm、距離L2を0.3mmにすればよい。
【0047】
以上は、吸着対象物20の絶縁基板21が、高純度石英ガラスで構成された場合について説明したが、例えば、耐熱ガラス(ここではパイレックスガラス(登録商標)、室温抵抗率1014Ω・cm)や、無アルカリガラス等他の種類のガラスや、ポリイミド樹脂やポリカーボネート樹脂等の樹脂で構成されたものを用いることができる。
【0048】
支持体11に孔を形成する場合、その形成方法は特に限定されず、ブラスト処理、ウェットエッチング等の種々の方法を用いることができる。
第一、第二の電極15a、15bを構成する導電膜はタングステンからなるものに限定されず、銅、アルミニウム、熱分解グラファイト(P−G)等種々の導電性物質からなるものを用いることができ、また、導電膜の成膜方法もCVD法、PVD法等種々の成膜方法を用いることができる。
【0049】
保護層13を構成する絶縁材料は二酸化ケイ素に限定されるものではなく、酸化アルミニウム(Al23)や、窒化アルミニウム(AlN)、熱分解窒化ホウ素(P−BN)等種々の絶縁材料で保護層13を構成することができる。また、保護層13、53を形成せずに、第一、第二の電極表面を露出させ、載置面29を第一、第二の電極の表面に直接接触させてもよい。
【0050】
また、以上は本発明の真空処理装置の一例として、スパッタリング装置1について説明したが、本発明はこれに限定されるものではなく、本発明の吸着装置10を有するものであれば、真空蒸着装置等の種々の成膜装置や、エッチング装置、イオン注入装置等の真空処理装置がある。また、本発明の吸着装置10に搬送機構を設ければ、吸着対象物20を吸着しながら真空処理装置間を搬送する、いわゆる搬送装置として用いることができる。
【0051】
【発明の効果】
本発明の吸着装置に吸着対象物を載置したときに、配線のような導体が密集するデバイス領域は凹部上に配置され、配線が密集しない絶縁物領域は凸部上に配置される。従って、デバイス領域では、載置面から電極表面までの距離が絶縁物領域よりも大きく、その距離はデバイス領域の吸着力が絶縁物領域と略等しくなるようになっているので、吸着力の面内分布が均一になり、吸着対象物が安定して保持される。
【図面の簡単な説明】
【図1】本発明に用いられる成膜装置の一例を説明する図
【図2】吸着対象物の一例を示す平面図
【図3】図2のZ−Z切断線断面図
【図4】本発明の一例の吸着装置の第一、第二の電極を説明するための平面図
【図5】図4のA−A切断線断面図に相当する図
【図6】図4のB−B切断線断面図に相当する図
【図7】吸着対象物を吸着装置に載置した状態を示す断面図
【図8】本発明の他の例の吸着装置を説明するための断面図
【図9】従来技術の吸着装置を説明するための断面図
【図10】離間距離と吸着力との関係を示すグラフ
【符号の説明】
20……吸着対象物 10、50……吸着装置 11、51……支持体 12、52……凹部 14、54……装置本体 15a、15b、55a、55b……第一、第二の電極 18、58……第一の平面 19、59……第二の平面 29……載置面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic adsorption device, and more particularly, to an adsorption device that adsorbs an adsorption object having a device pattern formed on an insulating substrate.
[0002]
[Prior art]
Reference numeral 121 in FIG. 9 denotes a conventional suction device used for suction of an insulating substrate such as a glass substrate. The adsorption device 121 includes a support 125, first and second electrodes 126 and 127 disposed on the surface of the support 125, and a protective layer 130 covering the surfaces of the first and second electrodes 126 and 127. is doing.
[0003]
When an insulating substrate is placed on the surface of the adsorption device 121 where the protective layer 130 is formed and positive and negative voltages are applied to the first and second electrodes 126 and 127, respectively, the first and second electrodes 126, An electric field is formed between 127.
In general, when a dielectric having a polarizability α is placed in a non-uniform electric field E, a gradient force expressed by the following equation per unit area acts on the dielectric.
[0004]
f = 1/2 · α · grad (E 2 )
The first and second electrodes 126 and 127 are both comb-shaped by patterning and arranged such that their tooth portions mesh with each other, and the distance between the first and second electrodes 126 and 127 adjacent to each other. Is very small. As a result, when the insulating substrate is placed on the surface, grad (E 2 ) in the above equation becomes large.
[0005]
The insulating substrate receives the above-described gradient force, and the entire back surface of the substrate is adsorbed on the surface of the adsorption device 121 and is held by the adsorption device 121 as a result.
By the way, in the actual manufacturing process, conductors such as wiring and transistors are often formed on an insulating substrate, and when adsorbing a mixture of such a conductor and an insulator such as a glass substrate, There is a problem that the in-plane distribution of the adsorption force becomes non-uniform and the stability of adsorption is low.
[0006]
[Problems to be solved by the invention]
The present invention was created to meet the demands of the above prior art, and its purpose is to make the in-plane distribution of the suction force uniform when suctioning a suction object in which a conductor and an insulator are mixed. It is to provide an adsorption device.
[0007]
[Means for Solving the Problems]
The present inventors prepared two types of adsorption objects: an adsorption object composed of a rectangular glass substrate with a side of 50 cm and no wiring formed thereon, and an adsorption object formed with wiring formed on one surface of the glass substrate. did.
[0008]
Those objects to be attracted are arranged on the electrodes 126 and 127 with the surface (mounting surface) on which the wiring is not formed facing downward, and the mounting surfaces are the first and second electrodes 126 and 127. It was made to adsorb | suck in the state 0-1.2 mm away from the surface, and the adsorption power was measured. In addition, the width | variety of the comb tooth of the 1st, 2nd electrodes 126 and 127 of the adsorption | suction apparatus 121 was 3 mm, and the space | interval was 1 mm.
[0009]
FIG. 10 is a graph showing the relationship between the distances (separation distances) from the surfaces of the electrodes 126 and 127 to the placement surface and the suction force, and the symbol L 1 in FIG. 10 indicates the suction force of the suction object on which the wiring is formed. The symbol L 2 indicates the change in the adsorption force of the object to be adsorbed when no wiring is formed.
[0010]
As is clear from FIG. 10, the suction object having wiring has a larger suction force than the suction object having no wiring, and the case where the wiring object is provided and the case where the wiring object is not provided. However, the greater the separation distance, the smaller the attractive force. For example, when focusing attention on the separation distance at which the suction force is 1 kPa, the separation distance is about 0.2 mm for the adsorption object having no wiring, whereas the separation distance is about 0.6 mm for the adsorption object having the wiring. It is getting bigger.
[0011]
From these facts, if the separation distance of the part having a conductor such as wiring is made larger than the part having no conductor, there is no difference in the adsorption force between the part having the conductor and the part having no conductor, and the adsorption force The in-plane distribution is considered to be uniform.
[0012]
The invention according to claim 1 made on the basis of the above knowledge has an apparatus main body, and the apparatus main body is adjacent to the support, the first electrode disposed on the support, and the first electrode. And arranging a second substrate, an insulating substrate on the mounting surface of the apparatus body, and applying a positive voltage and a negative voltage to the first electrode and the second electrode, An adsorption apparatus configured to adsorb the insulating substrate, wherein the apparatus main body includes a convex portion in which upper ends of the first and second electrodes are positioned on a first plane, and the first and first electrodes. The upper end of the second electrode has a recess located in the second plane, and the distance between the first plane and the mounting surface is smaller than the distance between the second plane and the mounting surface. The convex portions are arranged in a lattice pattern, and the concave portions are suction devices arranged in a matrix between the convex portions .
The invention according to claim 2 includes an apparatus main body, and the apparatus main body is a support, a first electrode disposed on the support, and a second disposed adjacent to the first electrode. When an insulating substrate is disposed on the mounting surface of the apparatus body and a positive voltage and a negative voltage are applied to the first electrode and the second electrode, the insulating substrate is adsorbed. The apparatus main body includes a convex portion in which upper ends of the first and second electrodes are positioned on a first plane, and upper ends of the first and second electrodes are first. A recess located on the second plane, and the distance between the first plane and the placement surface is insulated by a suction device that is smaller than the distance between the second plane and the placement surface. An adsorption method for adsorbing the insulating substrate having a physical region and a device region in which conductors are more densely arranged than the insulating region. I, the recess directly under the device region having said insulating substrate to be adsorbed, the convex portion is a suction way to keep directly under the insulator region having said insulating substrate to be adsorbed.
[0013]
The present invention is configured as described above, and the recess of the apparatus main body has a planar distance from a position serving as a reference of the apparatus main body to a planar distance from a position serving as a reference of the insulating substrate to the device region. Since the suction device and the insulating substrate are aligned so that the reference positions face each other, and the insulating substrate is placed on the suction device, the device region is placed on the recess. It is supposed to be placed.
[0014]
In the portion where the device region is located, the distance from the mounting surface to the surface of the conductive film is separated by the depth of the recess, so that the attractive force generated when a voltage is applied to the first and second electrodes is reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Reference numerals 1 and 10 in FIG. 1 denote a sputtering apparatus and an adsorption apparatus, which are vacuum processing apparatuses according to an embodiment of the present invention.
[0016]
Reference numeral 20 in FIGS. 2 and 3 indicates an object to be adsorbed by the adsorption device 10. The adsorption object 20 has an insulating substrate 21 made of high-purity quartz glass, and a conductive film such as a patterned ITO (indium tin oxide) thin film is disposed on one surface thereof.
[0017]
The conductive film is densely formed in a predetermined region on the surface of the insulating substrate 21. Reference numeral 25 in FIGS. 2 and 3 indicates a device region, which is a region where conductive films are densely packed. Reference numeral 26 in FIG. 3 indicates an insulator located between the device regions and other than the device region. A plurality of device regions 25 are spaced apart from each other.
[0018]
Here, two or more device regions 25 are arranged in a horizontal row at equal intervals, and a group of device regions 25 arranged in a horizontal row are arranged in parallel with each other at equal intervals. That is, the device regions 25 on the insulating substrate 21 are arranged in a matrix. A lattice-like portion between the device regions 25 is an insulator region 26, and no conductive film is disposed in the insulator region 26, or even if it is disposed, the density thereof is extremely small. .
[0019]
4 shows a plan view of the adsorption device 10 for adsorbing 20 as described above, FIG. 5 shows a sectional view taken along the line AA in FIG. 4, and FIG. ing.
4 to 6, the adsorption device 10 includes a device main body 14 and a protective layer 13. In FIG. 4, the protective layer 13 is omitted. The apparatus main body 14 includes a support 11, first and second electrodes 15 a and 15 b, and a recess 12.
[0020]
The support 11 is composed of a plate made of an insulating material such as ceramic. The first and second electrodes 15 a and 15 b are made of a thin film (conductive film) of a conductive material such as tungsten (W), and the conductive film is disposed in close contact with one surface of the support 11.
[0021]
The recess 12 includes a hole formed in the surface of the support 11 on which the conductive film is disposed, and first and second electrodes 15a and 15b disposed on the bottom surface of the hole as will be described later. ing.
[0022]
The planar position of the recess 12 on the support 11 is arranged at a position corresponding to the planar position of the device region 25 on the insulating substrate 21 as described above. As described above, the device region 25 is arranged in a matrix. The recesses 12 are also arranged in a matrix.
[0023]
If the portion around the recess 12 or between the recesses 12 is a protrusion 16, the protrusion 16 has a lattice shape corresponding to the insulator region 26, and the bottom of the recess 12 and the tip of the protrusion 16 Conductive films constituting the first and second electrodes 15a and 15b are disposed.
[0024]
The first and second electrodes 15a and 15b are each formed in a comb-like pattern by patterning the conductive film described above. A plurality of comb teeth are provided for the first and second electrodes 15a and 15b, and the comb teeth are linear. The comb pattern of the first electrode 15a and the comb pattern of the second electrode 15b are separated from each other, and the first and second electrodes 15a and 15b are insulated from each other.
[0025]
The comb teeth of the first and second electrodes 15a and 15b extend in parallel with either the horizontal direction in which the concave portions 12 are arranged or the vertical direction. The comb teeth of the first electrode 15a and the comb teeth of the second electrode 15b extend only on the convex portion 16, and extend across both the convex portion 16 and the concave portion 12. Each includes both.
[0026]
The comb tooth portion of the first electrode 15a and the comb tooth portion of the second electrode 15b are arranged to mesh with each other. Therefore, the teeth of the first electrode 15a and the teeth of the second electrode 15b are arranged. They are lined up alternately.
[0027]
The comb teeth of the first electrode 15a and the comb teeth of the second electrode 15b are arranged adjacent to each other on the convex portion 16, and the width and interval of the comb teeth are constant. It has become. That is, since the adjacent portions of the first and second electrodes 15a and 15b are uniformly distributed on the convex portion 16, positive and negative voltages are applied to the first and second electrodes 15a and 15b. A uniform electric field is formed in the vicinity of the surface of the first and second electrodes 15a and 15b on the support 11 constituting the convex portion 16.
[0028]
Also, here, the first and second electrodes 15a and 15b are also arranged in the respective recesses 12 at the same interval as the first and second electrodes 15a and 15b in the projections 16. A uniform electric field is formed in the vicinity of the surface between the first and second electrodes 15 a and 15 b on the supporting member 11, but the electric field of the concave portion 12 is the same as that of the convex portion 16. It becomes smaller than the electric field.
[0029]
The protective layer 13 is composed of a thin film of an insulating material such as silicon dioxide (SiO 2 ). Since the surfaces of the first and second electrodes 15a and 15b are covered with the protective layer 13, and the adsorption target 20 described above is in contact with the protective layer 13, the first and second electrodes 15a and 15b are protected. It has come to be.
[0030]
The sputtering apparatus 1 shown in FIG. 1 has a vacuum chamber 2, and the adsorption device 10 described above is arranged on the bottom wall side in the vacuum chamber 2 with the surface on which the protective layer 13 is formed facing the ceiling side. Has been.
[0031]
In order to process the adsorption object 20 using the sputtering apparatus 1 described above, first, the vacuum exhaust system 8 connected to the vacuum chamber 2 is activated, and after a vacuum atmosphere of a predetermined pressure is formed in the vacuum chamber 2, The adsorption object 20 is carried into the vacuum chamber 2 while maintaining the vacuum atmosphere.
[0032]
With the surface on which the device area 25 of the adsorption object 20 is formed facing upward, the adsorption object 20 and the adsorption apparatus 10 are relatively aligned, and the side on which the device area 25 of the insulating substrate 21 is formed 7 is brought into contact with the surface of the protective layer 13 on the convex portion 16 and the adsorption object 20 is placed on the adsorption device 10, as shown in FIG. Concave portion 12 is disposed immediately below 25, and convex portion 16 is disposed directly below insulator region 26.
[0033]
Since the convex portion 16 is composed of a flat surface of the support 11 and a conductive film having a constant film thickness, the conductive film surface at the tip of each convex portion 16 is located on the same first plane 18. In addition, since the holes constituting the recesses 12 are uniform in depth, and the recesses 12 are formed by the holes and the conductive film having a constant film thickness, the conductive film surface on the bottom surface of each recess 12 is the same. Located in the second plane 19.
[0034]
The film thickness of the protective layer 13 is constant, and the mounting surface 29 is in contact with the surface of the protective layer 13 on the convex portion 16, so that the mounting surface 29 is against the first and second planes 18 and 19. The separation distance W 1 from the contact surface 29 to the first plane 19 is smaller than the separation distance W 2 from the contact surface 29 to the second plane 19 by the depth of the recess 12. Yes.
[0035]
As described above, the attracting force when the conductor density is large as in the device region 25 is larger than the attracting force when the conductor density is small as in the insulator region 26. However, as the separation distance increases, the attractive force decreases.
[0036]
The film thickness and material of the insulating substrate 21 are known in advance, and the separation distance W 2 from the mounting surface 29 to the second plane 19 has an adsorption force applied to the device region 25 and an adsorption force applied to the insulator region 26. The depth of the recess 12 is increased so as to be substantially equal.
[0037]
Accordingly, when the electrostatic chuck power source 7 is activated and positive and negative voltages are applied to the first and second electrodes 15a and 15b, the device region 25 and the insulator region 26 are attracted with the same amount of attracting force, and are attracted. The object 20 is stably held by the adsorption device 10.
[0038]
The adsorption device 10 is provided with a heating means (not shown). When the adsorption device 10 is heated with the adsorption object 20 in close contact with the adsorption device 10, the adsorption object 20 is heated to a predetermined temperature.
[0039]
Next, when a sputtering atmosphere such as argon (Ar) gas is introduced into the vacuum chamber 2, a vacuum atmosphere at a predetermined pressure is maintained in the vacuum chamber 2, the sputtering power source 6 is activated, and a voltage is applied to the target 5. Then, the target 5 is sputtered, and a thin film grows on the adsorption object 20.
[0040]
When the thin film has grown to a predetermined thickness, the sputtering is stopped, and then, when the voltage application to the first and second electrodes 15a and 15b is stopped, the adsorption force is released, and the adsorption object 20 after the film formation process is removed. It can be lifted from the adsorption device 10.
[0041]
The above describes the case where the recess 12 is formed by the hole of the support 11 and the conductive film having a constant film thickness, but the present invention is not limited to this.
Reference numeral 50 in FIG. 8 shows a suction device according to another example of the present invention. The adsorption device 50 includes a device main body 54 and a protective layer 53.
[0042]
The apparatus main body 54 includes a support body 51 whose front and back surfaces are flat, and first and second electrodes 55a and 55b formed on the flat surface of the support body 51. The film thickness of the conductive film constituting the electrodes 55a and 55b is not constant.
[0043]
In the adsorption device 10 described above, the recess 12 is formed by the hole of the support 11 and the conductive film having a constant film thickness. However, in this adsorption device 50, the portion 52 having a thin film thickness and the conductive film are formed. The thick portion 56 is disposed at a position corresponding to the device region 25 of the adsorption target 20 as described above, and the thick portion 56 corresponds to the insulator region 26. Since the suction object 20 and the suction device 50 are relatively aligned with each other, they are placed on the surface of the protective layer 53 formed on the surfaces of the first and second electrodes 55a and 55b. When the placement surface 29 is brought into contact and the adsorption object 20 is placed, the device region 25 is disposed on the thin portion 52 and the insulator region 26 is disposed on the thick portion 56.
[0044]
The protective layer 53 is formed so as to cover the thin portion 52 and the thick portion 56. The surface of the protective layer 53 is flat, and the distance from the flat surface of the support 51 to the flat surface of the protective layer 53 is uniform. Accordingly, when the placement surface 29 is brought into close contact with the flat surface of the protective layer 53, the distance from the placement surface 29 to the thick portion 56 is the distance from the placement surface 29 to the thin portion 52. Smaller than.
[0045]
That is, the thin portion 52 and the thick portion 56 of the adsorption device 50 correspond to the concave portion 12 and the convex portion 16 of the adsorption device 10 shown in FIGS. Also in this adsorption device 50, the distance from the first plane 58 where the tip of the thick part 56 is located to the placement surface 29 is from the second plane 59 where the bottom face of the thin part 52 is located. If the distance to the placement surface 29 can be formed with a separation distance at which the suction force becomes equal at a constant voltage as shown in FIG. 10, the in-plane distribution of the suction force applied to the suction target 20 becomes uniform.
[0046]
Sign L 1 in FIG. 8 from the flat surface of the protective layer 53, the electrode 55a of the large thickness portion 56, indicates the distance to the 55b surface, reference numeral L 2 is a thin film thickness from the flat surface of the protective layer 53 The distance to the electrode 55a, 55b surface of the part 52 is shown. For example, in FIG. 10, in order to make the adsorption force of the entire surface uniform at 1 kPa, the distance L 1 may be 0.7 mm and the distance L 2 may be 0.3 mm.
[0047]
The above has described the case where the insulating substrate 21 of the adsorption object 20 is made of high-purity quartz glass. For example, heat-resistant glass (here, Pyrex glass (registered trademark), room temperature resistivity 10 14 Ω · cm) Alternatively, other types of glass such as non-alkali glass, or those made of resin such as polyimide resin or polycarbonate resin can be used.
[0048]
When forming a hole in the support body 11, the formation method is not specifically limited, Various methods, such as a blast process and wet etching, can be used.
The conductive films constituting the first and second electrodes 15a and 15b are not limited to those made of tungsten, and those made of various conductive materials such as copper, aluminum, pyrolytic graphite (PG), etc. may be used. In addition, as a method for forming the conductive film, various film formation methods such as a CVD method and a PVD method can be used.
[0049]
The insulating material constituting the protective layer 13 is not limited to silicon dioxide, and various insulating materials such as aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), and pyrolytic boron nitride (P-BN) can be used. The protective layer 13 can be configured. In addition, the first and second electrode surfaces may be exposed without forming the protective layers 13 and 53, and the placement surface 29 may be in direct contact with the surfaces of the first and second electrodes.
[0050]
Moreover, although the sputtering apparatus 1 was demonstrated as an example of the vacuum processing apparatus of this invention above, this invention is not limited to this, If it has the adsorption | suction apparatus 10 of this invention, a vacuum evaporation system There are various film forming apparatuses such as a vacuum processing apparatus such as an etching apparatus and an ion implantation apparatus. Moreover, if the adsorption | suction apparatus 10 of this invention is provided with a conveyance mechanism, it can be used as what is called a conveyance apparatus which conveys between the vacuum processing apparatuses, adsorb | sucking the adsorption | suction target object 20. FIG.
[0051]
【The invention's effect】
When an object to be sucked is placed on the suction device of the present invention, a device region where conductors such as wiring are densely arranged is arranged on the concave portion, and an insulating region where wiring is not densely arranged is arranged on the convex portion. Therefore, in the device area, the distance from the mounting surface to the electrode surface is larger than the insulator area, and the distance is such that the adsorption force of the device area is substantially equal to that of the insulator area. The internal distribution becomes uniform, and the adsorption object is stably held.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an example of a film forming apparatus used in the present invention. FIG. 2 is a plan view showing an example of an object to be adsorbed. FIG. 3 is a sectional view taken along the line ZZ in FIG. The top view for demonstrating the 1st, 2nd electrode of the adsorption | suction apparatus of an example of invention. FIG. 5 The figure corresponded in AA cut-line sectional drawing of FIG. FIG. 7 is a cross-sectional view showing a state where an object to be sucked is placed on the suction device. FIG. 8 is a cross-sectional view for explaining a suction device according to another example of the present invention. Sectional drawing for demonstrating the adsorption apparatus of a prior art [FIG. 10] The graph which shows the relationship between a separation distance and adsorption | suction power
20 …… Adsorption object 10, 50 …… Adsorption device 11, 51 …… Support 12, 52 …… Recess 14, 54 …… Device main body 15a, 15b, 55a, 55b …… First and second electrodes 18 58 …… First plane 19, 59 …… Second plane 29 …… Placement surface

Claims (2)

装置本体を有し、
前記装置本体は支持体と、前記支持体上に配置された第一の電極と、前記第一の電極に隣接して配置された第二の電極とを有し、
前記装置本体の載置面上に絶縁基板を配置して前記第一の電極と前記第二の電極に正電圧と負電圧を印加すると、前記絶縁基板が吸着されるように構成された吸着装置であって、
前記装置本体は、前記第一、第二の電極の上端が第一の平面に位置する凸部と、前記第一、第二の電極の上端が第二の平面に位置する凹部とを有し、
前記第一の平面と前記載置面との距離は、前記第二の平面と前記載置面との距離よりも小さくされ
前記凸部は格子状に配置され、前記凹部は前記凸部の間に行列状に配置された吸着装置。
Having a device body,
The apparatus main body includes a support, a first electrode disposed on the support, and a second electrode disposed adjacent to the first electrode,
An adsorption apparatus configured to adsorb the insulating substrate when an insulating substrate is disposed on the mounting surface of the apparatus body and a positive voltage and a negative voltage are applied to the first electrode and the second electrode. Because
The apparatus main body includes a convex portion in which upper ends of the first and second electrodes are located on a first plane, and a concave portion in which upper ends of the first and second electrodes are located on a second plane. ,
The distance between the first plane and the placement surface is smaller than the distance between the second plane and the placement surface ,
The adsorption device in which the convex portions are arranged in a lattice pattern and the concave portions are arranged in a matrix between the convex portions .
装置本体を有し、
前記装置本体は支持体と、前記支持体上に配置された第一の電極と、前記第一の電極に隣接して配置された第二の電極とを有し、
前記装置本体の載置面上に絶縁基板を配置して前記第一の電極と前記第二の電極に正電圧と負電圧を印加すると、前記絶縁基板が吸着されるように構成された吸着装置であって、
前記装置本体は、前記第一、第二の電極の上端が第一の平面に位置する凸部と、前記第一、第二の電極の上端が第二の平面に位置する凹部とを有し、
前記第一の平面と前記載置面との距離は、前記第二の平面と前記載置面との距離よりも小さくされた吸着装置によって、絶縁物領域と、前記絶縁物領域よりも導体が密集配置されたデバイス領域と、を有する前記絶縁基板を吸着する吸着方法であって、
前記凹部は吸着対象の前記絶縁基板が有するデバイス領域の直下に配置し、
前記凸部は吸着対象の前記絶縁基板が有する絶縁物領域の直下に配置しておく吸着方法。
Having a device body,
The apparatus main body includes a support, a first electrode disposed on the support, and a second electrode disposed adjacent to the first electrode,
An adsorption apparatus configured to adsorb the insulating substrate when an insulating substrate is disposed on the mounting surface of the apparatus body and a positive voltage and a negative voltage are applied to the first electrode and the second electrode. Because
The apparatus main body includes a convex portion in which upper ends of the first and second electrodes are located on a first plane, and a concave portion in which upper ends of the first and second electrodes are located on a second plane. ,
The distance between the first plane and the placement surface is such that the conductor is more than the insulator region and the insulator region by a suction device that is smaller than the distance between the second plane and the placement surface. A method of adsorbing the insulating substrate having densely arranged device regions,
The concave portion is disposed immediately below a device region of the insulating substrate to be attracted,
The said convex part is the adsorption | suction method arrange | positioned directly under the insulator area | region which the said insulated substrate of adsorption | suction object has.
JP2002309646A 2002-10-24 2002-10-24 Adsorption device and adsorption method Expired - Lifetime JP4101017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309646A JP4101017B2 (en) 2002-10-24 2002-10-24 Adsorption device and adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309646A JP4101017B2 (en) 2002-10-24 2002-10-24 Adsorption device and adsorption method

Publications (2)

Publication Number Publication Date
JP2004146585A JP2004146585A (en) 2004-05-20
JP4101017B2 true JP4101017B2 (en) 2008-06-11

Family

ID=32455394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309646A Expired - Lifetime JP4101017B2 (en) 2002-10-24 2002-10-24 Adsorption device and adsorption method

Country Status (1)

Country Link
JP (1) JP4101017B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940511B2 (en) * 2007-09-21 2011-05-10 Asml Netherlands B.V. Electrostatic clamp, lithographic apparatus and method of manufacturing an electrostatic clamp
EP3707747A4 (en) 2017-11-10 2021-07-28 Applied Materials, Inc. Patterned chuck for double-sided processing

Also Published As

Publication number Publication date
JP2004146585A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4030350B2 (en) Split electrostatic chuck
TWI314759B (en) Rf grounding of cathode in process chamber
TWI669772B (en) Transparent electrostatic carrier
WO2000072376A1 (en) Electrostatic chuck and treating device
JP4339306B2 (en) Adsorption method
JP2002520877A5 (en)
KR102110749B1 (en) Apparatus for holding a substrate in a vacuum deposition process, a system for depositing a layer on a substrate, and a method for holding a substrate
JP2521471B2 (en) Electrostatic suction device
JP4774025B2 (en) Adsorption device, transfer device
JP4101017B2 (en) Adsorption device and adsorption method
JP4030361B2 (en) Electrostatic adsorption method
KR102104471B1 (en) Thin film transistor, gate drive on array and display apparatus having the same, and fabricating method thereof
JP2002345273A (en) Electrostatic chuck
KR100830237B1 (en) A structure for susceptor in large area substrate processing system
JP4024613B2 (en) Adsorption device, vacuum processing device and adsorption method
JP4676098B2 (en) Adsorption device
WO2003032402A1 (en) Mems hybrid structure having flipped silicon with external standoffs
JP2003133400A (en) Attraction apparatus, vacuum processing apparatus, and method for manufacturing the suction apparatus
TWI700774B (en) Vacuum apparatus, vacuum-suction device and conductive thin film manufacturing method
JP4342691B2 (en) Electrostatic adsorption device and vacuum processing device
JP2006054445A (en) Attracting device
JP4166379B2 (en) Substrate transfer device
JP2004047912A (en) Sucking device and vacuum processing device
JP2002339061A (en) Thin film depositing method
JPH11233600A (en) Electrostatic attractor and vacuum processor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080220

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250