JP4100793B2 - Battery charger - Google Patents

Battery charger Download PDF

Info

Publication number
JP4100793B2
JP4100793B2 JP37713298A JP37713298A JP4100793B2 JP 4100793 B2 JP4100793 B2 JP 4100793B2 JP 37713298 A JP37713298 A JP 37713298A JP 37713298 A JP37713298 A JP 37713298A JP 4100793 B2 JP4100793 B2 JP 4100793B2
Authority
JP
Japan
Prior art keywords
battery
generator
circuit
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37713298A
Other languages
Japanese (ja)
Other versions
JP2000201439A (en
Inventor
正美 河辺
光司 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP37713298A priority Critical patent/JP4100793B2/en
Publication of JP2000201439A publication Critical patent/JP2000201439A/en
Application granted granted Critical
Publication of JP4100793B2 publication Critical patent/JP4100793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
単相又は三相の磁石式発電機により、スイッチング素子介してバッテリに充電する装置のエンジン状態の変化によって充電状態を可変する充電装置に関するものである。
【0002】
【従来技術】
従来のバッテリ充電装置はバッテリの状態により一定の充電制御を行い、エンジンが加速時等の負荷状態においても同じ制御している。このため、発電機の負荷容量がますます大きくなってきている今日では、エンジンの加速性能を低下させる原因になっている。
【0003】
【発明が解決しようとする課題】
エンジンが加速時等のエンジン負荷状態を検出し、それに応じてバッテリ充電制御の状態を変える事により、充電負荷をなくし、エンジンの加速性能を向上させることを目的としている。
【0004】
【課題を解決するための手段】
上記課題を解決するため請求項1の発明は、磁石式交流発電機と、該交流発電機の出力巻線間に接続された充電回路と、該充電回路に接続されたバッテリ(又はコンデンサ)を有するバッテリ充電装置において、該充電回路は、該交流発電機の正波形出力端及び負波形出力端と該バッテリの正極間に夫々接続された第1のスイッチ及び第2のスイッチと、該第1のスイッチ及び第2のスイッチを制御する制御回路と、該バッテリの電圧を検出する検出回路を備え、該制御回路は、該検出回路の検出信号と該交流発電機の正波形出力又は負波形出力との同期信号により該第1のスイッチ及び第2のスイッチを制御すると共に該検出回路は、バッテリ電圧検出回路部と基準電圧設定回路部及び外部検出信号により該基準電圧設定回路部の基準電圧を可変する可変回路部を備えたことを特徴とする。
【0005】
又、請求項2の発明は、基準電圧設定部に直列に第3のスイッチを設け、該第3のスイッチを該交流発電機の出力により動作せしめ、該交流発電機の運転時のみ該基準電圧設定回路部を機能せしめるようにしたことを特徴とする。
【0006】
【発明の実施の形態】
本発明の実施例を図1に示す。1は単相磁石式発電機、2は12V用バッテリイは単相磁石式発電機の充電巻線間に接続された充電する回路、ロは単相磁石式発電機の充電巻線の正波形出力または負波形出力をバッテリに充電する場合に充電回路イを通してループを形成するための回路、ハはバッテリ2の電圧を検出する回路、ニは上記ハの回路が発電機1の出力が発生している時のみ回路ハにバッテリ電圧を検出させるための回路、ホはバッテリ2の電圧が規定値より低い場合にスイッチS1,S2(サイリスタ)に点弧信号を出力する回路、ヘは外部信号によってハのバッテリ電圧検出レベルを可変する回路である。
【0007】
次にこの回路動作について図2の各動作波形図を参照して説明する。先ず、
バッテリ2が満充電でない時で、外部検出端子Tに信号が印可されない時は、発電機1の出力(図2a)が発生している時にトランジスタQ4がONし、トランジスタQ5が動作することで、回路ハにバッテリ電圧を印可する。これより、バッテリの電圧を検出する回路ハはバッテリ電圧が規定値以下のため、トランジスタQ3が動作せず、トランジスタQ1がON状態になる。したがって、発電機の正波形出力が発生するとトランジスタQ2は動作してサイリスタS1を点弧させ、バッテリ2に充電される。また、発電機の負波形出力のタイミングにも同様にサイリスタS2を点弧させ、バッテリ2に充電される。(図2b)
【0008】
次に、バッテリ2が満充電で、外部検出信号Tに信号が印可されない時は、発電機1の出力が発生している時にトランジスタQ4がONし、トランジスタQ5が動作することで、回路ハにバッテリ電圧を印可する。これにより、バッテリの電圧を検出する回路ハはバッテリ電圧が規定値以上のため、トランジスタQ3が動作し、トランジスタQ1がOFF状態になる。したがって、発電機1の正波形出力が発生するとトランジスタQ2は動作せず、サイリスタS1を点弧させないのでバッテリ2に充電されない。
発電機の負波形出力のタイミングにも同様にサイリスタS2を点弧させないので、バッテリ2に充電されない。(図2c)
【0009】
次に、バッテリ2が満充電でなく、外部検出端子Tに信号が印可された時は、発電機1の出力が発生している時にトランジスタQ4がONし、トランジスタQ5が動作することで、回路ハにバッテリ電圧を印可する。更に、外部検出端子Tに信号が印可されたると、トランジスタQ6がONし、トランジスタQ7が動作するのでバッテリの電圧を検出する回路ハのツェナーダイオードZ1の電圧分バッテリの電圧を検出するレベルが下がるのでバッテリの電圧を規定値以上と判断し、トランジスタQ3が動作し、トランジスタQ1がOFF状態となる。したがって、発電機の正波形出力が発生するとトランジスタQ2は動作せず、サイリスタS1を点弧させないのでバッテリ2に充電されない。また、発電機の負波形出力のタイミングにも同様にサイリスタS2を点弧させないので、バッテリ2は充電されない。
【0010】
次に、外部検出端子Tに信号が印可されなくなると、トランジスタQ6がONせず、トランジスタQ7が動作しないのでバッテリの電圧を検出する回路ハのツェナーダイオードZ1の両端間の電圧はコンデンサC1は抵抗R1,R2で決められる充電時定数でバッテリの電圧を検出するレベルがあがるのでバッテリの電圧を徐々に規定値以上と判断し、トランジスタQ3が動作し、トランジスタQ1がOFF状態が徐々に変化する。したがって、発電機の正波形出力が発生するとトランジスタQ2はコンデンサC1充電電圧により、動作状態が変化し、サイリスタS1を点弧タイミングが変化してバッテリ2に充電される。また、発電機の負波形出力のタイミングにも同様である。図2d)
【0011】
以上のことから、外部信号により、バッテリ充電制御の状態を徐々に変える事ができる。
次に、エンジンの負荷状態を検出する外部制御信号としてスロットルセンサーから検出するブロック図を図3に示す。SLはスロットルセンサー、Bはバッファ、VDは電圧変化量を検出する回路である。このような構成により、操縦者がエンジンを加速しようとスロットルセンサーを動かし、変化させると(図4−a)に示すようにスロットル値は時間と伴に電圧が上昇し、一定になる。このA〜Bのタイミングの信号(図4−b)を図1の外部検出端子Tの信号として入力するとバッテリ2が満充電でない場合でもコンデンサC1の充電時間(図2−d)の(t0+t)バッテリ充電状態を停止及び一定時間充電電圧値を可変できる。このことにより、エンジンが加速等の状態で発電機負荷を低減し、徐々に元の状態に戻す事でエンジンの加速性能を向上する事ができる。
【0012】
次に、外部制御信号として発電機の出力波形回転数の変化量を検出するブロック図を(図5)に示す。Fは発電機の1相分の出力波形整形回路、COVはF/Vコンバータ、VDは電圧変化量を検出する回路である。このような構成により、操縦者がエンジンを加速しようとする発電機の出力波形の周波数が高くなる。それに伴いF/Vコンバータ値は、(図6−a)に示すように時間と伴に電圧が上昇し、一定になる。このA〜Bのタイミングの信号(図6−b)を図1の外部検出端子Tの信号として入力するとバッテリ2が満充電でない場合でもコンデンサC1の充電時間(図2−d)の(t0+t)バッテリ充電状態を停止及び一定時間充電電圧値を可変できる。
このことにより、エンジンが加速等の状態で発電機負荷を低減し、徐々に元の状態に戻す事でエンジンの加速性能を向上する事ができる。
【0013】
次に外部検出端子の信号としてエンジン回転数を検出する機能及びスロットル検出をする機能を有する点火機能(図7)を用いて点火機能回路から出力される信号に沿って、外部検出端子の信号として入力する更に詳細の制御ができる。
このことにより、エンジンが加速等の状態で発電機負荷を低減し、徐々に元の状態に戻す事でエンジンの加速性能をより向上する事ができる。
【0014】
図8は本発明の他の実施例を示す回路図で、上記実施例(図1)と相違する点は、バッテリオープン時にサージ電圧を吸収して出力電圧を一定以下に制限する電圧検出回路トを追加した事及びバッテリ電圧検出回路に直列にスイッチQ4(MOSFET)を接続した所である。即ち、エンジンが回転すると発電機から出力されるとD1,D2→R8→D5を通してトランジスタQ4をONし、そのことにより、トランジスタQ5が動作されるのでバッテリ電圧制御が可能となる。その後の動作は実施例1と同じなので省略する。
【0015】
以上の説明は単相磁石式発電機に適用した例について説明したが三相発電機にも同様に適用できる。図9にこの例を示す。
【0016】
【発明の効果】
本発明の構成をすることにより、エンジンの加速時等のエンジン負荷状態を検出する外部検出端子の信号として、エンジンの回転数変化、スロットル変化、点火装置等の外部ユニットより、信号を得る事によりエンジンが加速等の状態で発電機の負荷を低減し、徐々に元の状態に戻す事でエンジンの加速性能をより向上する事ができる。これをエンジンの出力が小さい二輪車のバッテリ充電装置に応用できる。
【図面の簡単な説明】
【図1】本発明の一実施例回路図
【図2】本発明実施例の各部動作波形図
【図3】本発明に適用するスロットル変化量検出回路
【図4】図3の説明図
【図5】本発明に適用する回転数変化量検出回路
【図6】図5の説明図
【図7】本発明に適用する点火装置の回路例
【図8】本発明の他の実施例回路図
【図9】本発明の他の実施例回路図
【符号の説明】
1 交流発電機
2 バッテリ
イ 充電回路
ロ 充電ループ回路
ハ バッテリ電圧検出回路
ニ バッテリ電圧検出回路の駆動回路
ホ 点弧信号回路
ヘ 基準レベル可変回路
ト バッテリオープン保護回路
S1,S2 スイッチ(サイリスタ)
Q4 スイッチ(MOSトランジスタ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging device in which a charging state is changed by a change in an engine state of a device that charges a battery via a switching element by a single-phase or three-phase magnet generator.
[0002]
[Prior art]
The conventional battery charger performs a constant charge control according to the state of the battery, and performs the same control even when the engine is in a load state such as during acceleration. For this reason, today, when the load capacity of the generator is becoming larger and larger, it causes the acceleration performance of the engine to deteriorate.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to eliminate the charging load and improve the acceleration performance of the engine by detecting the engine load state during acceleration of the engine and changing the state of the battery charge control accordingly.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 includes a magnet type AC generator, a charging circuit connected between output windings of the AC generator, and a battery (or capacitor) connected to the charging circuit. In the battery charging device, the charging circuit includes a first switch and a second switch connected between a positive waveform output terminal and a negative waveform output terminal of the AC generator and a positive electrode of the battery, respectively. A control circuit for controlling the switch and the second switch, and a detection circuit for detecting the voltage of the battery, the control circuit comprising a detection signal of the detection circuit and a positive waveform output or a negative waveform output of the AC generator And the control circuit controls the first switch and the second switch, and the detection circuit includes a battery voltage detection circuit unit, a reference voltage setting circuit unit, and a reference voltage of the reference voltage setting circuit unit by an external detection signal. Characterized by comprising a variable circuit for varying.
[0005]
According to a second aspect of the present invention, a third switch is provided in series with the reference voltage setting unit, the third switch is operated by the output of the AC generator, and the reference voltage is operated only when the AC generator is in operation. The setting circuit unit is made to function.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. 1 is a single-phase magnet generator, 2 is a battery for 12V, a charging circuit connected between the charging windings of the single-phase magnet generator, and B is a positive waveform output of the charging winding of the single-phase magnet generator Alternatively, when charging the negative waveform output to the battery, a circuit for forming a loop through the charging circuit A, C is a circuit for detecting the voltage of the battery 2, and D is a circuit for generating the output of the generator 1 A circuit for causing the circuit C to detect the battery voltage only when the battery is on, a circuit for outputting an ignition signal to the switches S1 and S2 (thyristors) when the voltage of the battery 2 is lower than a specified value, and This is a circuit for varying the battery voltage detection level.
[0007]
Next, this circuit operation will be described with reference to each operation waveform diagram of FIG. First,
When the signal is not applied to the external detection terminal T when the battery 2 is not fully charged, the transistor Q4 is turned on when the output of the generator 1 (FIG. 2a) is generated, and the transistor Q5 is operated. Apply battery voltage to circuit c. Thus, in the circuit C for detecting the battery voltage, the battery voltage is equal to or lower than the specified value, so that the transistor Q3 does not operate and the transistor Q1 is turned on. Therefore, when a positive waveform output of the generator is generated, the transistor Q2 operates to ignite the thyristor S1, and the battery 2 is charged. Similarly, the thyristor S2 is fired at the negative waveform output timing of the generator, and the battery 2 is charged. (Fig. 2b)
[0008]
Next, when the battery 2 is fully charged and no signal is applied to the external detection signal T, when the output of the generator 1 is generated, the transistor Q4 is turned on, and the transistor Q5 is operated. Apply battery voltage. Thereby, in the circuit C for detecting the voltage of the battery, since the battery voltage is equal to or higher than the specified value, the transistor Q3 operates and the transistor Q1 is turned off. Therefore, when the positive waveform output of the generator 1 is generated, the transistor Q2 does not operate and the thyristor S1 is not ignited, so that the battery 2 is not charged.
Similarly, the thyristor S2 is not ignited at the negative waveform output timing of the generator, so that the battery 2 is not charged. (Fig. 2c)
[0009]
Next, when the battery 2 is not fully charged and a signal is applied to the external detection terminal T, the transistor Q4 is turned on when the output of the generator 1 is generated, and the transistor Q5 is operated. Apply battery voltage to C. Further, when a signal is applied to the external detection terminal T, the transistor Q6 is turned on and the transistor Q7 is operated. Therefore, the level for detecting the battery voltage is reduced by the voltage of the Zener diode Z1 of the circuit C for detecting the battery voltage. The battery voltage is determined to be equal to or higher than the specified value, the transistor Q3 operates, and the transistor Q1 is turned off. Therefore, when the positive waveform output of the generator is generated, the transistor Q2 does not operate and the thyristor S1 is not ignited, so that the battery 2 is not charged. Similarly, the thyristor S2 is not fired at the negative waveform output timing of the generator, so the battery 2 is not charged.
[0010]
Next, when no signal is applied to the external detection terminal T, the transistor Q6 does not turn on and the transistor Q7 does not operate, so the voltage across the zener diode Z1 of the circuit C that detects the battery voltage is the resistance of the capacitor C1. Since the level at which the battery voltage is detected rises with the charging time constant determined by R1 and R2, the battery voltage is gradually determined to be greater than or equal to the specified value, the transistor Q3 operates, and the transistor Q1 gradually changes to the OFF state. Therefore, when a positive waveform output of the generator is generated, the transistor Q2 is changed in operating state by the charging voltage of the capacitor C1, and the ignition timing of the thyristor S1 is changed and the battery 2 is charged. The same applies to the negative waveform output timing of the generator. (Fig. 2d)
[0011]
From the above, the state of battery charging control can be gradually changed by an external signal.
Next, FIG. 3 shows a block diagram of detection from the throttle sensor as an external control signal for detecting the load state of the engine. SL is a throttle sensor, B is a buffer, and VD is a circuit for detecting a voltage change amount. With such a configuration, when the driver moves and changes the throttle sensor to accelerate the engine, the throttle value becomes constant with increasing voltage as shown in FIG. When the signals at timings A to B (FIG. 4-b) are input as signals from the external detection terminal T in FIG. 1, even when the battery 2 is not fully charged, (t0 + t) of the charging time of the capacitor C1 (FIG. 2-d) The battery charging state can be stopped and the charging voltage value can be varied for a certain time. This can improve the acceleration performance of the engine by reducing the generator load while the engine is accelerating or the like and gradually returning it to the original state.
[0012]
Next, a block diagram for detecting the amount of change in the output waveform rotational speed of the generator as an external control signal is shown in FIG. F is an output waveform shaping circuit for one phase of the generator, COV is an F / V converter, and VD is a circuit for detecting a voltage change amount. With such a configuration, the frequency of the output waveform of the generator that the driver tries to accelerate the engine increases. Accordingly, the F / V converter value becomes constant as the voltage increases with time as shown in FIG. When the timing signals A to B (FIG. 6B) are input as signals from the external detection terminal T in FIG. 1, even when the battery 2 is not fully charged, (t0 + t) of the charging time of the capacitor C1 (FIG. 2-d) The battery charging state can be stopped and the charging voltage value can be varied for a certain time.
This can improve the acceleration performance of the engine by reducing the generator load while the engine is accelerating or the like and gradually returning it to the original state.
[0013]
Next, as a signal of the external detection terminal, a signal output from the ignition function circuit using an ignition function (FIG. 7) having a function of detecting the engine speed and a function of detecting the throttle as a signal of the external detection terminal. More detailed control of input is possible.
As a result, it is possible to further improve the acceleration performance of the engine by reducing the generator load while the engine is accelerating and gradually returning it to the original state.
[0014]
FIG. 8 is a circuit diagram showing another embodiment of the present invention. The difference from the above embodiment (FIG. 1) is that a voltage detection circuit that absorbs a surge voltage and limits the output voltage to a certain level or less when the battery is open. And a switch Q4 (MOSFET) connected in series with the battery voltage detection circuit. That is, when the engine is rotated and output from the generator, the transistor Q4 is turned on through D1, D2->R8-> D5, whereby the transistor Q5 is operated, so that the battery voltage can be controlled. Since the subsequent operation is the same as that of the first embodiment, the description thereof is omitted.
[0015]
Although the above description has been given of an example applied to a single-phase magnet generator, it can be applied to a three-phase generator as well. FIG. 9 shows this example.
[0016]
【The invention's effect】
By using the configuration of the present invention, a signal from an external detection terminal for detecting an engine load state such as when the engine is accelerated is obtained from an external unit such as engine speed change, throttle change, or ignition device. The acceleration performance of the engine can be further improved by reducing the load on the generator while the engine is accelerating and gradually returning it to the original state. This can be applied to a battery charger for a motorcycle with a small engine output.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an embodiment of the present invention. FIG. 2 is an operation waveform diagram of each part of the embodiment of the present invention. FIG. 3 is a throttle change detection circuit applied to the present invention. 5] Rotational speed change detection circuit applied to the present invention [FIG. 6] Explanatory diagram of FIG. 5 [FIG. 7] Circuit example of an ignition device applied to the present invention [FIG. FIG. 9 is a circuit diagram of another embodiment of the present invention.
1 AC generator 2 Battery A Charging circuit B Charging loop circuit C Battery voltage detection circuit D Battery voltage detection circuit drive circuit E Fire signal circuit Reference level variable circuit Battery open protection circuit S1, S2 Switch (thyristor)
Q4 switch (MOS transistor)

Claims (3)

磁石式交流発電機(1)と、該交流発電機の出力巻線間に接続された充電回路(イ)と、該充電回路に接続されたバッテリ(又はコンデンサ)(2)を有するバッテリ充電装置において、該充電回路は、該交流発電機の正波形出力端及び負波形出力端と該バッテリの正極間に夫々接続された第1のスイッチ(S1)及び第2のスイッチ(S2)と、該第1のスイッチ及び第2のスイッチを制御する制御回路(ホ)と、該バッテリの電圧を検出する検出回路とを備え、該制御回路は、該検出回路の検出信号と該交流発電機の正波形出力又は負波形出力との同期信号により該第1のスイッチ及び第2のスイッチを制御するよう構成し、該検出回路は、バッテリ電圧を検出して基準電圧を設定するバッテリ電圧検出回路部(ハ)、及び、外部検出信号により該バッテリ電圧検出回路部の基準電圧を連続的に可変する可変回路部(ヘ)を備えたことを特徴とするバッテリ充電装置。A battery charger having a magnet type AC generator (1), a charging circuit (A) connected between output windings of the AC generator, and a battery (or capacitor) (2) connected to the charging circuit The charging circuit includes a first switch (S1) and a second switch (S2) connected between the positive waveform output terminal and the negative waveform output terminal of the AC generator and the positive electrode of the battery, respectively, A control circuit (e) for controlling the first switch and the second switch, and a detection circuit for detecting the voltage of the battery, the control circuit comprising a detection signal of the detection circuit and a positive signal of the AC generator; configured to control the first switch and the second switch by the synchronization signal with the waveform output or negative waveform output, detection circuitry, a battery voltage detection circuit unit for setting a reference voltage to detect a battery voltage ( C) and external detection signal Battery charging apparatus characterized by comprising variable circuit unit for continuously varying the reference voltage of the battery voltage detecting circuit unit (f) by. 該バッテリ電圧検出回路部に直列に第3のスイッチを設け、該第3のスイッチを該交流発電機の出力により動作せしめ、該交流発電機の運転時のみ該バッテリ電圧検出回路部を機能せしめるようにしたことを特徴とする請求項1のバッテリ充電装置。 A third switch is provided in series with the battery voltage detection circuit unit , the third switch is operated by the output of the AC generator, and the battery voltage detection circuit unit is allowed to function only during operation of the AC generator. The battery charger according to claim 1, wherein 外部検出信号として該交流発電機の回転数検出信号もしくはスロットル変化量検出信号を用いたことを特徴とする請求項1又は請求項2のバッテリ充電装置。 The external detection signal as the AC generator speed detection signal or throttle change amount detection signal battery charging apparatus according to claim 1 or claim 2 characterized by using a.
JP37713298A 1998-12-28 1998-12-28 Battery charger Expired - Lifetime JP4100793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37713298A JP4100793B2 (en) 1998-12-28 1998-12-28 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37713298A JP4100793B2 (en) 1998-12-28 1998-12-28 Battery charger

Publications (2)

Publication Number Publication Date
JP2000201439A JP2000201439A (en) 2000-07-18
JP4100793B2 true JP4100793B2 (en) 2008-06-11

Family

ID=18508303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37713298A Expired - Lifetime JP4100793B2 (en) 1998-12-28 1998-12-28 Battery charger

Country Status (1)

Country Link
JP (1) JP4100793B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415930B2 (en) 2009-05-13 2013-04-09 Mitsubishi Electric Corporation Power supply device
US8421422B2 (en) 2009-10-29 2013-04-16 Mitsubishi Eletric Corporation Power supply device
US9054554B2 (en) 2011-09-06 2015-06-09 Mitsubishi Electric Corporation Power source system controlling a plurality of generators
RU2582648C2 (en) * 2015-04-20 2016-04-27 Александр Абрамович Часовской Electromechanical control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065566A1 (en) * 2002-01-30 2003-08-07 Yamaha Hatsudoki Kabushiki Kaisha Power generation control device
JP2008184917A (en) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp Control device for vehicle and control method for vehicle
JP6036323B2 (en) * 2013-01-21 2016-11-30 スズキ株式会社 Battery charge control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415930B2 (en) 2009-05-13 2013-04-09 Mitsubishi Electric Corporation Power supply device
US8421422B2 (en) 2009-10-29 2013-04-16 Mitsubishi Eletric Corporation Power supply device
US9054554B2 (en) 2011-09-06 2015-06-09 Mitsubishi Electric Corporation Power source system controlling a plurality of generators
RU2582648C2 (en) * 2015-04-20 2016-04-27 Александр Абрамович Часовской Electromechanical control device

Also Published As

Publication number Publication date
JP2000201439A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JP4100793B2 (en) Battery charger
JPH0745865B2 (en) Ignition device for internal combustion engine
JPS5840029B2 (en) Musetsutentenkasouchi
JPH0663499B2 (en) Capacitor charge / discharge ignition device
JPS5849707B2 (en) Ignition system for internal combustion engines
JPS5934869B2 (en) Ignition system for internal combustion engines
JP3147655B2 (en) Engine damper
JP3344876B2 (en) Capacitor charge / discharge igniter
JP3302438B2 (en) Rotation speed detection device, overspeed prevention device and ignition device
JPH0295773A (en) Ignition timing controller
US4976240A (en) Engine ignition system
JP3447445B2 (en) Capacitor charge / discharge igniter
RU2041383C1 (en) Device for controlling instance of ignition
JPH01138370A (en) Ignition controller for internal combustion engine
JP3178361B2 (en) Capacitor discharge type ignition device for internal combustion engine
JP2024047759A (en) Secondary battery charge control device and secondary battery charge control method
JPH0238069Y2 (en)
JPS6016785Y2 (en) engine ignition system
JPS5836856Y2 (en) Internal combustion engine ignition system
JP2848472B2 (en) Ignition device for internal combustion engine
JP2639216B2 (en) Ignition device for internal combustion engine
JPS5824628B2 (en) engine ignition system
JP2900644B2 (en) Ignition device for internal combustion engine
JPS5938433B2 (en) engine ignition system
JPH045737Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

EXPY Cancellation because of completion of term