JP4099837B2 - Low temperature fired ceramic multilayer substrate manufacturing method - Google Patents

Low temperature fired ceramic multilayer substrate manufacturing method Download PDF

Info

Publication number
JP4099837B2
JP4099837B2 JP23094397A JP23094397A JP4099837B2 JP 4099837 B2 JP4099837 B2 JP 4099837B2 JP 23094397 A JP23094397 A JP 23094397A JP 23094397 A JP23094397 A JP 23094397A JP 4099837 B2 JP4099837 B2 JP 4099837B2
Authority
JP
Japan
Prior art keywords
low
fired ceramic
silicide
conductor
temperature fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23094397A
Other languages
Japanese (ja)
Other versions
JPH1166951A (en
Inventor
悟 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP23094397A priority Critical patent/JP4099837B2/en
Publication of JPH1166951A publication Critical patent/JPH1166951A/en
Application granted granted Critical
Publication of JP4099837B2 publication Critical patent/JP4099837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ag系の金属粉末を含む低温焼成セラミック用導体ペーストを用いて低温焼成セラミック多層基板を製造する低温焼成セラミック多層基板の製造方法に関するものである。
【0002】
【従来の技術】
従来より、1000℃以下で焼成する低温焼成セラミック基板では、同時焼成用の導体として、Ag、Au、Ag−Pd、Ag−Pt、Cu等の低融点金属が用いられている。これらの金属のうち、Auは高価であるため、コスト面から使用範囲が制限され、Ag−Pd、Ag−Ptは、合金化により抵抗値が大幅に増加する欠点がある。また、Cuは、空気中(酸化性雰囲気中)で焼成すると酸化するため、還元性雰囲気(N2 )中で同時焼成しなければならず、焼成コストが高くつくという欠点がある。この点、Agは、空気中で焼成できると共に、Ag−Pd、Ag−Ptと比較して抵抗値が小く、しかも、Auより安価であり、コスト面でも有利である。
【0003】
【発明が解決しようとする課題】
しかし、Agは、上記した低融点金属の中で最も融点が低い(960.7℃)ため、850℃以上で焼成する低温焼成セラミックと同時焼成すると、Agが焼結過剰となり、焼成収縮が大きくなる。このため、低温焼成セラミック基板の同時焼成用の導体ペーストとして、Agペーストを用いて同時焼成すると、図1(b)に示すように、ビアホール11内に充填したAgのビア導体12,13が過剰に焼成収縮して、内層のビア導体12の層間接続部に空隙14が発生してビア導体12の接続信頼性が低下する原因となったり、或は、基板表層のビア導体13の真上に形成したパッド15に凹みが発生して、該パッド15に接合する半導体チップの接合信頼性が低下する原因となっていた。
【0004】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、Ag系の導体ペーストでありながら、焼成収縮量を小さくできる低温焼成セラミック用導体ペーストを提供することであり、更には、低温焼成セラミックと同時焼成する導体の信頼性を向上することができる低温焼成セラミック多層基板の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の低温焼成セラミック多層基板の製造方法において用いられる低温焼成セラミック用導体ペーストは、導体としてAg系の金属粉末を含み、且つ、焼結抑制材として酸化開始温度が300℃以上のケイ化物の粉末を含んでいる。このように、酸化開始温度が300℃以上のケイ化物の粉末をAg系導体ペーストに配合することで、同時焼成時の低温焼成セラミックの焼結速度に合わせてAg系導体ペーストの焼結速度を遅くすることができ、Ag系導体の過剰な焼結を防ぐことができる。
【0006】
この場合、Ag系の金属粉末とケイ化物との配合比は、Ag系の金属粉末が50〜99.5重量%、ケイ化物が0.5〜50重量%とすることが好ましい(請求項2)。この配合比であれば、Ag系導体としての低抵抗特性とケイ化物による焼結抑制効果とを両立できる。
【0007】
そして、本発明の低温焼成セラミック多層基板の製造方法のように、上述のケイ化物を含む導体ペーストを複数枚の低温焼成セラミックのグリーンシートに印刷し、これらを積層して同時焼成することにより、導体とセラミックとの焼成収縮量の差が少ない良質の低温焼成セラミック多層基板を製造することができる。
【0008】
また、請求項3のように、低温焼成セラミックのグリーンシートに形成されたビアホールに、上述のケイ化物を含む導体ペーストを印刷により充填してビア導体を形成した後、該ビア導体上に、ケイ化物を含まない導体ペーストを印刷してパッドを形成し、該グリーンシートを最上層にして他の印刷済みのグリーンシートと積層して同時焼成し、低温焼成セラミック多層基板を製造するようにしても良い。このようにすれば、ビア導体の過剰な焼結を防ぐことができ、ビア導体に焼結過剰による空隙や凹みが発生することを防ぐことができる。しかも、パッドはケイ化物を含まない導体で形成されるため、ケイ化物による抵抗値の増加を抑えることができる。
【0009】
【発明の実施の形態】
図1(a)に示す本発明の一実施形態では、低温焼成セラミックのグリーンシート21のセラミック材料として、CaO−SiO2−Al23−B23系ガラス50〜65重量%とアルミナ35〜50重量%との混合物を用いる。この他、MgO−SiO2−Al23−B23系ガラスとアルミナ粉末との混合物や、SiO2−B23系ガラスとアルミナとの混合物、PbO−SiO2−B23系ガラスとアルミナとの混合物、コージェライト系結晶化ガラス等、800〜1000℃で焼成できる低温焼成セラミック材料を用いても良い。このグリーンシート21には、パンチングマシーンや打ち抜き型等によって直径50〜1000μmのビアホール22を打ち抜き形成する。
【0010】
このビアホール22に充填する導体ペーストは、導体としてAg粉末を含み、且つ、焼結抑制材として、酸化開始温度が300℃以上のケイ化物粉末を含む。酸化開始温度が300℃以上のケイ化物としては、図2に示すようにCrSi2、TaSi2、ZrSi2、WSi2、NbSi2、TiSi2、MoSi2等があり、これらの中から1種又は複数種のケイ化物を選択して導体ペーストに配合すれば良い。ここで、Ag粉末とケイ化物粉末との配合比は、Ag粉末が50〜99.5重量%、ケイ化物が0.5〜50重量%とすることが好ましい。尚、導体ペーストには、Ag粉末、ケイ化物の他に、バインダ樹脂と有機溶剤が配合されている。
【0011】
このケイ化物入りの導体ペーストを各層のグリーンシート21のビアホール22にスクリーン印刷して充填してビア導体23を形成する。更に、内層のグリーンシート21の表面に、ケイ化物を含まない低温焼成セラミック用導体ペーストを用いて内層配線パターン24をスクリーン印刷すると共に、最上層のグリーンシート21のビア導体23上に、必要に応じて、ケイ化物を含まない低温焼成セラミック用導体ペーストを印刷してパッド25を形成しても良い。この際、ケイ化物を含まない低温焼成セラミック用導体ペーストとしては、Agペースト、Ag−Pdペースト、Ag−Ptペースト等を用いれば良い。
【0012】
印刷工程終了後、各層のグリーンシート21を積層して圧着し、これを空気中で800〜1000℃で焼成する。最後に、パッド25の表面にNi/Auめっきを施す。
【0013】
以上説明したように、ビアホール22に充填するAg系の導体ペーストにケイ化物を配合することで、同時焼成時の低温焼成セラミックの焼結速度に合わせてAg系のビア導体23の焼結速度を遅くすることができ、ビア導体23の過剰な焼結を防ぐことができて、ビア導体23の焼成収縮量を低温焼成セラミックの焼成収縮量に近付けることができる。これにより、ビア導体23の層間接続部に焼結過剰による空隙が発生することを防ぐことができ、ビア導体23の接続信頼性を向上できると共に、ビア導体23上のパッド25に凹みが発生することを防止できて、該パッド25に接合する半導体チップの接合信頼性を向上できる。
【0014】
ところで、導体ペーストにケイ化物を配合すると、ケイ化物を含まないものより抵抗値が大きくなるが、ケイ化物の配合量が50重量%以下であれば、抵抗値が許容範囲に収まる。また、ケイ化物の配合量が少なくなるに従って、焼結抑制効果が低下するが、ケイ化物の配合量が0.5重量%以上であれば、ある程度の焼結抑制効果が得られる。従って、Ag粉末とケイ化物との配合比は、Ag粉末:50〜99.5重量%、ケイ化物:0.5〜50重量%とすれば、Agペーストとしての低抵抗特性とケイ化物による焼結抑制効果とを両立できる。
【0015】
更に、上記実施形態では、焼結過剰が問題となるビア導体23のみをケイ化物入りのAgペーストで形成し、焼結過剰がさほど問題とならないパッド25や内層配線パターン24は、ケイ化物を含まない導体ペーストで形成するようにしたので、ケイ化物による抵抗値の増加を最小限に抑えながら、焼結過剰によるパッド25の凹み等の問題を解消でき、品質の良い低温焼成セラミック多層基板を製造することができる。
【0016】
但し、本発明は、パッド25や内層配線パターン24についても、ケイ化物入りの導体ペーストで形成するようにしても良く、この場合でも、ケイ化物の配合量を少なくすることで、抵抗値を低くすることができる。
【0017】
【発明の効果】
以上の説明から明らかなように、本発明によれば、Ag系の導体ペーストに焼結抑制材として酸化開始温度が300℃以上のケイ化物の粉末を配合したものを用いるようにしているので、Ag系の導体ペーストでありながら、同時焼成時の過剰な焼結を防ぐことができて、導体の焼成収縮量を低温焼成セラミックのそれに近付けることができる(請求項1)。
【0018】
更に、Ag系の金属粉末とケイ化物との配合比を、Ag系の金属粉末:50〜99.5重量%、ケイ化物:0.5〜50重量%とした導体ペーストを用いることにより、Ag系導体としての低抵抗特性を失わずにケイ化物による焼結抑制効果を得ることができる(請求項2)。
【0019】
また、焼結過剰が問題となるビア導体をケイ化物入りの導体ペーストで形成し、パッドはケイ化物を含まない導体ペーストで形成するようにしているので、ケイ化物による抵抗値の増加を抑えながら、十分な焼結抑制効果を得ることができる(請求項3)。
【図面の簡単な説明】
【図1】 (a)は本発明の一実施形態における低温焼成セラミック多層基板の部分拡大縦断面図、(b)は従来の低温焼成セラミック多層基板の部分拡大縦断面図
【図2】
種々のケイ化物粉末の平均粒度と酸化開始温度との関係を示す図
【符号の説明】
21...グリーンシート、22...ビアホール、23...ビア導体、24...内層配線パターン、25...パッド。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a low- temperature fired ceramic multilayer substrate, in which a low- temperature fired ceramic multilayer substrate is produced using a conductor paste for low-temperature fired ceramic containing Ag-based metal powder.
[0002]
[Prior art]
Conventionally, in a low-temperature fired ceramic substrate fired at 1000 ° C. or lower, a low melting point metal such as Ag, Au, Ag—Pd, Ag—Pt, or Cu is used as a conductor for simultaneous firing. Among these metals, Au is expensive, so the range of use is limited from the viewpoint of cost, and Ag—Pd and Ag—Pt have a drawback that the resistance value is greatly increased by alloying. Further, since Cu oxidizes when fired in the air (in an oxidizing atmosphere), it must be fired simultaneously in a reducing atmosphere (N 2 ), resulting in a high firing cost. In this respect, Ag can be baked in air, has a smaller resistance value than Ag—Pd, and Ag—Pt, and is less expensive than Au, which is advantageous in terms of cost.
[0003]
[Problems to be solved by the invention]
However, since Ag has the lowest melting point (960.7 ° C.) among the above-mentioned low melting point metals, when it is simultaneously fired with a low-temperature fired ceramic fired at 850 ° C. or higher, Ag becomes over-sintered and firing shrinkage is large. Become. Therefore, when the Ag paste is used as the conductor paste for simultaneous firing of the low-temperature fired ceramic substrate, the Ag via conductors 12 and 13 filled in the via hole 11 are excessive as shown in FIG. Due to firing shrinkage, and a gap 14 is generated in the interlayer connection portion of the inner via conductor 12 to cause a decrease in connection reliability of the via conductor 12, or directly above the via conductor 13 on the substrate surface layer. A depression is generated in the formed pad 15, causing a reduction in bonding reliability of the semiconductor chip bonded to the pad 15.
[0004]
The present invention has been made in consideration of such circumstances, and the object thereof is to provide a conductor paste for low-temperature fired ceramics that can reduce the amount of firing shrinkage while being an Ag-based conductor paste, Furthermore, it is providing the manufacturing method of the low-temperature baking ceramic multilayer substrate which can improve the reliability of the conductor co-fired with a low-temperature baking ceramic.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the conductor paste for low-temperature fired ceramic used in the method for producing a low-temperature fired ceramic multilayer substrate of the present invention contains an Ag-based metal powder as a conductor, and an oxidation start temperature as a sintering inhibitor. Contains silicide powders of 300 ° C. or higher . Thus, the powder of the oxide starting temperature is 300 ° C. or more silicides by blending the Ag-based conductor paste, the sintering rate of the Ag-based conductor paste in accordance with the sintering rate of the low-temperature fired ceramic during simultaneous firing It is possible to slow down and excessive sintering of the Ag-based conductor can be prevented.
[0006]
In this case, the mixing ratio of the Ag-based metal powder and the silicide is preferably 50 to 99.5% by weight for the Ag-based metal powder and 0.5 to 50% by weight for the silicide. ). If it is this compounding ratio, the low resistance characteristic as an Ag-type conductor and the sintering inhibitory effect by a silicide can be compatible.
[0007]
Then, as in the method for manufacturing a low-temperature fired ceramic multilayer substrate of the present invention, by printing a conductive paste containing a silicide above the plurality of low temperature co-fired ceramic green sheet, by co-firing the stacked them, A good quality low-temperature fired ceramic multilayer substrate with a small difference in firing shrinkage between the conductor and the ceramic can be produced.
[0008]
According to a third aspect of the present invention, via conductors containing the silicide described above are filled into a via hole formed in a green sheet of low-temperature fired ceramic by printing to form a via conductor, and then the via conductor is formed on the via conductor. It is possible to produce a low-temperature fired ceramic multilayer substrate by printing a conductive paste containing no chemical compound to form a pad, laminating the green sheet as the uppermost layer and laminating it with other printed green sheets. good. In this way, excessive sintering of the via conductor can be prevented, and voids and dents due to excessive sintering can be prevented from occurring in the via conductor. Moreover, the pad is to be formed by a conductor containing no silicides, Ru it is possible to suppress an increase in resistance due to silicide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In one embodiment of the present invention shown in FIG. 1 (a), 50 to 65% by weight of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass and alumina are used as the ceramic material for the low-temperature fired ceramic green sheet 21. A mixture of 35-50% by weight is used. In addition, a mixture of MgO—SiO 2 —Al 2 O 3 —B 2 O 3 glass and alumina powder, a mixture of SiO 2 —B 2 O 3 glass and alumina, PbO—SiO 2 —B 2 O A low-temperature fired ceramic material that can be fired at 800 to 1000 ° C., such as a mixture of 3 glass and alumina, cordierite crystallized glass, or the like may be used. A via hole 22 having a diameter of 50 to 1000 μm is punched and formed on the green sheet 21 by a punching machine or a punching die.
[0010]
The conductor paste filled in the via hole 22 includes Ag powder as a conductor, and includes silicide powder having an oxidation start temperature of 300 ° C. or higher as a sintering inhibitor. The oxidation initiation temperature of 300 ° C. or more silicide, there is CrSi 2, TaSi 2, ZrSi 2 , WSi 2, NbSi 2, TiSi 2, MoSi 2 or the like as shown in FIG. 2, one or among these A plurality of types of silicides may be selected and blended into the conductor paste. Here, it is preferable that the compounding ratio of Ag powder and silicide powder is 50 to 99.5% by weight for Ag powder and 0.5 to 50% by weight for silicide. The conductor paste contains a binder resin and an organic solvent in addition to Ag powder and silicide.
[0011]
The conductor paste containing the silicide is screen-printed and filled in the via hole 22 of the green sheet 21 of each layer to form the via conductor 23. Furthermore, the inner layer wiring pattern 24 is screen-printed on the surface of the inner layer green sheet 21 using a low-temperature fired ceramic conductor paste that does not contain silicide, and on the via conductors 23 of the uppermost layer green sheet 21 as necessary. Accordingly, the pad 25 may be formed by printing a low-temperature fired ceramic conductor paste that does not contain silicide. At this time, an Ag paste, an Ag—Pd paste, an Ag—Pt paste, or the like may be used as the low-temperature fired ceramic conductor paste that does not contain silicide.
[0012]
After completion of the printing process, the green sheets 21 of each layer are stacked and pressure-bonded, and this is fired at 800 to 1000 ° C. in the air. Finally, Ni / Au plating is applied to the surface of the pad 25.
[0013]
As described above, by mixing the silicide into the Ag-based conductor paste filled in the via hole 22, the sintering speed of the Ag-based via conductor 23 can be adjusted in accordance with the sintering speed of the low-temperature fired ceramic at the time of simultaneous firing. The via conductor 23 can be prevented from being excessively sintered, and the firing shrinkage amount of the via conductor 23 can be brought close to the firing shrinkage amount of the low-temperature fired ceramic. Thereby, it is possible to prevent a void due to oversintering from occurring in the interlayer connection portion of the via conductor 23, to improve the connection reliability of the via conductor 23, and to generate a dent in the pad 25 on the via conductor 23. This can be prevented, and the bonding reliability of the semiconductor chip bonded to the pad 25 can be improved.
[0014]
By the way, when a silicide is blended in the conductor paste, the resistance value becomes larger than that containing no silicide, but if the blending amount of the silicide is 50% by weight or less, the resistance value falls within an allowable range. Moreover, as the compounding amount of the silicide decreases, the sintering suppressing effect decreases. However, if the compounding amount of the silicide is 0.5% by weight or more, a certain degree of sintering suppressing effect can be obtained. Therefore, if the mixing ratio of Ag powder and silicide is: Ag powder: 50 to 99.5% by weight, Silicide: 0.5 to 50% by weight, low resistance characteristics as an Ag paste and firing with silicide It is possible to achieve both an anti-settling effect.
[0015]
Furthermore, in the above-described embodiment, only the via conductor 23 in which oversintering is a problem is formed with an Ag paste containing silicide, and the pad 25 and the inner layer wiring pattern 24 in which oversintering is not so much a problem include silicide. Since it is made of a non-conductive paste, it can eliminate problems such as dents in the pad 25 due to oversintering while minimizing the increase in resistance due to silicide, producing a high-quality low-temperature fired ceramic multilayer substrate can do.
[0016]
However, in the present invention, the pad 25 and the inner layer wiring pattern 24 may also be formed of a conductor paste containing silicide. In this case, the resistance value can be lowered by reducing the compounding amount of silicide. can do.
[0017]
【The invention's effect】
As apparent from the above description, according to the present invention, since the oxidation start temperature of the sintering inhibiting material in the conductor paste of Ag system is to use a thing blended with powder of 300 ° C. or more silicides, Although it is an Ag-based conductor paste, excessive sintering during simultaneous firing can be prevented, and the firing shrinkage of the conductor can be brought close to that of the low-temperature fired ceramic.
[0018]
Furthermore, by using a conductor paste in which the compounding ratio of the Ag-based metal powder and the silicide is Ag-based metal powder: 50 to 99.5% by weight, and silicide: 0.5 to 50% by weight, Ag is used. The sintering suppression effect by silicide can be obtained without losing the low resistance characteristic as a system conductor (Claim 2).
[0019]
In addition, via conductors that cause oversintering are formed with a conductor paste containing silicide , and the pad is formed with a conductor paste that does not contain silicide, while suppressing an increase in resistance due to silicide. A sufficient sintering suppressing effect can be obtained (claim 3).
[Brief description of the drawings]
1A is a partially enlarged longitudinal sectional view of a low-temperature fired ceramic multilayer substrate in one embodiment of the present invention, and FIG. 1B is a partially enlarged longitudinal sectional view of a conventional low-temperature fired ceramic multilayer substrate.
Figure showing the relationship between the average particle size and oxidation start temperature of various silicide powders
21 ... green sheet, 22 ... via hole, 23 ... via conductor, 24 ... inner wiring pattern, 25 ... pad.

Claims (3)

導体としてAg系の金属粉末を含み、且つ、焼結抑制材として酸化開始温度が300℃以上のケイ化物の粉末を含む低温焼成セラミック用導体ペーストを、複数枚の低温焼成セラミックのグリーンシートに印刷し、これらを積層して同時焼成することを特徴とする低温焼成セラミック多層基板の製造方法。Printing a low-temperature fired ceramic conductor paste containing Ag-based metal powder as a conductor and silicide powder with an oxidation start temperature of 300 ° C. or higher as a sintering inhibitor on a plurality of low-temperature fired ceramic green sheets And a method for producing a low-temperature fired ceramic multilayer substrate, wherein these are laminated and fired simultaneously. 前記低温焼成セラミック用導体ペーストとして、前記Ag系の金属粉末と前記ケイ化物との配合比が、Ag系の金属粉末が50〜99.5重量%、ケイ化物が0.5〜50重量%であるものを用いることを特徴とする、請求項1記載の低温焼成セラミック多層基板の製造方法。  As the conductor paste for low-temperature fired ceramic, the mixing ratio of the Ag-based metal powder and the silicide is 50 to 99.5% by weight for the Ag-based metal powder and 0.5 to 50% by weight for the silicide. The method for producing a low-temperature fired ceramic multilayer substrate according to claim 1, wherein a certain one is used. 前記グリーンシートに形成されたビアホールに、前記低温焼成セラミック用導体ペーストを印刷により充填してビア導体を形成した後、該ビア導体上に、ケイ化物を含まない低温焼成セラミック用導体ペーストを印刷してパッドを形成し、該グリーンシートを最上層にして、他の印刷済みのグリーンシートと積層して同時焼成することを特徴とする、請求項1又は2に記載の低温焼成セラミック多層基板の製造方法。 A via hole formed in the green sheet, after forming a via conductor previous SL LTCC conductor paste is filled by printing, on the via conductors, printed LTCC conductor paste containing no silicides The low-temperature fired ceramic multilayer substrate according to claim 1 , wherein a pad is formed, the green sheet is used as an uppermost layer, and the green sheet is laminated with another printed green sheet and simultaneously fired . Production method.
JP23094397A 1997-08-27 1997-08-27 Low temperature fired ceramic multilayer substrate manufacturing method Expired - Lifetime JP4099837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23094397A JP4099837B2 (en) 1997-08-27 1997-08-27 Low temperature fired ceramic multilayer substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23094397A JP4099837B2 (en) 1997-08-27 1997-08-27 Low temperature fired ceramic multilayer substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH1166951A JPH1166951A (en) 1999-03-09
JP4099837B2 true JP4099837B2 (en) 2008-06-11

Family

ID=16915747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23094397A Expired - Lifetime JP4099837B2 (en) 1997-08-27 1997-08-27 Low temperature fired ceramic multilayer substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4099837B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857042B2 (en) 2000-11-27 2006-12-13 富士通テン株式会社 Board structure
KR100393592B1 (en) * 2001-07-05 2003-08-02 엘지전자 주식회사 A conductive paste and intergarated circuit device using conductive paste
KR100951344B1 (en) * 2008-03-25 2010-04-08 주식회사 아이엠텍 Probe card, space transformer and method of manufacturing space transforber
US10524365B2 (en) * 2015-01-13 2019-12-31 Ngk Spark Plug Co., Ltd. Ceramic substrate

Also Published As

Publication number Publication date
JPH1166951A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP3237258B2 (en) Ceramic multilayer wiring board
JPH0992983A (en) Manufacture of ceramic multilayer board
WO2005048667A1 (en) Conductive paste and multilayer ceramic substrate
JP4731976B2 (en) Method for manufacturing metallized ceramic substrate
JP3826685B2 (en) Manufacturing method of glass ceramic circuit board
JP4959079B2 (en) Package for storing semiconductor elements
JP4099837B2 (en) Low temperature fired ceramic multilayer substrate manufacturing method
JPH09260844A (en) Ceramic multilayered board manufacturing method
JPH1095686A (en) Copper-metalizing composition and glass ceramic wiring substrate using the same
JP4671500B2 (en) Wiring board manufacturing method
JP3493310B2 (en) Multilayer wiring board
JP2004228410A (en) Wiring board
JPH0812953B2 (en) Glass-ceramic multilayer circuit board sintered body
JP2000077805A (en) Wiring board and manufacture thereof
JPH06223621A (en) Conductor paste composition
JP3258231B2 (en) Ceramic circuit board and method of manufacturing the same
JP2003224338A (en) Glass ceramic wiring substrate
JP3909189B2 (en) Manufacturing method of glass ceramic substrate
JP3909196B2 (en) Manufacturing method of glass ceramic substrate
JP2002232142A (en) Multilayer wiring board and its producing method
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JP3878803B2 (en) Manufacturing method of glass ceramic substrate
JPH10107440A (en) Ceramic substrate and manufacture thereof
JP3811381B2 (en) Manufacturing method of glass ceramic substrate
JP3076214B2 (en) Low temperature firing ceramic multilayer circuit board

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

EXPY Cancellation because of completion of term