JP4099084B2 - Cogeneration system and method for detecting leakage / aeration - Google Patents

Cogeneration system and method for detecting leakage / aeration Download PDF

Info

Publication number
JP4099084B2
JP4099084B2 JP2003051721A JP2003051721A JP4099084B2 JP 4099084 B2 JP4099084 B2 JP 4099084B2 JP 2003051721 A JP2003051721 A JP 2003051721A JP 2003051721 A JP2003051721 A JP 2003051721A JP 4099084 B2 JP4099084 B2 JP 4099084B2
Authority
JP
Japan
Prior art keywords
water
circulation path
water level
heating
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003051721A
Other languages
Japanese (ja)
Other versions
JP2004257714A (en
Inventor
康二 ▲高▼倉
啓 山本
義孝 栢原
伸 岩田
博司 ▲高▼木
正博 吉村
哲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2003051721A priority Critical patent/JP4099084B2/en
Publication of JP2004257714A publication Critical patent/JP2004257714A/en
Application granted granted Critical
Publication of JP4099084B2 publication Critical patent/JP4099084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ガス、LPガス等を用いてガスエンジン発電機や燃料電池発電機を運転し電気を発生し、副産物として発生した熱を貯湯式の湯水の加熱に利用するコージェネレーションシステム及び該コージェネレーションシステムの漏水・空気混入検知方法に関し、特に、断水時に暖房熱媒水やエンジン冷却水等の汚水が清水循環路に流入することを防ぎ、健康被害の発生を防止することができるコージェネレーションシステム及びその漏水・空気混入検知方法に関するものである。
【0002】
【従来の技術】
図5は、従来のコージェネレーションシステムを示す構成図である。
図5において、110は循環路、110aは循環路110に配設され床暖房パネル110cに通水される水(熱媒)の過熱を行う積層型の熱交換器、110bは熱交換器110aと床暖房パネル110cの間に熱媒を循環させる床暖房循環路、111は内部に温度成層を形成する貯湯タンク、111aは給湯を行う給湯口、112は湯水を循環させる循環ポンプ、113は循環ポンプ112からの吐出湯を一方のパイプを経由して貯湯タンク111へ送出するか又は他方のパイプへ送出する上部用三方弁、114は貯湯タンク111の底部の水を循環路110へ送出するか又は上部用三方弁113と共に循環路を形成する底部用三方弁、115はエアコンの室外機の排熱(凝縮熱)を熱交換する熱交換器、116は後述のガスエンジン120の排熱を熱交換する熱交換器、117は循環路110の湯水を加熱する補助熱源機、118はエアコンの室内機、119はガスエンジン120や後述のコンプレッサ等を内蔵した室外機、121はガスエンジン120で駆動されるコンプレッサである。
【0003】
以上のように構成されたコージェネレーションシステムについて、その動作を説明する。
貯湯タンク111内に加熱された湯を貯湯する際には、底部三方弁114により貯湯タンク111の底部の水を循環路110に取り出し、その水を加熱部115〜117で加熱しながら循環路110を循環させて、その加熱された湯を上部三方弁113により貯湯タンク111の上部に戻して温度成層を形成して貯湯する。また、熱交換器110aにおいては、循環路110を循環する湯の熱を床暖房循環路110bを循環する熱媒に供給することで、床暖房パネル110cに供給される熱媒の加熱を行うことができる。
【0004】
図6は熱交換器110aの一例としての積層型熱交換器の部分断面図である。
図6において、110aは熱交換器、122は熱交換器110aの熱の供給側すなわち循環路110側の通水路、123は熱交換器110aの熱の受給側すなわち床暖房循環路110b側の通水路、124は通水路122と通水路123とを隔てる隔壁である。
積層型の熱交換器110aは、隔壁124を隔てて循環路110側の通水路122と床暖房循環路110b側の通水路123が配設され、通水路122と通水路123との間で熱交換を行っている。熱交換器110aの内部にはこのような通水路122と通水路123が無数に形成され隔壁124の表面積を大きくすることで熱交換効率を高めている。
【0005】
また、都市ガス、LPガス等を用いてガスエンジン発電機や燃料電池発電機を運転し電気を発生し、副産物として発生した熱を貯湯式の湯水の加熱に利用するコージェネレーションシステムとして本件出願人が出願したもの(特願2002−207740号)がある。このコージェネレーションシステムは、熱交換器を介して熱の受給を行う熱の供給側水循環路又は熱の受給側水循環路に配設され供給側水循環路又は受給側水循環路を循環する水又は熱媒が一時的に貯留される水タンクと、水タンクの水位を検知する水位電極と、を備え、熱交換器の隔壁が破損した場合には、一方の循環路を流れる水又は熱媒が他方の循環路に浸入し循環路内の水量が増加し循環路に設けられた水タンクの水位が上昇するため、この水位の上昇を水位電極により検知することで、熱交換器の隔壁の破損を検知することができるものである。
【発明が解決しようとする課題】
しかしながら、上記従来のコージェネレーションシステムでは、以下のような課題を有していた。
(1)熱交換器110aの隔壁124が破損した場合に、通水路122に通水されている熱媒が通水路123側へ流れ込むことを検知することができないという課題を有していた。
(2)熱交換器110aの隔壁124が破損し、且つ給水側に断水が発生した場合、通水路123に通水されている熱媒が通水路122側へ逆流して浸入し、循環路110を介して貯湯タンク111に貯湯される等して、例えばこれを使用者が飲用した場合に健康被害が発生するおそれがあり安全性に欠けるという課題を有していた。
(3)本件出願人が出願したコージェネレーションシステムでは、熱の受給側水循環路に接続された床暖房パネル等の暖房機が建物の2階の床下等の高所に設置されている場合、ポンプ停止時には床暖房パネルの配管内が負圧になり、接続部の微小漏れ箇所から或いは該配管自体へ空気が透過して混入することで、水タンク内の熱媒の水位が上昇し、これを水位電極が熱交換器の漏水と誤検知してしまうという課題を有していた。
【0006】
本発明は、上記従来の課題を解決するもので、熱交換器の隔壁が破損して漏水が発生し且つ給水側に断水が発生した場合に、受給側水循環路の汚水が供給側水循環路に流入したことを使用者に報知し飲用による健康被害の発生を防止することができ安全性に優れると共に、受給側水循環路に接続された暖房機が高所に設置されている場合であっても、暖房水タンク内の水位の上昇を漏水と誤検知することがない検知精度に優れたコージェネレーションシステム及びその漏水・空気混入検知方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明のコージェネレーションシステムは、以下の構成を有している。
【0008】
本発明の請求項1に記載のコージェネレーションシステムは、エンジン発電機等の排熱装置の排熱又は補助熱源機により加熱された水が循環する供給側水循環路と、床暖房等の暖房機の水等からなる熱媒が循環する受給側水循環路と、前記供給側水循環路を循環する加熱された水と前記受給側水循環路を循環する熱媒との間で熱交換を行う少なくとも1の熱交換器と、を備え、前記供給側水循環路を循環する水の熱を前記熱交換器により前記受給側水循環路を循環する熱媒に供給して前記熱媒の加熱を行うことが可能なコージェネレーションシステムであって、全体を制御する制御装置と、時間を計測するタイマと、前記受給側水循環路に配設され前記受給側水循環路を循環する前記熱媒が一時的に貯留される暖房水タンクと、前記暖房水タンクに貯留された前記熱媒の水位を検知する水位検知部と、を備え、前記制御装置は、前記水位検知部により前記熱媒の水位が所定水位に到達したことを検知すると前記タイマを作動し、前記水位が前記所定水位より高水位の警告水位に到達するまでの時間を計測し、計測された時間が予め設定された所定時間以内であれば、前記熱交換器の隔壁の破損による漏水が発生している又は前記暖房機や配管の不良箇所から前記受給側水循環路に多量の空気が混入していると検知する構成を有している。
【0009】
この構成により、以下のような作用を有する。
(1)熱交換器の隔壁が破損し供給側水循環路を流れる水が受給側水循環路に浸入した場合又は暖房機の配管や接続部の接合不良箇所等から空気が混入した場合は、受給側水循環路内の水量が増加し暖房水タンクの水位が予め設定された所定水位から警告水位まで上昇するため、この水位の上昇を水位検出手段により検知することで、熱交換器の隔壁の破損による漏水又は暖房機や配管から受給側水循環路への空気の混入を検知することができる。
(2)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、暖房水タンク内の熱媒の水位が所定水位に到達するとタイマを作動させ、熱媒の水位が所定水位から警告水位に到達するまでの時間を計測し、タイマにより計測された時間が予め設定された所定時間以内であれば、熱交換器の隔壁の破損による漏水が発生している又は暖房機の配管に比較的程度の大きい接合不良箇所がありそこから受給側水循環路に多量の空気が混入していると検知することにより、接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入することによる暖房水タンク内の水位の上昇を熱交換器の隔壁の破損による漏水と誤検知することがなく検知精度に優れる。
【0010】
ここで、水位検知部としては、暖房水タンク内に、警告水位を検知する暖房警告水位電極と、所定水位を検知する暖房高水位電極と、基準電極を設け、基準電極と各々の水位電極との間に低電圧を印加し通電するかどうかで水位を判断するものや、フロートスイッチにより水位を判断するもの等を用いることができる。
また、暖房機や配管の不良箇所としては、接合不良箇所等が挙げられる。
【0011】
本発明の請求項2に記載のコージェネレーションシステムは、請求項1に記載の発明において、前記制御装置は、前記タイマにより計測された時間が予め設定された所定時間を超えた場合は、前記暖房機や配管の不良箇所から又は前記暖房機の配管を透過して前記受給側水循環路に微量の空気が混入していると検知する構成を有している。
【0012】
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体を透過して受給側水循環路に微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、タイマにより計測された時間が予め設定された所定時間を超えた場合は、暖房機の配管の接続部の比較的程度の小さい接合不良箇所から又は暖房機の配管を透過して微量の空気が混入していると検知することにより、暖房機の配管の比較的程度の小さい接合不良箇所から或いは配管自体を透過して受給側水循環路に微量の空気が混入していることを正確に検知することができ検知精度に優れる。
【0013】
本発明の請求項3に記載のコージェネレーションシステムは、請求項1又は2に記載の発明において、前記供給側水循環路へ給水する給水口に接続された水道の断水が発生した場合に前記断水を圧力の低下として検知する圧力スイッチを備え、前記制御装置は、前記圧力スイッチにより水圧の低下を検知した場合に、警報を発してシステムの全機能又は特定の機能を停止する構成を有している。
【0014】
この構成により、請求項1又は2の作用に加え、以下のような作用を有する。
(1)供給側水循環路の給水口に接続された水道の断水が発生した場合、供給側水循環路にかかっていた水道圧がなくなるため、供給側水循環路の圧力が低下する。制御装置は、熱交換器の隔壁が破損したことを水位検知部により検知すると共に、供給側循環路に配設された圧力スイッチにより供給側水循環路内の水圧の低下を検知して断水の発生を検知することにより、熱交換器の隔壁が破損した状態で断水が発生したことを検知し、熱交換器の隔壁の破損部分から受給側水循環路を流れる熱媒が供給側水循環路に混入したことを検知し、システムの全機能又は特定の機能を停止することで、使用者が汚水である熱媒を誤って飲用することがなく健康被害が発生することを防ぐことができる。
【0015】
ここで、システムの全機能とは、給湯運転、お湯張り運転、風呂追い焚き運転、暖房運転、エンジン発電機の稼動等を含む全ての機能であり、特定の機能とはこれらの機能の内いずれか1以上の機能である。なお、熱交換器の隔壁の破損部分から受給側水循環路を流れる熱媒が供給側水循環路に混入した場合、少なくとも供給側水循環路の水が使用者に供給される給湯運転等は停止させる必要がある。
【0016】
本発明の請求項4に記載のコージェネレーションシステムは、請求項3に記載の発明において、前記制御装置は、前記供給側水循環路に清水を通水させ管内を洗浄した後、前記警報の解除及び前記システムの全機能又は特定の機能の停止の解除を行う構成を有している。
【0017】
この構成により、請求項3の作用に加え、以下のような作用を有する。
(1)供給側水循環路に清水を通水させ管内を洗浄した後、警報の解除及びシステムの全機能又は特定の機能を停止の解除を行うので、熱交換器の隔壁が破損して漏水が発生し且つ給水側に断水が発生し、受給側水循環路の汚水が供給側水循環路に流入した場合であっても断水から回復し管内を洗浄した後でなければ使用できないので飲用による健康被害の発生を防止することができ安全性に優れる。
【0018】
本発明の請求項5に記載のコージェネレーションシステムの漏水・空気混入検知方法は、供給側水循環路を循環するエンジン発電機等の排熱装置の排熱又は補助熱源機により加熱された水と受給側水循環路を循環する床暖房等の暖房機の水等からなる熱媒との間で熱交換を行うコージェネレーションシステムの漏水・空気混入検知方法であって、前記熱受給側水循環路に配設され循環する前記熱媒が一時的に貯留される暖房水タンク内の前記熱媒の水位が所定水位に到達したことを水位検知部により検知する所定水位検知ステップと、前記暖房水タンク内の前記熱媒の水位が所定水位に到達するとタイマを作動させる計測開始ステップと、前記暖房水タンク内の前記熱媒の水位が前記所定水位より高水位の警告水位に到達したことを検知する警告水位検知ステップと、前記暖房水タンク内の前記熱媒の水位が前記所定水位に到達してから前記警告水位に到達するまでの前記タイマによる計測時間を検出し、前記計測時間が予め設定された所定時間以内であるか否かを判定する漏水判定ステップと、を備え、前記漏水判定ステップにおいて前記計測時間が予め設定された所定時間以内と判定した場合、前記熱交換器の隔壁の破損による漏水が発生している又は前記暖房機や配管の不良箇所から前記受給側水循環路に多量の空気が混入していると検知する構成を有している。
【0019】
この構成により、以下のような作用を有する。
(1)熱交換器の隔壁が破損し供給側水循環路を流れる水が受給側水循環路に浸入した場合又は暖房機の配管や接続部の接合不良箇所等から受給側水循環路に空気が混入した場合は、受給側水循環路内の水量が増加し暖房水タンクの水位が予め設定された所定水位から警告水位まで上昇するため、所定水位検知ステップにおいて所定水位を検知した後、警告水位検知ステップにおいて警告水位を検知し水位の上昇を検知することで、熱交換器の隔壁の破損による漏水又は暖房機や配管から受給側水循環路への空気の混入を検知することができる。
(2)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、計測開始ステップにおいて暖房水タンク内の熱媒の水位が所定水位に到達するとタイマを作動させ、熱媒の水位が所定水位から警告水位に到達するまでの時間を計測し、漏水判定ステップにおいてタイマにより計測された時間が予め設定された所定時間以内と判定した場合は、熱交換器の隔壁の破損による漏水が発生している又は暖房機の配管に比較的程度の大きい接合不良箇所がありそこから受給側水循環路に多量の空気が混入していると検知することにより、接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入することによる暖房水タンク内の水位の上昇を熱交換器の隔壁の破損による漏水と誤検知することがなく検知精度に優れる。
【0020】
ここで、所定水位検知ステップにおいては、暖房水タンク内の熱媒の水位が所定水位に到達したことを水位検知部により検知する。水位検知部としては、暖房水タンク内に、警告水位を検知する暖房警告水位電極と、所定水位を検知する暖房高水位電極と、基準電極を設け、基準電極と各々の水位電極との間に低電圧を印加し通電するかどうかで水位を判断するものや、フロートスイッチにより水位を判断するもの等が用いられる。
警告水位検知ステップにおいては、暖房水タンク内の熱媒の水位が所定水位より高水位の警告水位に到達したことを上述した水位検知部により検知する。
漏水判定ステップにおいては、暖房水タンク内の熱媒の水位が所定水位検知ステップで検知される所定水位に到達してから、警告水位検知ステップで検知される警告水位に到達するまでの時間が予め設定された所定時間以内であるか否かを判定し、これに基づいて漏水等を検知する。ここで予め設定される所定時間としては、上述したように熱交換器の隔壁の破損による漏水により短時間で上昇したのか、或いは長時間に亘って徐々に上昇したのかを判定することができる時間が用いられる。
【0021】
本発明の請求項6に記載のコージェネレーションシステムの漏水・空気混入検知方法は、請求項5に記載の発明において、前記漏水判定ステップにおいて前記計測時間が予め設定された所定時間を超えたと判定した場合、前記暖房機や配管の不良箇所から又は前記暖房機の配管へ透過して前記受給側水循環路に微量の空気が混入していると検知する構成を有している。
【0022】
この構成により、請求項5の作用に加え、以下のような作用を有する。
(1)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体を透過して受給側水循環路に微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、漏水判定ステップにおいてタイマにより計測された時間が予め設定された所定時間を超えたと判定した場合は、暖房機の配管の接続部の比較的程度の小さい接合不良箇所から又は暖房機の配管を透過して微量の空気が混入していると検知することにより、暖房機の配管の比較的程度の小さい接合不良箇所から或いは配管自体を透過して受給側水循環路に微量の空気が混入していることを正確に検知することができ検知精度に優れる。
【0023】
本発明の請求項7に記載のコージェネレーションシステムの漏水・空気混入検知方法は、請求項5又は6に記載の発明において、前記供給側水循環路へ給水する給水口に接続された水道の断水が発生したことを検知する断水検知ステップを備え、前記断水検知ステップにおいて前記断水の発生を検知した場合に、警報を発してシステムの全機能又は特定の機能を停止する構成を有している。
【0024】
この構成により、請求項5又は6の作用に加え、以下のような作用を有する。(1)熱交換器の隔壁が破損したことを検知すると共に、断水検知ステップにおいて断水の発生を検知することにより、熱交換器の隔壁が破損した状態で断水が発生したことを検知し、熱交換器の隔壁の破損部分から受給側水循環路を流れる熱媒が供給側水循環路に浸入したことを検知し、システムの全機能又は特定の機能を停止することで、使用者が汚水である熱媒を誤って飲用することがなく健康被害が発生することを防ぐことができる。
【0025】
ここで、断水検知ステップにおいては、供給側水循環路内の水圧の低下を供給側水循環路に配設された圧力スイッチ等で検知することにより、断水の発生を検知する。
【0026】
本発明の請求項8に記載のコージェネレーションシステムの漏水・空気混入検知方法は、請求項7に記載の発明において、前記供給側水循環路に清水を通水させ管内を洗浄した後、前記警報の解除及び前記システムの全機能又は特定の機能の停止の解除を行う構成を有している。
【0027】
この構成により、請求項7の作用に加え、以下のような作用を有する。
(1)供給側水循環路に清水を通水させ管内を洗浄した後、警報の解除及びシステムの全機能又は特定の機能の停止の解除を行うので、熱交換器の隔壁が破損して漏水が発生し且つ給水側に断水が発生し、受給側水循環路の汚水が供給側水循環路に流入した場合であっても断水から回復し管内を洗浄した後でなければ使用できないので飲用による健康被害の発生を防止することができ安全性に優れる。
【0028】
以下、本発明の実施の形態について、図1乃至図4を用いて説明する。
(実施の形態1)
図1は本実施の形態1におけるコージェネレーションシステム及び接続された床暖房パネルを示す要部構成図である。
図1において、1は本実施の形態1におけるコージェネレーションシステム、2は全体を制御する制御装置、2aは制御装置2に内蔵されたタイマ、3は供給側水循環路、3aは供給側水循環路3に配設された圧力スイッチ、4は受給側水循環路、5は供給側水循環路3を循環する水と受給側水循環路4を循環する水等の熱媒との間で熱交換を行う熱交換器、6は受給側水循環路4に配設された暖房水タンク、6aは暖房水タンク6の開放部であるオーバーフロー口、7は暖房水タンク6に配設された水位検知部、8は基準電極、9は暖房低水位電極、10は暖房高水位電極、11は暖房警告水位電極、12は暖房水タンク6に水を補給するための暖房補給水管、13は暖房補給水管12に配設された暖房補給水弁、14は受給側水循環路4に配設された暖房ポンプ、15は建物Aの2階の床Bの下部に敷設された床暖房パネル、16は床暖房パネル15の放熱管であり、銅管や架橋ポリエチレン管、ポリブテン管等が好適に用いられる。17a,17bは床暖房パネル15とコージェネレーションシステム1を接続する接続管、18a,18bは接続管17a,17bと床暖房パネル15の放熱管16を接続する接続部、19a,19bは接続管17a,17bとコージェネレーションシステム1内の受給側水循環路4とを接続する接続部である。
供給側水循環路3には貯湯タンク(図示せず)や補助熱源機(図示せず)、エンジン発電機等の排熱装置の排熱が供給される排熱用熱交換器(図示せず)が配設されており、供給側水循環路3に通水される水を補助熱源機や該排熱用熱交換器により加熱している。加熱された水は熱交換器5において受給側水循環路4を流れる熱媒に熱を供給し、或いは暖房機の不使用時等には適宜貯湯タンクに貯湯される。また、供給側水循環路3には給水口(図示せず)や給湯口(図示せず)が設けられており、加熱された水や貯湯された水を適宜給湯口から給湯することができると共に、給湯により減少した水を給水口から補給している。
受給側水循環路4は、接続管17及び床暖房パネル15の放熱管16と共に熱媒が循環する循環路を形成している。熱媒は暖房ポンプ14から吐出され接続部19aから接続管17a,接続部18a,放熱管16,接続部18b,接続管17bを通って接続部19bから受給側水循環路4に入り、熱交換器5,暖房水タンク6を通って暖房ポンプ14へ戻る。
水位検知部7は、基準電極8、暖房低水位電極9、暖房高水位電極10、暖房警告水位電極11により構成され、暖房低水位電極9、暖房高水位電極10、暖房警告水位電極11は各々暖房水タンク6の内部上壁面から下方へ延びており、先端部が各々所定低水位、所定高水位、警告水位に位置するような所定の長さに形成されている。これにより、基準電極8と各々の水位電極との間に低電圧を印加し通電するかどうかで水位を判断することができる。
また、制御装置2は、所定低水位より水位が低下したことを暖房低水位電極9により検知すると、暖房補給水弁13を開き暖房補給水管12を介して給水口より暖房水タンク6へ補給水を供給し、水位が所定高水位に到達すると暖房高水位電極10によりそれを検知して暖房補給水弁13を閉じ、自動で水の補給を行う。なお、制御装置2は暖房補給水弁13を開いて水の補給を行った場合は、それが行われた時刻と共に制御装置2内の記憶装置(図示せず)に記憶する。
【0029】
以上のように構成されたコージェネレーションシステム1及びコージェネレーションシステム1に接続された床暖房パネル15について、その動作を図2乃至図4を用いて説明する。
図2は暖房水タンクへの自動補水動作を示すフローチャートであり、図3はコージェネレーションシステムの漏水・空気混入検知動作を示すフローチャートであり、図4(a)は暖房水タンクへの水の補給開始時の水位を示す説明図であり、図4(b)は暖房水タンクの予め設定された所定水位(所定高水位)を示す説明図であり、図4(c)は暖房水タンクの警告水位を示す説明図である。
図4において、4は受給側水循環路、6は暖房水タンク、6aはオーバーフロー口、7は水位検知部、8は基準電極、9は暖房低水位電極、10は暖房高水位電極、11は暖房警告水位電極、12は暖房補給水管であり、これらは図1において説明したものと同様であるので同一の符号を付けて説明を省略する。
【0030】
まず、暖房水タンク6への水の自動補水動作について説明する。
図2において、電源が投入されると、制御装置2は暖房低水位電極9がオフ、即ち通電がないか否かを判定する(S1)。なお、暖房低水位電極9がオフと判定した場合、暖房水タンク6内の水位は図4(a)に示すように所定の低水位以下まで低下している。暖房低水位電極9がオフと判定した場合は暖房補給水弁13を開き、暖房補給水管12から暖房水タンク6へ水の補給を開始する(S2)。なお、暖房低水位電極9がオフではないと判定した場合は、制御装置2は暖房低水位電極9がオフと判定するまで待機する。
ステップS2で暖房補給水弁13を開き暖房水タンク6へ水の補給が開始されると、制御装置2は、暖房高水位電極10がオンか否か、即ち通電しているか否かを判定する(S3)。なお、暖房高水位電極10がオンと判定した場合、暖房水タンク6内の水位は図4(b)に示すように所定水位(所定高水位)に到達している。暖房高水位電極10がオンと判定すると、制御装置2は暖房補給水弁13を閉じ(S4)、暖房水タンク6への水の補給を止め、暖房水タンク6への補水動作を終了する。なお、ステップS3において、暖房高水位電極10がオンではないと判定した場合は、制御装置2は暖房高水位電極10がオンと判定するまで待機する。
【0031】
次に、コージェネレーションシステム1の漏水・空気混入検知動作について説明する。
図3において、制御装置2は暖房高水位電極10がオフからオンになる、即ち通電していない状態から通電したか否かを判定する(ステップS12、所定水位検知ステップ)。なお、暖房高水位電極10がオフからオンになったと判定された場合、暖房水タンク6内の水位は図4(b)に示すように所定水位(所定高水位)に到達している。暖房高水位電極10がオフからオンになったと判定すると、タイマ2aを作動させ時間の計測を開始する(S13、計測開始ステップ)。なお、図3に示す漏水・空気混入検知動作と図2に示す暖房水タンク6への水の自動補給動作は各々独立して並行して行われる。したがって、図2のステップS3において制御装置2が暖房高水位電極10がオンと判定した際には、図3のステップS12において暖房高水位電極10がオフからオンになったと判定するため、連動して漏水・空気混入検知動作が行われることになる。
【0032】
ここで、熱交換器5において供給側水循環路3と受給側水循環路4とを隔てる隔壁が破損した場合、暖房ポンプ14が停止していれば給水口(図示せず)に接続された水道圧により供給側水循環路3の方が高圧であるため、供給側水循環路3を流れる水が隔壁の破損部分から受給側水循環路4内へ浸入する。受給側水循環路4に供給側水循環路3から水が浸入すると、暖房水タンク6に貯留された熱媒の水位が上がる。一方、本実施の形態1のように、コージェネレーションシステム1に接続された床暖房パネル15が建物Aの2階の床Bに敷設され、床暖房パネル15の放熱管16に架橋ポリエチレン管を使用した場合は、床暖房パネル15の放熱管16に空気が透過するため、暖房停止時即ち暖房ポンプ14の停止時には暖房水タンク6に貯留された熱媒の水位が上がる。制御装置2は、これらの異なる要因による暖房水タンク6の水位の上昇を見分けるために、暖房水タンク6内の水位が所定水位(所定高水位)に到達してから警告水位に到達するまでの時間をタイマ2aにより計測している。
ステップS13においてタイマ2aを作動すると、制御装置2は、暖房警告水位電極11がオンか否か即ち通電しているか否かを判定する(S14、警告水位検知ステップ)。暖房警告水位電極11がオンと判定された場合、暖房水タンク6内の水位は図4(c)に示すように所定水位(警告水位)に到達している。暖房警告水位電極11がオンではない即ち通電していないと判定した場合は、ステップS12に戻る。この場合、既に暖房水タンク6の水位は所定水位(所定高水位)を超えているので、ステップS12において暖房高水位電極10がオフからオンになったと判定されることはなく、タイマ2aを作動することなくステップS14へ移行する。ステップS14において、暖房警告水位電極11がオン即ち通電していると判定すると、その判定時までのタイマ2aの計測時間が30分以内か否かを判定する(S15、漏水判定ステップ)。本実施の形態1においては、ステップS13におけるタイマ2aの作動時にタイマ2aの内部カウンタを「30」に設定し、以後1分毎に内部カウンタ値を「0」になるまで「1」ずつ減算している。制御装置2はステップS15において、このタイマ2aの内部カウンタ値が「0」でないか否かを判定することで、タイマ2aの計測時間、即ち所定水位(所定高水位)に到達してから警告水位に到達するまでの時間が30分以内であるか否かを判定している。なお、この判定の基準となる30分という所定時間はこれに限られるものではなく、コージェネレーションシステム1や床暖房パネル15の形態等に応じて適宜設定される。
タイマ2aの計測時間が30分以内であると判定した場合は、熱交換器5の隔壁が破損し漏水が発生して供給側水循環路3の水が受給側水循環路4側に混入していると検知して、制御装置2に接続されたリモコン等の表示部等にその旨を表示する等して警告を発する(S17)。なお、ステップS15においてタイマ2aの計測時間が30分以内であると判定した場合は、床暖房パネル15の放熱管16や接続部18a,18bに比較的程度の大きい接合不良箇所がありそこから受給側水循環路4に多量の空気が混入している可能性もあるため、ステップS16において、その旨検知するようにしてもよい。
【0033】
ここで、通常は、熱交換器5の内部の隔壁が破損した場合であっても、供給側水循環路3には水道圧が印加されているため、暖房運転していなければ即ち暖房ポンプ14が停止していれば、受給側水循環路4を循環する熱媒は供給側水循環路3に浸入せず健康被害等が発生する可能性は低く問題はない。しかしながら、熱交換器5の内部の隔壁が破損した状態で断水が発生した場合、供給側水循環路3の方が低圧となる可能性があり、この場合受給側水循環路4を流れる熱媒が隔壁の破損部分から供給側水循環路3内へ浸入する。このため、制御装置2は、供給側水循環路3内の圧力の低下を検出して断水の発生を監視している。
制御装置2は、圧力スイッチ3aにより供給側水循環路3内の圧力の低下を検知して断水の発生を検知する(S18、断水検知ステップ)。供給側水循環路3内の圧力の低下が検知されると、熱交換器5の隔壁が破損し漏水が発生して受給側水循環路4の熱媒が供給側水循環路3側に混入していると検知し(S19)、警報を発して(S20)、コージェネレーションシステム1の全ての機能を停止させるよう制御する(S21)。なお、ステップS18において、制御装置2は圧力スイッチ3aにより圧力の低下が検知されるまで待機する。次に、制御装置2はリセットされたか否かを判定し(S22)、リセットされるまで待機すると共に、使用者が供給側水循環路3に清水を通水させ管内を洗浄しリセットボタン(図示せず)を押す等してリセットを行うと、リセットされたと判定してS12に戻る。
【0034】
また、ステップS15において、タイマ2aの計測時間が30分を超えたと判定した場合は、床暖房パネル15の放熱管16に空気が透過して受給側水循環路4に混入していると検知して(S23)、制御装置2に接続されたリモコン等の表示部等にその旨を表示する等して警報を発すると共に、床暖房の運転を禁止するように制御し、以降図2に示す暖房水タンク6への自動補給も行わないように制御し(S24)、ステップ22へ移行する。ここで、ステップS24において発報された警報や設定された床暖房の運転の禁止状態及び自動補給の禁止状態は、制御装置2に設けられた運転スイッチのオフ、電源のオフ、或いはS22でリセットと判定されなければ解除されないため、制御装置2は運転スイッチのオフ、電源のオフ、或いはリセットが行われない限り警報を継続的に発すると共に、床暖房の運転の禁止状態及び自動補給の禁止状態を維持する。なお、ステップS15においてタイマ2aの計測時間が30分を超えたと判定した場合は、床暖房パネル15の放熱管16や接続部18a,18bの比較的程度の小さい接合不良箇所から微量の空気が混入している可能性もあるため、ステップS23において、その旨検知するようにしてもよい。
【0035】
なお、本実施の形態1においては、床暖房パネル15により暖房を行うための暖房系統について説明したがこれに限られるものではなく、エンジン発電機の排熱により加熱される冷却水が循環するエンジン排熱系統についても同様の構成により熱交換器の漏水等を検知することができる。
【0036】
以上のように本実施の形態1におけるコージェネレーションシステムは構成されているので、以下のような作用を有する。
(1)受給側水循環路4に接続された床暖房パネル15が高所に設置された場合、暖房ポンプ14の停止時には床暖房パネル15の放熱管16内が負圧になり、放熱管16や接続部18a,18bの比較的程度の小さい接合不良箇所から或いは放熱管16に架橋ポリエチレン管を使用した場合には空気を透過する性質があるので、これ自体を透過して微量の空気が熱媒に混入した場合に、放熱管16や接続管17a,17bの中の熱媒が暖房水タンク6に落ちるため暖房水タンク6内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、ステップS12(所定水位検知ステップ)において所定水位を検知すると、ステップS13(計測開始ステップ)においてタイマ2aを作動させ、ステップS14(警告水位検知ステップ)において警告水位を検知し、熱媒の水位が所定水位から警告水位に到達するまでの時間を計測し、ステップS15(漏水判定ステップ)においてタイマ2aにより計測された時間が予め設定された所定時間(30分)以内と判定した場合は、熱交換器5の隔壁の破損による漏水が発生している又は床暖房パネル15の放熱管16に比較的程度の大きい接合不良箇所がありそこから受給側水循環路4に多量の空気が混入していることを検知する。
(2)また、S15(漏水判定ステップ)においてタイマ2aにより計測された時間が予め設定された所定時間(30分)を超えたと判定した場合は、床暖房パネル15の放熱管16や接続部18a,18bの比較的程度の小さい接合不良箇所から又は放熱管16を透過して受給側水循環路4に微量の空気が混入していることを検知する。これにより、放熱管16や接続部18a,18bの比較的程度の小さい接合不良箇所から或いは放熱管16自体を透過して受給側水循環路4に微量の空気が混入することによる暖房水タンク6内の水位の上昇を熱交換器5の隔壁の破損による漏水と誤検知することがなく検知精度に優れる。
(3)熱交換器5の隔壁が破損したことを検知すると共にステップ18(断水検知ステップ)において圧力スイッチ3aにより供給側水循環路3の圧力の低下を検知して断水の発生を検知することにより、熱交換器5の隔壁が破損した状態で断水が発生したことを検知し、熱交換器5の隔壁の破損部分から受給側水循環路4を流れる熱媒が供給側水循環路3に浸入したことを検知してコージェネレーションシステム1の全機能又は特定の機能を停止することで、使用者等が汚水である熱媒を誤って飲用することがなく健康被害が発生することを防ぐことができる。
(4)制御装置2は供給側水循環路3に清水を通水させ管内を洗浄した後、警報の解除及びコージェネレーションシステム1の全機能又は特定の機能の停止の解除を行うので、熱交換器5の隔壁が破損して漏水が発生し且つ断水が発生し、受給側水循環路4の汚水が供給側水循環路3に流入した場合であっても飲用による健康被害の発生を防止することができ安全性に優れる。
【0037】
【発明の効果】
以上説明したように本発明のコージェネレーションシステム及びその漏水・空気混入検知方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)熱交換器の隔壁が破損し供給側水循環路を流れる水が受給側水循環路に浸入した場合又は暖房機の配管や接続部の接合不良箇所等から空気が混入した場合は、受給側水循環路内の水量が増加し暖房水タンクの水位が予め設定された所定水位から警告水位まで上昇するため、この水位の上昇を水位検出手段により検知することで、熱交換器の隔壁の破損による漏水又は暖房機や配管から受給側水循環路への空気の混入を検知することができるコージェネレーションシステムを提供することができる。
(2)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、暖房水タンク内の熱媒の水位が所定水位に到達するとタイマを作動させ、熱媒の水位が所定水位から警告水位に到達するまでの時間を計測し、タイマにより計測された時間が予め設定された所定時間以内であれば、熱交換器の隔壁の破損による漏水が発生している又は暖房機の配管に比較的程度の大きい接合不良箇所がありそこから受給側水循環路に多量の空気が混入していると検知することにより、接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入することによる暖房水タンク内の水位の上昇を熱交換器の隔壁の破損による漏水と誤検知することがない検知精度に優れたコージェネレーションシステムを提供することができる。
【0038】
請求項2に記載の発明によれば、請求項1の効果に加え、
(1)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体を透過して受給側水循環路に微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、タイマにより計測された時間が予め設定された所定時間を超えた場合は、暖房機の配管の接続部の比較的程度の小さい接合不良箇所から又は暖房機の配管を透過して微量の空気が混入していると検知することにより、暖房機の配管の比較的程度の小さい接合不良箇所から或いは配管自体を透過して受給側水循環路に微量の空気が混入していることを正確に検知することができる検知精度に優れたコージェネレーションシステムを提供することができる。
【0039】
請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)供給側水循環路の給水口に接続された水道の断水が発生した場合、供給側水循環路にかかっていた水道圧がなくなるため、供給側水循環路の圧力が低下する。制御装置は、熱交換器の隔壁が破損したことを水位検知部により検知すると共に、供給側循環路に配設された圧力スイッチにより供給側水循環路内の水圧の低下を検知して断水の発生を検知することにより、熱交換器の隔壁の破損部分から受給側水循環路を流れる熱媒が供給側水循環路に混入したことを検知し、システムの全機能又は特定の機能を停止することで、使用者が汚水である熱媒を誤って飲用することがなく健康被害が発生することを防ぐことができる安全性に優れたコージェネレーションシステムを提供することができる。
【0040】
請求項4に記載の発明によれば、請求項3の効果に加え、
(1)供給側水循環路に清水を通水させ管内を洗浄した後、警報の解除及びシステムの全機能又は特定の機能を停止の解除を行うので、熱交換器の隔壁が破損して漏水が発生し且つ給水側に断水が発生し、受給側水循環路の汚水が供給側水循環路に流入した場合であっても断水から回復し管内を洗浄した後でなければ使用できないので飲用による健康被害の発生を防止することができる安全性に優れたコージェネレーションシステムを提供することができる。
【0041】
請求項5に記載の発明によれば、
(1)熱交換器の隔壁が破損し供給側水循環路を流れる水が受給側水循環路に浸入した場合又は暖房機の配管や接続部の接合不良箇所等から受給側水循環路に空気が混入した場合は、受給側水循環路内の水量が増加し暖房水タンクの水位が予め設定された所定水位から警告水位まで上昇するため、所定水位検知ステップにおいて所定水位を検知した後、警告水位検知ステップにおいて警告水位を検知し水位の上昇を検知することで、熱交換器の隔壁の破損による漏水又は暖房機や配管から受給側水循環路への空気の混入を検知することができるコージェネレーションシステムの漏水・空気混入検知方法を提供することができる。
(2)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、計測開始ステップにおいて暖房水タンク内の熱媒の水位が所定水位に到達するとタイマを作動させ、熱媒の水位が所定水位から警告水位に到達するまでの時間を計測し、漏水判定ステップにおいてタイマにより計測された時間が予め設定された所定時間以内と判定した場合は、熱交換器の隔壁の破損による漏水が発生している又は暖房機の配管に比較的程度の大きい接合不良箇所がありそこから受給側水循環路に多量の空気が混入していると検知することにより、接続部の比較的程度の小さい接合不良箇所から或いは該配管自体へ透過して微量の空気が混入することによる暖房水タンク内の水位の上昇を熱交換器の隔壁の破損による漏水と誤検知することがない検知精度に優れたコージェネレーションシステムの漏水・空気混入検知方法を提供することができる。
【0042】
請求項6に記載の発明によれば、請求項5の効果に加え、
(1)受給側水循環路に接続された暖房機が高所に設置された場合には、ポンプ停止時に暖房機の配管内が負圧になり配管や接続部の比較的程度の小さい接合不良箇所から或いは該配管自体を透過して受給側水循環路に微量の空気が混入し暖房水タンク内の熱媒の水位が上昇する。この水位の上昇は長時間に亘って徐々に上昇するので、漏水判定ステップにおいてタイマにより計測された時間が予め設定された所定時間を超えたと判定した場合は、暖房機の配管の接続部の比較的程度の小さい接合不良箇所から又は暖房機の配管を透過して微量の空気が混入していると検知することにより、暖房機の配管の比較的程度の小さい接合不良箇所から或いは配管自体を透過して受給側水循環路に微量の空気が混入していることを正確に検知することができる検知精度に優れたコージェネレーションシステムの漏水・空気混入検知方法を提供することができる。
【0043】
請求項7に記載の発明によれば、請求項5又は6の効果に加え、
(1)熱交換器の隔壁が破損したことを検知すると共に断水検知ステップにおいて断水の発生を検知することにより、熱交換器の隔壁が破損した状態で断水が発生したことを検知し、熱交換器の隔壁の破損部分から受給側水循環路を流れる熱媒が供給側水循環路に浸入したことを検知し、システムの全機能又は特定の機能を停止することで、使用者が汚水である熱媒を誤って飲用することがなく健康被害が発生することを防ぐことができる安全性に優れたコージェネレーションシステムの漏水・空気混入検知方法を提供することができる。
【0044】
請求項8に記載の発明によれば、請求項7の効果に加え、
(1)供給側水循環路に清水を通水させ管内を洗浄した後、警報の解除及びシステムの全機能又は特定の機能の停止の解除を行うので、熱交換器の隔壁が破損して漏水が発生し且つ給水側に断水が発生し、受給側水循環路の汚水が供給側水循環路に流入した場合であっても断水から回復し管内を洗浄した後でなければ使用できないので飲用による健康被害の発生を防止することができる安全性に優れたコージェネレーションシステムの漏水・空気混入検知方法を提供することができる。
【図面の簡単な説明】
【図1】実施の形態1におけるコージェネレーションシステム及び接続された床暖房パネルを示す要部構成図
【図2】暖房水タンクへの自動補水動作を示すフローチャート
【図3】コージェネレーションシステムの漏水・空気混入検知動作を示すフローチャート
【図4】(a)暖房水タンクへの水の補給開始時の水位を示す説明図
(b)暖房水タンクの予め設定された所定水位(高水位)を示す説明図
(c)暖房水タンクの警告水位を示す説明図
【図5】従来のコージェネレーションシステムを示す構成図
【図6】積層型の熱交換器の部分断面図
【符号の説明】
1 コージェネレーションシステム
2 制御装置
2a タイマ
3 供給側水循環路
3a 圧力スイッチ
4 受給側水循環路
5 熱交換器
6 暖房水タンク
6a オーバーフロー口
7 水位検知部
8 基準電極
9 暖房低水位電極
10 暖房高水位電極
11 暖房警告水位電極
12 暖房補給水管
13 暖房補給水弁
14 暖房ポンプ
15 床暖房パネル
16 放熱管
17a,17b 接続管
18a,18b,19a,19b 接続部
A 建物
B 床
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cogeneration system that operates a gas engine generator or a fuel cell generator using city gas, LP gas, etc., generates electricity, and uses heat generated as a by-product for heating hot water of a hot water storage type, and the Regarding co-generation system leakage / aeration detection methods, especially cogeneration that can prevent sewage such as heating heat transfer water and engine cooling water from flowing into the fresh water circuit when water is shut down, and prevent health damage. The present invention relates to a system and a method for detecting water leakage / aeration.
[0002]
[Prior art]
FIG. 5 is a block diagram showing a conventional cogeneration system.
In FIG. 5, 110 is a circulation path, 110a is a laminated heat exchanger that is disposed in the circulation path 110 and overheats water (heat medium) that is passed through the floor heating panel 110c, and 110b is a heat exchanger 110a. A floor heating circuit for circulating a heat medium between floor heating panels 110c, 111 a hot water storage tank in which temperature stratification is formed, 111a a hot water supply port for supplying hot water, 112 a circulation pump for circulating hot water, and 113 a circulation pump The upper three-way valve 114 for sending the discharged hot water from 112 to one of the hot water storage tanks 111 via one pipe, or 114 for sending the water at the bottom of the hot water storage tank 111 to the circulation path 110 A bottom three-way valve that forms a circulation path together with the upper three-way valve 113, 115 is a heat exchanger for exchanging heat (condensation heat) of the outdoor unit of the air conditioner, and 116 is a gas engine 120 described later. A heat exchanger for exchanging exhaust heat, 117 is an auxiliary heat source unit for heating hot water in the circulation path 110, 118 is an indoor unit for an air conditioner, 119 is an outdoor unit incorporating a gas engine 120, a compressor described later, and 121 is a gas A compressor driven by the engine 120.
[0003]
The operation of the cogeneration system configured as described above will be described.
When hot water stored in the hot water storage tank 111 is stored, the bottom three-way valve 114 takes out water at the bottom of the hot water storage tank 111 into the circulation path 110, and the circulation path 110 while heating the water by the heating units 115 to 117. The heated hot water is returned to the upper portion of the hot water storage tank 111 by the upper three-way valve 113 to form a temperature stratification and hot water is stored. Moreover, in the heat exchanger 110a, the heat medium supplied to the floor heating panel 110c is heated by supplying the heat of hot water circulating in the circulation path 110 to the heat medium circulating in the floor heating circulation path 110b. Can do.
[0004]
FIG. 6 is a partial cross-sectional view of a stacked heat exchanger as an example of the heat exchanger 110a.
In FIG. 6, 110a is a heat exchanger, 122 is a heat supply side of the heat exchanger 110a, that is, a water flow path on the circulation path 110 side, and 123 is a heat reception side of the heat exchanger 110a, that is, a flow path on the floor heating circulation path 110b side. A water channel 124 is a partition wall that separates the water channel 122 and the water channel 123.
In the stacked heat exchanger 110 a, a water passage 122 on the circulation path 110 side and a water passage 123 on the floor heating circulation path 110 b side are disposed across a partition wall 124, and heat is passed between the water passage 122 and the water passage 123. We are exchanging. An infinite number of such water passages 122 and water passages 123 are formed in the heat exchanger 110a, and the heat exchange efficiency is increased by increasing the surface area of the partition wall 124.
[0005]
In addition, the applicant of the present invention is a cogeneration system that uses city gas, LP gas, etc. to operate gas engine generators and fuel cell generators to generate electricity and use the heat generated as a by-product for heating hot water in hot water storage. (Japanese Patent Application No. 2002-207740). This cogeneration system is a water or heat medium that is disposed in a heat supply side water circulation path or a heat reception side water circulation path that receives heat through a heat exchanger and circulates in the supply side water circulation path or the reception side water circulation path. A water tank for temporarily storing the water level and a water level electrode for detecting the water level of the water tank, and when the partition wall of the heat exchanger is damaged, the water or the heat medium flowing through one circulation path Since the water level in the circulation path increases and the water level in the water tank installed in the circulation path rises, it is detected by the water level electrode to detect damage to the heat exchanger partition wall. Is something that can be done.
[Problems to be solved by the invention]
However, the conventional cogeneration system has the following problems.
(1) When the partition wall 124 of the heat exchanger 110a is damaged, there is a problem that it is impossible to detect that the heat medium flowing through the water passage 122 flows into the water passage 123 side.
(2) When the partition wall 124 of the heat exchanger 110a is broken and water breakage occurs on the water supply side, the heat medium flowing through the water passage 123 flows back into the water passage 122 and enters the circulation passage 110. For example, when the user drinks the hot water in the hot water storage tank 111, the health damage may occur and the safety is lacking.
(3) In the cogeneration system filed by the present applicant, when a heater such as a floor heating panel connected to the heat receiving side water circulation path is installed in a high place such as under the floor on the second floor of the building, At the time of stoppage, the pressure in the piping of the floor heating panel becomes negative pressure, and the air level permeates and enters the piping itself from the minute leak location of the connection part, so that the water level of the heat medium in the water tank rises. There was a problem that the water level electrode erroneously detected that the heat exchanger leaked.
[0006]
The present invention solves the above-mentioned conventional problem, and when the partition wall of the heat exchanger is damaged, water leakage occurs and water breakage occurs on the water supply side, the sewage in the receiving side water circulation path enters the supply side water circulation path. Even if the heater connected to the water circulation circuit on the receiving side is installed in a high place, it is possible to prevent the occurrence of health damage due to drinking by notifying the user that it has flowed in and to be excellent in safety. An object of the present invention is to provide a cogeneration system excellent in detection accuracy that does not erroneously detect a rise in the water level in a heating water tank as water leakage, and a method for detecting water leakage and air contamination.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the cogeneration system of the present invention has the following configuration.
[0008]
The cogeneration system according to claim 1 of the present invention includes a supply-side water circulation path through which water heated by exhaust heat from an exhaust heat device such as an engine generator or an auxiliary heat source circulates, and a heater such as floor heating. At least one heat that exchanges heat between a receiving-side water circulation path through which a heat medium made of water or the like circulates, heated water that circulates through the supply-side water circulation path, and a heating medium that circulates through the receiving-side water circulation path A heat exchanger that is capable of heating the heat medium by supplying heat from the water circulating in the supply-side water circulation path to the heat medium circulating in the receiving-side water circulation path by the heat exchanger. A heating system that is a generation system and that controls the whole, a timer that measures time, and heating water in which the heat medium that is disposed in the receiving-side water circulation path and circulates in the receiving-side water circulation path is temporarily stored A tank and the heating water tank A water level detection unit that detects a water level of the heat medium stored in the tank, and the control device activates the timer when the water level detection unit detects that the water level of the heat medium has reached a predetermined water level. Measuring the time until the water level reaches a warning water level higher than the predetermined water level, and if the measured time is within a preset predetermined time, water leakage due to breakage of the partition wall of the heat exchanger Is detected or a large amount of air is mixed into the receiving side water circulation path from a defective portion of the heater or piping.
[0009]
This configuration has the following effects.
(1) If the heat exchanger partition breaks and the water flowing through the supply-side water circuit enters the receiving-side water circuit, or if air is mixed in from a poorly joined location in the piping or connection of the heater, the receiving side Since the amount of water in the water circulation path increases and the water level in the heating water tank rises from the preset predetermined water level to the warning water level, the rise in the water level is detected by the water level detection means. It is possible to detect water leakage or air contamination from the heater or piping to the receiving side water circulation path.
(2) When the heater connected to the water circulation circuit on the receiving side is installed at a high place, the inside of the heater pipe becomes negative pressure when the pump is stopped, and the joints and joints are relatively small in the joints Or a small amount of air mixed into the pipe itself and the water level of the heating medium in the heating water tank rises. Since the rise of the water level gradually rises over a long period of time, the timer is activated when the water level of the heating medium in the heating water tank reaches the predetermined water level until the water level of the heating medium reaches the warning water level from the predetermined water level. If the time measured by the timer is within a predetermined time set in advance, water leakage due to breakage of the heat exchanger partition or a relatively large joint in the heater piping By detecting that there is a defective part and a large amount of air is mixed in the receiving side water circulation path, a small amount of air is mixed in from the relatively small joint defective part of the connection part or through the pipe itself. The rise in the water level in the heating water tank due to this is not erroneously detected as leakage due to breakage of the partition wall of the heat exchanger, and the detection accuracy is excellent.
[0010]
Here, as the water level detection unit, a heating warning water level electrode for detecting a warning water level, a heating high water level electrode for detecting a predetermined water level, and a reference electrode are provided in the heating water tank, and the reference electrode and each water level electrode are provided. A device that determines the water level based on whether or not a low voltage is applied between them and a device that determines the water level with a float switch can be used.
Moreover, as a defective part of a heater or piping, a poor joint part etc. are mentioned.
[0011]
The cogeneration system according to a second aspect of the present invention is the cogeneration system according to the first aspect, wherein the control device, when the time measured by the timer exceeds a predetermined time set in advance, It has the structure which detects that a trace amount of air is mixed in the said receiving side water circulation path from the defective part of a machine or piping, or permeate | transmitting the piping of the said heater.
[0012]
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) When a heater connected to the water circulation circuit on the receiving side is installed at a high place, when the pump is stopped, the inside of the pipe of the heater becomes negative pressure, and the joint and the connection part with relatively small degree of the pipe and connection part Or through the pipe itself, a very small amount of air is mixed into the receiving-side water circulation path, and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually increases over a long period of time, if the time measured by the timer exceeds a predetermined time set in advance, a relatively small joint failure in the pipe connection of the heater By detecting that a small amount of air is mixed in from the location or through the piping of the heater, the water circulation path on the receiving side passes from the relatively small joint failure location of the piping of the heating device or through the piping itself. It is possible to accurately detect that a very small amount of air is mixed in, and the detection accuracy is excellent.
[0013]
A cogeneration system according to a third aspect of the present invention is the cogeneration system according to the first or second aspect, wherein the water breakage occurs when a water break occurs in a water supply connected to a water supply port that supplies water to the supply-side water circulation path. A pressure switch for detecting a drop in pressure is provided, and the control device has a configuration that issues an alarm and stops all functions or specific functions of the system when a drop in water pressure is detected by the pressure switch. .
[0014]
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) When the water supply of the water supply connected to the water supply port of the supply-side water circulation path occurs, the water pressure applied to the supply-side water circulation path disappears, so the pressure of the supply-side water circulation path decreases. The control device detects that the partition wall of the heat exchanger has been damaged by the water level detection unit, and detects a drop in water pressure in the supply-side water circulation path using a pressure switch disposed in the supply-side circulation path, thereby generating water breakage. By detecting this, it was detected that water breakage occurred while the partition of the heat exchanger was damaged, and the heat medium flowing through the receiving side water circulation path from the damaged part of the partition wall of the heat exchanger was mixed into the supply side water circulation path By detecting this and stopping all or specific functions of the system, the user can be prevented from accidentally drinking the heat medium that is sewage, and health damage can be prevented.
[0015]
Here, all the functions of the system are all functions including hot water supply operation, hot water filling operation, bath reheating operation, heating operation, engine generator operation, etc. The specific function is any of these functions Or more than one function. In addition, when the heat medium flowing through the receiving side water circulation path from the damaged part of the partition wall of the heat exchanger enters the supply side water circulation path, it is necessary to stop at least the hot water supply operation in which the water in the supply side water circulation path is supplied to the user. There is.
[0016]
The cogeneration system according to a fourth aspect of the present invention is the cogeneration system according to the third aspect, wherein the control device causes the fresh water to flow through the supply side water circulation path and cleans the inside of the pipe. It has a configuration for canceling the suspension of all the functions of the system or a specific function.
[0017]
With this configuration, in addition to the operation of the third aspect, the following operation is provided.
(1) Since clean water is passed through the supply-side water circulation path and the inside of the pipe is washed, the alarm is released and all functions or specific functions of the system are released, so the heat exchanger partition breaks and water leaks. Even if there is a water outage on the water supply side and the sewage in the receiving water circulation flowed into the supply water circulation passage, it can only be used after recovering from the water loss and cleaning the inside of the pipe. Occurrence can be prevented and safety is excellent.
[0018]
According to a fifth aspect of the present invention, there is provided a method for detecting leakage / aeration in a cogeneration system, wherein heat is received from an exhaust heat device such as an engine generator circulating in a supply-side water circulation path or water heated by an auxiliary heat source. A method for detecting leakage / mixture of water in a cogeneration system that exchanges heat with a heating medium such as water of a heater such as a floor heater that circulates in a side water circulation path, which is disposed in the heat receiving side water circulation path A predetermined water level detecting step for detecting, by a water level detection unit, that the water level of the heating medium in the heating water tank in which the circulating heat medium is temporarily stored reaches a predetermined water level, and the heating medium in the heating water tank A measurement start step that activates a timer when the water level of the heating medium reaches a predetermined water level, and detects that the water level of the heating medium in the heating water tank has reached a warning water level higher than the predetermined water level. A notification water level detection step, and a time measured by the timer from when the water level of the heating medium in the heating water tank reaches the predetermined water level until reaching the warning water level, and the measurement time is preset. A water leakage determination step for determining whether or not it is within a predetermined time, and when the measurement time is determined to be within a predetermined time set in advance in the water leakage determination step, due to breakage of the partition wall of the heat exchanger It has a configuration for detecting that water leakage has occurred or that a large amount of air is mixed in the receiving side water circulation path from a defective portion of the heater or piping.
[0019]
This configuration has the following effects.
(1) When the partition wall of the heat exchanger breaks and the water flowing through the supply-side water circulation path enters the reception-side water circulation path, or air enters the receiving-side water circulation path from the piping or connection part of the connection part of the heater, etc. In this case, since the amount of water in the receiving-side water circulation path increases and the water level of the heating water tank rises from the predetermined water level set in advance to the warning water level, after detecting the predetermined water level in the predetermined water level detection step, in the warning water level detection step By detecting the warning water level and detecting the rise in the water level, it is possible to detect water leakage due to breakage of the partition wall of the heat exchanger or air mixing from the heater or piping to the receiving-side water circulation path.
(2) When the heater connected to the water circulation circuit on the receiving side is installed at a high place, the inside of the heater pipe becomes negative pressure when the pump is stopped, and the joints and joints are relatively small in the joints Or a small amount of air mixed into the pipe itself and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually increases over a long period of time, the timer is activated when the water level of the heating medium in the heating water tank reaches the predetermined water level in the measurement start step, and the water level of the heating medium is changed from the predetermined water level to the warning water level. When the time measured by the timer in the water leakage determination step is determined to be within a predetermined time set in advance, water leakage due to breakage of the heat exchanger partition or heating is performed. By detecting that there is a relatively large joint failure point in the piping of the machine and that a large amount of air is mixed in the receiving side water circulation path, or from the relatively small joint failure point of the connection part or the pipe The rise in the water level in the heating water tank due to permeation through itself and mixing in a small amount of air is not erroneously detected as water leakage due to breakage of the partition wall of the heat exchanger, and the detection accuracy is excellent.
[0020]
Here, in the predetermined water level detection step, the water level detection unit detects that the water level of the heat medium in the heating water tank has reached the predetermined water level. As the water level detection unit, a heating warning water level electrode for detecting a warning water level, a heating high water level electrode for detecting a predetermined water level, and a reference electrode are provided in the heating water tank, and between the reference electrode and each water level electrode. A device that determines the water level based on whether a low voltage is applied and energized, a device that determines the water level with a float switch, and the like are used.
In the warning water level detection step, the above-described water level detection unit detects that the water level of the heating medium in the heating water tank has reached a warning water level higher than a predetermined water level.
In the water leakage determination step, the time from when the water level of the heating medium in the heating water tank reaches the predetermined water level detected at the predetermined water level detection step to when it reaches the warning water level detected at the warning water level detection step is determined in advance. It is determined whether or not it is within the set predetermined time, and water leakage or the like is detected based on this. Here, as the predetermined time set in advance, it is possible to determine whether it has risen in a short time due to water leakage due to breakage of the partition wall of the heat exchanger as described above or has gradually risen over a long time. Is used.
[0021]
The water leakage / aeration detection method for a cogeneration system according to claim 6 of the present invention, in the invention according to claim 5, determines that the measurement time exceeds a predetermined time set in advance in the water leakage determination step. In this case, it is configured to detect that a small amount of air is mixed in the receiving side water circulation path through the defective part of the heater or the pipe or through the pipe of the heater.
[0022]
With this configuration, in addition to the operation of the fifth aspect, the following operation is provided.
(1) When a heater connected to the water circulation circuit on the receiving side is installed at a high place, when the pump is stopped, the inside of the pipe of the heater becomes negative pressure, and the joint and the connection part with relatively small degree of the pipe and connection part Or through the pipe itself, a very small amount of air is mixed into the receiving-side water circulation path, and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually rises over a long period of time, if it is determined that the time measured by the timer in the water leakage determination step exceeds a predetermined time set in advance, a comparison of the pipe connections of the heater is performed. By detecting that a small amount of air is mixed in from a poorly welded spot or through a pipe of the heater, the pipe is permeated from a relatively poorly welded spot of the heater pipe or from the pipe itself. Thus, it is possible to accurately detect that a small amount of air is mixed in the receiving side water circulation path, and the detection accuracy is excellent.
[0023]
The water leakage / aeration detection method for a cogeneration system according to claim 7 of the present invention is the invention according to claim 5 or 6, wherein the water cut-off connected to the water supply port supplying water to the supply side water circulation path is It has the structure which comprises the water stop detection step which detects that it generate | occur | produced, and when all the water stop generation | occurrence | production is detected in the said water stop detection step, it issues a warning and stops all the functions of a system or a specific function.
[0024]
With this configuration, in addition to the operation of the fifth or sixth aspect, the following operation is provided. (1) While detecting that the partition wall of the heat exchanger is broken, and detecting the occurrence of water breakage in the water break detection step, it is detected that water breakage has occurred while the partition wall of the heat exchanger is broken. By detecting that the heat medium flowing through the receiving-side water circulation path has entered the supply-side water circulation path from the damaged part of the partition wall of the exchanger, and stopping all functions or specific functions of the system, the heat that is generated by the user as sewage It is possible to prevent health hazards from occurring without accidentally drinking the medium.
[0025]
Here, in the water cutoff detection step, the occurrence of water cutoff is detected by detecting a decrease in the water pressure in the supply side water circulation path using a pressure switch or the like disposed in the supply side water circulation path.
[0026]
The water leakage / air mixing detection method for a cogeneration system according to an eighth aspect of the present invention is the method according to the seventh aspect, wherein after the fresh water is passed through the supply side water circulation path and the inside of the pipe is washed, It has a configuration for canceling and canceling all functions of the system or stopping a specific function.
[0027]
With this configuration, in addition to the operation of the seventh aspect, the following operation is provided.
(1) After clear water is passed through the supply-side water circuit and the inside of the pipe is washed, the alarm is released and all functions of the system or specific functions are released. Even if there is a water outage on the water supply side and the sewage in the receiving water circulation flowed into the supply water circulation passage, it can only be used after recovering from the water loss and cleaning the inside of the pipe. Occurrence can be prevented and safety is excellent.
[0028]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 is a main configuration diagram showing a cogeneration system and a connected floor heating panel according to the first embodiment.
In FIG. 1, 1 is a cogeneration system according to the first embodiment, 2 is a control device for controlling the whole, 2a is a timer built in the control device 2, 3 is a supply-side water circulation path, 3a is a supply-side water circulation path 3 The pressure switch 4 is provided with a heat exchange path 4 for heat exchange between the water circulating in the receiving side water circulating path 3 and the heat medium such as water circulating in the receiving side water circulating path 4. , 6 is a heating water tank disposed in the receiving-side water circulation path 4, 6 a is an overflow port which is an open part of the heating water tank 6, 7 is a water level detection unit disposed in the heating water tank 6, and 8 is a reference Electrode, 9 is a heating low water level electrode, 10 is a heating high water level electrode, 11 is a heating warning water level electrode, 12 is a heating supply water pipe for supplying water to the heating water tank 6, and 13 is provided in the heating supply water pipe 12. Heating replenishment water valve, 14 is the receiving side water circulation path 4 An installed heating pump, 15 is a floor heating panel laid on the lower part of the floor B on the second floor of the building A, 16 is a heat radiating pipe of the floor heating panel 15, and includes a copper pipe, a crosslinked polyethylene pipe, a polybutene pipe, and the like. Preferably used. 17a and 17b are connecting pipes connecting the floor heating panel 15 and the cogeneration system 1, 18a and 18b are connecting parts connecting the connecting pipes 17a and 17b and the heat radiating pipe 16 of the floor heating panel 15, and 19a and 19b are connecting pipes 17a. , 17b and the receiving side water circulation path 4 in the cogeneration system 1 are connected to each other.
A heat exchanger for exhaust heat (not shown) to which the exhaust heat from an exhaust heat device such as a hot water storage tank (not shown), an auxiliary heat source machine (not shown), an engine generator, etc. is supplied to the supply side water circulation path 3. Is arranged, and the water passed through the supply-side water circulation path 3 is heated by the auxiliary heat source device or the exhaust heat exchanger. The heated water supplies heat to the heat medium flowing through the receiving-side water circulation path 4 in the heat exchanger 5, or is appropriately stored in a hot water storage tank when the heater is not used. In addition, the supply side water circulation path 3 is provided with a water supply port (not shown) and a hot water supply port (not shown) so that heated water and stored hot water can be appropriately supplied from the hot water supply port. The water reduced by the hot water supply is replenished from the water supply port.
The receiving-side water circulation path 4 forms a circulation path through which the heat medium circulates together with the connection pipe 17 and the heat radiation pipe 16 of the floor heating panel 15. The heat medium is discharged from the heating pump 14, passes through the connecting pipe 19a, the connecting pipe 18a, the heat radiating pipe 16, the connecting pipe 18b, and the connecting pipe 17b from the connecting section 19a and enters the receiving-side water circulation path 4 from the connecting section 19b. 5. Return to the heating pump 14 through the heating water tank 6.
The water level detection unit 7 includes a reference electrode 8, a heating low water level electrode 9, a heating high water level electrode 10, and a heating warning water level electrode 11, and the heating low water level electrode 9, the heating high water level electrode 10, and the heating warning water level electrode 11 are respectively provided. The heating water tank 6 extends downward from the inner upper wall surface, and is formed to have a predetermined length such that the tip is positioned at a predetermined low water level, a predetermined high water level, and a warning water level. Thereby, a water level can be judged by applying a low voltage between the reference electrode 8 and each water level electrode, and energizing.
Further, when the control device 2 detects that the water level has fallen below the predetermined low water level by the heating low water level electrode 9, the heating replenishing water valve 13 is opened and the replenishing water is supplied from the water supply port to the heating water tank 6 through the heating replenishing water pipe 12. When the water level reaches a predetermined high water level, it is detected by the heating high water level electrode 10 and the heating replenishing water valve 13 is closed to automatically replenish water. In addition, when the control apparatus 2 opens the heating replenishment water valve 13 and replenishes water, it memorize | stores in the memory | storage device (not shown) in the control apparatus 2 with the time when it was performed.
[0029]
The operation of the cogeneration system 1 configured as described above and the floor heating panel 15 connected to the cogeneration system 1 will be described with reference to FIGS.
FIG. 2 is a flowchart showing an automatic water replenishment operation to the heating water tank, FIG. 3 is a flowchart showing a water leakage / air mixture detection operation of the cogeneration system, and FIG. 4A is a water replenishment to the heating water tank. It is explanatory drawing which shows the water level at the time of starting, FIG.4 (b) is explanatory drawing which shows the preset predetermined water level (predetermined high water level) of a heating water tank, FIG.4 (c) is a warning of a heating water tank It is explanatory drawing which shows a water level.
In FIG. 4, 4 is a receiving side water circulation path, 6 is a heating water tank, 6a is an overflow port, 7 is a water level detector, 8 is a reference electrode, 9 is a heating low water level electrode, 10 is a heating high water level electrode, and 11 is heating. The warning water level electrode 12 is a heating replenishment water pipe, and these are the same as those described with reference to FIG.
[0030]
First, the automatic water replenishment operation of the heating water tank 6 will be described.
In FIG. 2, when the power is turned on, the control device 2 determines whether or not the heating low water level electrode 9 is off, that is, there is no energization (S1). When it is determined that the heating low water level electrode 9 is off, the water level in the heating water tank 6 is lowered to a predetermined low water level or lower as shown in FIG. When it is determined that the heating low water level electrode 9 is off, the heating replenishment water valve 13 is opened, and replenishment of water from the heating replenishment water pipe 12 to the heating water tank 6 is started (S2). In addition, when it determines with the heating low water level electrode 9 not being off, the control apparatus 2 waits until it determines with the heating low water level electrode 9 being off.
When the heating replenishment water valve 13 is opened in step S2 and the replenishment of water to the heating water tank 6 is started, the control device 2 determines whether or not the heating high water level electrode 10 is turned on, that is, whether or not it is energized. (S3). When it is determined that the heating high water level electrode 10 is on, the water level in the heating water tank 6 has reached a predetermined water level (predetermined high water level) as shown in FIG. When it is determined that the heating high water level electrode 10 is on, the control device 2 closes the heating replenishing water valve 13 (S4), stops replenishing water to the heating water tank 6, and ends the replenishing operation to the heating water tank 6. If it is determined in step S3 that the heating high water level electrode 10 is not on, the control device 2 stands by until it is determined that the heating high water level electrode 10 is on.
[0031]
Next, the water leakage / air mixing detection operation of the cogeneration system 1 will be described.
In FIG. 3, the control device 2 determines whether or not the heating high water level electrode 10 is turned on from off, that is, whether it is energized from a non-energized state (step S12, predetermined water level detection step). When it is determined that the heating high water level electrode 10 has been turned on from off, the water level in the heating water tank 6 has reached a predetermined water level (predetermined high water level) as shown in FIG. If it determines with the heating high water level electrode 10 having been turned on from OFF, the timer 2a will be operated and time measurement will be started (S13, measurement start step). 3 and the automatic water supply operation to the heating water tank 6 shown in FIG. 2 are performed independently and in parallel. Therefore, when the control device 2 determines in step S3 in FIG. 2 that the heating high water level electrode 10 is on, it determines that the heating high water level electrode 10 has been turned on from off in step S12 in FIG. Therefore, water leakage / aeration detection operation is performed.
[0032]
Here, if the partition wall separating the supply side water circulation path 3 and the reception side water circulation path 4 in the heat exchanger 5 is damaged, the water pressure connected to the water supply port (not shown) if the heating pump 14 is stopped. As a result, the supply-side water circulation path 3 has a higher pressure, so that water flowing in the supply-side water circulation path 3 enters the receiving-side water circulation path 4 from the damaged portion of the partition wall. When water enters the receiving side water circulation path 4 from the supply side water circulation path 3, the water level of the heat medium stored in the heating water tank 6 rises. On the other hand, as in the first embodiment, the floor heating panel 15 connected to the cogeneration system 1 is laid on the floor B of the second floor of the building A, and a cross-linked polyethylene pipe is used for the heat radiating pipe 16 of the floor heating panel 15. In this case, since air passes through the heat radiating pipe 16 of the floor heating panel 15, the level of the heat medium stored in the heating water tank 6 rises when heating is stopped, that is, when the heating pump 14 is stopped. In order to discriminate the rise in the water level of the heating water tank 6 due to these different factors, the control device 2 is required until the water level in the heating water tank 6 reaches the warning water level after reaching the predetermined water level (predetermined high water level). The time is measured by the timer 2a.
When the timer 2a is activated in step S13, the control device 2 determines whether or not the heating warning water level electrode 11 is turned on, that is, whether or not it is energized (S14, warning water level detection step). When it is determined that the heating warning water level electrode 11 is ON, the water level in the heating water tank 6 has reached a predetermined water level (warning water level) as shown in FIG. When it is determined that the heating warning water level electrode 11 is not on, that is, is not energized, the process returns to step S12. In this case, since the water level of the heating water tank 6 has already exceeded the predetermined water level (predetermined high water level), it is not determined in step S12 that the heating high water level electrode 10 has been turned on from off, and the timer 2a is activated. Without proceeding to step S14. If it is determined in step S14 that the heating warning water level electrode 11 is on, that is, energized, it is determined whether or not the measurement time of the timer 2a until the determination is within 30 minutes (S15, water leakage determination step). In the first embodiment, the internal counter of the timer 2a is set to “30” when the timer 2a is activated in step S13, and thereafter, the internal counter value is decremented by “1” by 1 until it becomes “0” every minute. ing. In step S15, the control device 2 determines whether or not the internal counter value of the timer 2a is not "0", so that the warning water level is reached after reaching the measurement time of the timer 2a, that is, the predetermined water level (predetermined high water level). It is determined whether or not the time to reach is within 30 minutes. Note that the predetermined time of 30 minutes, which is the reference for this determination, is not limited to this, and is appropriately set according to the form of the cogeneration system 1 and the floor heating panel 15 and the like.
When it is determined that the measurement time of the timer 2a is within 30 minutes, the partition wall of the heat exchanger 5 is damaged and water leakage occurs, so that water in the supply side water circulation path 3 is mixed into the receiving side water circulation path 4 side. And a warning is issued by displaying the fact on a display unit such as a remote controller connected to the control device 2 (S17). When it is determined in step S15 that the measurement time of the timer 2a is within 30 minutes, there is a relatively large joint failure point in the heat radiation pipe 16 or the connection portion 18a, 18b of the floor heating panel 15, and the receipt is received from there. Since there is a possibility that a large amount of air is mixed in the side water circulation path 4, it may be detected in step S16.
[0033]
Here, normally, even if the partition inside the heat exchanger 5 is damaged, since the water pressure is applied to the supply side water circulation path 3, the heating pump 14 is not in operation. If it is stopped, the heat medium circulating in the receiving side water circulation path 4 does not enter the supply side water circulation path 3 and there is no possibility that health damage or the like will occur and there is no problem. However, when water breakage occurs in a state where the partition inside the heat exchanger 5 is damaged, the supply-side water circulation path 3 may be at a lower pressure. In this case, the heat medium flowing through the receiving-side water circulation path 4 is separated from the partition wall. Intrudes into the supply side water circulation path 3 from the damaged portion. For this reason, the control device 2 monitors the occurrence of water breakage by detecting a decrease in pressure in the supply-side water circulation path 3.
The control device 2 detects a decrease in the pressure in the supply-side water circulation path 3 by the pressure switch 3a and detects the occurrence of a water break (S18, a water break detection step). When a decrease in pressure in the supply-side water circulation path 3 is detected, the partition wall of the heat exchanger 5 is broken and water leakage occurs, and the heat medium in the reception-side water circulation path 4 is mixed into the supply-side water circulation path 3 side. Is detected (S19), an alarm is issued (S20), and all the functions of the cogeneration system 1 are controlled to be stopped (S21). In step S18, the control device 2 stands by until a pressure drop is detected by the pressure switch 3a. Next, the control device 2 determines whether or not it has been reset (S22), waits until it is reset, and the user passes clean water through the supply-side water circulation path 3 to clean the inside of the pipe and reset button (not shown). When the resetting is performed, for example, by pressing (NO)), it is determined that the resetting is performed, and the process returns to S12.
[0034]
Moreover, when it determines with the measurement time of the timer 2a having exceeded 30 minutes in step S15, it detects that the air permeate | transmits the thermal radiation pipe 16 of the floor heating panel 15, and has mixed into the receiving side water circulation path 4. (S23), a warning is issued by displaying the fact on a display unit such as a remote controller connected to the control device 2, and control is performed to prohibit the floor heating operation, and the heating water shown in FIG. Control is performed so that automatic replenishment to the tank 6 is not performed (S24), and the routine proceeds to step 22. Here, the alarm issued in step S24 and the set floor heating operation prohibition state and automatic replenishment prohibition state are reset by turning off the operation switch provided in the control device 2, turning off the power, or S22. Therefore, the control device 2 continuously issues an alarm unless the operation switch is turned off, the power is turned off, or the reset is not performed, and the floor heating operation prohibition state and the automatic replenishment prohibition state are not performed. To maintain. Note that if it is determined in step S15 that the measurement time of the timer 2a has exceeded 30 minutes, a small amount of air is mixed in from the relatively small joint failure locations of the heat radiation pipe 16 and the connection portions 18a and 18b of the floor heating panel 15. Therefore, it may be detected in step S23.
[0035]
Although the heating system for heating by the floor heating panel 15 has been described in the first embodiment, the present invention is not limited to this, and the engine in which the cooling water heated by the exhaust heat of the engine generator circulates is described. With respect to the exhaust heat system, it is possible to detect leakage of the heat exchanger or the like with the same configuration.
[0036]
As described above, the cogeneration system according to the first embodiment is configured, and thus has the following operations.
(1) When the floor heating panel 15 connected to the receiving-side water circulation path 4 is installed at a high place, when the heating pump 14 is stopped, the inside of the radiating pipe 16 of the floor heating panel 15 becomes negative pressure, When a cross-linked polyethylene pipe is used from a relatively small joint failure portion of the connecting portions 18a and 18b or when the cross-linked polyethylene pipe is used as the heat radiating pipe 16, a small amount of air permeates the heat medium. When mixed in, the heat medium in the heat radiating pipe 16 and the connecting pipes 17a and 17b falls into the heating water tank 6, so that the water level of the heating medium in the heating water tank 6 rises. Since the rise in the water level gradually increases over a long period of time, when the predetermined water level is detected in step S12 (predetermined water level detection step), the timer 2a is activated in step S13 (measurement start step), and step S14 (warning water level). In the detection step), the warning water level is detected, the time until the water level of the heat medium reaches the warning water level from the predetermined water level is measured, and the time measured by the timer 2a in step S15 (leakage determination step) is preset. If it is determined that the time is within a predetermined time (30 minutes), water leakage due to breakage of the partition wall of the heat exchanger 5 has occurred, or there is a relatively large joint failure point in the radiator pipe 16 of the floor heating panel 15. It is detected that a large amount of air is mixed in the receiving side water circulation path 4.
(2) When it is determined that the time measured by the timer 2a in S15 (leakage determination step) exceeds a predetermined time (30 minutes) set in advance, the heat radiating pipe 16 and the connecting portion 18a of the floor heating panel 15 , 18b from a relatively small joint failure point or through the heat radiating pipe 16, it is detected that a very small amount of air is mixed in the receiving side water circulation path 4. Thereby, the inside of the heating water tank 6 is caused by a small amount of air mixed into the receiving side water circulation path 4 from a relatively small joint failure location of the heat radiating pipe 16 and the connecting portions 18a and 18b or through the heat radiating pipe 16 itself. The rise in the water level is not erroneously detected as leakage due to the breakage of the partition wall of the heat exchanger 5, and the detection accuracy is excellent.
(3) By detecting that the partition wall of the heat exchanger 5 is broken and detecting the occurrence of water breakage by detecting the pressure drop of the supply side water circulation path 3 by the pressure switch 3a in step 18 (water breakage detection step). Detecting that water breakage occurred while the partition wall of the heat exchanger 5 was damaged, and that the heat medium flowing through the receiving side water circulation path 4 from the damaged portion of the partition wall of the heat exchanger 5 entered the supply side water circulation path 3. By detecting this and stopping all the functions or specific functions of the cogeneration system 1, it is possible to prevent a user from accidentally drinking a heat medium that is sewage and causing a health hazard.
(4) Since the control device 2 passes clean water through the supply side water circulation path 3 and cleans the inside of the pipe, the control device 2 cancels the alarm and cancels all the functions of the cogeneration system 1 or the stop of the specific function. Even if the partition wall 5 is damaged, water leaks and water is cut off, and even when sewage in the receiving water circulation path 4 flows into the supply water circulation path 3, it is possible to prevent the occurrence of health damage due to drinking. Excellent safety.
[0037]
【The invention's effect】
As described above, according to the cogeneration system and the water leakage / air mixing detection method of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) If the heat exchanger partition breaks and the water flowing through the supply-side water circuit enters the receiving-side water circuit, or if air is mixed in from a poorly joined location in the piping or connection of the heater, the receiving side Since the amount of water in the water circulation path increases and the water level in the heating water tank rises from the preset predetermined water level to the warning water level, the rise in the water level is detected by the water level detection means. It is possible to provide a cogeneration system capable of detecting water leakage or mixing of air from a heater or piping into a receiving-side water circulation path.
(2) When the heater connected to the water circulation circuit on the receiving side is installed at a high place, the inside of the heater pipe becomes negative pressure when the pump is stopped, and the joints and joints are relatively small in the joints Or a small amount of air mixed into the pipe itself and the water level of the heating medium in the heating water tank rises. Since the rise of the water level gradually rises over a long period of time, the timer is activated when the water level of the heating medium in the heating water tank reaches the predetermined water level until the water level of the heating medium reaches the warning water level from the predetermined water level. If the time measured by the timer is within a predetermined time set in advance, water leakage due to breakage of the heat exchanger partition or a relatively large joint in the heater piping By detecting that there is a defective part and a large amount of air is mixed in the receiving side water circulation path, a small amount of air is mixed in from the relatively small joint defective part of the connection part or through the pipe itself. Thus, it is possible to provide a cogeneration system with excellent detection accuracy that does not erroneously detect a rise in the water level in the heating water tank caused by the leakage of water due to breakage of the partition wall of the heat exchanger.
[0038]
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) When a heater connected to the water circulation circuit on the receiving side is installed at a high place, when the pump is stopped, the inside of the pipe of the heater becomes negative pressure, and the joint and the connection part with relatively small degree of the pipe and connection part Or through the pipe itself, a very small amount of air is mixed into the receiving-side water circulation path, and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually increases over a long period of time, if the time measured by the timer exceeds a predetermined time set in advance, a relatively small joint failure in the pipe connection of the heater By detecting that a small amount of air is mixed in from the location or through the piping of the heater, the water circulation path on the receiving side passes from the relatively small joint failure location of the piping of the heating device or through the piping itself. Thus, it is possible to provide a cogeneration system with excellent detection accuracy that can accurately detect that a small amount of air is mixed in.
[0039]
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) When the water supply of the water supply connected to the water supply port of the supply-side water circulation path occurs, the water pressure applied to the supply-side water circulation path disappears, so the pressure of the supply-side water circulation path decreases. The control device detects that the partition wall of the heat exchanger has been damaged by the water level detection unit, and detects a drop in water pressure in the supply-side water circulation path using a pressure switch disposed in the supply-side circulation path, thereby generating water breakage. By detecting that the heat medium flowing through the receiving-side water circulation path from the damaged part of the partition wall of the heat exchanger has entered the supply-side water circulation path, and stopping all the functions or specific functions of the system, It is possible to provide a highly safe cogeneration system that prevents a user from accidentally drinking a heat medium that is dirty water and prevents health damage.
[0040]
According to invention of Claim 4, in addition to the effect of Claim 3,
(1) After clear water is passed through the supply-side water circuit and the inside of the pipe is washed, the alarm is released and all functions or specific functions of the system are released, so the heat exchanger partition is damaged and water leaks. Even if there is a water outage on the water supply side and the sewage in the water supply side of the receiving water flows into the water supply side of the supply side, it can only be used after recovering from the water loss and cleaning the inside of the pipe. It is possible to provide a safe cogeneration system that can prevent the occurrence.
[0041]
According to the invention of claim 5,
(1) When the partition wall of the heat exchanger breaks and the water flowing through the supply-side water circulation path enters the reception-side water circulation path, or air enters the receiving-side water circulation path from the piping or connection part of the connection part of the heater, etc. In this case, since the amount of water in the receiving-side water circulation path increases and the water level of the heating water tank rises from the predetermined water level set in advance to the warning water level, after detecting the predetermined water level in the predetermined water level detection step, in the warning water level detection step Warning By detecting the water level and detecting the rise in the water level, it is possible to detect leakage due to breakage of the heat exchanger partition wall or air contamination from the heater or piping to the water circulation circuit on the receiving side. An aeration detection method can be provided.
(2) When the heater connected to the water circulation circuit on the receiving side is installed at a high place, the inside of the heater pipe becomes negative pressure when the pump is stopped, and the joints and joints are relatively small in the joints Or a small amount of air mixed into the pipe itself and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually increases over a long period of time, the timer is activated when the water level of the heating medium in the heating water tank reaches the predetermined water level in the measurement start step, and the water level of the heating medium is changed from the predetermined water level to the warning water level. When the time measured by the timer in the water leakage determination step is determined to be within a predetermined time set in advance, water leakage due to breakage of the heat exchanger partition or heating is performed. By detecting that there is a relatively large joint failure point in the piping of the machine and that a large amount of air is mixed in the receiving side water circulation path, or from the relatively small joint failure point of the connection part or the pipe Cage with excellent detection accuracy that does not mistakenly detect the rise in the water level in the heating water tank due to the permeation of a small amount of air through itself and leakage due to the damage of the heat exchanger partition Leakage-aeration method for detecting ne configuration system can provide.
[0042]
According to the invention described in claim 6, in addition to the effect of claim 5,
(1) When a heater connected to the water circulation circuit on the receiving side is installed at a high place, when the pump is stopped, the inside of the pipe of the heater becomes negative pressure, and the joint and the connection part with relatively small degree of the pipe and connection part Or through the pipe itself, a very small amount of air is mixed into the receiving-side water circulation path, and the water level of the heating medium in the heating water tank rises. Since the rise in the water level gradually rises over a long period of time, if it is determined that the time measured by the timer in the water leakage determination step exceeds a predetermined time set in advance, a comparison of the pipe connections of the heater is performed. By detecting that a small amount of air is mixed in from a poorly welded spot or through a pipe of the heater, the pipe is permeated from a relatively poorly welded spot of the heater pipe or from the pipe itself. Thus, it is possible to provide a leakage / air mixture detection method for a cogeneration system with excellent detection accuracy that can accurately detect that a small amount of air is mixed in the receiving-side water circulation path.
[0043]
According to invention of Claim 7, in addition to the effect of Claim 5 or 6,
(1) By detecting the breakage of the heat exchanger partition wall and detecting the occurrence of water breakage in the water breakage detection step, it is detected that the water breakage has occurred with the heat exchanger partition wall broken, and heat exchange is performed. It is detected that the heat medium flowing through the receiving side water circuit from the damaged part of the partition wall of the vessel has entered the supply side water circuit, and stops all functions or specific functions of the system. It is possible to provide a leak detection / aeration detection method for a cogeneration system that is excellent in safety and can prevent health damage without accidentally drinking.
[0044]
According to the invention described in claim 8, in addition to the effect of claim 7,
(1) After clear water is passed through the supply-side water circuit and the inside of the pipe is washed, the alarm is released and all functions of the system or specific functions are released. Even if there is a water outage on the water supply side and the sewage in the receiving water circulation flowed into the supply water circulation passage, it can only be used after recovering from the water loss and cleaning the inside of the pipe. It is possible to provide a leak detection / aeration detection method for a cogeneration system excellent in safety that can be prevented from occurring.
[Brief description of the drawings]
FIG. 1 is a main configuration diagram showing a cogeneration system and a connected floor heating panel according to a first embodiment.
FIG. 2 is a flowchart showing an automatic water replenishment operation to a heating water tank.
FIG. 3 is a flowchart showing a water leak / aeration detection operation of the cogeneration system.
FIG. 4A is an explanatory diagram showing the water level at the start of replenishment of water to the heating water tank.
(B) Explanatory drawing which shows the preset predetermined water level (high water level) of a heating water tank
(C) Explanatory drawing showing the warning water level of the heating water tank
FIG. 5 is a configuration diagram showing a conventional cogeneration system.
FIG. 6 is a partial sectional view of a stacked heat exchanger.
[Explanation of symbols]
1 Cogeneration system
2 Control device
2a timer
3 Supply-side water circuit
3a Pressure switch
4 Receiving side water circuit
5 Heat exchanger
6 Heating water tank
6a Overflow port
7 Water level detector
8 Reference electrode
9 Heating low water electrode
10 Heating high water level electrode
11 Heating warning water level electrode
12 Heating water pipe
13 Heating water supply valve
14 Heating pump
15 Floor heating panel
16 Radiation tube
17a, 17b Connection pipe
18a, 18b, 19a, 19b connection part
A building
B floor

Claims (8)

エンジン発電機等の排熱装置の排熱又は補助熱源機により加熱された水が循環する供給側水循環路と、床暖房等の暖房機の水等からなる熱媒が循環する受給側水循環路と、前記供給側水循環路を循環する加熱された水と前記受給側水循環路を循環する熱媒との間で熱交換を行う少なくとも1の熱交換器と、を備え、前記供給側水循環路を循環する水の熱を前記熱交換器により前記受給側水循環路を循環する熱媒に供給して前記熱媒の加熱を行うことが可能なコージェネレーションシステムであって、
全体を制御する制御装置と、時間を計測するタイマと、前記受給側水循環路に配設され前記受給側水循環路を循環する前記熱媒が一時的に貯留される暖房水タンクと、前記暖房水タンクに貯留された前記熱媒の水位を検知する水位検知部と、を備え、
前記制御装置は、前記水位検知部により前記熱媒の水位が所定水位に到達したことを検知すると前記タイマを作動し、前記水位が前記所定水位より高水位の警告水位に到達するまでの時間を計測し、計測された時間が予め設定された所定時間以内であれば、前記熱交換器の隔壁の破損による漏水が発生している又は前記暖房機や配管の不良箇所から前記受給側水循環路に多量の空気が混入していると検知することを特徴とするコージェネレーションシステム。
A supply-side water circulation path through which water heated by exhaust heat from an exhaust heat device such as an engine generator or an auxiliary heat source circulates, and a reception-side water circulation path through which a heat medium composed of water from a heater such as floor heating circulates And at least one heat exchanger that performs heat exchange between the heated water that circulates in the supply-side water circulation path and the heat medium that circulates in the receiving-side water circulation path, and circulates in the supply-side water circulation path A cogeneration system capable of heating the heat medium by supplying the heat of water to the heat medium circulating through the receiving side water circulation path by the heat exchanger,
A control device that controls the whole; a timer that measures time; a heating water tank that is disposed in the receiving-side water circulation path and temporarily stores the heat medium circulating in the receiving-side water circulation path; and the heating water A water level detection unit for detecting the level of the heat medium stored in the tank,
The controller activates the timer when the water level detection unit detects that the water level of the heat medium has reached a predetermined water level, and determines a time until the water level reaches a warning water level higher than the predetermined water level. If the measured time is within a predetermined time set in advance, water leakage due to breakage of the partition wall of the heat exchanger has occurred, or from the defective part of the heater or piping to the receiving side water circulation path A cogeneration system that detects when a large amount of air is mixed.
前記制御装置は、前記タイマにより計測された時間が予め設定された所定時間を超えた場合は、前記暖房機や配管の不良箇所から又は前記暖房機の配管を透過して前記受給側水循環路に微量の空気が混入していると検知することを特徴とする請求項1に記載のコージェネレーションシステム。When the time measured by the timer exceeds a predetermined time set in advance, the control device passes from the defective portion of the heater or piping or through the piping of the heater to the receiving-side water circulation path. The cogeneration system according to claim 1, wherein it detects that a very small amount of air is mixed. 前記供給側水循環路へ給水する給水口に接続された水道の断水が発生した場合に前記断水を圧力の低下として検知する圧力スイッチを備え、前記制御装置は、前記圧力スイッチにより水圧の低下を検知した場合に、警報を発してシステムの全機能又は特定の機能を停止することを特徴とする請求項1又は2に記載のコージェネレーションシステム。A pressure switch that detects the water break as a pressure drop when a water break occurs in a water supply connected to a water supply port that supplies water to the supply-side water circulation path, and the control device detects a drop in water pressure by the pressure switch. In this case, the cogeneration system according to claim 1 or 2, wherein an alarm is issued to stop all functions or specific functions of the system. 前記制御装置は、前記供給側水循環路に清水を通水させ管内を洗浄した後、前記警報の解除及び前記システムの全機能又は特定の機能の停止の解除を行うことを特徴とする請求項3に記載のコージェネレーションシステム。The said control apparatus performs cancellation | release of the warning and the cancellation | release of the stop of all the functions of a system, or a specific function, after letting fresh water flow through the said supply side water circulation path and wash | cleaning the inside of a pipe | tube. Cogeneration system described in 1. 供給側水循環路を循環するエンジン発電機等の排熱装置の排熱又は補助熱源機により加熱された水と受給側水循環路を循環する床暖房等の暖房機の水等からなる熱媒との間で熱交換を行うコージェネレーションシステムの漏水・空気混入検知方法であって、
前記熱受給側水循環路に配設され循環する前記熱媒が一時的に貯留される暖房水タンク内の前記熱媒の水位が所定水位に到達したことを水位検知部により検知する所定水位検知ステップと、
前記暖房水タンク内の前記熱媒の水位が所定水位に到達するとタイマを作動させる計測開始ステップと、
前記暖房水タンク内の前記熱媒の水位が前記所定水位より高水位の警告水位に到達したことを検知する警告水位検知ステップと、
前記暖房水タンク内の前記熱媒の水位が前記所定水位に到達してから前記警告水位に到達するまでの前記タイマによる計測時間を検出し、前記計測時間が予め設定された所定時間以内であるか否かを判定する漏水判定ステップと、
を備え、
前記漏水判定ステップにおいて前記計測時間が予め設定された所定時間以内と判定した場合、前記熱交換器の隔壁の破損による漏水が発生している又は前記暖房機や配管の不良箇所から前記受給側水循環路に多量の空気が混入していると検知することを特徴とするコージェネレーションシステムの漏水・空気混入検知方法。
A heat medium comprising exhaust heat from an exhaust heat generator such as an engine generator that circulates in the supply-side water circulation path or water heated by an auxiliary heat source and water in a heater such as floor heating that circulates in the reception-side water circulation path A method for detecting leakage and air contamination in a cogeneration system that exchanges heat between
A predetermined water level detection step of detecting, by a water level detection unit, that the water level of the heating medium in the heating water tank that is disposed in the heat receiving side water circulation path and temporarily stores the circulating heat medium has reached a predetermined water level. When,
A measurement starting step of operating a timer when the water level of the heating medium in the heating water tank reaches a predetermined water level;
A warning water level detection step of detecting that the water level of the heating medium in the heating water tank has reached a warning water level higher than the predetermined water level;
The time measured by the timer from when the water level of the heating medium in the heating water tank reaches the predetermined water level to the warning water level is detected, and the measurement time is within a preset predetermined time A water leakage determination step for determining whether or not,
With
If it is determined in the water leakage determination step that the measurement time is within a predetermined time set in advance, water leakage due to breakage of the partition wall of the heat exchanger has occurred or the receiving side water circulation from a defective part of the heater or piping A method for detecting leakage / aeration in a cogeneration system, characterized by detecting that a large amount of air is mixed in a road.
前記漏水判定ステップにおいて前記計測時間が予め設定された所定時間を超えたと判定した場合、前記暖房機や配管の不良箇所から又は前記暖房機の配管へ透過して前記受給側水循環路に微量の空気が混入していると検知することを特徴とする請求項5に記載のコージェネレーションシステムの漏水・空気混入検知方法。If it is determined in the water leakage determination step that the measurement time has exceeded a predetermined time set in advance, a small amount of air is transmitted from the defective portion of the heater or piping or to the piping of the heater to the receiving-side water circulation path. 6. The method for detecting leakage / aeration of a cogeneration system according to claim 5, wherein it is detected that water is mixed. 前記供給側水循環路へ給水する給水口に接続された水道の断水が発生したことを検知する断水検知ステップを備え、
前記断水検知ステップにおいて前記断水の発生を検知した場合に、警報を発してシステムの全機能又は特定の機能を停止することを特徴とする請求項5又は6に記載のコージェネレーションシステムの漏水・空気混入検知方法。
Comprising a water-off detection step for detecting the occurrence of water-supply water stop connected to a water supply port for supplying water to the supply-side water circulation path;
7. The water leakage / air of the cogeneration system according to claim 5, wherein when the occurrence of water breakage is detected in the water breakage detection step, an alarm is issued to stop all or specific functions of the system. Mixing detection method.
前記供給側水循環路に清水を通水させ管内を洗浄した後、前記警報の解除及び前記システムの全機能又は特定の機能の停止の解除を行うことを特徴とする請求項7に記載のコージェネレーションシステムの漏水・空気混入検知方法。8. The cogeneration system according to claim 7, wherein after the clean water is passed through the supply-side water circulation path and the inside of the pipe is washed, the alarm is canceled and the entire function of the system or the stop of the specific function is canceled. System leakage / aeration detection method.
JP2003051721A 2003-02-27 2003-02-27 Cogeneration system and method for detecting leakage / aeration Expired - Fee Related JP4099084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051721A JP4099084B2 (en) 2003-02-27 2003-02-27 Cogeneration system and method for detecting leakage / aeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051721A JP4099084B2 (en) 2003-02-27 2003-02-27 Cogeneration system and method for detecting leakage / aeration

Publications (2)

Publication Number Publication Date
JP2004257714A JP2004257714A (en) 2004-09-16
JP4099084B2 true JP4099084B2 (en) 2008-06-11

Family

ID=33116797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051721A Expired - Fee Related JP4099084B2 (en) 2003-02-27 2003-02-27 Cogeneration system and method for detecting leakage / aeration

Country Status (1)

Country Link
JP (1) JP4099084B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511992B2 (en) * 2005-05-10 2010-07-28 パロマ工業株式会社 Hot water circulation heating device
JP4752452B2 (en) * 2005-10-27 2011-08-17 パナソニック株式会社 Water heater
JP4942118B2 (en) * 2008-08-08 2012-05-30 リンナイ株式会社 Leakage detection system for heat exchanger in hot water heater
KR101450559B1 (en) 2008-08-26 2014-10-14 엘지전자 주식회사 Co-generation system and a method of the same
JP5224115B2 (en) * 2008-09-30 2013-07-03 株式会社ノーリツ Water heater
JP5255687B2 (en) * 2011-12-09 2013-08-07 大阪瓦斯株式会社 Engine-driven heat pump device
JP5940378B2 (en) 2012-06-01 2016-06-29 株式会社東芝 MRI apparatus unit cooling apparatus and MRI apparatus

Also Published As

Publication number Publication date
JP2004257714A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP5170219B2 (en) Water heater abnormality detection device
JP4099084B2 (en) Cogeneration system and method for detecting leakage / aeration
JP2006112763A (en) Drain discharge device for heat source equipment
JP3633562B2 (en) Water heater abnormality detection device
JP6064166B2 (en) Heat exchange system
JP5028656B2 (en) Water heater abnormality detection device
JP2014153003A5 (en)
JP5975271B2 (en) Hot water storage hot water supply system
JP5577109B2 (en) Solar water heater
JP2009092330A (en) Abnormality detection device for hot water supplying apparatus
JP2012207928A (en) Water leakage detection system
JP3529707B2 (en) Large capacity hot water supply system and its operation control method
JP4867282B2 (en) Water heater
JP2004251591A (en) Heat medium supply equipment
JP3359105B2 (en) Large capacity hot water supply system with combined heat source and operation control method thereof
KR100629777B1 (en) Pipe water leakage control method of boiler
JP3359104B2 (en) Large capacity hot water supply system and its operation control method
JP3970194B2 (en) Heat source equipment
JP5146727B2 (en) Combustion equipment
JP4942118B2 (en) Leakage detection system for heat exchanger in hot water heater
JPH09229478A (en) Large capacity water heater
JP2003227656A (en) Cogeneration system
KR20000032686A (en) Method of indicating water leakage of pipeline for gas boiler
JP2004251888A (en) Equipment supplying heating medium
JP2004053054A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees