JP2004251591A - Heat medium supply equipment - Google Patents

Heat medium supply equipment Download PDF

Info

Publication number
JP2004251591A
JP2004251591A JP2003044669A JP2003044669A JP2004251591A JP 2004251591 A JP2004251591 A JP 2004251591A JP 2003044669 A JP2003044669 A JP 2003044669A JP 2003044669 A JP2003044669 A JP 2003044669A JP 2004251591 A JP2004251591 A JP 2004251591A
Authority
JP
Japan
Prior art keywords
heat medium
hot water
heating
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003044669A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kashiwabara
義孝 栢原
Shin Iwata
伸 岩田
Masahiro Yoshimura
正博 吉村
Hiroshi Takagi
博司 高木
Satoru Yoshida
哲 吉田
康二 ▲高▼倉
Koji Takakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Chofu Seisakusho Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Chofu Seisakusho Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Chofu Seisakusho Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2003044669A priority Critical patent/JP2004251591A/en
Publication of JP2004251591A publication Critical patent/JP2004251591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely discriminate a leak abnormality of a heat exchanger. <P>SOLUTION: This heat medium supply equipment includes: a circulating means 31 for circulating hot water to be supplied in the state of passing through a heat exchanger 6 for performing heat exchange with a heat medium having a lower pressure than the hot water to be supplied through a circulating path 4; a heat medium circulating means 39 for circulating the heat medium in an expansion tank 41 in the state of passing through the heat exchanger 6 through heat medium circulating paths 37, 38; and an operation control means for controlling the operation. The operation control means operates the heat medium circulating means 39 when an abnormal increase in quantity of storing heat medium in the expansion tank 41 to discriminate whether or not leak abnormality of the heat exchanger occurs based on a change in quantity of storing heat medium in the expansion tank 41 in the operating condition. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備に関する。
【0002】
【従来の技術】
上記のような熱媒供給設備は、運転制御手段が、循環手段と熱媒循環手段とを運転させることにより、熱交換器において給湯用湯水と熱媒とを熱交換させて、加熱手段にて加熱された給湯用湯水にて熱媒を加熱したり、逆に、加熱手段にて加熱された熱媒にて給湯用湯水を加熱するようにしているものである。
【0003】
上記のような熱媒供給設備において、従来では、加熱手段として、熱電併給装置の排熱により加熱させる排熱用熱交換器や、バーナの燃焼により加熱させる補助加熱装置が設けられ、循環手段が、加熱手段にて加熱された給湯用湯水を貯湯タンクに貯湯する貯湯状態と、加熱手段にて加熱された給湯用湯水を熱交換器に供給する熱源状態とに切換可能に構成されている。
そして、運転制御手段が、熱媒循環手段を運転させるとともに、循環手段を熱源状態にて運転させることにより、熱交換器において給湯用湯水にて熱媒を加熱させて、その加熱された熱媒を床暖房装置や浴室暖房装置などの端末に供給するようにしている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−248909号公報
【0005】
【発明が解決しようとする課題】
上記従来の熱媒供給設備では、熱交換器の破損や腐食によって熱交換器の漏れ異常が発生すると、熱交換器において、熱媒が給湯用湯水よりも低圧であれば、給湯用湯水が熱媒循環路側に流入することになり、逆に、熱交換器において、給湯用湯水が熱媒よりも低圧であれば、熱媒が循環路側に流入することになる。
そして、熱媒が循環路側に流入することになると、熱媒が給湯用湯水に混じることとなって、熱媒が混じった給湯用湯水が給湯されることになり、汚れた給湯用湯水が給湯されてしまうことになる。
【0006】
したがって、上記従来の熱媒供給設備では、上述の不利を解消するために、加熱手段や貯湯タンクの設置位置を熱交換器の設置位置よりも高くすることによって、熱交換器において、熱媒を給湯用湯水よりも低圧にして、熱交換器の漏れ異常が発生したときに、給湯用湯水が熱媒循環路側に流入することを許容しても、熱媒が循環路側に流入することを阻止している。
【0007】
このように、上記従来の熱媒供給設備では、熱交換器の漏れ異常が発生すると、給湯用湯水が熱媒循環路側に流入することを許容しているので、その給湯用湯水の熱媒循環路側への流入により、膨張タンク内の熱媒の貯留量が増加して、膨張タンク内の熱媒の貯留量が設定量よりも多量となったり、膨張タンクから熱媒が漏れる膨張タンクの熱媒の貯留量の異常上昇が発生することになる。
そこで、上記従来の熱媒供給設備では、膨張タンクの熱媒の貯留量の異常上昇が発生するか否かを監視し、膨張タンクの熱媒の貯留量の異常上昇の発生を検出することによって、熱交換器の漏れ異常が発生していると判別していた。
【0008】
しかしながら、上記従来の熱媒供給設備では、熱媒循環経路中への空気の入り込みによって、膨張タンク内の熱媒の貯留量が増加して、膨張タンクの熱媒の貯留量の異常上昇が発生することがあるので、膨張タンクの熱媒の貯留量の異常上昇が発生する原因としては、熱交換器の漏れ異常の他に、熱媒循環経路中への空気の入り込みの場合もある。
したがって、単純に、膨張タンクの熱媒の貯留量の異常上昇の発生を検出することにより、熱交換器の漏れ異常と判別するだけでは、熱交換器の漏れ異常が発生していないにもかかわらず、熱交換器の漏れ異常が発生していると判別してしまうことになる。
【0009】
ちなみに、熱媒循環経路中への空気の入り込みについて説明を加えると、熱媒循環路中の配管としては樹脂管などが用いられるが、この樹脂管は、空気の通過を完全に阻止できるものではないので、熱媒循環路中の配管を通して熱媒循環経路中に空気が入り込むことになる。
また、とくに、熱交換器の設置位置よりも高い位置に熱媒を供給する端末を設置した場合には、端末から熱交換器への熱媒循環経路中が負圧状態となるので、その負圧状態によって熱媒循環経路中に空気が入り込むことになる。
【0010】
本発明は、かかる点に着目してなされたものであり、その目的は、熱交換器の漏れ異常を的確に判別することができる熱媒供給設備を提供する点にある。
【0011】
【課題を解決するための手段】
この目的を達成するために、請求項1に記載の発明によれば、給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備において、
前記運転制御手段は、前記膨張タンクの熱媒の貯留量の異常上昇が発生すると、前記熱媒循環手段を運転させて、その運転状態における前記膨張タンク内の熱媒の貯留量の変化に基づいて、前記熱交換器の漏れ異常か否かを判別するように構成されている。
【0012】
すなわち、運転制御手段は、膨張タンクの熱媒の貯留量の異常上昇が発生すると、熱媒循環手段を運転させるので、その熱媒循環手段の運転により、熱媒循環経路中に入り込んだ空気を熱媒とともに大気開放式の膨張タンクに戻して、熱媒循環経路中に入り込んだ空気を抜くことができることになる。
したがって、熱媒循環経路中への空気の入り込みにより膨張タンクの熱媒の貯留量の異常上昇が発生した場合には、熱媒循環手段を運転させることによって、熱媒循環経路中に入り込んだ空気が抜けて、熱媒循環手段の運転状態における膨張タンク内の熱媒の貯留量が下降することになる。
それに対して、熱交換器の漏れ異常により膨張タンクの熱媒の貯留量の異常上昇が発生した場合には、熱媒循環手段を運転させても、給湯用湯水の熱媒循環路側への流入が継続されることになるので、熱媒循環手段の運転状態における膨張タンク内の熱媒の貯留量は下降しないことになる。
その結果、熱媒循環経路中への空気の入り込みにより膨張タンクの熱媒の貯留量の異常上昇が発生した場合と熱交換器の漏れ異常により膨張タンクの熱媒の貯留量の異常上昇が発生した場合とでは、熱媒循環手段を運転させた状態における膨張タンク内の熱媒の貯留量の変化に差が生じることになる。
【0013】
したがって、運転制御手段は、膨張タンクの熱媒の貯留量の異常上昇が発生すると、熱媒循環手段を運転させて、その運転状態における膨張タンク内の熱媒の貯留量の変化を監視しているので、膨張タンク内の熱媒の貯留量の変化に基づいて、熱媒循環経路中への空気の入り込みにより膨張タンクの熱媒の貯留量の異常上昇が発生した場合と、熱交換器の漏れ異常により膨張タンクの熱媒の貯留量の異常上昇が発生した場合とを区別することができることになる。
【0014】
以上のことから、熱媒循環経路中への空気の入り込みの場合と区別して、熱交換器の漏れ異常を的確に判別することができることとなって、熱交換器の漏れ異常を的確に判別することができる熱媒供給設備を提供できるに至った。
【0015】
請求項2に記載の発明によれば、給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備において、
前記運転制御手段は、前記膨張タンクの熱媒の貯留量の増加速度に基づいて、前記熱交換器の漏れ異常か否かを判別するように構成されている。
【0016】
すなわち、熱媒循環経路中へ入り込む空気の量は、熱交換器の漏れ異常により熱媒循環路側に流入する給湯用湯水の量よりも少量であるので、膨張タンク内の熱媒の貯留量の増加速度は、熱媒循環経路中の空気の入り込みによる場合に比べて、熱交換器の漏れ異常による場合の方が速くなる。
したがって、熱媒循環経路中への空気の入り込みの場合と熱交換器の漏れ異常の場合とでは、膨張タンク内の熱媒の貯留量の増加速度に差が生じることになる。
ちなみに、膨張タンクの熱媒の貯留量の増加速度とは、膨張タンクの熱媒の水位の上昇速度や、膨張タンクから熱媒が漏れるオーバーフロー状態の発生度合いのことである。
【0017】
そして、運転制御手段は、膨張タンクの熱媒の貯留量の増加速度を監視しているので、膨張タンク内の熱媒の貯留量の増加速度に基づいて、熱媒循環経路中への空気の入り込みの場合と、熱交換器の漏れ異常の場合とを区別することができることになる。
【0018】
以上のことから、熱媒循環経路中への空気の入り込みの場合と区別して、熱交換器の漏れ異常の場合を的確に判別することができることとなって、熱交換器の漏れ異常を的確に判別することができる熱媒供給設備を提供できるに至った。
【0019】
請求項3に記載の発明によれば、前記運転制御手段は、前記膨張タンクの熱媒の貯留量の増加が連続して検出されかつその増加速度が設定速度よりも速ければ、前記熱交換器の漏れ異常と判別するように構成されている。
【0020】
すなわち、熱交換器の漏れ異常が発生すると、給湯用湯水の熱媒循環路側への流入は、連続的に生じかつその流入量も多いので、膨張タンクの熱媒の貯留量は、連続して増加しかつその増加速度が設定速度よりも速いものとなる。
そして、運転制御手段は、膨張タンクの熱媒の貯留量の増加が連続して検出されかつその増加速度が設定速度よりも速ければ、熱交換器の漏れ異常と判別するので、熱交換器の漏れ異常を的確に判別することができることになる。
したがって、熱交換器の漏れ異常でないにもかかわらず、熱交換器の漏れ異常を検出してしまう誤検出を防止することができることになる。
【0021】
請求項4に記載の発明によれば、給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備において、
前記運転制御手段は、設定時間が経過するごとに前記熱媒循環手段を運転させて、その運転後から次回運転させるまでの間に、前記膨張タンクの熱媒の貯留量の異常上昇が発生すると、前記熱交換器の漏れ異常と判別するように構成されている。
【0022】
すなわち、運転制御手段は、設定時間が経過するごとに熱媒循環手段を運転させるので、その熱媒循環手段の運転により、熱媒循環経路中に入り込んだ空気を熱媒とともに大気開放式の膨張タンクに戻して、設定時間が経過するごとに熱媒循環経路中に入り込んだ空気を抜くことができることになる。
そして、熱媒循環経路中への空気の入り込みにより膨張タンクの熱媒の貯留量の異常上昇が発生するまでの時間よりも短い時間を設定時間と設定することによって、熱媒循環経路中への空気の入り込みにより膨張タンクの熱媒の貯留量の異常上昇が発生する前に、熱媒循環手段を運転させて熱媒循環経路中に入り込んだ空気を抜くことができることになる。
したがって、運転制御手段は、設定時間が経過するごとに熱媒循環手段を運転させることによって、膨張タンクの熱媒の貯留量の異常上昇が発生する原因として、熱媒循環経路中への空気の入り込みを排除した状態において、膨張タンクの熱媒の貯留量の異常上昇が発生しているか否かによって、熱交換器の漏れ異常か否かを判別できることになる。
【0023】
以上のことから、膨張タンクの熱媒の貯留量の異常上昇が発生する原因として、熱媒循環経路中への空気の入り込みを排除した状態において、膨張タンクの熱媒の貯留量の異常上昇の発生により、熱交換器の漏れ異常か否かを判別することができることとなって、熱交換器の漏れ異常を的確に判別することができる熱媒供給設備を提供できるに至った。
【0024】
【発明の実施の形態】
本発明にかかる熱媒供給設備をコージェネレーションシステムに適応させた例を図面に基づいて説明する。
〔第1実施形態〕
このコージェネレーションシステムは、図1および図2に示すように、ガスエンジンによって発電機を駆動するように構成された熱電併給装置1と、その熱電併給装置1の排熱を利用しながら、貯湯、給湯および暖房を行う貯湯ユニット2と、熱電併給装置1と貯湯ユニット2の運転を制御する運転制御手段としての運転制御部Hなどから構成されている。
【0025】
前記貯湯ユニット2は、給湯用湯水を貯湯する貯湯タンク3、貯湯タンク3内の給湯用湯水を循環するための循環路4、循環路4を通流する給湯用湯水を加熱する加熱手段5、循環路4を通流する給湯用湯水と端末供給用の熱媒との熱交換用の熱交換器としての暖房用熱交換器6、循環路4を通流する給湯用湯水にて浴槽18内の湯水を加熱させる追焚用熱交換器7などから構成されている。
【0026】
前記貯湯タンク3内には、その湯温を検出することにより貯湯量を検出するサーミスタSが複数設けられ、貯湯タンク3には、その底部から貯湯タンク3に水道水圧を用いて給水する給水路8が接続され、その上部から給湯するための給湯路9が接続され、使用された量だけの水を給水路8から貯湯タンク3に給水するように構成されている。
ちなみに、給湯路9には、オーバーフロー路55が接続され、そのオーバーフロー路55にバキュームブレーカ56が設けられている。
【0027】
前記給湯路9には、給水路8から分岐された混合用給水路10が接続され、その接続箇所に給湯路9からの湯水と混合用給水路10からの水との混合比を調整自在なミキシングバルブ11が設けられている。
前記給水路8と混合用給水路10との分岐箇所には、給水温度を検出する給水サーミスタ12が設けられている。
【0028】
また、給湯路9におけるミキシングバルブ11よりも上流側には、貯湯タンク3の上部から給湯路9に給湯された湯水の温度を検出する貯湯出口サーミスタ13が設けられ、給湯路9におけるミキシングバルブ11よりも下流側には、ミキシングバルブ7にて混合された湯水の温度を検出するミキシングサーミスタ14および流量制御弁15が設けられている。
【0029】
前記給湯路9におけるミキシングサーミスタ14および流量制御弁15の配設箇所よりも下流側が、台所や洗面所などの図外の給湯栓に給湯する一般給湯路16と、浴槽18に湯水を供給するための湯張り路17とに分岐されている。
そして、湯張り路17が浴槽18からの風呂戻り路19に接続され、風呂戻り路19および風呂往き路20の両路を通して浴槽18に湯水を供給するようにしている。
前記一般給湯路16には、一般給湯路16を通流する湯水の流量を検出する給湯流量センサ21が設けられ、湯張り路17には、湯張り路17を通流する湯水の流量を検出する湯張り流量センサ22、湯張り電磁弁23、バキュームブレーカ24、湯張り逆止弁25が上流側から順に設けられている。
【0030】
給湯操作手段Kが、貯湯出口サーミスタ13、給水サーミスタ12、ミキシングバルブ11、ミキシングサーミスタ14、および、湯張り電磁弁23などにより構成されている。
【0031】
前記循環路4と貯湯タンク3とが、循環路4を通流する給湯用湯水を貯湯タンク3内に戻す、または、貯湯タンク3内の給湯用湯水を循環路4に取り出すために、貯湯タンク3の上部と底部の合計2箇所で連通接続されている。
そして、貯湯タンク3の上部には、循環路4の給湯用湯水を貯湯タンク3内に供給するための貯湯路26が連通接続され、その貯湯路26には、貯湯開閉弁27が設けられている。
また、貯湯タンク3の底部には、貯湯タンク3内の給湯用湯水を循環路4に取り出すための取り出し路28が連通接続され、その取り出し路18と循環路4との接続箇所に三方弁29が設けられている。
【0032】
そして、循環路4には、給湯用湯水の循環方向の順に、循環路4の湯水の循環量を検出する循環流量センサ30、循環手段としての循環ポンプ31、加熱手段5、循環路4の給湯用湯水の循環量を調整する循環流量調整バルブ32、加熱手段5にて加熱された給湯用湯水の温度を検出する加熱温サーミスタ33、給湯用湯水の通流を断続する断続弁34、暖房用熱交換器6、追焚用熱交換器7が設けられている。
【0033】
給湯用湯水循環手段Eが、循環路4、循環ポンプ31、循環流量センサ30、循環流量調整バルブ32、加熱温サーミスタ33、貯湯開閉弁27、および、断続弁34などにより構成されている。
そして、給湯用湯水循環手段Eは、貯湯タンク3から取り出した給湯用湯水を加熱手段5にて加熱したのち、貯湯タンク3に貯湯したり、加熱手段5にて加熱した給湯用湯水を暖房用熱交換器6および追焚用熱交換器7に供給して、暖房用熱交換器6および追焚用熱交換器7を通過した給湯用湯水を加熱手段5に戻すように構成されている。
【0034】
前記加熱手段5は、熱電併給装置1におけるガスエンジンの冷却水により給湯用湯水を加熱する排熱式熱交換器5aと、バーナの燃焼により給湯用湯水を加熱する補助加熱手段5bとから構成されている。
前記排熱式熱交換器5aは、熱電併給装置1の運転中に、冷却水循環ポンプ35を作動させて、冷却水用膨張タンク54内のガスエンジンの冷却水を冷却水循環路36を通して排熱式熱交換器5aに供給させて、循環路4を通流する給湯用湯水を加熱するように構成されている。
前記補助加熱手段5bは、図示はしないが、ガス燃焼式のバーナおよびこのバーナに燃焼用空気を供給するファンなどが設けられ、バーナの燃焼により循環路4を通流する給湯用湯水を加熱し、ファンの回転速度およびバーナへの燃料ガス供給量を調整して、補助加熱手段5bにて加熱後の給湯用湯水の温度を調整するように構成されている。
【0035】
前記暖房用熱交換器6には、暖房戻り路37および暖房往き路38が接続され、暖房ポンプ39を作動させることにより、暖房戻り路37および暖房往き路38を通して循環する端末供給用の熱媒を通過させて、加熱手段5にて加熱された給湯用湯水にて端末供給用の熱媒を加熱させるように構成されている。
【0036】
前記暖房戻り路37には、熱媒の循環方向の上流側から順に、暖房戻り路37の熱媒の温度を検出する暖房戻りサーミスタ40、大気開放式の膨張タンク41、暖房ポンプ39が設けられ、暖房往き路38には、暖房往き路37の熱媒の温度を検出する暖房往きサーミスタ42が設けられている。
また、暖房戻り路37と暖房往き路38とが、バイパス路43にて連通接続されている。
【0037】
前記暖房ポンプ39を作動させることにより、膨張タンク41内の熱媒を暖房用熱交換器6を通過させる状態で暖房往き路38および暖房戻り路37を通して端末Tに循環供給するように構成され、熱媒循環路が、熱媒戻り路37および熱媒往き路38により構成され、熱媒供給手段が、暖房ポンプ39により構成されている。
また、前記端末Tは、詳述はしないが、床暖房装置や浴室乾燥暖房装置など供給される熱媒にて暖房を行う暖房端末にて構成されている。
【0038】
そして、暖房用熱交換器6は膨張タンク41よりも低い位置に設けられているので、膨張タンク41をできる限り低く設定するようにし、断水時にバキュームブレーカ56を作動させ、タンクヘッドにより暖房戻り路37と暖房往き路38とからなる熱媒循環路や冷却水循環路36を、循環路4よりも低圧になるように構成されている。
【0039】
前記膨張タンク41には、貯留している熱媒の水位の上限を検出する上限センサ44および下限を検出する下限センサ45が設けられ、膨張タンク41の最上部には、膨張タンク41内の熱媒の貯留量が設定量よりも多量となったり、膨張タンク41から熱媒が漏れる膨張タンク41の熱媒の貯留量の異常上昇を検出する水位オーバーセンサ46が設けられている。
また、膨張タンク41には、給水路8から分岐させて膨張タンク41に給水するためのタンク給水路47が接続され、そのタンク給水路47には、補給水電磁弁48が設けられている。
そして、下限センサ45にて熱媒の水位が下限となると、上限センサ44にて熱媒の水位が上限となるまで補給水電磁弁48を開弁させて、膨張タンク41へ熱媒を補給するように構成されている。
【0040】
暖房操作手段Jが、暖房戻りサーミスタ40、暖房往きサーミスタ42、暖房ポンプ39、上限センサ44、下限センサ45、水位オーバーセンサ46、および、補給水電磁弁48などにより構成されている。
【0041】
前記追焚用熱交換器7には、風呂戻り路19および風呂往き路20が接続され、風呂ポンプ49を作動させることにより、風呂戻り路19および風呂往き路20を通して循環する浴槽18内の湯水を通過させて、加熱手段5にて加熱された給湯用湯水にて浴槽18内の湯水を加熱させるように構成されている。
【0042】
前記風呂戻り路19には、浴槽18内の湯水の循環方向の上流側から順に、浴槽18内の湯水の水位を検出する水位センサ50、風呂戻り路19の湯水の温度を検出する風呂戻りサーミスタ51、二方弁52、風呂ポンプ49、風呂水流スイッチ53が設けられている。
風呂操作手段Fが、水位センサ50、風呂戻りサーミスタ51、風呂ポンプ49などにより構成されている。
【0043】
前記運転制御部Hは、図2に示すように、リモコンRの指令などに基づいて、熱電併給装置1の運転および冷却水循環ポンプ35の作動を制御するとともに、給湯用湯水循環手段E、給湯操作手段K、風呂操作手段F、暖房操作手段J、および、加熱手段5の作動を制御することによって、貯湯タンク3内に給湯用湯水を貯湯する貯湯運転、給湯栓や浴槽18に所望の湯水を供給する給湯運転、端末Tに熱媒を供給する暖房運転、浴槽18内の湯水を追焚きする追焚運転などの夫々の運転を実行するように構成されている。
【0044】
以下、各運転について説明を加える。
前記貯湯運転は、断続弁34を開弁させかつ貯湯開閉弁27を開弁させた状態で、循環ポンプ31を作動させて、貯湯タンク3の底部から給湯用湯水を循環路4に取出し、加熱手段5にて所望の温度に加熱したのち、貯湯路26を通して貯湯タンク3の上部に供給するように構成されている。
そして、この貯湯運転は、熱電併給装置1の運転中に行われ、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して、排熱式熱交換器5aにて加熱された給湯用湯水を貯湯タンク3に貯湯するように構成されている。
【0045】
前記給湯運転は、給湯栓が開操作されたり、湯張り要求が指令されると開始され、貯湯タンク3内に貯湯されている給湯用湯水を取り出して、その給湯用湯水に水を混合させて所望の温度の給湯用湯水を給湯栓や浴槽18に供給するように構成されている。
また、貯湯タンク3内に給湯用湯水が貯湯されていない場合などには、補助加熱手段5bにて給湯用湯水を加熱させる状態で上述の貯湯運転を行い、補助加熱手段5bにて加熱された給湯用湯水に水を混合させて所望の温度の給湯用湯水を給湯栓や浴槽18に供給するように構成されている。
【0046】
前記暖房運転は、循環ポンプ31を作動させて、加熱手段5にて加熱された給湯用湯水を暖房用熱交換器6を通過させるとともに、暖房ポンプ39を作動させて、膨張タンク41内の熱媒を暖房用熱交換器6を通過させる状態で暖房往き路38および暖房戻り路37を通して端末Tに循環供給するように構成されている。
また、この暖房運転では、加熱温サーミスタ33の検出温度が、例えば、65〜70℃になるように、貯湯開閉弁27と断続弁34の開度を調整するようにしている。
【0047】
そして、この暖房運転では、熱電併給装置1が運転中であると、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して、排熱式熱交換器5aにて給湯用湯水を加熱させて、その加熱された給湯用湯水を暖房用熱交換器6に供給するように構成されている。
このように熱電併給装置1の排熱を利用している場合には、排熱式熱交換器5aにて給湯用湯水を加熱することにより端末Tで要求されている暖房負荷以上を賄うことができると、加熱温サーミスタ33の検出温度が貯湯設定温度になるように、貯湯開閉弁27と断続弁34とを開弁状態で開度調整する。
また、熱電併給装置1が運転されていない場合や、排熱式熱交換器5aにて給湯用湯水を加熱するだけでは端末Tで要求されている暖房負荷を賄えない場合には、貯湯開閉弁27を閉弁しかつ断続弁34を開弁させ、補助加熱手段5bにより給湯用湯水を加熱させて、その加熱された給湯用湯水を暖房用熱交換器6に供給して、端末Tで要求されている暖房負荷を賄うように構成されている。
【0048】
前記追焚運転は、循環ポンプ31を作動させて、加熱手段5にて加熱された給湯用湯水を追焚用熱交換器7を通過させるとともに、風呂ポンプ49を作動させて、浴槽18内の湯水を追焚用熱交換器7を通過させる状態で風呂戻り路19および風呂往き路20を通して循環させるように構成されている。
また、この追焚運転では、加熱温サーミスタ33の検出温度が、例えば、65〜70℃になるように、貯湯開閉弁27と断続弁34の開度を調整するようにしている。
【0049】
そして、この追焚運転では、上述の暖房運転と同様に、熱電併給装置1が運転中であると、貯湯開閉弁27と断続弁34とを開弁状態で開度調整しながら、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して排熱式熱交換器5aにより加熱された給湯用湯水を追焚用熱交換器7に供給し、熱電併給装置1が運転されていない場合などには、貯湯開閉弁27を閉弁しかつ断続弁34を開弁させ、補助加熱手段5bにて加熱された給湯用湯水を追焚用熱交換器7に供給して、浴槽18で要求されている追焚負荷を賄うように構成されている。
【0050】
前記運転制御部Hは、暖房用熱交換器6の漏れ異常を検出するように構成されているので、以下、その構成について説明を加える。
前記運転制御部Hは、水位オーバーセンサ46により膨張タンク41の熱媒の貯留量の異常上昇の発生を検出すると、暖房ポンプ39を作動させて、その作動状態における膨張タンク41内の熱媒の貯留量の変化に基づいて、暖房用熱交換器6の漏れ異常か否かを判別するように構成されている。
そして、運転制御部Hは、暖房用熱交換器6の漏れ異常と判別すると、リモコンRにて使用者に暖房用熱交換器6の漏れ異常であることを報知するように構成されている。
【0051】
前記暖房用熱交換器6の漏れ異常か否かの判別について説明を加えると、暖房用熱交換器6の漏れ異常が発生した場合には、暖房用熱交換器6において、端末供給用の熱媒を給湯用湯水よりも低圧にしていることから、給湯用湯水が暖房戻り路37や暖房往き路38に流入して、膨張タンク41の熱媒の貯留量が増加し、膨張タンク41の熱媒の貯留量の異常上昇が発生することになる。
【0052】
そして、その膨張タンク41の熱媒の貯留量の異常上昇の発生により暖房ポンプ39を作動させたときにも、給湯用湯水が暖房戻り路37や暖房往き路38に流入する状態が継続され、暖房ポンプ39を作動させた状態における膨張タンク41内の熱媒の貯留量は下降しないことになる。
したがって、運転制御部Hは、膨張タンク41の熱媒の貯留量の異常上昇の発生により、暖房ポンプ39を作動させた状態における膨張タンク41内の熱媒の貯留量は下降しなければ、暖房用熱交換器6の漏れ異常と判別するように構成されている。
【0053】
それに対して、暖房戻り路37や暖房往き路38への空気の入り込みにより膨張タンク41の熱媒の貯留量の異常上昇が発生するが、この場合には、膨張タンク41の熱媒の貯留量の異常上昇の発生により暖房ポンプ39を作動させると、暖房戻り路37や暖房往き路38に入り込んだ空気が熱媒とともに大気開放式の膨張タンク41に戻されて、暖房戻り路37や暖房往き路38に入り込んだ空気を抜くことができ、暖房ポンプ39を作動させた状態における膨張タンク41内の熱媒の貯留量が下降することになる。
【0054】
したがって、運転制御部Hは、暖房ポンプ39を作動させた状態における膨張タンク41内の熱媒の貯留量の変化を監視することにより、暖房戻り路37や暖房往き路38への空気の入り込みにより膨張タンク41の熱媒の貯留量の異常上昇が発生した場合と区別しながら、暖房用熱交換器6の漏れ異常を的確に判別することができることになる。
【0055】
前記暖房用熱交換器6の漏れ異常か否かの判別における運転制御部Hの制御動作を図3のフローチャートに基づいて説明すると、まず、水位オーバーセンサ46により膨張タンク41の熱媒の貯留量の異常上昇が発生しているか否かを判別する(ステップ1)。
そして、膨張タンク41の熱媒の貯留量の異常上昇が発生していると、暖房ポンプ39を作動させて、その作動状態における膨張タンク41内の熱媒の貯留量が低下しなければ、暖房用熱交換器6の漏れ異常と判別して報知するようにしている(ステップ2〜4)。
【0056】
〔第2実施形態〕
この第2実施形態は、上記第1実施形態における暖房用熱交換器6の漏れ異常か否かの判別についての別実施形態を示すものであり、以下、暖房用熱交換器6の漏れ異常か否かの判別の構成について説明を加える。
なお、その他の構成については、上記第1実施形態と同様であるので、同符号を記すなどにより、その詳細な説明は省略する。
【0057】
前記運転制御部Hは、膨張タンク41の熱媒の貯留量の増加速度として、膨張タンク41から熱媒が溢れるオーバーフロー状態の発生度合いに基づいて、暖房用熱交換器6の漏れ異常か否かを判別するように構成されている。
説明を加えると、暖房用熱交換器6の漏れ異常が発生した場合には、暖房戻り路37や暖房往き路38への空気の入り込みの場合に比べて、膨張タンク41内の熱媒の貯留量の増加速度が速くなるので、暖房戻り路37や暖房往き路38への空気の入り込みの場合に比べて、暖房用熱交換器6の漏れ異常による場合の方が、短い時間でオーバーフロー状態が発生することになる。
したがって、運転制御部Hは、オーバーフロー状態が短い時間の間に連続して発生して、オーバーフロー状態の発生度合いが設定度合いよりも高いときには、暖房用熱交換器6の漏れ異常と判別するように構成されている。
【0058】
ちなみに、オーバーフロー状態の発生度合いとは、オーバーフロー状態が発生してから、次に、オーバーフロー状態が発生するまでの時間間隔や、設定時間の間にオーバーフロー状態が発生する回数を示している。
そして、オーバーフロー状態が発生する時間間隔が設定時間間隔よりも短いときや、設定時間の間にオーバーフロー状態が発生する回数が設定回数よりも多いときに、オーバーフロー状態の発生度合いが設定度合いよりも高いときとなる。
【0059】
前記暖房用熱交換器6の漏れ異常か否かの判別における運転制御部Hの制御動作を図4のフローチャートに基づいて説明すると、まず、水位オーバーセンサ46によりオーバーフロー状態が発生しているか否かを判別する(ステップ11)。
そして、オーバーフロー状態が発生していると、オーバーフロー状態の発生度合いが設定度合いよりも高いか否かを判別して、オーバーフロー状態の発生度合いが設定度合いよりも高いときには、暖房用熱交換器6の漏れ異常と判別して報知するようにしている(ステップ12,13)。
【0060】
〔第3実施形態〕
この第3実施形態は、上記第1実施形態における暖房用熱交換器6の漏れ異常か否かの判別についての別実施形態を示すものであり、以下、暖房用熱交換器6の漏れ異常か否かの判別の構成について説明を加える。
なお、その他の構成については、上記第1実施形態と同様であるので、同符号を記すなどにより、その詳細な説明は省略する。
【0061】
前記運転制御部Hは、設定時間が経過するごとに暖房ポンプ39を作動させて、その作動後から次回作動させるまでの間に、水位オーバーセンサ46により膨張タンク41の熱媒の貯留量の異常上昇が発生すると、暖房用熱交換器6の漏れ異常と判別するように構成されている。
【0062】
説明を加えると、運転制御部Hは、設定時間が経過するごとに暖房ポンプ39を作動させるので、その暖房ポンプ39の作動により、暖房戻り路37や暖房往き路38に入り込んだ空気を熱媒とともに大気開放式の膨張タンク41に戻して、暖房戻り路37や暖房往き路38に入り込んだ空気を抜くことができることになる。
そして、設定時間が経過するごとに暖房戻り路37や暖房往き路38に入り込んだ空気を抜くことによって、暖房戻り路37や暖房往き路38への空気の入り込みによって膨張タンク41の熱媒の貯留量の異常上昇が発生することはなく、膨張タンク41の熱媒の貯留量の異常上昇が発生する原因として、暖房戻り路37や暖房往き路38への空気の入り込みを排除することができることになる。
したがって、運転制御部Hは、設定時間が経過するごとに暖房ポンプ39を作動させて、膨張タンク41の熱媒の貯留量の異常上昇が発生する原因として、暖房戻り路37や暖房往き路38への空気の入り込みを排除した状態において、膨張タンク41の熱媒の貯留量の異常上昇の発生により、熱交換器の漏れ異常と判別するように構成されている。
【0063】
ちなみに、設定時間については、暖房戻り路37や暖房往き路38への空気の入り込みにより膨張タンク41の熱媒の貯留量の異常上昇が発生するまでの時間よりも短い時間が設定されている。
【0064】
前記暖房用熱交換器6の漏れ異常か否かの判別における運転制御部Hの制御動作を図5のフローチャートに基づいて説明すると、前回暖房ポンプ39を作動させてから設定時間が経過していると、暖房ポンプ39を作動させる(ステップ31,22)。
そして、暖房ポンプ39の作動中または作動後にかかわらず、水位オーバーセンサ46により膨張タンク41の熱媒の貯留量の異常上昇が発生していると、暖房用熱交換器6の漏れ異常と判別して報知するようにしている(ステップ23,24)。
【0065】
〔第4実施形態〕
この第4実施形態は、上記第1実施形態における暖房用熱交換器6の漏れ異常か否かの判別についての別実施形態を示すものであり、以下、暖房用熱交換器6の漏れ異常か否かの判別の構成について説明を加える。
なお、その他の構成については、上記第1実施形態と同様であるので、同符号を記すなどにより、その詳細な説明は省略する。
【0066】
前記運転制御部Hは、膨張タンク41の熱媒の貯留量の増加が連続して検出されかつその増加速度が設定速度よりも速ければ、暖房用熱交換器5の漏れ異常と判別するように構成されている。
説明を加えると、図6に示すように、静電容量を検出することにより膨張タンク41の熱媒の貯留量の増加およびその増加速度を検出する増加速度センサ57を設けて、運転制御部Hは、増加速度センサ57にて膨張タンク41の熱媒の貯留量の増加を連続して検出しかつその増加速度が設定速度よりも速ければ、暖房用熱交換器5の漏れ異常と判別するように構成されている。
ちなみに、図6は、図1の膨張タンク41を取り出した拡大図である。
【0067】
前記暖房用熱交換器6の漏れ異常が発生した場合には、暖房戻り路37や暖房往き路38への空気の入り込みの場合に比べて、膨張タンク41内の熱媒の貯留量の増加速度が速くなる。
そして、暖房用熱交換器6の漏れ異常が発生すると、給湯用湯水の暖房戻り路37および暖房往き路38側への流入は、連続的に生じかつその流入量も多いので、膨張タンク41の熱媒の貯留量は、連続して増加しかつその増加速度が設定速度よりも速いものとなる。
したがって、増加速度センサ57にて膨張タンク41の熱媒の貯留量の増加を連続して検出しかつその増加速度が設定速度よりも速ければ、暖房用熱交換器5の漏れ異常と判別できることになる。
【0068】
ちなみに、この第4実施形態では、膨張タンク41の熱媒の貯留量の異常上昇の発生を検出しなくても、暖房用熱交換器6の漏れ異常を判別することができるので、水位オーバーセンサ46を設けなくてもよい。
【0069】
〔別実施形態〕
(1)上記第1〜第4実施形態では、熱交換器を暖房用熱交換器6として、その暖房用熱交換器6の漏れ異常を検出するように構成しているが、熱交換器を排熱式熱交換器5aとして、その排熱式熱交換器5aの漏れ異常を検出するように構成して実施することも可能である。
また、熱交換器を暖房用熱交換器6と排熱式熱交換器5aの両方として実施することも可能である。
【0070】
例えば、上記第1実施形態において、熱交換器を排熱式熱交換器5aとして、その排熱式熱交換器5aの漏れ異常を検出する場合には、冷却水用膨張タンク54に冷却水用膨張タンク54内の冷却水の貯留量が設定量よりも多量となったり、冷却水用膨張タンク54から冷却水が漏れる冷却水用膨張タンク54の冷却水の貯留量の異常上昇の発生を検出する水位オーバーセンサを設ける。
そして、運転制御部Hは、水位オーバーセンサにて冷却水用膨張タンク54の冷却水の貯留量の異常上昇の発生を検出すると、冷却水循環ポンプ35を作動させて、その作動状態における冷却水用膨張タンク54内の冷却水の貯留量の変化に基づいて、排熱式熱交換器5aの漏れ異常か否かを判別するように構成されている。
【0071】
ちなみに、熱交換器を排熱式熱交換器5aとして、その排熱式熱交換器5aの漏れ異常を検出する場合には、熱媒循環路が冷却水循環路36から構成され、熱媒循環手段が冷却水循環ポンプ35から構成されることになる。
【0072】
(2)上記第1〜第3実施形態では、膨張タンク41の熱媒の貯留量の異常上昇の発生を検出する水位オーバーセンサ46を設けているが、膨張タンク41の熱媒の貯留量の異常上昇の発生を検出する構成については、圧力式の水位センサを設けたり、上限センサ44にて兼用したり、膨張タンク41の下方に設けたセンサにて膨張タンク41から熱媒が漏れていることを検出するなど、各種の構成が適応可能である。
【0073】
(3)上記第4実施形態では、静電容量を検出することにより膨張タンク41の熱媒の貯留量の増加およびその増加速度を検出する増加速度センサ57を例示したが、その他各種の膨張タンク41の熱媒の貯留量の増加およびその増加速度を検出可能なセンサを適応することが可能である。
【0074】
(4)上記第4実施形態では、運転制御部Hが、膨張タンク41の熱媒の貯留量の増加が連続して検出されかつその増加速度が設定速度よりも速ければ、暖房用熱交換器5の漏れ異常と判別するように構成されているが、例えば、運転制御部Hを、膨張タンク41の熱媒の貯留量の増加速度が設定速度よりも速ければ、暖房用熱交換器5の漏れ異常と判別するように構成して実施することも可能である。
【0075】
(5)上記第1〜第4実施形態では、本願発明にかかる熱媒供給設備を、暖房用熱交換器6に加えて、追焚用熱交換器7を設けたコージェネレーションシステムに適応した例を示したが、給湯用湯水にて端末供給用の熱媒を加熱する熱交換器を備えたシステムであればよく、暖房用熱交換器6のみを設けたコージェネレーションシステムやその他各種の熱媒暖房設備に適応することができる。
【0076】
(6)上記第1〜第4実施形態では、加熱手段として、ガスエンジンの排熱により給湯用湯水を加熱する排熱式熱交換器5aと、ガス燃焼式の補助加熱手段5bとから構成したものを例示したが、排熱式熱交換器5aを、燃料電池の排熱により給湯用湯水を加熱するように構成したり、補助加熱手段5bを、液体燃料燃焼式のバーナを備えたものや、電気ヒータを備えたものを用いることができ、排熱式熱交換器5aおよび補助加熱手段5bの構成は適宜変更が可能である。
【図面の簡単な説明】
【図1】コージェネレーションシステムの概略構成図
【図2】コージェネレーションシステムの制御ブロック図
【図3】第1実施形態における運転制御部の制御動作を示すフローチャート
【図4】第2実施形態における運転制御部の制御動作を示すフローチャート
【図5】第3実施形態における運転制御部の制御動作を示すフローチャート
【図6】第4実施形態における膨張タンクを示す図
【符号の説明】
4 循環路
5a 熱交換器
6 熱交換器
31 循環手段
35 熱媒循環手段
36 熱媒循環路
37,38 熱媒循環路
39 熱媒循環手段
41 膨張タンク
H 運転制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a circulation means for circulating hot water for hot water supply through a circulation path in a state of passing through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water for hot water supply; The present invention relates to a heat medium supply facility provided with a heat medium circulating unit that circulates through a heat medium circulating path while passing through an exchanger, and an operation control unit that controls operation.
[0002]
[Prior art]
In the heat medium supply equipment as described above, the operation control means drives the circulation means and the heat medium circulation means to cause heat exchange between hot water and hot water in the heat exchanger, and the heating means The heating medium is heated by the heated hot water, or conversely, the hot water is heated by the heating medium heated by the heating means.
[0003]
In the heat medium supply equipment as described above, conventionally, as a heating unit, a heat exchanger for exhaust heat that is heated by the exhaust heat of the cogeneration unit or an auxiliary heating device that is heated by burning a burner is provided, and a circulation unit is provided. The hot water supply hot water heated by the heating means is stored in a hot water storage tank, and the hot water supply hot water heated by the heating means is supplied to a heat exchanger.
Then, the operation control means operates the heat medium circulating means and operates the circulation means in a heat source state, thereby heating the heat medium with hot water for hot water supply in the heat exchanger. Is supplied to a terminal such as a floor heating device or a bathroom heating device (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-248909 A
[0005]
[Problems to be solved by the invention]
In the above-described conventional heat medium supply equipment, when a leak abnormality of the heat exchanger occurs due to damage or corrosion of the heat exchanger, if the heat medium in the heat exchanger is at a lower pressure than the hot water, the hot water is heated. Conversely, if the hot water supply water has a lower pressure than the heat medium in the heat exchanger, the heat medium will flow into the circulation path.
Then, when the heat medium flows into the circulation path, the heat medium is mixed with the hot water and the hot water and the hot water mixed with the heat medium are supplied, and the dirty hot and cold water is supplied. Will be done.
[0006]
Therefore, in the above-mentioned conventional heat medium supply equipment, in order to eliminate the above-mentioned disadvantage, the heat medium is supplied to the heat exchanger by increasing the installation position of the heating means and the hot water storage tank higher than the installation position of the heat exchanger. Prevents the heat medium from flowing into the circulation path even if it is allowed to flow into the heat medium circulation path when the pressure is lower than the hot water supply and the heat exchanger leaks abnormally. are doing.
[0007]
As described above, in the above-described conventional heat medium supply equipment, when a leak abnormality of the heat exchanger occurs, the hot water supply water is allowed to flow into the heat medium circulation path side. Due to the inflow to the road side, the storage amount of the heat medium in the expansion tank increases, and the storage amount of the heat medium in the expansion tank becomes larger than a set amount, or the heat of the expansion tank leaks from the expansion tank. An abnormal increase in the storage amount of the medium will occur.
Therefore, the above-described conventional heat medium supply equipment monitors whether or not an abnormal increase in the storage amount of the heat medium in the expansion tank occurs, and detects the occurrence of an abnormal increase in the storage amount of the heat medium in the expansion tank. , It was determined that a leak abnormality of the heat exchanger had occurred.
[0008]
However, in the above-described conventional heat medium supply equipment, the amount of heat medium stored in the expansion tank increases due to the intrusion of air into the heat medium circulation path, causing an abnormal increase in the amount of heat medium stored in the expansion tank. As a cause of the abnormal increase in the storage amount of the heat medium in the expansion tank, there may be a case where air enters the heat medium circulation path in addition to a leak abnormality of the heat exchanger.
Therefore, simply by detecting the occurrence of an abnormal increase in the storage amount of the heat medium in the expansion tank to determine that the heat exchanger is abnormally leaked, it is possible to determine whether the heat exchanger has no abnormal leaks. Therefore, it is determined that a leak abnormality of the heat exchanger has occurred.
[0009]
By the way, when the explanation of the entry of air into the heat medium circulation path is added, a resin pipe or the like is used as a pipe in the heat medium circulation path, but this resin pipe is not capable of completely preventing the passage of air. Since there is no air, air enters the heat medium circulation path through the pipe in the heat medium circulation path.
In particular, when a terminal that supplies the heat medium is installed at a position higher than the installation position of the heat exchanger, the heat medium circulation path from the terminal to the heat exchanger is in a negative pressure state. Air enters the heat medium circulation path depending on the pressure state.
[0010]
The present invention has been made in view of such a point, and an object of the present invention is to provide a heat medium supply facility capable of accurately determining a leak abnormality of a heat exchanger.
[0011]
[Means for Solving the Problems]
In order to achieve this object, according to the first aspect of the present invention, hot water is supplied through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water. A heat medium provided with a circulating means for circulating, a heat medium circulating means for circulating the heat medium in the expansion tank through the heat medium circulating path while passing through the heat exchanger, and an operation control means for controlling operation In the supply facility,
The operation control means operates the heat medium circulating means when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs, based on a change in the storage amount of the heat medium in the expansion tank in the operation state. Thus, it is configured to determine whether or not there is a leak abnormality of the heat exchanger.
[0012]
That is, the operation control means operates the heat medium circulating means when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs, so that the operation of the heat medium circulating means causes the air having entered the heat medium circulating path to flow. The air that has entered the heat medium circulation path can be removed by returning to the expansion tank that is open to the atmosphere together with the heat medium.
Therefore, when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs due to entry of air into the heat medium circulation path, by operating the heat medium circulation means, the air entering the heat medium circulation path is operated. And the stored amount of the heat medium in the expansion tank in the operating state of the heat medium circulation means decreases.
On the other hand, if an abnormal increase in the storage amount of the heat medium in the expansion tank occurs due to an abnormal leak in the heat exchanger, the hot water for hot water supply flows into the heat medium circulating passage even if the heat medium circulating means is operated. Is continued, the stored amount of the heat medium in the expansion tank in the operating state of the heat medium circulation means does not drop.
As a result, an abnormal increase in the storage amount of the heat medium in the expansion tank due to the intrusion of air into the heat medium circulation path and an abnormal increase in the storage amount of the heat medium in the expansion tank due to an abnormal leak in the heat exchanger In such a case, a difference occurs in the change in the storage amount of the heat medium in the expansion tank when the heat medium circulation unit is operated.
[0013]
Therefore, when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs, the operation control means operates the heat medium circulating means to monitor a change in the storage amount of the heat medium in the expansion tank in the operation state. Therefore, based on the change in the storage amount of the heat medium in the expansion tank, when the amount of storage of the heat medium in the expansion tank abnormally rises due to entry of air into the heat medium circulation path, It can be distinguished from a case where an abnormal increase in the storage amount of the heat medium in the expansion tank occurs due to the leakage abnormality.
[0014]
From the above, it is possible to accurately determine the leak abnormality of the heat exchanger in distinction from the case where air enters the heat medium circulation path, and to accurately determine the leak abnormality of the heat exchanger. It has been possible to provide a heat medium supply facility capable of supplying heat medium.
[0015]
According to the second aspect of the present invention, the circulating means for circulating the hot-water supply water through the circulation path in a state where the hot-water supply water passes through the heat exchanger for heat exchange with the heat medium having a lower pressure than the hot-water supply water and the expansion tank Heat medium circulating means for circulating the heat medium in the heat medium circulating path in a state of passing through the heat exchanger, and a heat medium supply facility provided with operation control means for controlling the operation,
The operation control means is configured to determine whether or not there is a leak abnormality in the heat exchanger based on the increasing speed of the storage amount of the heat medium in the expansion tank.
[0016]
That is, since the amount of air entering the heat medium circulation path is smaller than the amount of hot water for hot water supply flowing into the heat medium circulation path due to a leak abnormality of the heat exchanger, the amount of heat medium stored in the expansion tank is reduced. The rate of increase is faster in the case of a leak abnormality of the heat exchanger than in the case of air entering the heat medium circulation path.
Therefore, there is a difference in the rate of increase in the amount of the heat medium stored in the expansion tank between the case where air enters the heat medium circulation path and the case where there is a leak abnormality in the heat exchanger.
Incidentally, the increasing speed of the storage amount of the heat medium in the expansion tank refers to the rising speed of the water level of the heat medium in the expansion tank and the degree of occurrence of an overflow state in which the heat medium leaks from the expansion tank.
[0017]
And since the operation control means monitors the increasing speed of the storage amount of the heat medium in the expansion tank, based on the increasing speed of the storage amount of the heat medium in the expansion tank, the operation control means controls the flow of air into the heat medium circulation path. It is possible to distinguish between the case of entry and the case of a leak abnormality of the heat exchanger.
[0018]
From the above, it is possible to accurately determine the case of a leak abnormality of the heat exchanger, as distinguished from the case of air entering into the heat medium circulation path, and accurately determine the leak abnormality of the heat exchanger. Heat medium supply equipment that can be distinguished has been provided.
[0019]
According to the invention as set forth in claim 3, the operation control means is configured to determine that the increase in the amount of the heat medium stored in the expansion tank is continuously detected and that the increase speed is faster than a set speed. It is configured to determine that there is a leak abnormality.
[0020]
That is, when a leak abnormality of the heat exchanger occurs, the hot water for hot water supply flows into the heat medium circulation path side continuously and the amount of the flow is large, so that the storage amount of the heat medium in the expansion tank is continuously increased. It increases and the increase speed becomes faster than the set speed.
Then, the operation control means determines that the heat exchanger has a leakage abnormality if the increase in the storage amount of the heat medium in the expansion tank is continuously detected and the increase speed is faster than the set speed. Leakage abnormality can be accurately determined.
Accordingly, it is possible to prevent erroneous detection of detecting a leak abnormality of the heat exchanger even though there is no leak abnormality of the heat exchanger.
[0021]
According to the invention as set forth in claim 4, a circulating means for circulating the hot water for hot water supply through the circulation path in a state of passing through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water for hot water supply, and an expansion tank Heat medium circulating means for circulating the heat medium in the heat medium circulating path in a state of passing through the heat exchanger, and a heat medium supply facility provided with operation control means for controlling the operation,
The operation control means operates the heat medium circulating means every time a set time elapses, and after the operation is performed until the next operation, when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs. , It is configured to determine that there is a leak abnormality in the heat exchanger.
[0022]
That is, since the operation control means operates the heat medium circulating means every time the set time elapses, the operation of the heat medium circulating means causes the air entering the heat medium circulating path to expand with the heat medium in an open-air manner. After returning to the tank, the air that has entered the heat medium circulation path can be removed every time the set time elapses.
Then, by setting a time shorter than the time until the abnormal increase of the storage amount of the heat medium in the expansion tank occurs due to the intrusion of air into the heat medium circulation path, the set time is set, Before the amount of the heat medium stored in the expansion tank is abnormally increased due to the entry of the air, the heat medium circulating means can be operated to remove the air that has entered the heat medium circulation path.
Therefore, the operation control means operates the heat medium circulating means every time the set time elapses, thereby causing an abnormal increase in the storage amount of the heat medium in the expansion tank. In a state where the entry is eliminated, it is possible to determine whether or not there is a leak abnormality in the heat exchanger by determining whether or not the storage amount of the heat medium in the expansion tank is abnormally increased.
[0023]
From the above, as a cause of the abnormal increase in the storage amount of the heat medium in the expansion tank, the cause of the abnormal increase in the storage amount of the heat medium in the expansion tank in a state where the intrusion of air into the heat medium circulation path is excluded. By the occurrence, it is possible to determine whether or not there is a leak abnormality in the heat exchanger, and it is possible to provide a heat medium supply facility capable of accurately determining the leak abnormality in the heat exchanger.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An example in which the heat medium supply equipment according to the present invention is adapted to a cogeneration system will be described with reference to the drawings.
[First Embodiment]
As shown in FIGS. 1 and 2, the cogeneration system includes a cogeneration system 1 configured to drive a generator by a gas engine and a hot water storage system using the exhaust heat of the cogeneration system 1. The system includes a hot water storage unit 2 for supplying hot water and heating, an operation control unit H as operation control means for controlling operations of the combined heat and power supply device 1 and the hot water storage unit 2, and the like.
[0025]
The hot water storage unit 2 includes a hot water storage tank 3 for storing hot water for hot water supply, a circulation path 4 for circulating hot water for hot water in the hot water storage tank 3, a heating means 5 for heating hot water for hot water flowing through the circulation path 4, A heating heat exchanger 6 as a heat exchanger for heat exchange between hot water for hot water flowing through the circulation path 4 and a heat medium for terminal supply, and hot water for hot water flowing through the circulation path 4 inside the bathtub 18 And a heat exchanger 7 for reheating, which heats hot and cold water.
[0026]
A plurality of thermistors S for detecting the amount of hot water by detecting the temperature of the hot water are provided in the hot water storage tank 3, and the hot water storage tank 3 is supplied with water from the bottom thereof by using tap water pressure. A hot water supply passage 9 for supplying hot water from the upper portion thereof is connected, and is configured to supply only the used amount of water from the water supply passage 8 to the hot water storage tank 3.
Incidentally, an overflow path 55 is connected to the hot water supply path 9, and a vacuum breaker 56 is provided in the overflow path 55.
[0027]
A mixing water supply channel 10 branched from the water supply channel 8 is connected to the hot water supply channel 9, and a mixing ratio between hot water from the hot water supply channel 9 and water from the mixing water supply channel 10 can be adjusted at the connection point. A mixing valve 11 is provided.
A water supply thermistor 12 for detecting a water supply temperature is provided at a branch point between the water supply path 8 and the mixing water supply path 10.
[0028]
A hot water storage outlet thermistor 13 for detecting the temperature of hot water supplied to the hot water supply passage 9 from above the hot water storage tank 3 is provided upstream of the mixing valve 11 in the hot water supply passage 9. Further downstream, a mixing thermistor 14 for detecting the temperature of the hot and cold water mixed by the mixing valve 7 and a flow control valve 15 are provided.
[0029]
On the downstream side of the hot water supply path 9 from where the mixing thermistor 14 and the flow control valve 15 are provided, a general hot water supply path 16 for supplying hot water to a hot water tap (not shown) such as a kitchen or a washroom, and hot water supply to a bathtub 18 are provided. And a hot water path 17.
The hot water path 17 is connected to a bath return path 19 from the bathtub 18, and hot water is supplied to the bathtub 18 through both the bath return path 19 and the bath going path 20.
The general hot water supply path 16 is provided with a hot water supply flow rate sensor 21 for detecting the flow rate of hot water flowing through the general hot water supply path 16, and the hot water path 17 is configured to detect the flow rate of hot water flowing through the hot water supply path 17. A filling flow sensor 22, a filling electromagnetic valve 23, a vacuum breaker 24, and a filling check valve 25 are provided in this order from the upstream side.
[0030]
The hot water supply operation means K includes a hot water storage outlet thermistor 13, a water supply thermistor 12, a mixing valve 11, a mixing thermistor 14, a hot water filling electromagnetic valve 23, and the like.
[0031]
The circulation path 4 and the hot water storage tank 3 are used to return hot water for hot water flowing through the circulation path 4 to the hot water storage tank 3 or to take out hot water for hot water supply from the hot water storage tank 3 to the circulation path 4. 3 are connected to each other at a total of two places, an upper part and a bottom part.
A hot water storage path 26 for supplying hot water from the circulation path 4 to the hot water storage tank 3 is connected to the upper part of the hot water storage tank 3. The hot water storage path 26 is provided with a hot water storage opening / closing valve 27. I have.
At the bottom of the hot water storage tank 3, a take-out path 28 for taking out hot water from the hot water storage tank 3 to the circulation path 4 is connected in communication, and a three-way valve 29 is provided at a connection point between the take-out path 18 and the circulation path 4. Is provided.
[0032]
The circulation path 4 has a circulation flow rate sensor 30 for detecting a circulation amount of the hot water in the circulation path 4, a circulation pump 31 as a circulation means, a heating means 5, and a hot water supply in the circulation path 4 in the order of circulation of the hot water. A circulation flow rate adjusting valve 32 for adjusting the circulation amount of hot water, a heating temperature thermistor 33 for detecting the temperature of hot water supplied by the heating means 5, an intermittent valve 34 for interrupting the flow of hot water, A heat exchanger 6 and a reheating heat exchanger 7 are provided.
[0033]
The hot water circulation unit E includes a circulation path 4, a circulation pump 31, a circulation flow sensor 30, a circulation flow adjustment valve 32, a heating temperature thermistor 33, a hot water storage opening / closing valve 27, an intermittent valve 34, and the like.
Then, the hot-water supply / circulation means E heats the hot-water supply water taken out of the hot-water storage tank 3 by the heating means 5 and then stores the hot-water supply in the hot-water storage tank 3 or heats the hot water supply water heated by the heating means 5 for heating. It is configured to supply the hot water to the heat exchanger 6 and the additional heat exchanger 7, and return the hot and cold water that has passed through the heating heat exchanger 6 and the additional heat exchanger 7 to the heating unit 5.
[0034]
The heating means 5 comprises an exhaust heat type heat exchanger 5a for heating the hot water using the cooling water of the gas engine in the combined heat and power supply device 1, and an auxiliary heating means 5b for heating the hot water using the burner. ing.
The exhaust heat type heat exchanger 5a operates the cooling water circulation pump 35 during the operation of the cogeneration system 1 to discharge the cooling water of the gas engine in the cooling water expansion tank 54 through the cooling water circulation passage 36. It is configured to supply the heat to the heat exchanger 5a to heat the hot-water supply water flowing through the circulation path 4.
Although not shown, the auxiliary heating means 5b is provided with a gas combustion type burner, a fan for supplying combustion air to the burner, etc., and heats hot water for hot water supply flowing through the circulation path 4 by combustion of the burner. The rotation speed of the fan and the amount of fuel gas supplied to the burner are adjusted to adjust the temperature of hot water for hot water supply after heating by the auxiliary heating means 5b.
[0035]
The heating heat exchanger 6 is connected to a heating return path 37 and a heating outgoing path 38, and by operating a heating pump 39, a heat medium for terminal supply circulating through the heating return path 37 and the heating outgoing path 38. And the heating medium for hot water supply heated by the heating means 5 is used to heat the heating medium for terminal supply.
[0036]
The heating return path 37 is provided with a heating return thermistor 40 for detecting the temperature of the heating medium in the heating return path 37, an open-air expansion tank 41, and a heating pump 39 in order from the upstream side in the circulation direction of the heating medium. The heating going path 38 is provided with a heating going thermistor 42 for detecting the temperature of the heat medium in the heating going path 37.
In addition, the heating return path 37 and the heating going path 38 are connected to each other through a bypass path 43.
[0037]
By operating the heating pump 39, the heating medium in the expansion tank 41 is configured to be circulated and supplied to the terminal T through the heating going path 38 and the heating return path 37 in a state where the heating medium passes through the heating heat exchanger 6, The heat medium circulation path is constituted by a heat medium return path 37 and a heat medium outflow path 38, and the heat medium supply means is constituted by a heating pump 39.
Although not described in detail, the terminal T is configured as a heating terminal that performs heating with a supplied heating medium such as a floor heating device or a bathroom drying / heating device.
[0038]
Since the heat exchanger 6 for heating is provided at a position lower than the expansion tank 41, the expansion tank 41 is set as low as possible, the vacuum breaker 56 is operated when the water supply is cut off, and the heating return path is controlled by the tank head. The heat medium circulating path and the cooling water circulating path 36 composed of the heating path 37 and the heating outgoing path 38 are configured to have a lower pressure than the circulation path 4.
[0039]
The expansion tank 41 is provided with an upper limit sensor 44 for detecting the upper limit of the water level of the stored heat medium and a lower limit sensor 45 for detecting the lower limit. A water level over sensor 46 is provided for detecting the storage amount of the medium being larger than the set amount or detecting an abnormal rise in the storage amount of the heat medium in the expansion tank 41 in which the heat medium leaks from the expansion tank 41.
The expansion tank 41 is connected to a tank water supply path 47 for branching off from the water supply path 8 and supplying water to the expansion tank 41, and the tank water supply path 47 is provided with a make-up water solenoid valve 48.
When the water level of the heat medium becomes the lower limit by the lower limit sensor 45, the supply water electromagnetic valve 48 is opened by the upper limit sensor 44 until the water level of the heat medium becomes the upper limit, and the heat medium is supplied to the expansion tank 41. It is configured as follows.
[0040]
The heating operation means J includes a heating return thermistor 40, a heating going thermistor 42, a heating pump 39, an upper limit sensor 44, a lower limit sensor 45, a water level over sensor 46, a make-up water solenoid valve 48, and the like.
[0041]
A bath return path 19 and a bath outgoing path 20 are connected to the additional heat exchanger 7, and by operating a bath pump 49, the hot and cold water in the bathtub 18 circulated through the bath return path 19 and the bath outgoing path 20. And the hot water in the bathtub 18 is heated by the hot water for hot water heated by the heating means 5.
[0042]
In the bath return path 19, a water level sensor 50 for detecting the level of the hot water in the bathtub 18 and a bath return thermistor for detecting the temperature of the hot water in the bath return path 19 in order from the upstream side in the circulation direction of the hot water in the bathtub 18. 51, a two-way valve 52, a bath pump 49, and a bath water flow switch 53 are provided.
The bath operation means F includes a water level sensor 50, a bath return thermistor 51, a bath pump 49, and the like.
[0043]
As shown in FIG. 2, the operation control unit H controls the operation of the co-generation system 1 and the operation of the cooling water circulation pump 35 on the basis of a command from the remote controller R, etc. By controlling the operation of the means K, the bath operating means F, the heating operating means J, and the heating means 5, the hot water storage operation for storing hot water for hot water in the hot water storage tank 3 and the desired hot water to the hot water tap and the bathtub 18 are performed. It is configured to execute respective operations such as a hot water supply operation for supplying, a heating operation for supplying a heat medium to the terminal T, and a reheating operation for reheating the hot water in the bathtub 18.
[0044]
Hereinafter, each operation will be described.
In the hot water storage operation, the circulation pump 31 is operated in a state where the intermittent valve 34 is opened and the hot water storage opening / closing valve 27 is opened, hot water for hot water supply is taken out from the bottom of the hot water storage tank 3 into the circulation path 4 and heated. After being heated to a desired temperature by the means 5, it is configured to be supplied to the upper part of the hot water storage tank 3 through the hot water storage passage 26.
The hot water storage operation is performed during the operation of the cogeneration system 1, and the hot water heated by the exhaust heat type heat exchanger 5a using the exhaust heat of the cogeneration system 1 by the operation of the cooling water circulation pump 35. Hot water is stored in the hot water storage tank 3.
[0045]
The hot water supply operation is started when a hot water tap is opened or a hot water filling request is issued, takes out hot water for hot water stored in the hot water storage tank 3, and mixes the hot water with hot water. Hot water for hot water supply at a desired temperature is supplied to the hot water tap and the bathtub 18.
Further, when hot water for hot water supply is not stored in the hot water storage tank 3, for example, the above hot water storage operation is performed in a state where the hot water for hot water supply is heated by the auxiliary heating means 5b, and the hot water is heated by the auxiliary heating means 5b. The water is mixed with the hot water and the hot water at a desired temperature is supplied to the hot water tap and the bathtub 18.
[0046]
In the heating operation, the circulation pump 31 is operated to pass hot water supplied by the heating means 5 through the heating heat exchanger 6, and the heating pump 39 is operated to heat heat in the expansion tank 41. The medium is circulated and supplied to the terminal T through the heating going path 38 and the heating returning path 37 while passing the medium through the heating heat exchanger 6.
In this heating operation, the opening degrees of the hot-water storage opening / closing valve 27 and the intermittent valve 34 are adjusted such that the detected temperature of the heating temperature thermistor 33 is, for example, 65 to 70 ° C.
[0047]
In the heating operation, when the combined heat and power supply device 1 is in operation, the exhaust heat of the combined heat and power supply device 1 is utilized by the operation of the cooling water circulating pump 35 and the hot water for hot water supply is discharged by the waste heat type heat exchanger 5a. The heating hot water is supplied to the heating heat exchanger 6 by heating.
In the case where the exhaust heat of the combined heat and power supply device 1 is used as described above, the heating load required by the terminal T can be satisfied by heating the hot water for hot water supply by the exhaust heat type heat exchanger 5a. When possible, the opening degree of the hot water storage opening / closing valve 27 and the intermittent valve 34 is adjusted so that the detected temperature of the heating temperature thermistor 33 becomes the hot water storage set temperature.
In addition, when the cogeneration system 1 is not operated, or when the heating load required by the terminal T cannot be satisfied by simply heating the hot water supply water by the exhaust heat type heat exchanger 5a, the hot water storage opening and closing is performed. The valve 27 is closed and the intermittent valve 34 is opened, the hot water is heated by the auxiliary heating means 5b, and the heated hot water is supplied to the heat exchanger 6 for heating. It is configured to cover the required heating load.
[0048]
In the reheating operation, the circulation pump 31 is operated to pass hot water supplied by the heating means 5 through the reheating heat exchanger 7, and the bath pump 49 is operated to operate the bath pump 49. The hot water is circulated through the bath return path 19 and the bath outflow path 20 while passing through the additional heat exchanger 7.
Further, in this additional heating operation, the opening degrees of the hot-water storage opening / closing valve 27 and the intermittent valve 34 are adjusted so that the detected temperature of the heating temperature thermistor 33 becomes, for example, 65 to 70 ° C.
[0049]
In this additional heating operation, as in the above-described heating operation, when the combined heat and power supply device 1 is in operation, the cooling water circulation pump is adjusted while opening the hot water storage opening / closing valve 27 and the intermittent valve 34 in the open state. With the operation of 35, the hot water for hot water heated by the exhaust heat type heat exchanger 5a is supplied to the additional heat exchanger 7 using the exhaust heat of the cogeneration device 1, and the cogeneration device 1 is not operated. In such a case, the hot-water storage opening and closing valve 27 is closed and the intermittent valve 34 is opened, and the hot-water supply water heated by the auxiliary heating means 5b is supplied to the additional heating heat exchanger 7, and It is configured to cover the required reheating load.
[0050]
Since the operation control unit H is configured to detect a leakage abnormality of the heating heat exchanger 6, the configuration will be described below.
When the operation control unit H detects the occurrence of an abnormal increase in the storage amount of the heat medium in the expansion tank 41 by the water level over sensor 46, the operation control unit H operates the heating pump 39 to change the heat medium in the expansion tank 41 in the operation state. It is configured to determine whether or not there is a leakage abnormality of the heating heat exchanger 6 based on a change in the storage amount.
When the operation control unit H determines that there is a leakage abnormality of the heating heat exchanger 6, the operation control unit H notifies the user of the leakage abnormality of the heating heat exchanger 6 by using the remote controller R.
[0051]
In addition to the description of whether or not the leakage of the heating heat exchanger 6 is abnormal, if a leakage abnormality of the heating heat exchanger 6 occurs, the heating heat exchanger 6 generates heat for terminal supply. Since the pressure of the medium is lower than that of the hot water supply water, the hot water supply water flows into the heating return path 37 and the heating outgoing path 38, and the storage amount of the heat medium in the expansion tank 41 increases. An abnormal increase in the storage amount of the medium will occur.
[0052]
Then, even when the heating pump 39 is operated due to the occurrence of an abnormal increase in the storage amount of the heat medium in the expansion tank 41, the state in which the hot-water supply water flows into the heating return path 37 and the heating return path 38 is continued, The storage amount of the heat medium in the expansion tank 41 in a state where the heating pump 39 is operated does not drop.
Therefore, the operation control unit H performs heating if the storage amount of the heat medium in the expansion tank 41 in a state where the heating pump 39 is operated does not decrease due to the occurrence of the abnormal increase in the storage amount of the heat medium in the expansion tank 41. The heat exchanger 6 is configured to determine that there is a leak abnormality.
[0053]
On the other hand, the air entering the heating return path 37 and the heating going path 38 causes an abnormal increase in the storage amount of the heat medium in the expansion tank 41. In this case, the storage amount of the heat medium in the expansion tank 41 is increased. When the heating pump 39 is operated due to the occurrence of an abnormal rise of the air, the air that has entered the heating return path 37 or the heating outgoing path 38 is returned to the open-to-atmosphere expansion tank 41 together with the heat medium, and the heating return path 37 or the heating outgoing path The air that has entered the passage 38 can be removed, and the storage amount of the heat medium in the expansion tank 41 when the heating pump 39 is operated decreases.
[0054]
Therefore, the operation control unit H monitors the change in the storage amount of the heat medium in the expansion tank 41 in a state where the heating pump 39 is operated, so that air enters the heating return path 37 and the heating return path 38. The leakage abnormality of the heating heat exchanger 6 can be accurately determined while distinguishing it from the case where an abnormal increase in the storage amount of the heat medium in the expansion tank 41 occurs.
[0055]
The control operation of the operation control unit H in determining whether or not the heating heat exchanger 6 has a leakage abnormality will be described with reference to the flowchart of FIG. 3. First, the amount of heat medium stored in the expansion tank 41 by the water level over sensor 46. It is determined whether or not an abnormal rise has occurred (step 1).
If the storage amount of the heat medium in the expansion tank 41 is abnormally increased, the heating pump 39 is operated, and if the storage amount of the heat medium in the expansion tank 41 in the operating state does not decrease, the heating pump 39 is turned on. It is determined that there is a leak abnormality in the heat exchanger 6 and is notified (steps 2 to 4).
[0056]
[Second embodiment]
The second embodiment shows another embodiment for determining whether or not there is a leakage abnormality of the heating heat exchanger 6 in the first embodiment. The configuration for determining whether or not the determination is made will be added.
Since the other configuration is the same as that of the first embodiment, detailed description thereof will be omitted by giving the same reference numerals.
[0057]
The operation control unit H determines whether the heating heat exchanger 6 has a leak abnormality based on the degree of occurrence of an overflow state in which the heat medium overflows from the expansion tank 41 as an increase rate of the storage amount of the heat medium in the expansion tank 41. Is determined.
In addition, when a leakage abnormality of the heating heat exchanger 6 occurs, the heat medium is stored in the expansion tank 41 as compared with the case where air enters the heating return path 37 or the heating outgoing path 38. Since the rate of increase in the amount becomes faster, the overflow state occurs in a shorter time in the case of the leakage abnormality of the heating heat exchanger 6 than in the case of the air entering the heating return path 37 or the heating outgoing path 38. Will occur.
Therefore, the operation control unit H determines that the leakage is abnormal in the heating heat exchanger 6 when the overflow state continuously occurs for a short period of time and the degree of occurrence of the overflow state is higher than the set degree. It is configured.
[0058]
Incidentally, the degree of occurrence of the overflow state indicates the time interval between the occurrence of the overflow state and the next occurrence of the overflow state, and the number of times the overflow state occurs during the set time.
When the time interval at which the overflow state occurs is shorter than the set time interval, or when the number of times that the overflow state occurs during the set time is larger than the set number, the degree of occurrence of the overflow state is higher than the set degree. It is time.
[0059]
The control operation of the operation control unit H in determining whether there is a leakage abnormality of the heating heat exchanger 6 will be described with reference to the flowchart of FIG. 4. First, it is determined whether the water level over sensor 46 has caused an overflow condition. Is determined (step 11).
Then, when the overflow state occurs, it is determined whether or not the degree of occurrence of the overflow state is higher than the set degree. When the degree of occurrence of the overflow state is higher than the set degree, the heating heat exchanger 6 It is determined that there is a leak abnormality and is notified (steps 12 and 13).
[0060]
[Third embodiment]
The third embodiment shows another embodiment for determining whether or not there is a leakage abnormality of the heating heat exchanger 6 in the first embodiment. The configuration for determining whether or not the determination is made will be added.
Since the other configuration is the same as that of the first embodiment, detailed description thereof will be omitted by giving the same reference numerals.
[0061]
The operation control unit H activates the heating pump 39 every time the set time elapses, and detects an abnormality in the storage amount of the heat medium in the expansion tank 41 by the water level over sensor 46 after the activation until the next activation. When the rise occurs, it is configured that it is determined that the leakage of the heating heat exchanger 6 is abnormal.
[0062]
In addition, since the operation control unit H operates the heating pump 39 every time the set time elapses, the operation of the heating pump 39 causes the air that has entered the heating return path 37 or the heating outgoing path 38 to be transferred to the heat medium. At the same time, the air is returned to the expansion tank 41 which is open to the atmosphere, and the air that has entered the heating return path 37 or the heating going path 38 can be removed.
Then, every time the set time elapses, the air that has entered the heating return path 37 or the heating outgoing path 38 is evacuated, and the air enters the heating return path 37 or the heating outgoing path 38, thereby storing the heat medium in the expansion tank 41. An abnormal increase in the amount of the heat medium stored in the expansion tank 41 does not occur without causing an abnormal increase in the amount of heat medium. Become.
Accordingly, the operation control unit H activates the heating pump 39 every time the set time elapses, and causes the abnormal return of the heating medium storage amount of the expansion tank 41 to occur. In a state in which air is not introduced into the expansion tank 41, an abnormal increase in the storage amount of the heat medium in the expansion tank 41 is determined, so that a leakage abnormality of the heat exchanger is determined.
[0063]
Incidentally, the set time is set to a time shorter than the time required until an abnormal rise in the storage amount of the heat medium in the expansion tank 41 due to the entry of air into the heating return path 37 and the heating outgoing path 38.
[0064]
The control operation of the operation control unit H in determining whether there is a leakage abnormality of the heating heat exchanger 6 will be described with reference to the flowchart of FIG. 5. The set time has elapsed since the last time the heating pump 39 was operated. Then, the heating pump 39 is operated (steps 31 and 22).
Then, regardless of whether or not the heating pump 39 is operating, if the water level over sensor 46 causes an abnormal increase in the storage amount of the heat medium in the expansion tank 41, it is determined that the heating heat exchanger 6 is leaking abnormally. (Steps 23 and 24).
[0065]
[Fourth embodiment]
The fourth embodiment shows another embodiment for determining whether or not there is a leakage abnormality of the heating heat exchanger 6 in the first embodiment. The configuration for determining whether or not the determination is made will be added.
Since the other configuration is the same as that of the first embodiment, detailed description thereof will be omitted by giving the same reference numerals.
[0066]
The operation control unit H determines that the leakage of the heating heat exchanger 5 is abnormal if the increase in the storage amount of the heat medium in the expansion tank 41 is continuously detected and the increase speed is faster than the set speed. It is configured.
In addition, as shown in FIG. 6, as shown in FIG. 6, the operation control unit H is provided with an increase speed sensor 57 for detecting an increase in the storage amount of the heat medium in the expansion tank 41 and an increase speed thereof by detecting the capacitance. Means that the increase rate sensor 57 continuously detects an increase in the storage amount of the heat medium in the expansion tank 41, and if the increase rate is faster than the set speed, it is determined that the heating heat exchanger 5 is leaking abnormally. Is configured.
FIG. 6 is an enlarged view of the expansion tank 41 shown in FIG.
[0067]
When a leakage abnormality of the heating heat exchanger 6 occurs, the rate of increase of the storage amount of the heat medium in the expansion tank 41 is higher than when air enters the heating return path 37 or the heating outflow path 38. Is faster.
Then, when a leakage abnormality of the heating heat exchanger 6 occurs, the hot water for hot water supply flows into the heating return path 37 and the heating outgoing path 38 side continuously, and the inflow amount is large. The storage amount of the heat medium continuously increases and its increasing speed is faster than the set speed.
Therefore, the increase in the amount of the heat medium stored in the expansion tank 41 is continuously detected by the increase speed sensor 57, and if the increase speed is faster than the set speed, it can be determined that the leakage of the heating heat exchanger 5 is abnormal. Become.
[0068]
Incidentally, in the fourth embodiment, the leakage abnormality of the heating heat exchanger 6 can be determined without detecting the occurrence of the abnormal increase in the storage amount of the heat medium in the expansion tank 41. 46 may not be provided.
[0069]
[Another embodiment]
(1) In the first to fourth embodiments, the heat exchanger is used as the heating heat exchanger 6 so as to detect a leakage abnormality of the heating heat exchanger 6. The exhaust heat type heat exchanger 5a can be configured and implemented to detect a leakage abnormality of the exhaust heat type heat exchanger 5a.
Further, the heat exchanger can be implemented as both the heating heat exchanger 6 and the exhaust heat type heat exchanger 5a.
[0070]
For example, in the first embodiment, when the heat exchanger is the exhaust heat type heat exchanger 5a and a leak abnormality of the exhaust heat type heat exchanger 5a is detected, the cooling water expansion tank 54 is provided in the cooling water expansion tank 54. It is detected that the storage amount of the cooling water in the expansion tank 54 becomes larger than the set amount, or the occurrence of an abnormal increase in the storage amount of the cooling water in the expansion tank 54 for the cooling water in which the cooling water leaks from the expansion tank 54 for the cooling water. Provide a water level over sensor.
When the water level over sensor detects the occurrence of an abnormal rise in the amount of stored cooling water in the cooling water expansion tank 54, the operation control unit H operates the cooling water circulating pump 35 to operate the cooling water circulation pump 35 in the operating state. It is configured to determine whether or not there is a leak abnormality in the exhaust heat exchanger 5a based on a change in the amount of cooling water stored in the expansion tank 54.
[0071]
By the way, when the heat exchanger is the heat rejection heat exchanger 5a and the leak abnormality of the heat rejection heat exchanger 5a is detected, the heat medium circulation path is constituted by the cooling water circulation path 36, and the heat medium circulation means is provided. Is constituted by the cooling water circulation pump 35.
[0072]
(2) In the first to third embodiments, the water level over sensor 46 for detecting occurrence of an abnormal rise in the storage amount of the heat medium in the expansion tank 41 is provided. Regarding the configuration for detecting the occurrence of abnormal rise, a pressure type water level sensor is provided, the upper limit sensor 44 is also used, and a heat medium leaks from the expansion tank 41 with a sensor provided below the expansion tank 41. Various configurations can be applied, such as detecting the fact.
[0073]
(3) In the fourth embodiment, the increase speed sensor 57 that detects the increase in the storage amount of the heat medium in the expansion tank 41 and the increase speed by detecting the capacitance has been described. It is possible to apply a sensor capable of detecting the increase in the storage amount of the heat medium and the rate of increase.
[0074]
(4) In the fourth embodiment, the operation control unit H determines that the increase in the storage amount of the heat medium in the expansion tank 41 is continuously detected, and that the increase speed is faster than the set speed, the heating heat exchanger. For example, if the increase rate of the storage amount of the heat medium in the expansion tank 41 is faster than the set speed, the operation control unit H It is also possible to configure and execute so as to determine a leakage abnormality.
[0075]
(5) In the first to fourth embodiments, examples in which the heat medium supply facility according to the present invention is applied to a cogeneration system provided with a reheating unit 7 in addition to the heating unit 6. However, any system having a heat exchanger for heating the terminal supply heat medium with hot and cold water may be used, such as a cogeneration system having only the heating heat exchanger 6 and various other heat medium. Can be adapted to heating equipment.
[0076]
(6) In the first to fourth embodiments, the heating means is constituted by the exhaust heat exchanger 5a for heating the hot water by the exhaust heat of the gas engine, and the gas combustion type auxiliary heating means 5b. Although the heat-exchanger type heat exchanger 5a is configured to heat the hot-water supply water by the exhaust heat of the fuel cell, the auxiliary heating means 5b is provided with a liquid fuel combustion type burner. A configuration equipped with an electric heater can be used, and the configurations of the exhaust heat exchanger 5a and the auxiliary heating means 5b can be appropriately changed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cogeneration system.
FIG. 2 is a control block diagram of a cogeneration system.
FIG. 3 is a flowchart illustrating a control operation of an operation control unit according to the first embodiment.
FIG. 4 is a flowchart illustrating a control operation of an operation control unit according to a second embodiment.
FIG. 5 is a flowchart illustrating a control operation of an operation control unit according to a third embodiment.
FIG. 6 is a diagram showing an expansion tank according to a fourth embodiment.
[Explanation of symbols]
4 circulation path
5a Heat exchanger
6 heat exchanger
31 Circulation means
35 Heat medium circulation means
36 Heat medium circulation path
37,38 Heat medium circulation path
39 Heat medium circulation means
41 Expansion tank
H Operation control means

Claims (4)

給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備であって、
前記運転制御手段は、前記膨張タンクの熱媒の貯留量の異常上昇が発生すると、前記熱媒循環手段を運転させて、その運転状態における前記膨張タンク内の熱媒の貯留量の変化に基づいて、前記熱交換器の漏れ異常か否かを判別するように構成されている熱媒供給設備。
Circulation means for circulating the hot water for hot water supply through a circulation path in a state of passing through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water for hot water supply, and passing the heat medium in the expansion tank through the heat exchanger Heat medium circulating means for circulating through the heat medium circulating path in a state in which the heat medium supply equipment provided with operation control means for controlling the operation,
The operation control means operates the heat medium circulating means when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs, based on a change in the storage amount of the heat medium in the expansion tank in the operation state. A heat medium supply device configured to determine whether or not the heat exchanger has a leakage abnormality.
給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備であって、
前記運転制御手段は、前記膨張タンクの熱媒の貯留量の増加速度に基づいて、前記熱交換器の漏れ異常か否かを判別するように構成されている熱媒供給設備。
Circulation means for circulating the hot water for hot water supply through a circulation path in a state of passing through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water for hot water supply, and passing the heat medium in the expansion tank through the heat exchanger Heat medium circulating means for circulating through the heat medium circulating path in a state in which the heat medium supply equipment provided with operation control means for controlling the operation,
The heat medium supply equipment, wherein the operation control means is configured to determine whether or not there is a leak abnormality of the heat exchanger based on an increasing speed of a storage amount of the heat medium in the expansion tank.
前記運転制御手段は、前記膨張タンクの熱媒の貯留量の増加が連続して検出されかつその増加速度が設定速度よりも速ければ、前記熱交換器の漏れ異常と判別するように構成されている請求項2に記載の熱媒供給設備。The operation control means is configured to determine that the heat exchanger has a leakage abnormality if an increase in the storage amount of the heat medium in the expansion tank is continuously detected and the increase speed is faster than a set speed. The heat medium supply equipment according to claim 2. 給湯用湯水をその給湯用湯水よりも低圧の熱媒との熱交換用の熱交換器を通過させる状態で循環路を通して循環させる循環手段と、膨張タンク内の熱媒を前記熱交換器を通過させる状態で熱媒循環路を通して循環させる熱媒循環手段と、運転を制御する運転制御手段とが設けられている熱媒供給設備であって、
前記運転制御手段は、設定時間が経過するごとに前記熱媒循環手段を運転させて、その運転後から次回運転させるまでの間に、前記膨張タンクの熱媒の貯留量の異常上昇が発生すると、前記熱交換器の漏れ異常と判別するように構成されている熱媒供給設備。
Circulation means for circulating the hot water for hot water supply through a circulation path in a state of passing through a heat exchanger for heat exchange with a heat medium having a lower pressure than the hot water for hot water supply, and passing the heat medium in the expansion tank through the heat exchanger Heat medium circulating means for circulating through the heat medium circulating path in a state in which the heat medium supply equipment provided with operation control means for controlling the operation,
The operation control means operates the heat medium circulating means every time a set time elapses, and after the operation is performed until the next operation, when an abnormal increase in the storage amount of the heat medium in the expansion tank occurs. And a heat medium supply facility configured to determine a leakage abnormality of the heat exchanger.
JP2003044669A 2003-02-21 2003-02-21 Heat medium supply equipment Pending JP2004251591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044669A JP2004251591A (en) 2003-02-21 2003-02-21 Heat medium supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044669A JP2004251591A (en) 2003-02-21 2003-02-21 Heat medium supply equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003390367A Division JP2004251888A (en) 2003-11-20 2003-11-20 Equipment supplying heating medium

Publications (1)

Publication Number Publication Date
JP2004251591A true JP2004251591A (en) 2004-09-09

Family

ID=33027298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044669A Pending JP2004251591A (en) 2003-02-21 2003-02-21 Heat medium supply equipment

Country Status (1)

Country Link
JP (1) JP2004251591A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113813A (en) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd Water heater
JP2008185251A (en) * 2007-01-29 2008-08-14 Noritz Corp Warm water jetting device
JP2008281232A (en) * 2007-05-08 2008-11-20 Osaka Gas Co Ltd Heat medium supply device
JP2009026718A (en) * 2007-07-24 2009-02-05 Panasonic Corp Fuel cell cogeneration system
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2011158208A (en) * 2010-02-02 2011-08-18 Osaka Gas Co Ltd Open type hot water circulation device and method of setting electrode height
JP2012207928A (en) * 2011-03-29 2012-10-25 Noritz Corp Water leakage detection system
JP2012207810A (en) * 2011-03-29 2012-10-25 Noritz Corp Water leakage detection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113813A (en) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd Water heater
JP2008185251A (en) * 2007-01-29 2008-08-14 Noritz Corp Warm water jetting device
JP2008281232A (en) * 2007-05-08 2008-11-20 Osaka Gas Co Ltd Heat medium supply device
JP2009026718A (en) * 2007-07-24 2009-02-05 Panasonic Corp Fuel cell cogeneration system
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2011158208A (en) * 2010-02-02 2011-08-18 Osaka Gas Co Ltd Open type hot water circulation device and method of setting electrode height
JP2012207928A (en) * 2011-03-29 2012-10-25 Noritz Corp Water leakage detection system
JP2012207810A (en) * 2011-03-29 2012-10-25 Noritz Corp Water leakage detection system

Similar Documents

Publication Publication Date Title
JP4023139B2 (en) Hybrid water heater
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP2004239581A (en) Cogeneration system
JP4535957B2 (en) Heat supply system
JP2004257583A (en) Storage water heater
JP2004251591A (en) Heat medium supply equipment
JP5158745B2 (en) Fuel cell cogeneration system
JP4391471B2 (en) Hot water storage water heater
JP5678812B2 (en) Hot water storage water heater
JP5542617B2 (en) Heating system
JP5821002B2 (en) Hot water system
JP2004251888A (en) Equipment supplying heating medium
JP3970194B2 (en) Heat source equipment
JP4696835B2 (en) Water heater
JP4994291B2 (en) Heat source machine
JP2013069598A (en) Cogeneration system
JP2014059126A (en) Heat source device
JP2010286185A (en) Hot water storage type hot water supply system and cogeneration system
JP2017122535A (en) Bath water heater
JP2010084998A (en) Water heater
JP7147242B2 (en) Storage hot water heater
JP2020169769A (en) Water heater
JP2003176948A (en) Hot-water supply device with additional heating and air heater function
JP2014199159A (en) Heat source device
JP4257605B2 (en) Combined heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070913