JP4096891B2 - Regeneration method of anion exchange resin adsorbed thiocyanate ion - Google Patents

Regeneration method of anion exchange resin adsorbed thiocyanate ion Download PDF

Info

Publication number
JP4096891B2
JP4096891B2 JP2004038359A JP2004038359A JP4096891B2 JP 4096891 B2 JP4096891 B2 JP 4096891B2 JP 2004038359 A JP2004038359 A JP 2004038359A JP 2004038359 A JP2004038359 A JP 2004038359A JP 4096891 B2 JP4096891 B2 JP 4096891B2
Authority
JP
Japan
Prior art keywords
anion exchange
exchange resin
resin
regeneration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004038359A
Other languages
Japanese (ja)
Other versions
JP2005224763A (en
Inventor
一栄 小池
博冨 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Engineering Co Ltd
Original Assignee
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Engineering Co Ltd filed Critical Kurita Engineering Co Ltd
Priority to JP2004038359A priority Critical patent/JP4096891B2/en
Publication of JP2005224763A publication Critical patent/JP2005224763A/en
Application granted granted Critical
Publication of JP4096891B2 publication Critical patent/JP4096891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、チオシアン酸イオンを吸着したアニオン交換樹脂の再生方法、特に他のアニオンとともにチオシアン酸イオンを吸着したアニオン交換樹脂を安全かつ効率的に再生する方法に関するものである。   The present invention relates to a method for regenerating an anion exchange resin having adsorbed thiocyanate ions, and more particularly to a method for safely and efficiently regenerating an anion exchange resin having adsorbed thiocyanate ions together with other anions.

石油精製その他のプロセスでは、硫化水素その他の酸成分を含む酸性ガスが発生する。このような酸性ガスは、アルカノールアミン等のアミン液と接触させることにより、酸成分を吸収させて除去する処理方法で処理され、再使用されている。ここで使用するアミン液は酸成分の吸収が進むと吸収能力が低下するので、アニオン交換樹脂と接触させて吸収能力を回復している。吸収能力の回復に使用したアニオン交換樹脂は、通常水酸化ナトリウム水溶液のようなアルカリにより再生して再使用している。ところがアニオン交換樹脂の再生において、アニオン交換樹脂がチオシアン酸イオンを吸着せず、他のアニオンのみを吸着している場合は、水酸化ナトリウム水溶液のような水酸化アルカリにより容易に再生されるが、アニオン交換樹脂がチオシアン酸イオンを吸着している場合は、アルカリ性ではチオシアン酸イオンの吸着力が強いためと推測されるが、水酸化アルカリにより再生することは容易ではなく、チオシアン酸イオンの脱着は不完全になる。   In oil refining and other processes, acid gases containing hydrogen sulfide and other acid components are generated. Such acidic gas is treated and reused by a treatment method that absorbs and removes the acid component by contacting with an amine solution such as alkanolamine. Since the amine solution used here has a reduced absorption capacity as the acid component is absorbed, it is brought into contact with an anion exchange resin to recover the absorption capacity. The anion exchange resin used to recover the absorption capacity is usually regenerated and reused with an alkali such as an aqueous sodium hydroxide solution. However, in the regeneration of anion exchange resin, when the anion exchange resin does not adsorb thiocyanate ions and adsorbs only other anions, it is easily regenerated with an alkali hydroxide such as an aqueous sodium hydroxide solution. If the anion exchange resin adsorbs thiocyanate ions, it is presumed that the alkalinity has a strong adsorptivity of thiocyanate ions, but it is not easy to regenerate with alkali hydroxide, and desorption of thiocyanate ions is not possible. Become imperfect.

特許文献1には、チオシアン酸イオンを吸着したアニオン交換樹脂を、食塩水溶液と接触させた後、水酸化ナトリウム水溶液と接触させて再生する方法が示されており、これによりチオシアン酸イオンの脱着が進み、これによりチオシアン酸イオンを吸着したアニオン交換樹脂を容易に再生できるとされている。しかしながらアニオン交換樹脂を食塩水溶液と接触させると、アニオン交換樹脂はCl形になる。Cl形の交換基で使用すると、チオシアン酸イオンその他のアニオンが吸着除去される代わりに、塩化物イオンがアミン液中に脱離して腐食の原因となる。このためCl形の交換基をOH形にする必要があるが、アニオン交換樹脂に対するClイオンの結合力が大きいので、Cl形の交換基をOH形に変換するためには多量の水酸化ナトリウムが必要となる。またチオシアン酸イオンを吸着したアニオン交換樹脂を、食塩水溶液と接触させると、脱着したチオシアン酸イオンはチオシアン酸ナトリウム等の塩となって溶出するが、チオシアン酸塩は酸性または酸性に近い中性では分解してシアンを発生するおそれがあり、安全性に問題がある。
特表2003−501248号公報
Patent Document 1 discloses a method in which an anion exchange resin having adsorbed thiocyanate ions is brought into contact with a sodium chloride aqueous solution and then regenerated by bringing it into contact with a sodium hydroxide aqueous solution, whereby desorption of thiocyanate ions is performed. It is said that the anion exchange resin adsorbing thiocyanate ions can be easily regenerated. However, when the anion exchange resin is contacted with a saline solution, the anion exchange resin is in the Cl form. When used in a Cl-type exchange group, chloride ions are desorbed into the amine solution instead of being adsorbed and removed by thiocyanate ions and other anions, causing corrosion. For this reason, it is necessary to change the Cl-type exchange group to the OH form, but since the binding force of Cl ions to the anion exchange resin is large, a large amount of sodium hydroxide is required to convert the Cl-type exchange group to the OH form. Necessary. In addition, when the anion exchange resin adsorbing thiocyanate ions is brought into contact with a saline solution, the desorbed thiocyanate ions are eluted as a salt such as sodium thiocyanate. There is a risk of cyanide decomposition, which is a safety problem.
Special table 2003-501248 gazette

本発明の課題は、チオシアン酸イオンを吸着したアニオン交換樹脂を安全かつ効率的に再生することができるアニオン交換樹脂の再生方法を提案することである。   An object of the present invention is to propose a method for regenerating an anion exchange resin capable of safely and efficiently regenerating an anion exchange resin having adsorbed thiocyanate ions.

本発明は、次のチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法である。
(1)チオシアン酸イオンを吸着したアニオン交換樹脂を、炭酸水素ナトリウム水溶液と接触させて1次再生した後、水酸化ナトリウム水溶液と接触させて2次再生することを特徴とするチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法。
(2)アニオン交換樹脂が、酸性ガス処理用のアミン液の吸収能力回復に用いられてチオシアン酸イオンを吸着した樹脂である上記(1)記載の方法。
(3)3〜10重量%炭酸水素ナトリウム水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=5〜40/hrで樹脂層に通液して1次再生する上記(1)または(2)記載の方法。
(4)3〜10重量%水酸化ナトリウム水溶液を、再生剤量5〜20eq/L−樹脂、通水速度SV=5〜40/hrで樹脂層に通液して2次再生する上記(1)ないし(3)のいずれかに記載の方法。
The present invention is a method for regenerating an anion exchange resin adsorbing the following thiocyanate ions.
(1) Adsorption of thiocyanate ions, characterized in that the anion exchange resin adsorbed with thiocyanate ions is first regenerated by bringing it into contact with an aqueous sodium hydrogen carbonate solution and then secondarily regenerating by bringing it into contact with an aqueous sodium hydroxide solution. Of regenerating anion exchange resin.
(2) The method according to (1) above, wherein the anion exchange resin is a resin that has been used to recover the absorption capacity of an amine liquid for acid gas treatment and has adsorbed thiocyanate ions.
(3) The above-mentioned (1) primary regeneration by passing a 3 to 10% by weight aqueous sodium hydrogen carbonate solution through the resin layer at a regenerant amount of 3 to 80 eq / L-resin and a water flow rate SV = 5 to 40 / hr. ) Or (2).
(4) A 3 to 10 wt% aqueous sodium hydroxide solution is passed through the resin layer at a regenerant amount of 5 to 20 eq / L-resin and a water flow rate SV of 5 to 40 / hr to perform secondary regeneration (1 ) To (3).

本発明において、再生の対象となるチオシアン酸イオンを吸着したアニオン交換樹脂は、酸性ガス処理に用いられたアミン液の吸収能力回復のためなどに用いられて、チオシアン酸イオンを吸着したアニオン交換樹脂であり、特に他のアニオンとともにチオシアン酸イオンを吸着したアニオン交換樹脂が再生の対象として好ましい。アニオン交換樹脂としては、チオシアン酸イオンおよび他のアニオンを交換吸着できるものであればよく、弱塩基性アニオン交換樹脂でもよいが、中性塩分解能を有する強塩基性アニオン交換樹脂、例えば第四アンモニウム基を有する強塩基性アニオン交換樹脂が好ましい。   In the present invention, the anion exchange resin that adsorbs thiocyanate ions to be regenerated is used to recover the absorption capacity of the amine liquid used in the acid gas treatment, and the anion exchange resin that adsorbs thiocyanate ions. In particular, an anion exchange resin that adsorbs thiocyanate ions together with other anions is preferable as a regeneration target. The anion exchange resin is not particularly limited as long as it can exchange and adsorb thiocyanate ions and other anions, and may be a weakly basic anion exchange resin, but a strong basic anion exchange resin having a neutral salt resolution, such as quaternary ammonium. Strongly basic anion exchange resins having groups are preferred.

チオシアン酸イオンを吸着したアニオン交換樹脂としては、特に限定されないが、石油精製その他のプロセスにおいて酸性ガス処理に用いられたアルカノールアミン等のアミン液の吸収能力回復に用いられることによってチオシアン酸イオンを吸着したものが再生の対象として好ましい。酸性ガス処理が行われるプロセスとしては、石油精製の他に、木材のパルプ化、天然ガスや原油の生産および種々の化学工程や工業プロセスなどが挙げられる。アミン液としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジグリコールアミン、メチルジエタノールアミンなどのアルカノールアミンが挙げられるが、他のアミンでもよい。またアミンでなく、廃水その他の水溶液からチオシアン酸イオンその他のイオンを吸着したものでもよい。   The anion exchange resin that adsorbs thiocyanate ion is not particularly limited, but adsorbs thiocyanate ion by recovering the absorption capacity of amine liquid such as alkanolamine used for acid gas treatment in petroleum refining and other processes. What was done is preferable as a subject of reproduction. Processes in which acid gas treatment is performed include, in addition to petroleum refining, wood pulping, production of natural gas and crude oil, various chemical processes and industrial processes. Examples of the amine liquid include alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, diglycolamine, and methyldiethanolamine, but other amines may be used. Further, thiocyanate ions or other ions may be adsorbed from waste water or other aqueous solutions instead of amines.

本発明において、チオシアン酸イオンを吸着したアニオン交換樹脂の再生は、アニオン交換樹脂からチオシアン酸イオンその他のイオンを脱着して、アニオン交換樹脂のアニオン交換能を回復するために行われる。アニオン交換能の回復により、アニオン交換樹脂はアミンその他の液からチオシアン酸イオンその他のイオンを除去するために使用される。この場合、アニオン交換樹脂はOH形に再生されることにより、チオシアン酸イオンその他のイオンに対するアニオン交換能が回復する。   In the present invention, the regeneration of the anion exchange resin having adsorbed thiocyanate ions is performed in order to desorb thiocyanate ions and other ions from the anion exchange resin to restore the anion exchange ability of the anion exchange resin. By recovering the anion exchange capacity, the anion exchange resin is used to remove thiocyanate ions and other ions from amine and other liquids. In this case, the anion exchange resin is regenerated to the OH form, so that the anion exchange ability for thiocyanate ions and other ions is restored.

本発明の再生方法では、チオシアン酸イオンを吸着したアニオン交換樹脂を、炭酸水素ナトリウム水溶液と接触させて1次再生した後、水酸化ナトリウム水溶液と接触させて2次再生し、アニオン交換樹脂を再生する。1次再生液としての炭酸水素ナトリウム水溶液は、3〜10重量%、好ましくは5〜7重量%の濃度の水溶液を用いるのが好ましい。接触方法は、浸漬法、流動接触法などでもよいが、カラム通水式の接触方法が好ましく、チオシアン酸イオンを吸着したアニオン交換樹脂層に、再生剤量3〜80eq/L−樹脂、通水速度SV=5〜40/hrで通液して1次再生することができる。   In the regeneration method of the present invention, the anion exchange resin having adsorbed thiocyanate ions is brought into primary regeneration by bringing it into contact with an aqueous sodium hydrogen carbonate solution, and then secondary regeneration is brought into contact with an aqueous sodium hydroxide solution to regenerate the anion exchange resin. To do. The aqueous sodium hydrogen carbonate solution as the primary regeneration solution is preferably an aqueous solution having a concentration of 3 to 10% by weight, preferably 5 to 7% by weight. The contact method may be a dipping method, a fluid contact method, or the like, but a column-water contact method is preferable, and an anion exchange resin layer that has adsorbed thiocyanate ions has a regenerant amount of 3 to 80 eq / L-resin, water flow. Primary regeneration can be performed by passing the liquid at a speed SV = 5 to 40 / hr.

2次再生液としての水酸化ナトリウム水溶液は、3〜10重量%、好ましくは4〜8重量%の濃度の水溶液を用いるのが好ましい。接触方法は、浸漬法、流動接触法などでもよいが、カラム通水式の接触方法が好ましく、チオシアン酸イオンを吸着したアニオン交換樹脂層に、再生剤量5〜20eq/L−樹脂、通水速度SV=5〜40/hrで通液して2次再生することができる。これにより1次再生でHCO3形になったアニオン交換樹脂は、2次再生によりOH形に再生される。再生剤量を増やせば、樹脂の初期交換容量まで再生することが可能となる。 The aqueous sodium hydroxide solution as the secondary regeneration solution is preferably an aqueous solution having a concentration of 3 to 10% by weight, preferably 4 to 8% by weight. The contact method may be a dipping method, a fluid contact method, or the like, but a column-water contact method is preferable. Secondary regeneration can be performed by passing liquid at a speed SV = 5 to 40 / hr. As a result, the anion exchange resin that has become HCO 3 form by primary regeneration is regenerated to OH form by secondary regeneration. If the amount of the regenerant is increased, it is possible to regenerate up to the initial exchange capacity of the resin.

強アルカリ性ではチオシアン酸イオンの吸着力が強いため、水酸化アルカリにより再生するとチオシアン酸イオンの脱着は不完全になるが、炭酸水素ナトリウム水溶液で1次再生すると、弱アルカリ性のためチオシアン酸イオンの吸着力が弱くなり、大部分のチオシアン酸イオンは脱着してHCO3形になる。特許文献1のように食塩で1次再生するとチオシアン酸イオンの脱着性はよいが、Cl形は樹脂に対する結合力が強いため2次再生でOH形に再生するのは困難であるのに対し、HCO3形は結合力が弱いので、水酸化ナトリウム水溶液による2次再生で容易にOH形に変換することができ、交換基をOH形に変換するための水酸化ナトリウム量は少なくなる。食塩で1次再生する場合は、再生剤量を増やしても樹脂の初期交換容量までの再生は難しい。 In strong alkalinity, the thiocyanate ion adsorbing power is strong, so desorption of thiocyanate ion is incomplete when it is regenerated with alkali hydroxide, but when it is first regenerated with aqueous sodium hydrogen carbonate solution, the thiocyanate ion adsorbs due to weak alkalinity The force is weakened and most of the thiocyanate ions are desorbed to form HCO 3 . When the primary regeneration is performed with sodium chloride as in Patent Document 1, the desorbability of thiocyanate ions is good, but the Cl form has a strong binding force to the resin, so it is difficult to regenerate to the OH form by secondary regeneration. Since the HCO 3 form has a weak binding force, it can be easily converted to the OH form by secondary regeneration with an aqueous sodium hydroxide solution, and the amount of sodium hydroxide for converting the exchange group to the OH form is reduced. In the case of primary regeneration with salt, regeneration to the initial exchange capacity of the resin is difficult even if the amount of the regenerant is increased.

チオシアン酸イオンを吸着したアニオン交換樹脂を、炭酸水素ナトリウム水溶液と接触させると、脱着したチオシアン酸イオンはチオシアン酸ナトリウムとなって溶出するが、炭酸水素ナトリウムも流出するため弱アルカリ性であり、チオシアン酸塩の分解によるシアン発生の危険性はない。このため食塩で1次再生する場合に、チオシアン酸塩が分解してシアンを発生するおそれがあるのに比べ、安全性は高い。   When an anion exchange resin that adsorbs thiocyanate ions is brought into contact with an aqueous sodium hydrogen carbonate solution, the desorbed thiocyanate ions are eluted as sodium thiocyanate, but sodium hydrogen carbonate also flows out and is weakly alkaline. There is no danger of cyanide generation due to salt decomposition. For this reason, in the case of primary regeneration with sodium chloride, the safety is high as compared to the possibility that thiocyanate decomposes to generate cyanide.

こうして1次再生および2次再生した後、水(純水)による押出、水洗工程を行って残留する再生液や溶離物を排出し、再生を終了する。再生を終ったアニオン交換樹脂は再び吸着工程に移行し、アミン液等と接触させてチオシアン酸イオンを他のアニオンとともに吸着させる。この場合、アニオン交換樹脂は1次再生により結合したHCO3は2次再生により脱離してOH形に変換しているため、アニオン交換樹脂からアミン液等に不純物が溶離することはなく、吸着処理によりアミン液等を汚染することなく、アミン液等から不純物アニオンを吸着除去することができる。 After primary regeneration and secondary regeneration in this way, extrusion with water (pure water) and water washing steps are performed to discharge the remaining regeneration solution and eluate, and the regeneration ends. The anion exchange resin that has been regenerated moves to the adsorption process again and is brought into contact with an amine solution or the like to adsorb thiocyanate ions together with other anions. In this case, since the HCO 3 bound by the primary regeneration is desorbed and converted to the OH form by the secondary regeneration, impurities are not eluted from the anion exchange resin into the amine liquid, etc. Thus, the impurity anions can be adsorbed and removed from the amine liquid or the like without contaminating the amine liquid or the like.

なお、上記の1次再生および2次再生の前または後に、他の処理を行い、再生をさらに効率よくすることは可能である。   It should be noted that other processing can be performed before or after the primary reproduction and secondary reproduction described above to further improve the reproduction.

本発明によれば、チオシアン酸イオンを吸着したアニオン交換樹脂を、炭酸水素ナトリウム水溶液と接触させて1次再生した後、水酸化ナトリウム水溶液と接触させて2次再生することにより、チオシアン酸イオンを吸着したアニオン交換樹脂を安全かつ効率的に再生することができる。   According to the present invention, an anion exchange resin having adsorbed thiocyanate ions is brought into primary regeneration by bringing it into contact with an aqueous sodium hydrogen carbonate solution, and then brought into contact with an aqueous sodium hydroxide solution to carry out secondary regeneration. The adsorbed anion exchange resin can be regenerated safely and efficiently.

以下、本発明の実施例について説明する。実施例はアニオン交換樹脂をカラムに充填して、吸着および再生を行った例である。実施例中、%は重量%である。   Examples of the present invention will be described below. In this example, an anion exchange resin is packed in a column and adsorption and regeneration are performed. In the examples,% is% by weight.

実施例1〜3:
内径15mm、高さ200mmのカラムを使用し、ダウケミカル日本株式会社製の強塩基性アニオン交換樹脂DOWEX MSA-1を5mL充填した。模擬試料液として、ジイソプロパノールアミン(DIPA)27%にチオシアン酸を6000mg/L相当添加したものを、通液量100mL、通水速度SV=5/hrで通液し、チオシアン酸イオンを吸着させた。再生方法は1次再生液として6%の炭酸水素ナトリウム水溶液を7〜72eq/L-樹脂、通水速度SV=40/hrで通液後、2次再生液として4%の水酸化ナトリウム水溶液を10eq/L−樹脂、通水速度SV=40/hrで通液した。その後、純水を樹脂の80容量分通液して洗浄した。再生剤量とチオシアン酸の脱着量の関係を表1に示す。
Examples 1-3:
Using a column having an inner diameter of 15 mm and a height of 200 mm, 5 mL of strongly basic anion exchange resin DOWEX MSA-1 manufactured by Dow Chemical Japan Co., Ltd. was packed. As a simulated sample solution, thiocyanic acid equivalent to 6000 mg / L added to diisopropanolamine (DIPA) 27% was passed at a flow rate of 100 mL and a water flow rate of SV = 5 / hr to adsorb thiocyanate ions. It was. The regeneration method is as follows: 6% sodium bicarbonate aqueous solution as the primary regeneration solution is 7 to 72 eq / L-resin at a water flow rate of SV = 40 / hr, then 4% sodium hydroxide aqueous solution is used as the secondary regeneration solution. The solution was passed through 10 eq / L-resin at a water flow rate of SV = 40 / hr. Thereafter, 80 volumes of pure water was passed through and washed. Table 1 shows the relationship between the amount of the regenerant and the amount of thiocyanate desorbed.

比較例1:
比較例1として4%の水酸化ナトリウム水溶液を80eq/L―樹脂、通水速度SV=40/hrで通液し、その後、純水を樹脂の80容量分通液して洗浄した場合の結果を表1に示す。
Comparative Example 1:
As a comparative example 1, a 4% sodium hydroxide aqueous solution was passed through 80 eq / L-resin at a water flow rate of SV = 40 / hr, and then purified water was passed through 80 volumes of the resin and washed. Is shown in Table 1.

Figure 0004096891
Figure 0004096891

比較例2:
実施例1〜3において、1次再生液として20%の塩化ナトリウム水溶液を
68eq/L-樹脂、通水速度SV=40/hrで通液後、2次再生液として4%の水酸化ナトリウム水溶液を10eq/L−樹脂、通水速度SV=40/hrで通液した。その後、純水を樹脂の80容量分通液して洗浄した。再生剤量とチオシアン酸の脱着量の関係を表2に示す。
Comparative Example 2:
In Examples 1 to 3, after passing a 20% aqueous sodium chloride solution as a primary regeneration solution at 68 eq / L-resin at a water flow rate of SV = 40 / hr, a 4% aqueous sodium hydroxide solution as a secondary regeneration solution. Was passed through at 10 eq / L-resin at a water flow rate of SV = 40 / hr. Thereafter, 80 volumes of pure water was passed through and washed. Table 2 shows the relationship between the amount of the regenerant and the amount of thiocyanate desorbed.

Figure 0004096891
Figure 0004096891

表1より、再生剤量を水酸化ナトリウムと同程度使用すれば、樹脂の初期交換容量程度まで性能が回復することが解る。この場合、水酸化ナトリウムを単独で使用する場合(比較例1)と比較して、少ない再生剤量で同程度まで性能が回復することが解る。また表2より、表1において樹脂の初期交換容量まで性能が100%回復する実施例3とほぼ同程度の塩化ナトリウム水溶液を用いても、交換容量は2/3程度しか回復できないことがわかる。   From Table 1, it can be seen that if the amount of the regenerant is used as much as sodium hydroxide, the performance is recovered to the initial exchange capacity of the resin. In this case, it can be seen that the performance is restored to the same extent with a small amount of the regenerant compared with the case where sodium hydroxide is used alone (Comparative Example 1). Also, from Table 2, it can be seen that the exchange capacity can be recovered only about 2/3 even when using a sodium chloride aqueous solution of about the same level as in Example 3 whose performance is 100% recovered to the initial exchange capacity of the resin in Table 1.

Claims (4)

チオシアン酸イオンを吸着したアニオン交換樹脂を、炭酸水素ナトリウム水溶液と接触させて1次再生した後、水酸化ナトリウム水溶液と接触させて2次再生することを特徴とするチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法。 Anion exchange resin adsorbed thiocyanate ion, wherein the anion exchange resin adsorbed thiocyanate ion is first regenerated by bringing it into contact with an aqueous sodium hydrogen carbonate solution, followed by secondary regeneration by bringing it into contact with an aqueous sodium hydroxide solution. Resin regeneration method. アニオン交換樹脂が、酸性ガス処理用のアミン液の吸収能力回復に用いられてチオシアン酸イオンを吸着した樹脂である請求項1記載の方法。 The method according to claim 1, wherein the anion exchange resin is a resin that is used to recover the absorption capacity of an amine liquid for acid gas treatment and adsorbs thiocyanate ions. 3〜10重量%炭酸水素ナトリウム水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=5〜40/hrで樹脂層に通液して1次再生する請求項1または2記載の方法。 The aqueous solution of 3 to 10% by weight of sodium hydrogen carbonate is primarily regenerated by passing it through the resin layer at a regenerant amount of 3 to 80 eq / L-resin and a water flow rate of SV = 5 to 40 / hr. the method of. 3〜10重量%水酸化ナトリウム水溶液を、再生剤量5〜20eq/L−樹脂、通水速度SV=5〜40/hrで樹脂層に通液して2次再生する請求項1ないし3のいずれかに記載の方法。 The aqueous solution of 3 to 10% by weight of sodium hydroxide is subjected to secondary regeneration by passing it through the resin layer at a regenerant amount of 5 to 20 eq / L-resin at a water flow rate of SV = 5 to 40 / hr. The method according to any one.
JP2004038359A 2004-02-16 2004-02-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion Expired - Fee Related JP4096891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038359A JP4096891B2 (en) 2004-02-16 2004-02-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038359A JP4096891B2 (en) 2004-02-16 2004-02-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Publications (2)

Publication Number Publication Date
JP2005224763A JP2005224763A (en) 2005-08-25
JP4096891B2 true JP4096891B2 (en) 2008-06-04

Family

ID=34999890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038359A Expired - Fee Related JP4096891B2 (en) 2004-02-16 2004-02-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Country Status (1)

Country Link
JP (1) JP4096891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564967B2 (en) * 2010-02-04 2014-08-06 栗田エンジニアリング株式会社 Regeneration method of ion exchange resin used for regeneration of amine liquid

Also Published As

Publication number Publication date
JP2005224763A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP6775667B2 (en) Sustainable systems and methods for removing and concentrating pels and polyfluoroalkyl substances (PFAS) from water
CA2743961C (en) A process for the regeneration of an ion exchange resin using sulfurous acid
JP5591250B2 (en) Treatment method of diamine absorbent stream
JP2003501248A (en) Method of recycling used alkanolamine solution
JP5660303B2 (en) Regeneration method of amine liquid
KR101549089B1 (en) Method for acidic gas absorption comprising regenerating process of anion exchang resin using anion metal hydroxide regenerent
CN112400039A (en) Acid liquid regeneration device and regeneration method
JP5564967B2 (en) Regeneration method of ion exchange resin used for regeneration of amine liquid
JP5919894B2 (en) Method for regenerating anion exchange resin and method for regenerating amine liquid
JP4096891B2 (en) Regeneration method of anion exchange resin adsorbed thiocyanate ion
JP4292345B2 (en) Regeneration method of anion exchange resin adsorbed thiocyanate ion
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP5445212B2 (en) Method for removing amino acid-iron complex from amine liquid
JP5589327B2 (en) Regeneration method of amine liquid
WO2000053284A1 (en) Process for removing hydrocarbons from a liquid mixture with a regenerable filter
JP5488414B2 (en) Method and apparatus for regenerating amine liquid
JP5585025B2 (en) Regeneration method of amine liquid
Cho et al. Regeneration of heat stable salts-loaded anion exchange resin by a novel zirconium pentahydroxide [Zr (OH) 5−] displacement technique in CO2 absorption process
JP2008237988A (en) Regeneration method of organic solvent
JP2001219163A (en) Treating method of boron-containing water
Plantz et al. Purification of Degraded Aqueous Piperazine by Ion Exchange and Carbon Treating
JP6421021B2 (en) Method and apparatus for purification of high concentration sulfate solution
JP4431251B2 (en) Cleaning method for hydrogen sulfide-containing gas
JPS59156439A (en) Regeneration of anion exchange resin
JPH0368755B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees