JP4292345B2 - Regeneration method of anion exchange resin adsorbed thiocyanate ion - Google Patents

Regeneration method of anion exchange resin adsorbed thiocyanate ion Download PDF

Info

Publication number
JP4292345B2
JP4292345B2 JP2004122085A JP2004122085A JP4292345B2 JP 4292345 B2 JP4292345 B2 JP 4292345B2 JP 2004122085 A JP2004122085 A JP 2004122085A JP 2004122085 A JP2004122085 A JP 2004122085A JP 4292345 B2 JP4292345 B2 JP 4292345B2
Authority
JP
Japan
Prior art keywords
anion exchange
regeneration
exchange resin
solution
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004122085A
Other languages
Japanese (ja)
Other versions
JP2005305212A (en
Inventor
一栄 小池
博冨 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Engineering Co Ltd
Original Assignee
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Engineering Co Ltd filed Critical Kurita Engineering Co Ltd
Priority to JP2004122085A priority Critical patent/JP4292345B2/en
Publication of JP2005305212A publication Critical patent/JP2005305212A/en
Application granted granted Critical
Publication of JP4292345B2 publication Critical patent/JP4292345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、チオシアン酸イオンを吸着したアニオン交換樹脂の再生方法、特に他のアニオンとともにチオシアン酸イオンを吸着したアニオン交換樹脂を安全かつ効率的に再生する方法に関するものである。   The present invention relates to a method for regenerating an anion exchange resin having adsorbed thiocyanate ions, and more particularly to a method for safely and efficiently regenerating an anion exchange resin having adsorbed thiocyanate ions together with other anions.

石油精製その他のプロセスでは、硫化水素その他の酸成分を含む酸性ガスが発生する。このような酸性ガスは、アルカノールアミン等のアミン液と接触させることにより、酸成分を吸収させて除去する処理方法で処理され、再使用されている。ここで使用するアミン液は酸成分の吸収が進むと吸収能力が低下するので、アニオン交換樹脂と接触させて吸収能力を回復している。吸収能力の回復に使用したアニオン交換樹脂は、通常水酸化ナトリウム水溶液のようなアルカリにより再生して再使用している。ところがアニオン交換樹脂の再生において、アニオン交換樹脂がチオシアン酸イオンを吸着せず、他のアニオンのみを吸着している場合は、水酸化ナトリウム水溶液のような水酸化アルカリにより容易に再生されるが、アニオン交換樹脂がチオシアン酸イオンを吸着している場合は、アルカリ性ではチオシアン酸イオンの吸着力が強いためと推測されるが、水酸化アルカリにより再生することは容易ではなく、チオシアン酸イオンの脱着は不完全になる。   In oil refining and other processes, acid gases containing hydrogen sulfide and other acid components are generated. Such acidic gas is treated and reused by a treatment method that absorbs and removes the acid component by contacting with an amine solution such as alkanolamine. Since the amine solution used here has a reduced absorption capacity as the acid component is absorbed, it is brought into contact with an anion exchange resin to recover the absorption capacity. The anion exchange resin used to recover the absorption capacity is usually regenerated and reused with an alkali such as an aqueous sodium hydroxide solution. However, in the regeneration of anion exchange resin, when the anion exchange resin does not adsorb thiocyanate ions and adsorbs only other anions, it is easily regenerated with an alkali hydroxide such as an aqueous sodium hydroxide solution. If the anion exchange resin adsorbs thiocyanate ions, it is presumed that the alkalinity has a strong adsorptivity of thiocyanate ions, but it is not easy to regenerate with alkali hydroxide, and desorption of thiocyanate ions is not possible. Become imperfect.

特許文献1には、チオシアン酸イオンを吸着したアニオン交換樹脂を、塩化ナトリウム水溶液と接触させて1次再生した後、アルカリ金属水酸化物水溶液と接触させて2次再生する方法が示されており、これによりチオシアン酸イオンの脱着が進み、チオシアン酸イオンを吸着したアニオン交換樹脂を容易に再生できるとされている。しかしながらアニオン交換樹脂を塩化ナトリウム水溶液と接触させて1次再生しても、チオシアン酸イオンの脱着量は満足できるものではなく、後続の2次再生に用いるアルカリの量を多くしても満足できるチオシアン酸イオンの脱着効果が得られないという問題がある。
特表2003−501248号公報
Patent Document 1 discloses a method in which an anion exchange resin having adsorbed thiocyanate ions is brought into primary regeneration by bringing it into contact with an aqueous sodium chloride solution and then subjected to secondary regeneration by making contact with an aqueous alkali metal hydroxide solution. Thus, the desorption of thiocyanate ions proceeds, and the anion exchange resin adsorbing the thiocyanate ions can be easily regenerated. However, even when the anion exchange resin is brought into contact with an aqueous sodium chloride solution for primary regeneration, the desorption amount of thiocyanate ions is not satisfactory, and the thiocyanate is satisfactory even if the amount of alkali used for the subsequent secondary regeneration is increased. There is a problem that the desorption effect of acid ions cannot be obtained.
Special table 2003-501248 gazette

本発明の課題は、チオシアン酸イオンを吸着したアニオン交換樹脂を少ない薬剤量で効率的に再生することができるアニオン交換樹脂の再生方法を提案することである。   An object of the present invention is to propose a method for regenerating an anion exchange resin capable of efficiently regenerating an anion exchange resin having adsorbed thiocyanate ions with a small amount of drug.

本発明は、次のチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法である。
(1)チオシアン酸イオンを吸着したアニオン交換樹脂を、塩化カリウム水溶液と接触させて1次再生した後、アルカリ水溶液と接触させて2次再生することを特徴とするチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法。
(2)アニオン交換樹脂が、酸性ガス処理用のアミン液の吸収能力回復に用いられてチオシアン酸イオンを吸着した樹脂である上記(1)記載の方法。
(3)3〜20重量%塩化カリウム水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=3〜60/hrで樹脂層に通液して1次再生する上記(1)または(2)記載の方法。
(4)3〜20重量%アルカリ水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=3〜60/hrで樹脂層に通液して2次再生する上記(1)ないし(3)のいずれかに記載の方法。
The present invention is a method for regenerating an anion exchange resin adsorbing the following thiocyanate ions.
(1) Anion exchange adsorbing thiocyanate ions, wherein the anion exchange resin adsorbing thiocyanate ions is first regenerated by contacting with an aqueous potassium chloride solution and then secondarily regenerating by contacting with an aqueous alkali solution. Resin regeneration method.
(2) The method according to the above (1), wherein the anion exchange resin is a resin which is used for recovering the absorption capacity of an amine liquid for acid gas treatment and adsorbs thiocyanate ions.
(3) The aqueous solution containing 3 to 20% by weight of potassium chloride is primarily regenerated by passing it through the resin layer at a regenerant amount of 3 to 80 eq / L-resin at a water flow rate of SV = 3 to 60 / hr. Or the method of (2) description.
(4) The above-described (1) to (2), wherein a 3 to 20 wt% aqueous alkaline solution is passed through the resin layer at a regenerant amount of 3 to 80 eq / L-resin and a water flow rate of SV = 3 to 60 / hr to perform secondary regeneration The method according to any one of (3).

本発明において、再生の対象となるチオシアン酸イオンを吸着したアニオン交換樹脂は、酸性ガス処理に用いられたアミン液の吸収能力回復のためなどに用いられて、チオシアン酸イオンを吸着したアニオン交換樹脂であり、特に他のアニオンとともにチオシアン酸イオンを吸着したアニオン交換樹脂が再生の対象として好ましい。アニオン交換樹脂としては、チオシアン酸イオンおよび他のアニオンを交換吸着できるものであればよく、弱塩基性アニオン交換樹脂でもよいが、中性塩分解能を有する強塩基性アニオン交換樹脂、例えば第四級アンモニウム基を有する強塩基性アニオン交換樹脂が好ましい。   In the present invention, the anion exchange resin that adsorbs thiocyanate ions to be regenerated is used to recover the absorption capacity of the amine liquid used in the acid gas treatment, and the anion exchange resin that adsorbs thiocyanate ions. In particular, an anion exchange resin that adsorbs thiocyanate ions together with other anions is preferable as a regeneration target. The anion exchange resin is not particularly limited as long as it can exchange and adsorb thiocyanate ions and other anions, and may be a weakly basic anion exchange resin, but a strong basic anion exchange resin having a neutral salt resolution, such as a quaternary Strongly basic anion exchange resins having an ammonium group are preferred.

チオシアン酸イオンを吸着したアニオン交換樹脂としては、特に限定されないが、石油精製その他のプロセスにおいて酸性ガス処理に用いられたアルカノールアミン等のアミン液の吸収能力回復に用いられることによってチオシアン酸イオンを吸着したものが再生の対象として好ましい。酸性ガス処理が行われるプロセスとしては、石油精製の他に、木材のパルプ化、天然ガスや原油の生産および種々の化学工程や工業プロセスなどが挙げられる。アミン液としては、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、トリエタノールアミン、ジグリコールアミン、メチルジエタノールアミンなどのアルカノールアミンが挙げられるが、他のアミンでもよい。またアミンでなく、廃水その他の水溶液からチオシアン酸イオンその他のイオンを吸着したものでもよい。   The anion exchange resin that adsorbs thiocyanate ion is not particularly limited, but adsorbs thiocyanate ion by recovering the absorption capacity of amine liquid such as alkanolamine used for acid gas treatment in petroleum refining and other processes. What was done is preferable as a subject of reproduction. Processes in which acid gas treatment is performed include, in addition to petroleum refining, wood pulping, production of natural gas and crude oil, various chemical processes and industrial processes. Examples of the amine liquid include alkanolamines such as monoethanolamine, diethanolamine, diisopropanolamine, triethanolamine, diglycolamine, and methyldiethanolamine, but other amines may be used. Further, thiocyanate ions or other ions may be adsorbed from waste water or other aqueous solutions instead of amines.

本発明において、チオシアン酸イオンを吸着したアニオン交換樹脂の再生は、アニオン交換樹脂からチオシアン酸イオンその他のイオンを脱着して、アニオン交換樹脂のアニオン交換能を回復するために行われる。アニオン交換能の回復により、アニオン交換樹脂はアミンその他の液からチオシアン酸イオンその他のイオンを除去するために使用される。この場合、アニオン交換樹脂はOH形に再生されることにより、チオシアン酸イオンその他のイオンに対するアニオン交換能が回復する。   In the present invention, the regeneration of the anion exchange resin having adsorbed thiocyanate ions is performed in order to desorb thiocyanate ions and other ions from the anion exchange resin to restore the anion exchange ability of the anion exchange resin. By recovering the anion exchange capacity, the anion exchange resin is used to remove thiocyanate ions and other ions from amine and other liquids. In this case, the anion exchange resin is regenerated to the OH form, so that the anion exchange ability for thiocyanate ions and other ions is restored.

本発明の再生方法では、チオシアン酸イオンを吸着したアニオン交換樹脂を、塩化カリウム水溶液と接触させて1次再生した後、アルカリ水溶液と接触させて2次再生し、アニオン交換樹脂を再生する。1次再生液としての塩化カリウム水溶液は、3〜20重量%、好ましくは5〜15重量%の濃度の水溶液を用いるのが好ましい。この塩化カリウム水溶液は、酸またはアルカリを加えない中性塩水溶液を用いるのが好ましい。接触方法は、浸漬法、流動接触法などでもよいが、カラム通水式の接触方法が好ましく、チオシアン酸イオンを吸着したアニオン交換樹脂層に、再生剤量3〜80eq/L−樹脂、通水速度SV=3〜60/hr、好ましくはSV=5〜40/hrで通液して1次再生することができる。   In the regeneration method of the present invention, the anion exchange resin having adsorbed thiocyanate ions is brought into primary regeneration by bringing it into contact with an aqueous potassium chloride solution, and then secondary regeneration is brought into contact with an aqueous alkali solution to regenerate the anion exchange resin. The aqueous potassium chloride solution as the primary regeneration solution is preferably an aqueous solution having a concentration of 3 to 20% by weight, preferably 5 to 15% by weight. As this potassium chloride aqueous solution, it is preferable to use a neutral salt aqueous solution to which no acid or alkali is added. The contact method may be a dipping method, a fluid contact method, or the like, but a column-water contact method is preferable, and an anion exchange resin layer that has adsorbed thiocyanate ions has a regenerant amount of 3 to 80 eq / L-resin, water flow. Primary regeneration can be performed by passing the liquid at a speed SV = 3 to 60 / hr, preferably SV = 5 to 40 / hr.

2次再生液のアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の水溶液、特に水酸化ナトリウム水溶液が好ましい。このようなアルカリ水溶液は、3〜20重量%、好ましくは4〜10重量%の濃度の水溶液を用いるのが好ましい。接触方法は、浸漬法、流動接触法などでもよいが、カラム通水式の接触方法が好ましく、チオシアン酸イオンを吸着したアニオン交換樹脂層に、再生剤量3〜80eq/L−樹脂、好ましくは5〜20eq/L−樹脂、通水速度SV=3〜60/hr、好ましくはSV=5〜40/hrで通液して2次再生することができる。これにより1次再生でCl形になったアニオン交換樹脂は、2次再生によりOH形に再生される。   As the alkaline aqueous solution of the secondary regeneration solution, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, particularly an aqueous sodium hydroxide solution is preferred. Such an alkaline aqueous solution is preferably an aqueous solution having a concentration of 3 to 20% by weight, preferably 4 to 10% by weight. The contact method may be an immersion method, a fluid contact method, or the like, but a column-water contact method is preferable, and the amount of regenerant is 3 to 80 eq / L-resin, preferably an anion exchange resin layer that has adsorbed thiocyanate ions. Secondary regeneration can be performed by passing the solution at 5 to 20 eq / L-resin, water flow rate SV = 3 to 60 / hr, preferably at SV = 5 to 40 / hr. As a result, the anion exchange resin that has become Cl-type by primary regeneration is regenerated to OH-type by secondary regeneration.

強アルカリ性ではチオシアン酸イオンの吸着力が強いため、水酸化ナトリウム等のアルカリ金属水酸化物により1次再生するとチオシアン酸イオンの脱着は不完全になるが、塩化カリウムの中性塩水溶液で1次再生すると、中性のためチオシアン酸イオンの吸着力が弱くなり、大部分のチオシアン酸イオンは脱着してCl形になる。この場合、特許文献1のように塩化ナトリウムで1次再生する場合に比べて、塩化カリウム水溶液で1次再生するとチオシアン酸イオンの脱着性は高く、大量のチオシアン酸イオンが脱着してCl形になる。Cl形になったアニオン交換樹脂は、水酸化ナトリウム等のアルカリ水溶液による2次再生で容易にOH形に変換することができる。   In strong alkalinity, the thiocyanate ion adsorbing power is strong, so desorption of thiocyanate ion is incomplete when it is first regenerated with alkali metal hydroxide such as sodium hydroxide. When regenerated, the adsorptive power of thiocyanate ions becomes weak due to neutrality, and most of the thiocyanate ions are desorbed to form Cl. In this case, compared with the case of primary regeneration with sodium chloride as in Patent Document 1, when primary regeneration is performed with an aqueous potassium chloride solution, the desorbability of thiocyanate ions is high, and a large amount of thiocyanate ions are desorbed to form Cl. Become. The anion exchange resin in the Cl form can be easily converted to the OH form by secondary regeneration with an aqueous alkali solution such as sodium hydroxide.

ここでは1次再生により大量のチオシアン酸イオンが脱着するため、2次再生では大量のチオシアン酸イオンを脱着する必要はなく、交換基をOH形に変換するのに必要なアルカリ水溶液と接触させればよいから、2次再生に必要なアルカリ水溶液の量は少なくすることができる。   Here, since a large amount of thiocyanate ion is desorbed by the primary regeneration, it is not necessary to desorb a large amount of thiocyanate ion in the secondary regeneration, and it can be brought into contact with the alkaline aqueous solution necessary for converting the exchange group to the OH form. Therefore, the amount of the alkaline aqueous solution necessary for the secondary regeneration can be reduced.

こうして1次再生および2次再生した後、水(純水)による押出、水洗工程を行って残留する再生液や溶離物を排出し、再生を終了する。再生を終ったアニオン交換樹脂は再び吸着工程に移行し、アミン液等と接触させてチオシアン酸イオンを他のアニオンとともに吸着させる。この場合、アニオン交換樹脂は1次再生により結合したClは2次再生により脱離してOH形に変換しているため、アニオン交換樹脂からアミン液等に不純物が溶離することはなく、吸着処理によりアミン液等を汚染することなく、アミン液等から不純物アニオンを吸着除去することができる。   After primary regeneration and secondary regeneration in this way, extrusion with water (pure water) and water washing steps are performed to discharge the remaining regeneration solution and eluate, and the regeneration ends. The anion exchange resin that has been regenerated moves to the adsorption process again and is brought into contact with an amine solution or the like to adsorb thiocyanate ions together with other anions. In this case, since the Cl bonded to the anion exchange resin by the primary regeneration is desorbed and converted to the OH form by the secondary regeneration, impurities are not eluted from the anion exchange resin to the amine liquid, etc. Impurity anions can be adsorbed and removed from the amine liquid or the like without contaminating the amine liquid or the like.

なお、上記の1次再生および2次再生の前または後に、他の処理を行い、再生をさらに効率よくすることは可能である。   It should be noted that other processing can be performed before or after the primary reproduction and secondary reproduction described above to further improve the reproduction.

本発明によれば、チオシアン酸イオンを吸着したアニオン交換樹脂を、塩化カリウム水溶液と接触させて1次再生した後、アルカリ水溶液と接触させて2次再生することにより、チオシアン酸イオンを吸着したアニオン交換樹脂を少ない薬剤量で効率的に再生することができる。   According to the present invention, an anion exchange resin having adsorbed thiocyanate ions is first regenerated by bringing it into contact with an aqueous potassium chloride solution and then secondarily regenerating by bringing it into contact with an alkaline aqueous solution, thereby adsorbing the thiocyanate ions. The exchange resin can be efficiently regenerated with a small amount of drug.

以下、本発明の実施例について説明する。実施例はアニオン交換樹脂をカラムに充填して、吸着および再生を行った例である。実施例中、%は重量%である。   Examples of the present invention will be described below. In this example, an anion exchange resin is packed in a column and adsorption and regeneration are performed. In the examples,% is% by weight.

実施例1:
内径15mm、高さ200mmのカラムを使用し、ダウケミカル日本株式会社製の強塩基性アニオン交換樹脂DOWEX MSA-1を5mL充填した。模擬試料液として、ジイソプロパノールアミン(DIPA)27%にチオシアン酸を6000mg/L相当添加したものを、通液量100mL、通水速度SV=5/hrで通液し、チオシアン酸イオンを吸着させた。再生方法は1次再生液として10%の塩化カリウム水溶液を8eq/L-樹脂、通水速度SV=15/hrで通液後、2次再生液として4%の水酸化ナトリウム水溶液を10eq/L−樹脂、通水速度SV=15/hrで通液した。その後、純水を樹脂の5容量分通液して洗浄した。再生剤量とチオシアン酸の脱着量の関係を表1に示す。
Example 1:
Using a column having an inner diameter of 15 mm and a height of 200 mm, 5 mL of strongly basic anion exchange resin DOWEX MSA-1 manufactured by Dow Chemical Japan Co., Ltd. was packed. As a simulated sample solution, thiocyanic acid equivalent to 6000 mg / L added to diisopropanolamine (DIPA) 27% was passed at a flow rate of 100 mL and a water flow rate of SV = 5 / hr to adsorb thiocyanate ions. It was. The regeneration method is 8 eq / L-resin of 10% potassium chloride aqueous solution as the primary regeneration solution at a flow rate of SV = 15 / hr, and then 10 eq / L of 4% sodium hydroxide aqueous solution as the secondary regeneration solution. -Resin, and water flow rate SV = 15 / hr. Thereafter, pure water was passed through 5 volumes of the resin and washed. Table 1 shows the relationship between the amount of the regenerant and the amount of thiocyanate desorbed.

比較例1:
比較例1として4%の水酸化ナトリウム水溶液を80eq/L―樹脂、通水速度SV=40/hrで通液し、その後、純水を樹脂の80容量分通液して洗浄した場合の結果を表1に示す。
Comparative Example 1:
As a comparative example 1, a 4% sodium hydroxide aqueous solution was passed through 80 eq / L-resin at a water flow rate of SV = 40 / hr, and then purified water was passed through 80 volumes of the resin and washed. Is shown in Table 1.

比較例2:
実施例1において、1次再生液として20%の塩化ナトリウム水溶液を9eq/L-樹脂、通水速度SV=40/hrで通液後、2次再生液として4%の水酸化ナトリウム水溶液を10eq/L−樹脂、通水速度SV=40/hrで通液した。その後、純水を樹脂の80容量分通液して洗浄した。再生剤量とチオシアン酸の脱着量の関係を表2に示す。
Comparative Example 2:
In Example 1, a 20% sodium chloride aqueous solution as a primary regeneration solution was passed through 9 eq / L-resin at a water flow rate of SV = 40 / hr, and then a 4% sodium hydroxide aqueous solution as a secondary regeneration solution was obtained as 10 eq. / L-resin, liquid flow rate SV = 40 / hr. Thereafter, 80 volumes of pure water was passed through and washed. Table 2 shows the relationship between the amount of the regenerant and the amount of thiocyanate desorbed.

比較例3:
実施例1において、1次再生液として6%の炭酸水素ナトリウム水溶液を29eq/L-樹脂、通水速度SV=40/hrで通液後、2次再生液として4%の水酸化ナトリウム水溶液を10eq/L−樹脂、通水速度SV=40/hrで通液した。その後、純水を樹脂の80容量分通液して洗浄した。再生剤量とチオシアン酸の脱着量の関係を表3に示す。
Comparative Example 3:
In Example 1, a 6% aqueous sodium hydrogen carbonate solution as a primary regeneration solution was passed through 29 eq / L-resin at a water flow rate of SV = 40 / hr, and then a 4% aqueous sodium hydroxide solution as a secondary regeneration solution. The solution was passed through 10 eq / L-resin at a water flow rate of SV = 40 / hr. Thereafter, 80 volumes of pure water was passed through and washed. Table 3 shows the relationship between the amount of the regenerant and the amount of thiocyanate desorbed.

以上の結果、実施例1の結果は表1より、比較例1の水酸化ナトリウムのみ使用する場合と比較して、非常に少ない再生剤量でアニオン交換樹脂が高い再生効率で再生されることがわかる。また表2より、実施例1の結果は、比較例2の塩化ナトリウムで1次再生する場合に比べて、少ない再生剤量で大量のチオシアン酸イオンを脱着することができ、2次再生に必要なアルカリ水溶液の量を少なくできることがわかる。さらに表3より、実施例1の結果は、比較例3の炭酸水素ナトリウムで1次再生する場合に比べても、少ない再生剤量で大量のチオシアン酸イオンを脱着することができ、2次再生に必要なアルカリ水溶液の量も少なくできることがわかる。   As a result of the above, the results of Example 1 show that the anion exchange resin can be regenerated with high regeneration efficiency with a very small amount of regenerant compared with the case of using only sodium hydroxide of Comparative Example 1 from Table 1. Recognize. Also, from Table 2, the result of Example 1 shows that a large amount of thiocyanate ions can be desorbed with a small amount of regenerant compared to the case of primary regeneration with sodium chloride of Comparative Example 2, which is necessary for secondary regeneration. It can be seen that the amount of the alkaline aqueous solution can be reduced. Furthermore, from Table 3, the result of Example 1 shows that a large amount of thiocyanate ions can be desorbed with a small amount of regenerant compared to the case of primary regeneration with sodium hydrogen carbonate of Comparative Example 3, and secondary regeneration. It can be seen that the amount of aqueous alkali solution required for the process can be reduced.

Claims (4)

チオシアン酸イオンを吸着したアニオン交換樹脂を、塩化カリウム水溶液と接触させて1次再生した後、アルカリ水溶液と接触させて2次再生することを特徴とするチオシアン酸イオンを吸着したアニオン交換樹脂の再生方法。 Regeneration of an anion exchange resin adsorbed with thiocyanate ions, wherein the anion exchange resin adsorbed with thiocyanate ions is first regenerated by contacting with an aqueous potassium chloride solution and then regenerated secondary by contacting with an aqueous alkali solution. Method. アニオン交換樹脂が、酸性ガス処理用のアミン液の吸収能力回復に用いられてチオシアン酸イオンを吸着した樹脂である請求項1記載の方法。 The method according to claim 1, wherein the anion exchange resin is a resin that is used to recover the absorption capacity of an amine liquid for acid gas treatment and adsorbs thiocyanate ions. 3〜20重量%塩化カリウム水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=3〜60/hrで樹脂層に通液して1次再生する請求項1または2記載の方法。 The aqueous solution of 3 to 20% by weight of potassium chloride is primarily regenerated by passing it through the resin layer at a regenerant amount of 3 to 80 eq / L-resin and a water flow rate of SV = 3 to 60 / hr. Method. 3〜20重量%アルカリ水溶液を、再生剤量3〜80eq/L−樹脂、通水速度SV=3〜60/hrで樹脂層に通液して2次再生する請求項1ないし3のいずれかに記載の方法。 4. The secondary regeneration is performed by passing a 3 to 20 wt% aqueous alkaline solution through the resin layer at a regenerant amount of 3 to 80 eq / L-resin and a water flow rate of SV = 3 to 60 / hr. The method described in 1.
JP2004122085A 2004-04-16 2004-04-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion Active JP4292345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122085A JP4292345B2 (en) 2004-04-16 2004-04-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122085A JP4292345B2 (en) 2004-04-16 2004-04-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Publications (2)

Publication Number Publication Date
JP2005305212A JP2005305212A (en) 2005-11-04
JP4292345B2 true JP4292345B2 (en) 2009-07-08

Family

ID=35434589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122085A Active JP4292345B2 (en) 2004-04-16 2004-04-16 Regeneration method of anion exchange resin adsorbed thiocyanate ion

Country Status (1)

Country Link
JP (1) JP4292345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408187C (en) * 2006-12-31 2008-08-06 徐东 Composite synergic recovering agent for ion exchange resin
JP5564967B2 (en) * 2010-02-04 2014-08-06 栗田エンジニアリング株式会社 Regeneration method of ion exchange resin used for regeneration of amine liquid

Also Published As

Publication number Publication date
JP2005305212A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
CN101502742B (en) Method for removing thermostable salt in amine liquid for desulphurization
JP4001554B2 (en) Coke oven gas purification method
JP5591250B2 (en) Treatment method of diamine absorbent stream
US20110243196A1 (en) Multiple redundant gnss synchronization system
CA2743961C (en) A process for the regeneration of an ion exchange resin using sulfurous acid
JP2003501248A (en) Method of recycling used alkanolamine solution
JP2009165985A (en) Regeneration method of ion exchange resin and ion-exchange resin regeneration apparatus
JP4292345B2 (en) Regeneration method of anion exchange resin adsorbed thiocyanate ion
JP4096891B2 (en) Regeneration method of anion exchange resin adsorbed thiocyanate ion
KR101549089B1 (en) Method for acidic gas absorption comprising regenerating process of anion exchang resin using anion metal hydroxide regenerent
TWI399360B (en) Recovery equipment for tetramethylammonium hydroxide and its method
Cho et al. Regeneration of heat stable salts-loaded anion exchange resin by a novel zirconium pentahydroxide [Zr (OH) 5−] displacement technique in CO2 absorption process
EP3389814B1 (en) Method of treating a liquid using calcium alginate adsorbents
JPWO2020013070A1 (en) Acid solution regeneration device and regeneration method
JP2013184087A (en) Method of regenerating anion exchange resin and method of regenerating amine liquid
JP2008049316A (en) Removal method of selenium and/or arsenic in waste liquid
JP2005296892A (en) Method for removing anionic metal complex
JP2012192341A (en) Treating method of fluoroborate-containing waste liquid
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP5488414B2 (en) Method and apparatus for regenerating amine liquid
JP2011063535A (en) Regeneration method of amine liquid
JP6421021B2 (en) Method and apparatus for purification of high concentration sulfate solution
JP5564967B2 (en) Regeneration method of ion exchange resin used for regeneration of amine liquid
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
JP2001219163A (en) Treating method of boron-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

R150 Certificate of patent or registration of utility model

Ref document number: 4292345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350