JP2008237988A - Regeneration method of organic solvent - Google Patents

Regeneration method of organic solvent Download PDF

Info

Publication number
JP2008237988A
JP2008237988A JP2007079368A JP2007079368A JP2008237988A JP 2008237988 A JP2008237988 A JP 2008237988A JP 2007079368 A JP2007079368 A JP 2007079368A JP 2007079368 A JP2007079368 A JP 2007079368A JP 2008237988 A JP2008237988 A JP 2008237988A
Authority
JP
Japan
Prior art keywords
solvent
recovered
adsorbent
recovered solvent
acid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007079368A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
敏明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007079368A priority Critical patent/JP2008237988A/en
Publication of JP2008237988A publication Critical patent/JP2008237988A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regeneration method of a recovered organic solvent capable of regenerating the recovered solvent in an extremely high level by effectively removing the acid component in the recovered solvent using an adsorbing material even in a case that the acid component is contained in the recovered solvent recovered by adsorption. <P>SOLUTION: The regeneration method of the recovered solvent is characterized by removing the acid component from the acid component-containing recovered solvent, which is recovered from an organic solvent recovery equipment using the adsorbing material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機溶剤の再生方法に関するものである。   The present invention relates to a method for regenerating an organic solvent.

近年、産業廃棄物削減、地球温暖化防止、大気汚染防止の観点から、有機溶剤を使用する工程においては、環境負荷低減のため工程から発生する有機溶剤含有ガスを有機溶剤回収装置によって吸着回収し、回収された有機溶剤を再生し再利用することが望まれている。   In recent years, from the viewpoints of industrial waste reduction, global warming prevention, and air pollution prevention, organic solvent-containing gas generated from the process is absorbed and recovered by the organic solvent recovery device in the process using organic solvent to reduce environmental impact. Therefore, it is desired to recycle and reuse the recovered organic solvent.

有機溶剤を回収し再利用する方法として、従来より、吸着材として活性炭素繊維が充填されている吸着槽が2基以上設けられている他に、各吸着槽に対して有機溶剤が含有した被処理ガスを供給する手段と、水蒸気を噴出する脱着手段とを設け、吸着操作と脱着操作とを交互に切り替えるように構成され、吸着した被処理ガス中の有機溶剤を脱着し、脱着した有機溶剤と水蒸気とを凝縮、分離することで溶剤を回収し再利用する方法が採用されている。   As a method for recovering and reusing the organic solvent, conventionally, two or more adsorption tanks filled with activated carbon fibers are provided as an adsorbent, and the organic solvent contained in each adsorption tank. A means for supplying a processing gas and a desorption means for ejecting water vapor are provided, and the adsorption operation and the desorption operation are alternately switched. The organic solvent in the adsorbed gas to be treated is desorbed and desorbed. A method of recovering and reusing a solvent by condensing and separating water and water vapor is employed.

このような構成は、吸着材が活性炭素繊維で繊維状であるため、外表面積が大きく、有機溶剤ガスの吸脱着性に有効な細孔を繊維表面に配置する事が出来るため、溶剤の分解性に影響を及ぼす脱着操作を、低温かつ短時間で実施することが出来、回収溶剤の分解性が非常に低く、連続的かつ安定的に回収溶剤を再利用することが可能となる。   In such a configuration, since the adsorbent is a fiber made of activated carbon fiber, the outer surface area is large, and pores effective for the adsorption and desorption of organic solvent gas can be arranged on the fiber surface, so that the decomposition of the solvent The desorption operation that affects the properties can be performed at a low temperature and in a short time, the decomposability of the recovered solvent is very low, and the recovered solvent can be reused continuously and stably.

しかしながら、従来の有機溶剤ガス吸着回収溶剤の再利用方法では、被処理ガス中に微量の酸成分等の不純物(例えばNOx、SOx等)が含まれる場合や、回収・再利用対象となる有機溶剤が加水分解する場合においては、有機溶剤回収設備から回収された、回収溶剤中には酸成分を含んでおり、酸分による溶剤使用ラインの腐食や製品への影響を考慮すると、回収溶剤を再利用することは出来なかった。   However, in the conventional organic solvent gas adsorption and recovery solvent recycling method, when the gas to be treated contains a small amount of impurities such as acid components (for example, NOx, SOx, etc.), or the organic solvent to be recovered and reused In the case of hydrolysis, the recovered solvent recovered from the organic solvent recovery equipment contains an acid component. Considering the corrosion of the solvent use line and the effect of the product on the product due to the acid content, the recovered solvent must be recycled. I couldn't use it.

そこで、吸着回収した回収溶剤中の酸性物質が含まれている場合においては、回収溶剤の再生方法として蒸留精製を行う方法がとられているが、蒸留精製を行っても、回収溶剤中の酸成分は完全には除去出来ずに回収溶剤中に含まれることがわかっている。そこで、回収溶剤に塩基性物質等の中和剤を添加することによって回収溶剤中に含まれている酸成分を中和し、その後に蒸留精製を行うことで回収溶剤中の酸成分を除去することが可能である。しかしながら、回収溶剤の中和処理は中和処理前後に回収溶剤のpHを測定し、中和処理に必要な塩基性物質の添加量を適正にして、回収溶剤のpHを6〜8に調整する必要があり、回収溶剤を連続的かつ安定的に再生し再利用することは出来ないため、いまだ市場の要請に応えうる回収溶剤の再生方法は存在しないのが現状である。   Therefore, when an acidic substance is contained in the recovered solvent that has been adsorbed and recovered, a method of performing distillation purification is used as a method of regenerating the recovered solvent. It has been found that the components cannot be completely removed and are contained in the recovered solvent. Therefore, neutralizing the acid component contained in the recovery solvent by adding a neutralizing agent such as a basic substance to the recovery solvent, and then removing the acid component in the recovery solvent by distillation purification. It is possible. However, in the neutralization treatment of the recovered solvent, the pH of the recovered solvent is measured before and after the neutralization treatment, the addition amount of the basic substance necessary for the neutralization treatment is made appropriate, and the pH of the recovered solvent is adjusted to 6-8. This is necessary, and the recovered solvent cannot be regenerated and reused continuously and stably. Therefore, there is still no method for recovering the recovered solvent that can meet market demands.

特開2001−347126号公報JP 2001-347126 A

本発明は、従来技術の課題を背景になされたもので、吸着回収された回収溶剤中に酸成分が含まれている場合であっても、吸着材を使用し有効的に回収溶剤中の酸成分を除去することで、極めて高いレベルで、回収溶剤の再生を可能にした、回収溶剤の再生方法を提供することを課題とするものである。   The present invention has been made against the background of the problems of the prior art, and even when an acid component is contained in the recovered solvent that has been adsorbed and recovered, the adsorbent is used to effectively recover the acid in the recovered solvent. It is an object of the present invention to provide a method for regenerating a recovered solvent that can regenerate the recovered solvent at an extremely high level by removing components.

本発明は、以下の通りである。
1.有機溶剤回収設備から回収された、酸成分を含有した回収溶剤から、吸着材を用いて含有する酸性分を除去することを特徴とする回収溶剤の再生方法。
The present invention is as follows.
1. A method for regenerating a recovered solvent, comprising removing an acidic component contained using an adsorbent from a recovered solvent containing an acid component recovered from an organic solvent recovery facility.

2.回収溶剤を、平均粒子径が0.5mm以上である吸着材の充填層に通すことを特徴とする上記1に記載の有機溶剤の再生方法。 2. 2. The method for regenerating an organic solvent as described in 1 above, wherein the recovered solvent is passed through a packed bed of an adsorbent having an average particle diameter of 0.5 mm or more.

3.前記吸着材が活性炭、活性アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア及び陰イオン交換樹脂のいずれかを含むことを特徴とする上記1又は2に記載の回収溶剤の再生方法。 3. 3. The method for regenerating a recovered solvent according to 1 or 2 above, wherein the adsorbent contains any one of activated carbon, activated alumina, zeolite, titania, zirconia, magnesia and anion exchange resin.

4.前記吸着材にアルカリ金属のナトリウム及び/又はカリウムを蒸着又は担持することを特徴とする上記1〜3のいずれかに記載の回収溶剤の再生方法。 4). 4. The method for regenerating a recovered solvent according to any one of 1 to 3, wherein alkali metal sodium and / or potassium is vapor-deposited or supported on the adsorbent.

本発明は、吸着回収された回収溶剤中に酸成分が含まれている場合であっても、吸着材を使用した充填槽に回収溶剤を通過させることにより、有効的に回収溶剤中の酸成分を除去することで、極めて高いレベルで、回収溶剤の再生を可能にしたものである。   In the present invention, even when an acid component is contained in the recovered solvent recovered by adsorption, the acid component in the recovered solvent is effectively passed by passing the recovered solvent through a filling tank using the adsorbent. This makes it possible to regenerate the recovered solvent at an extremely high level.

本発明の回収溶剤の再生方法によれば、溶剤を含むガスを回収して、その溶剤を再利用する回収溶剤の再生方法であって、溶剤としては特に制限されないが、具体的には、ジクロロメタン、トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、酢酸エチル、メチルエチルケトン、アセトン、フェノール、シクロヘキサノン等が挙げられる。   According to the method for regenerating a recovered solvent of the present invention, a method for recovering a recovered solvent that recovers a gas containing a solvent and reuses the solvent, and the solvent is not particularly limited. , Trichloroethane, trichloroethylene, tetrachloroethylene, ethyl acetate, methyl ethyl ketone, acetone, phenol, cyclohexanone, and the like.

これらの溶剤を含むガスを回収し、回収溶剤と吸着材とを接触させることにより、該回収溶剤中の酸性分が吸着材により吸着されるので、十分に高い除去率で酸成分を除去することができる。また、吸着反応は主として吸着材活性点の表面水酸基と酸成分のイオン交換であり、酸成分の吸着に伴ってOH−が放出されることから、中和反応のように塩の発生はなく、回収溶剤中から酸性分のみを除去することが出来る。   By recovering the gas containing these solvents and bringing the recovered solvent into contact with the adsorbent, the acid content in the recovered solvent is adsorbed by the adsorbent, so that the acid component can be removed with a sufficiently high removal rate. Can do. In addition, the adsorption reaction is mainly an ion exchange between the surface hydroxyl group of the adsorbent active site and the acid component, and OH- is released with the adsorption of the acid component, so there is no generation of salt as in the neutralization reaction, Only the acid content can be removed from the recovered solvent.

かかる吸着材としては、活性炭、活性アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア及び陰イオン交換樹脂等が挙げられ、それらのいずれかを含み、単独で用いてもよく2種以上を組み合わせて用いてもよい。また、吸着材にナトリウムやカリウム等のアルカリ金属を蒸着又は担持してもよい。   Examples of the adsorbent include activated carbon, activated alumina, zeolite, titania, zirconia, magnesia, anion exchange resin and the like, including any of them, and may be used alone or in combination of two or more. Good. Moreover, you may vapor-deposit or carry | support alkali metals, such as sodium and potassium, to an adsorbent.

上記の吸着材の中でも活性アルミナ、ゼオライト、陰イオン交換樹脂が好ましく、また、活性アルミナは、吸着材表面や細孔内部にイオン交換に有効な活性点が多く酸成分及び/又は有害物イオンの除去性能に優れると共に、安価であるため特に好ましい。   Among the above adsorbents, activated alumina, zeolite, and anion exchange resin are preferable, and activated alumina has many active sites effective for ion exchange on the adsorbent surface and inside the pores, and contains acid components and / or harmful ions. It is particularly preferable since it has excellent removal performance and is inexpensive.

また、回収溶剤と吸着材とを接触させる方法としては、両者を十分に接触できる限り特に制限されないが、回収溶剤中の酸性分の除去率、保守管理、ランニングコストの点で好ましい実施形態として以下に示す方法を挙げることができる。   In addition, the method for bringing the recovered solvent into contact with the adsorbent is not particularly limited as long as both can be sufficiently contacted, but as a preferred embodiment in terms of the removal rate of acidic components in the recovered solvent, maintenance management, and running cost, The method shown in can be mentioned.

すなわち、本発明にかかる第1実施形態は、酸成分を含む回収溶剤を、吸着材であり平均粒子径が0.5mm以上である造粒物の充填層に通すものである。これにより、回収溶剤が充填層を通過する際に当該回収溶剤と固体塩基とを十分に接触させることができるため、当該ガス中の酸成分の吸着材への吸収により酸成分の除去率を高水準で達成することが可能となる。   That is, 1st Embodiment concerning this invention passes the collection | recovery solvent containing an acid component through the packed bed of the granulated material which is an adsorbent and whose average particle diameter is 0.5 mm or more. As a result, when the recovered solvent passes through the packed bed, the recovered solvent and the solid base can be sufficiently brought into contact with each other. Therefore, the acid component removal rate is increased by absorption of the acid component in the gas into the adsorbent. It can be achieved at a standard level.

より具体的には、例えば当該造粒物を所定の容器に充填し、その前段に酸性分を含む回収溶剤の供給設備、後段に粒子除去用フィルターをそれぞれ配管を介して連結する。そして、酸性分を含む回収溶剤を容器内に導入し、造粒物の充填層を通すことにより回収溶剤中の酸成分を除去することができる。   More specifically, for example, the granulated product is filled in a predetermined container, and a recovery solvent supply facility containing an acidic component is connected to the preceding stage, and a particle removal filter is connected to the subsequent stage via pipes. And the acid component in a collection | recovery solvent can be removed by introduce | transducing the collection | recovery solvent containing an acidic component in a container, and letting it pass through the packed bed of a granulated material.

また、当該造粒物の平均粒子径は、前述の通り0.5mm以上であり、好ましくは0.5〜6mmである。なお、造粒物の平均粒子径が0.5mm未満であると、充填層の圧力損失が増加したり、さらに、充填時や処理時に粉化して、配管内に堆積する、粒子除去用フィルターの目詰まり等の現象が起こりやすくなる。また、一般的に平均粒子径が6mmを超えると回収溶剤と造粒物との接触効率が低下し、酸成分の除去率が不十分となる傾向にある。   Moreover, the average particle diameter of the said granulated material is 0.5 mm or more as above-mentioned, Preferably it is 0.5-6 mm. In addition, if the average particle diameter of the granulated product is less than 0.5 mm, the pressure loss of the packed bed increases, or further, the particle removal filter that is pulverized during filling or processing and accumulates in the pipe. Phenomena such as clogging are likely to occur. In general, when the average particle diameter exceeds 6 mm, the contact efficiency between the recovered solvent and the granulated product is lowered, and the acid component removal rate tends to be insufficient.

以下、実施例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to a following example at all.

[実施例1]
(溶剤の回収)
図1に示す有機溶剤処理装置を基本フローとして、以下に実施例を示す。酢酸エチルを1000ppm及びNOを0.5ppm含む被処理ガスAを、送風機1にて風量20Nm/分で溶剤回収装置2に導入し、吸着槽3内部に設けた活性炭素繊維フィルタ4によって被処理ガスの吸着処理を行った。吸着処理後の被処理ガスは清浄空気として系外に排出した。また、吸着された被処理ガス中の酢酸エチルとNOは水蒸気5により脱着され、凝縮機6によって凝縮し回収溶剤Cを得た。
[Example 1]
(Solvent recovery)
Examples are shown below with the organic solvent treatment apparatus shown in FIG. 1 as a basic flow. A gas to be treated A containing 1000 ppm of ethyl acetate and 0.5 ppm of NO 2 was introduced into the solvent recovery device 2 with a blower 1 at an air flow rate of 20 Nm 3 / min, and was covered by an activated carbon fiber filter 4 provided inside the adsorption tank 3. The treatment gas was adsorbed. The treated gas after the adsorption treatment was discharged out of the system as clean air. Further, ethyl acetate and NO 2 in the adsorbed gas to be treated were desorbed by the water vapor 5 and condensed by the condenser 6 to obtain a recovered solvent C.

回収溶剤中の酸性分としてpH及び硝酸イオン濃度を測定した。pHの測定はpH計(堀場製作所製)を用い、電極には非水溶媒用電極を使用し、イオン濃度はイオンクロマト(DIONEX社製)にて、再生溶剤中の硝酸イオン濃度を測定した。回収溶剤中のpHは3.8、硝酸イオン濃度は2.3ppmであった。   The pH and nitrate ion concentration were measured as acidic content in the recovered solvent. The pH was measured using a pH meter (manufactured by Horiba Seisakusho), an electrode for a non-aqueous solvent was used for the electrode, and the ion concentration was measured by ion chromatography (manufactured by DIONEX) to measure the nitrate ion concentration in the regeneration solvent. The pH in the recovered solvent was 3.8, and the nitrate ion concentration was 2.3 ppm.

(充填層を用いた酸成分の除去)
次に、以下の手順に従って酸成分の除去試験を行った。なお、本試験においては、回収溶剤はpHが3.8、硝酸イオン濃度が2.3ppmのものを用いた。
(Removal of acid component using packed bed)
Next, an acid component removal test was performed according to the following procedure. In this test, a solvent having a pH of 3.8 and a nitrate ion concentration of 2.3 ppm was used.

先ず、内径250mm、長さ1000mmのステンレス製の充填容器7に、上記の吸着材8造粒物を34g充填して充填層を形成した。この充填容器の前段に定量ポンプ9を接続して回収溶剤を吸着材充填層に1L/分の速度で供給し、吸着材充填層を通過した再生溶剤Dをガラス製容器に採取した。吸着材造粒物は活性アルミナ粒状品(住友化学工業株式会社製)であり、粒子径1〜2mmの球状品を用いた。   First, 34 g of the above adsorbent 8 granulated product was filled in a stainless steel filling container 7 having an inner diameter of 250 mm and a length of 1000 mm to form a packed bed. A metering pump 9 was connected to the front stage of the filled container, the recovered solvent was supplied to the adsorbent packed bed at a rate of 1 L / min, and the regenerated solvent D that passed through the adsorbent packed bed was collected in a glass container. The adsorbent granulated product was an activated alumina granular product (manufactured by Sumitomo Chemical Co., Ltd.), and a spherical product having a particle diameter of 1 to 2 mm was used.

次に、採取された再生溶剤について、酸性分としてpH及び硝酸イオン濃度を測定した。pHの測定はpH計(株式会社堀場製作所製)を用い、電極には非水溶媒用電極を使用し、イオン濃度はイオンクロマト(DIONEX社製)にて、再生溶剤中の硝酸イオン濃度を測定した。再生溶剤中のpHは5.3、硝酸イオン濃度は0.1ppm以下であった。   Next, the collected regeneration solvent was measured for pH and nitrate ion concentration as acidic components. The pH is measured using a pH meter (manufactured by Horiba, Ltd.), the electrode is a nonaqueous solvent electrode, and the ion concentration is measured by ion chromatography (manufactured by DIONEX) to measure the nitrate ion concentration in the regenerating solvent. did. The pH in the regeneration solvent was 5.3, and the nitrate ion concentration was 0.1 ppm or less.

[比較例1]
一方、前記造粒物が充填されていない空の充填容器に通して採取された溶剤のpHは3.8、硝酸イオン濃度は2.3ppmであった。また、測定は実施例1に記載の方法で行った。
[Comparative Example 1]
On the other hand, the pH of the solvent collected through an empty filling container not filled with the granulated product was 3.8, and the nitrate ion concentration was 2.3 ppm. The measurement was performed by the method described in Example 1.

[実施例2]
吸着材造粒物を活性アルミナ粒状品(住友化学工業株式会社製)であり、粒子径2〜4mmの球状品とした以外は、実施例1と同様の条件評価を行った結果、再生溶剤中のpHは5.2、硝酸イオン濃度は0.1ppm以下であった。
[Example 2]
Except that the adsorbent granulated product was an activated alumina granular product (manufactured by Sumitomo Chemical Co., Ltd.) and a spherical product having a particle diameter of 2 to 4 mm, the same condition evaluation as in Example 1 was performed. The pH was 5.2 and the nitrate ion concentration was 0.1 ppm or less.

[実施例3]
吸着材造粒物を陰イオン交換樹脂550−OH(ダウ・ケミカル社製)、粒子径0.6mmの球状品とし、吸着材重量を3kgとした以外は、実施例1及び2と同様の条件評価を行った。再生溶剤中の酸性分を測定した結果、pHは5.9、硝酸イオン濃度は0.6ppmであった。
[Example 3]
The same conditions as in Examples 1 and 2 except that the adsorbent granulated product was an anion exchange resin 550-OH (manufactured by Dow Chemical Company), a spherical product with a particle diameter of 0.6 mm, and the adsorbent weight was 3 kg. Evaluation was performed. As a result of measuring the acidic content in the regenerating solvent, the pH was 5.9 and the nitrate ion concentration was 0.6 ppm.

上記実施例は溶剤として酢酸エチル、酸性分としてNOを回収し、吸着材活性アルミナ又は陰イオン交換樹脂による回収溶剤の再生方法について説明したが、被処理ガスの溶剤や酸性分及び回収溶剤の再生に使用する吸着材は前途した範囲に限定されるものではない。 In the above examples, ethyl acetate as a solvent and NO 2 as an acidic component were recovered, and the recovery method of the recovered solvent using adsorbent activated alumina or anion exchange resin was described. The adsorbent used for the regeneration is not limited to the previous range.

本発明は、吸着回収された回収溶剤中に酸成分が含まれている場合であっても、吸着材を使用した充填槽に回収溶剤を通過させることにより、有効的に回収溶剤中の酸成分を除去することで、極めて高いレベルで、回収溶剤の再生を可能にした再生方法を提供できるものである。   In the present invention, even when an acid component is contained in the recovered solvent recovered by adsorption, the acid component in the recovered solvent is effectively passed by passing the recovered solvent through a filling tank using the adsorbent. It is possible to provide a regeneration method that makes it possible to regenerate the recovered solvent at an extremely high level.

有機溶剤回収システムの基本処理フロー図である。It is a basic processing flow figure of an organic solvent recovery system.

符号の説明Explanation of symbols

A:被処理ガス
B:清浄ガス
C:回収溶剤
D:再生溶剤
1:送風機
2:溶剤回収装置
3:吸着槽
4:活性炭素繊維フィルタ
5:水蒸気
6:凝縮器
7:充填容器
8:吸着材
9:定量ポンプ
A: Gas to be treated B: Clean gas C: Recovery solvent D: Recycled solvent 1: Blower 2: Solvent recovery device 3: Adsorption tank 4: Activated carbon fiber filter 5: Water vapor 6: Condenser
7: Filling container 8: Adsorbent 9: Metering pump

Claims (4)

有機溶剤回収設備から回収された酸成分を含有した回収溶剤から、吸着材を用いて含有する酸性分を除去することを特徴とする回収溶剤の再生方法。   A method for regenerating a recovered solvent, comprising removing an acidic component contained using an adsorbent from a recovered solvent containing an acid component recovered from an organic solvent recovery facility. 回収溶剤を平均粒子径が0.5mm以上である吸着材の充填層に通すことを特徴とする請求項1に記載の有機溶剤の再生方法。   The method for regenerating an organic solvent according to claim 1, wherein the recovered solvent is passed through a packed bed of an adsorbent having an average particle diameter of 0.5 mm or more. 前記吸着材が活性炭、活性アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア及び陰イオン交換樹脂のいずれかを含むことを特徴とする請求項1又は2に記載の回収溶剤の再生方法。   The method for regenerating a recovered solvent according to claim 1 or 2, wherein the adsorbent contains activated carbon, activated alumina, zeolite, titania, zirconia, magnesia, or an anion exchange resin. 前記吸着材にアルカリ金属のナトリウム及び/又はカリウムを蒸着又は担持することを特徴とする請求項1〜3のいずれかに記載の回収溶剤の再生方法。
4. The method for regenerating a recovered solvent according to claim 1, wherein alkali metal sodium and / or potassium is vapor-deposited or supported on the adsorbent.
JP2007079368A 2007-03-26 2007-03-26 Regeneration method of organic solvent Pending JP2008237988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079368A JP2008237988A (en) 2007-03-26 2007-03-26 Regeneration method of organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079368A JP2008237988A (en) 2007-03-26 2007-03-26 Regeneration method of organic solvent

Publications (1)

Publication Number Publication Date
JP2008237988A true JP2008237988A (en) 2008-10-09

Family

ID=39909964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079368A Pending JP2008237988A (en) 2007-03-26 2007-03-26 Regeneration method of organic solvent

Country Status (1)

Country Link
JP (1) JP2008237988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149040A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Organic solvent-containing gas treating system
CN106831319A (en) * 2017-01-24 2017-06-13 乳源东阳光电化厂 A kind of tetrachloro-ethylene purge drying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149040A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Organic solvent-containing gas treating system
CN106831319A (en) * 2017-01-24 2017-06-13 乳源东阳光电化厂 A kind of tetrachloro-ethylene purge drying method

Similar Documents

Publication Publication Date Title
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2010149040A (en) Organic solvent-containing gas treating system
JP2008188493A (en) Water treatment apparatus
JP2008237988A (en) Regeneration method of organic solvent
US8092687B2 (en) Method and installation for treating an aqueous phase containing an adsorbent used material
JP5564967B2 (en) Regeneration method of ion exchange resin used for regeneration of amine liquid
JP5919894B2 (en) Method for regenerating anion exchange resin and method for regenerating amine liquid
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2008237989A (en) Organic solvent treatment apparatus
JP4512993B2 (en) Water treatment equipment
JP2010029739A (en) Organic solvent-containing gas treatment system
US4813410A (en) Gas mask filter for the removal of low level ethylene oxide contaminants from air comprising dried cationic exchange resins
JP6699129B2 (en) Water treatment system
WO2017073447A1 (en) Method and system for recovering acidic gas, and method and system for analysis for iron ion
KR101397068B1 (en) Apparatus for waste heat recovery and abatement of white plume of exhaust gas with reusable of wastewater
JPH0671130A (en) Apparatus for treating gas containing vapor of water-soluble organic substance
JP5978808B2 (en) Wastewater treatment system
TW202026057A (en) Gas purification-concentration system and method for regenerating filter material
KR20160077378A (en) Method and apparatus for removing acid gas contained in flue gas
JP2009155307A (en) Organic solvent-treating apparatus
JP2006055713A (en) Water treatment system
JP2006515536A (en) Chemical waste treatment
JP2019217429A (en) Method and device for removal of ammonia in denitrification processed gas
NL8002588A (en) METHOD FOR REMOVING GASEOUS COMPOUNDS FROM GASES BY EXTRACTION USING A CAPTURED SOLVENT
JP2013244421A (en) Organic solvent regenerating method