JP4096536B2 - Vaporizer for internal combustion engines - Google Patents

Vaporizer for internal combustion engines Download PDF

Info

Publication number
JP4096536B2
JP4096536B2 JP2001283497A JP2001283497A JP4096536B2 JP 4096536 B2 JP4096536 B2 JP 4096536B2 JP 2001283497 A JP2001283497 A JP 2001283497A JP 2001283497 A JP2001283497 A JP 2001283497A JP 4096536 B2 JP4096536 B2 JP 4096536B2
Authority
JP
Japan
Prior art keywords
chamber
passage
pressure
negative pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283497A
Other languages
Japanese (ja)
Other versions
JP2003090268A (en
Inventor
高司 堤崎
美博 高田
弘志 田中
和也 田邉
達司 野中
栄作 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Keihin Corp
Original Assignee
Honda Motor Co Ltd
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Keihin Corp filed Critical Honda Motor Co Ltd
Priority to JP2001283497A priority Critical patent/JP4096536B2/en
Publication of JP2003090268A publication Critical patent/JP2003090268A/en
Application granted granted Critical
Publication of JP4096536B2 publication Critical patent/JP4096536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【0001】
【産業上の利用分野】
本発明は内燃機関に向けて液化石油ガス(LPG)、圧縮天然ガス(CNG)等のガス燃料を供給する燃料供給装置に関し、そのうちガス燃料源内のガス燃料を1次減圧室にて所定の1次圧に減圧するとともに2次減圧室にて略大気圧状態の2次圧に減圧するベーパーライザに関する。
【0002】
【従来の技術】
従来のベーパーライザVについて図4により説明する。
20は、筐体Bを1次調圧室21と1次減圧室22とに区分する1次ダイヤフラムであり、1次ダイヤフラム20は1次調圧室21内に縮設して配置される1次スプリング23のバネ力によって1次減圧室22側へ押圧される。
24は1次減圧室22内において回転自在に支承される第1次支持杆25の一端に配置される1次弁であり、この1次弁24は1次減圧室22に開口する燃料流入路26を開閉制御する。又前記第1支持杆25の他端は前記1次ダイヤフラム20に係止される。
27は、1次減圧室22から外部に向かって開口する1次燃料吐出路であり、該1次燃料吐出路は、スローロック弁28によって開閉される。
29は、前記スローロック弁と連結杆29Aを介して連結され、スローロック弁28に対して開閉操作力を付与するスローロックダイヤフラムであり、スローロックダイヤフラム29によって画成されるスローロック受圧室30内にはスローロックダイヤフラム29を図4において右方へ押圧するスローロックスプリング31が縮設される。
いいかえるとスローロックスプリング31はスローロック弁28が1次燃料吐出路27を閉塞する側へ付勢するといえる。
そしてスローロック受圧室30には負圧導入路32を介して機関の運転によって生起する負圧が導入される。
本例では負圧導入路32の上流側は後述するミキシングボデーの吸気路に連絡される。
33は1次燃料吐出路27を流れるガス燃料量を調圧、制御する1次調整スクリューであり、先端にテーパー針弁部が形成される。
筐体Bは、更に2次ダイヤフラム34によって2次調圧室35と2次減圧室36とに区分され、2次減圧室36には1次減圧室22に連なる2次燃料流入路37と外部に向かう2次燃料吐出路38とが開口する。
39は2次減圧室36内に回転自在に支承配置される第2支持杆であり、この第2支持杆39の一端に2次燃料流入路37を開閉する2次弁40が配置されるとともにその他端は2次ダイヤフラム34に係止される。
又、前記第2支持杆は2次スプリング41のバネ力によって反時計方向へ付勢されるもので、これによって2次弁40は2次燃料流入路37を閉塞する側へ押圧される。
そして、ベーパーライザVの燃料流入路26には、ガス燃料としての液化石油ガス(LPG)が供給される。
液化石油ガス(以下LPGという)を使用する際、ガス燃料源T1内の約5kg/cm の圧力を有するLPGは、直接的に燃料導入路26に供給される。
一方LPGに代えて圧縮天然ガス(以下CNGという)を使用することができるもので、このときガス燃料源T2内の約200kg/cm の圧力を有するCNGは、1次レギュレターRによって約6kg/cm の圧力を減圧され、この減圧されたCNGが燃料流入路26へ供給される。
Mは、前記ベーパーライザからのガス燃料の供給を受け、機関に向けて空気とガス燃料との混合気を図示せぬ吸気管を介して供給するミキシングボデーで以下よりなる。
ミキシングボデーMは内部を吸気路40が貫通して穿設され、その上流にミキサーベンチュリー部41が形成される。
前記吸気路はミキシングボデーMに回転自在に支承された絞り弁軸42に取着された絞り弁43にて開閉制御され、一方ミキサーベンチュリー部41には複数のメーンポート44が開口して形成されるもので、このメーンポート44は、ミキサーベンチュリー部41を囲繞して形成された環状溝部45を介して2次圧燃料導入路46に連絡される。
又、47は絞り弁43より下流側の吸気路40Aに開口するアイドルポートであり、これには1次圧燃料導入路48が連絡される。
そして、前記2次圧燃料導入路は、ベーパーライザVの2次燃料吐出路38に接続され、1次圧燃料導入路48は1次燃料吐出路27に接続される。
【0003】
ベーパーライザVにおいて、1次弁24は、ガス燃料自身が有する燃料圧力(LPGにあっては約5kg/cmの燃料圧力、CNGにあっては1次レギュレターRによって減圧された約6kg/cmの燃料圧力)によって燃料流入路26を開放し、前記ガス燃料が1次減圧室22内へ供給される。
そして1次減圧室22内の圧力が所定の圧力(例えば0.3kg/cm)を超えて上昇すると、1次ダイヤフラム20が1次スプリング23のバネ力に抗して1次調圧室21側へ移動し、これによって第1支持杆25が反時計方向へ回転して1次弁24が燃料流入路26を閉塞し、もって1次減圧室22内のガス燃料圧力を0.3kg/cmに調圧できる。
一方、1次減圧室22内のガス燃料圧力が0.3kg/cm以下の圧力に低下すると、1次スプリング23は、1次ダイヤフラム20を1次減圧室22側へ押圧して移動させ、これによって第1支持杆25は時計方向に回転して1次弁24は燃料流入路26を開放する。従って燃料流入路26より高圧力状態のガス燃料が1次減圧室22内へ供給され、これによって1次減圧室22内のガス燃料圧力を再び所定の0.3kg/cmに復帰させることができる。
以後、上記1次弁の動作がくり返し行なわれることによって、1次減圧室22内には、1次圧としての所定の0.3kg/cmの圧力を有するガス燃料が維持されるものである。
そして、機関が始動されると、ミキシングボデーMの絞り弁43より下流側の吸気路40A内に負圧が生ずるもので、この負圧は負圧導入路32を介してスローロック受圧室30内へ導入される。これによるとスローロックダイヤフラム29は、スローロックスプリング31のバネ力に抗して図において左方へ移動し、(いいかえるとスローロック受圧室30側へ移動する)このスローロックダイヤフラム29の左方移動が連結杆29Aによってスローロック弁28に伝達され、スローロック弁28は1次燃料吐出路27を開放する。
以上によると、1次圧を有する1次減圧室22内のガス燃料は、1次調整スクリュー33によってその量が制御され、このガス燃料が1次燃料吐出路27、1次圧燃料導入路48、を介してアイドルポート17へ供給され、これによって機関の始動及び低開度運転が行なわれる。
【0004】
一方、2次減圧室36にあっては、ガス燃料は大気圧まで減圧される。
前述の如く、1次減圧室22内のガス燃料圧力は0.3kg/cmに調圧されるもので、この0.3kg/cmの圧力を有するガス燃料は2次燃料流入路37を介して2次弁40に作用し、2次弁40は2次燃料流入路37を開放し、2次減圧室36内にガス燃料が供給される。
ここで、2次減圧室36内のガス燃料圧力が大気圧以上に上昇すると、2次ダイヤフラム34は2次調圧室35側へ変位し、これによると第2支持杆39は2次スプリング41のバネ力によって反時計方向へ回転して2次弁40は2次燃料流入路37を閉塞し、これによって2次減圧室36内のガス燃料圧力を大気圧に復帰させる。又、2次減圧室36内のガス燃料圧力が大気圧以下に低下すると、2次ダイヤフラム34は2次スプリング41のバネ力に抗して2次減圧室36側へ変位し、これによると第2支持杆39は時計方向へ回転して2次弁44は2次燃料流入路37を開放し、これによって2次減圧室36内のガス燃料圧力を大気圧に復帰させる。
以後、上記2次弁40が前記動作をくり返し行なうことによって2次減圧室36内のガス燃料圧力を2次圧としての大気圧に維持できる。
そして、絞り弁43が吸気路40を中開度及び高開度に開放することによると、ミキサーベンチュリー部41には絞り弁開度に応じた高い負圧が生起するもので、
この負圧はメーンポート44、環状溝部45、2次圧燃料導入路46、2次燃料吐出路38を介して2次減圧室36に作用し、2次減圧室36内に維持される大気圧状態にあるガス燃料がメーンポート44を介してミキサーベンチュリー部41に吸出され、これによって絞り弁43の中及び高開度運転が行なわれる。
【0005】
【発明が解決しようとする課題】
かかる従来のベーパーライザを用いることによると、絞り弁を低開度から高開度に向けて連続的に開閉動作を行なうスナップ動作時において機関の運転性が阻害される恐れがある。
これは以下の理由による。
絞り弁43の低開度時において、絞り弁43より下流側の吸気路40A内には大なる負圧が生起され、この大なる負圧が負圧導入路32を介してスローロック受圧室30内に導入される。
以上によると、スローロックダイヤフラム29はスローロックスプリング31のバネ力に抗してスローロック受圧室30側へ変位し、これによると、スローロック弁28が1次燃料吐出路27を開放し、1次減圧室22内の1次圧を有するガス燃料がアイドルポート47を介してミキシングボデーMの吸気路40に供給され、これによって絞り弁43の低開度運転が行なわれる。
そして、かかる絞り弁43の低開度状態から絞り弁43が急激に開放されると、吸気路40内の負圧は一時的に低下(大気圧に近づくこと)するもので、この低下した負圧が負圧導入路32を介してスローロック受圧室30内へ導入されると、スローロックダイヤフラム29は、スローロックスプリング31のバネ力によって2次減圧室36側(図において右方)へ移動する。
以上によると、スローロック弁28はスローロックダイヤフラム29と同期して図において右方へ移動し、1次燃料吐出路27を閉塞し、アイドルポート47から吸気路40内に向かう1次圧を有するガス燃料の供給を一時的に停止することになる。
そして、前記絞り弁の開及び閉動作が連続的に行なわれるスナップ動作が行なわれると、吸気路40内を流れるガス燃料の混合気濃度は希薄化し、機関の回転数が所定の回転数より低下し、機関が停止する恐れがある。
【0006】
本発明は前記不具合に鑑み成されたもので絞り弁が低開度から高開度に向けて連続的に開閉されるスナップ動作時において、ガス燃料の供給が遮断されて、ガス燃料の混合気濃度が希薄化されることがなく、安定した機関の運転を得ることのできる内燃機関用のベーパーライザを提供することを目的とする。
【0007】
【課題を達成する為の手段】
本発明になる内燃機関用のベーパーライザは前記課題を達成する為に、ガス燃料源内のガス燃料を、1次減圧室にて所定の1次圧に減圧するとともに2次減圧室にて略大気圧状態の2次圧に減圧され、
1次減圧室から外部に向かって開口する1次燃料吐出路に、該通路を吸気路内の負圧に応じて開閉するスローロック弁が配置されるとともにスローロック弁に開閉操作力を付与するスローロックダイヤフラムによって区分されるスローロック受圧室と吸気路とが負圧導入路にて連絡されるベーパーライザにおいて;
圧力制御弁は、仕切壁体の一側面に臨んで形成される上流室と、仕切壁体の他側面に臨んで形成される下流室と、
上流室と下流室とを連通する弁孔と、上流室と下流室とを連通するバイパス通路とを備え、
前記仕切壁体の上流室側の一側端面上に薄板状の制御板を配置し、この制御板にU字状の舌片部を形成することにより、吸気路内に生起する負圧が一定負圧値以上において弁孔を開口し、それ以下の負圧で弁孔を閉塞する逆止弁を形成すると共に、前記制御板にバイパス通路に配置され、一定開口をもって常時連通する制御オリフィスとを形成し、前記上流室を上流側負圧導入路を介して吸気通路に連絡するとともに下流室を、下流側負圧導入路を介してスローロック受圧室に連絡したことを特徴とする。
【0008】
【作用】
絞り弁の低開度において、圧力制御弁の逆止弁には吸気路内に生起する大なる負圧が作用し、逆止弁は弁孔を開放保持する。
従って、吸気路内の大なる負圧は、弁孔、下流側負圧導入路を介してスローロック受圧室内へ導入され、これによってスローロック弁は1次燃料吐出路を開放保持し、1次減圧室内の1次圧を有するガス燃料が1次燃料吐出路、アイドルポートを介して吸気路内へ供給される。
一方、絞り弁が前記低開度状態から急激に高開度に開放されると、吸気路内の負圧は大きく低下するもので、この低下した負圧が逆止弁に作用すると、逆止弁は即座に弁孔を閉塞する。
以上によると、スローロック受圧室内には大なる負圧が保持され、スローロック弁は依然として1次燃料吐出路を開放保持する。
従って、絞り弁が連続的に開及び閉動作されるスナップ動作が行なわれた際において、1次燃料吐出路からガス燃料の供給が一時的に停止されることがなく機関の運転を安定して行なうことができる。
一方、スローロック受圧室内の大なる負圧の一部はバイパス通路、制御オリフィスを介して下流室から上流室に向けて微少にリークされるので、スローロック受圧室内の大なる負圧は徐々に弱められるので、混合気濃度の適性化を達成できる。
【0009】
【実施例】
以下、本発明になる内燃機関用のベーパーライザの一実施例を図により説明する。
図1は本発明になる内燃機関用のベーパーライザの一実施例を示す縦断面図。
図2は図1において用いられる圧力制御弁の縦断面図。
図3は図1のA−A線における縦断面図、である。
本発明になるベーパーライザは、従来のベーパーライザに対し、圧力制御弁Pが付加されたものである。
尚、従来と同一なる構成部分は同一符号を使用して説明を省略する。
圧力制御弁Pは以下よりなる。(特に図2,図3によって説明する)
1は一側端面1Aと他側端面1Bとを備える仕切壁体であり、一側端面1Aから他側端面1Bに向けて弁孔2とバイパス通路3とが貫通して穿設される。
前記弁孔2とパイパス通路3とは仕切壁体1内に並列に形成されるもので、弁孔2とバイパス通路3とは直接的に連絡されない。
4は、仕切壁体1の一側端面1A上に配置される。凹部4Aを有する有底カップ状の上流カバーであり、凹部4Aには上流通路4Bが開口する。
5は仕切壁体1の一側端面1A上に配置される薄板状をなす制御板であり、この制御板5には仕切壁体1の弁孔1を開閉しうる逆止弁6と、バイパス通路3に臨んで制御オリフィス7とが形成される。
具体的にこの制御板5は、例えば0.5ミリメートル程度の板厚を有する薄板ステンレス材料で形成されるもので、逆止弁6はU字状の舌片部により形成され、制御オリフィス7は微少孔で形成される。
尚、この逆止弁6の開弁特性及び制御オリフィス7が微少孔の径はそれぞれの機関への適合テストによって決定される。
8は、仕切壁体1の他側端面1B上に配置される。凹部8Aを有する有底カップ状の下流カバーであり、凹部8Aには下流通路8Bが開口する。
そして、前記仕切壁体1の一側端面1A上に制御板5と上流カバー4が配置され、他側端面1B上に下流カバー8が配置され、この状態において上流カバー4、制御板5、仕切壁体1、下流カバー8がネジ9によって一体的に組みつけられる。
以上によると、仕切壁体1の一側端面1Aと上流カバー4の凹部4Aとによって上流室PAが形成され、他側端面1Bと下流カバー8の凹部8Aとによって下流室PBが形成され、この上流室PAに上流通路4Bが開口し、下流室PBに下流通路8Bが開口する。
又、制御板5はその外周が仕切壁体1の一側端面1Aと上流カバー4とによって固定的に支持されるもので、このとき逆止弁6は弁孔2に臨んで配置され、制御オリフィス7はバイパス通路3に臨んで配置される。
尚、制御板5は仕切壁体1の一側面1Aと気密的に当接配置されるもので、この気密保持の為のシールリング、接着等の記載は省略された。
従って、弁孔2と上流室PAとは逆止弁6をもってのみ開閉制御され、バイパス通路3は制御オリフィス7をもってのみ上流室PAと連結される。制御板5、逆止弁6の周囲と弁孔2が連通されることがなく、制御オリフィス7の周囲とバイパス通路3が連通されることもない。
尚、4Cは逆止弁6の基部を仕切壁体1の一側端面1Aに押圧する為の押圧部である。
【0010】
そして、前記圧力制御弁Pの上流通路4Bが吸気路40Aに向かう上流側負圧導入路32Aに接続され、下流通路8Bがスローロック受圧室30に向かう下流側負圧導入路32Bに接続される。これが図1に示される。
【0011】
そして本発明になるベーパーライザは、以下の作用をなす。
絞り弁43の低開度時における一定開度運転時において、吸気路40内には一定負圧値以上の大なる負圧が生起するもので、この大なる負圧は上流側負圧導入路32A、上流通路4Bから圧力制御弁Pの上流室PA内に導入される。
そして、この大なる負圧が上流室PA内にある逆止弁6に作用すると、逆時弁6は弁孔2を開孔するもので、上流室PA内の大なる負圧は弁孔2、下流室PB、下流通路8B、下流側負圧導入路32Bを介してベーパーライザVのスローロック受圧室30内に導入される。
この大なる負圧がスローロック受圧室30に作用することによると、スローロックダイヤフラム29は、スローロックスプリング11のバネ力に抗して図において左方へ移動し、これによってスローロック弁28が1次燃料吐出路27を開放保持する。
以上によると、1次減圧室22内の一次圧を有するガス燃料が1次燃料吐出路27、1次圧燃料導入路48、アイドルポート47を介して吸気路40内に供給され、もって絞り弁43の低開度運転が行なわれる。
尚、絞り弁43の中、高開度運転は前述の如く従来と同様に行なわれるので説明は省略する。
【0012】
次に絞り弁43の低開度から絞り弁43が連続的に開閉されるスナップ動作時について説明する。
絞り弁43が低開度より急激に吸気路40を開放すると、吸気路40内を流れる空気流れが遅くなり負圧は大きく低下(大気圧に近づく)し、一定負圧値以下となるもので、この一定負圧値以下の負圧が上流側負圧導入路32Aを介して圧力制御弁Pの上流室PAに達する。
これによると上流室PA内の逆止弁6は負圧の低下によって即座に弁孔2を閉塞するもので、一定負圧値以下の負圧がスローロック受圧室30内に達することがなく、スローロック受圧室30内の負圧を絞り弁43の低開度運転時における高負圧状態に維持し、その負圧が低下することが抑止される。
従って、スローロック弁28は継続して1次燃料吐出路27を開放保持できるので、1次減圧室22内の1次圧を有するガス燃料を継続的にアイドルポート47を介して吸気路40内に供給できる。
一方、前記による絞り弁43の開放状態から、スナップ動作による絞り弁43の低開度への閉弁動作によると、絞り弁43より下流側の吸気路40A内には一定負圧値以上の大なる負圧が生起するもので、かかる大なる負圧が圧力制御弁Pの逆止弁6に作用すると、前記において閉弁状態にある逆止弁6は再び弁孔2を開放し、大なる負圧が再びスローロック受圧室30に作用し、前述の如くスローロック弁28が1次燃料吐出路27を開放保持する。
【0013】
以上によると、絞り弁43の低開度状態において、スローロック受圧室30内には絞り弁43より下流側の吸気路40A内の一定負圧値以上の大なる負圧が作用してスローロック弁28が1次燃料吐出路27を開放保持し、又、絞り弁43が低開度状態から急激に中、高開度状態に開放された際、絞り弁43より下流側の吸気路40A内の負圧が一定負圧値以下に低下しても、逆止弁6が即座に弁孔2を閉塞してスローロック受圧室30内に前記状態において導入された高い負圧を維持することができたので、スローロック弁28が1次燃料吐出路27を依然として開放保持でき、更に前記絞り弁の中、高開度状態から絞り弁43が低開度状態に戻された際、吸気路40A内には再び一定負圧値以上の負圧が生起し、この負圧は逆止弁6を開放して弁孔2よりスローロック受圧室内へ導入され、スローロック弁28が1次燃料吐出路27を開放保持できる。
【0014】
以上の如く、本発明になるベーパーライザによると、絞り弁43を低開度から中、高開度に開放し、再び絞り弁43を低開度へ戻すスナップ動作時において、吸気路40内の負圧が一定負圧値以下に低下しても、スローロック受圧室30内には一定負圧値以上の負圧を常時確保できたもので、前記スナップ動作時においてアイドルポート47より継続的にガス燃料を安定供給でき、機関の運転性が阻害されることがない。
【0015】
又、圧力制御弁Pには弁孔2を迂回して上流室PAと下流室PBとを連絡するバイパス通路3を設け、該バイパス通路3に制御オリフィス7を設けたもので、これによると必要以上にスローロック受圧室30内の負圧を大なる負圧状態に保持することがない。
例えばスナップ動作をした後に機関を停止する場合、(これは二輪車においてよく行なわれる動作である)スローロック受圧室30内には前述の如く大なる負圧が保持され、これによってスローロック弁が1次燃料吐出路27を開放保持し、機関の停止時にあっても依然として1次燃料吐出路27から1次圧を有する燃料がアイドルポート47より供給される。
これに対し、本発明のベーパーライザにあっては、バイパス通路3に制御オリフィス7が配置され、スローロック受圧室30内に保持される大なる負圧が制御オリフィス7を介して徐々に大気側に放出され、スローロック受圧室30内の負圧を一定時間経過した後に低下でき、スローロック弁28にて1次燃料吐出路27を閉塞したので、1次圧を有するガス燃料がアイドルポート47より供給され続けることがない。
尚、かかる制御オリフィス7の孔径はスナップ動作時におけるスローロック受圧室30内の圧力保持特性及び機関停止時におけるスローロック受圧室30内の負圧解放特性より最適に決定されるものである。
又、前記逆止弁及び制御オリフィスの構造は前記実施例に限定されるものでない。
【0016】
【発明の効果】
以上の如く、本発明になる内燃機関用のベーパーライザによると、ガス燃料源内のガス燃料を、1次減圧室にて所定の1次圧に減圧するとともに2次減圧室にて略大気圧状態の2次圧に減圧され、
1次減圧室から外部に向かって開口する1次燃料吐出路に、該通路を吸気路内の負圧に応じて開閉するスローロック弁が配置されるとともにスローロック弁に開閉操作力を付与するスローロックダイヤフラムによって区分されるスローロック受圧室と吸気路とが負圧導入路にて連絡されるベーパーライザにおいて;
圧力制御弁は、仕切壁体の一側面に臨んで形成される上流室と、仕切壁体の他側面に臨んで形成される下流室と、
上流室と下流室とを連通する弁孔と、上流室と下流室とを連通するバイパス通路と、吸気路内に生起する負圧が一定負圧値以上において弁孔を開口し、それ以下の負圧で弁孔を閉塞する逆止弁と、バイパス通路に配置され、一定開口をもって常時連通する制御オリフィスと、を備え、前記上流室を上流側負圧導入路を介して吸気通路に連絡するとともに下流室を、下流側負圧導入路を介してスローロック受圧室に連絡したので、
機関のスナップ動作時において、安定したガス燃料を供給でき、良好な機関の運転性を得ることができるとともにスナップ動作直後に機関を停止した際等において無用なガス燃料の供給を停止できるとともに混合気濃度が濃化傾向をなすことが抑止できる。
【図面の簡単な説明】
【図1】 本発明になる内燃機関用のベーパーライザの一実施例を示す縦断面図。
【図2】 図1に用いられる圧力制御弁の縦断面図。
【図3】 図2のA−A線における縦断面図。
【図4】 従来の内燃機関用のベーパーライザを示す縦断面図。
【符号の説明】
2 弁孔
3 バイパス通路
6 逆止弁
7 制御オリフィス
22 1次減圧室
27 1次燃料吐出路
28 スローロック弁
27 スローロックダイヤフラム
30 スローロック受圧室
32 負圧導入路
36 2次減圧室
P 圧力制御弁
[0001]
[Industrial application fields]
The present invention relates to a fuel supply device that supplies gas fuel such as liquefied petroleum gas (LPG) and compressed natural gas (CNG) to an internal combustion engine, and the gas fuel in the gas fuel source is supplied to a predetermined one in a primary decompression chamber. The present invention relates to a vaporizer that depressurizes to a secondary pressure and depressurizes the secondary pressure to a secondary pressure of substantially atmospheric pressure in a secondary decompression chamber.
[0002]
[Prior art]
A conventional vaporizer V will be described with reference to FIG.
Reference numeral 20 denotes a primary diaphragm that divides the casing B into a primary pressure regulating chamber 21 and a primary decompression chamber 22, and the primary diaphragm 20 is arranged in a contracted manner in the primary pressure regulating chamber 21. The primary spring 23 is pressed toward the primary decompression chamber 22 by the spring force.
Reference numeral 24 denotes a primary valve disposed at one end of a primary support rod 25 that is rotatably supported in the primary decompression chamber 22. The primary valve 24 is a fuel inflow passage that opens into the primary decompression chamber 22. 26 is controlled to open and close. The other end of the first support rod 25 is locked to the primary diaphragm 20.
Reference numeral 27 denotes a primary fuel discharge passage that opens outward from the primary decompression chamber 22, and the primary fuel discharge passage is opened and closed by a slow lock valve 28.
Reference numeral 29 denotes a slow lock diaphragm which is connected to the slow lock valve via a connecting rod 29A and applies an opening / closing operation force to the slow lock valve 28. A slow lock pressure receiving chamber 30 defined by the slow lock diaphragm 29 is provided. A slow lock spring 31 that presses the slow lock diaphragm 29 rightward in FIG.
In other words, it can be said that the slow lock spring 31 urges the slow lock valve 28 to close the primary fuel discharge passage 27.
Then, the negative pressure generated by the operation of the engine is introduced into the slow lock pressure receiving chamber 30 through the negative pressure introduction path 32.
In this example, the upstream side of the negative pressure introduction path 32 is connected to an intake path of a mixing body described later.
Reference numeral 33 denotes a primary adjustment screw that regulates and controls the amount of gas fuel flowing through the primary fuel discharge passage 27, and has a tapered needle valve portion at the tip.
The casing B is further divided into a secondary pressure regulating chamber 35 and a secondary decompression chamber 36 by a secondary diaphragm 34, and the secondary decompression chamber 36 includes a secondary fuel inflow passage 37 connected to the primary decompression chamber 22 and an external portion. A secondary fuel discharge path 38 is opened.
Reference numeral 39 denotes a second support rod that is rotatably supported in the secondary decompression chamber 36, and a secondary valve 40 that opens and closes the secondary fuel inflow passage 37 is disposed at one end of the second support rod 39. The other end is locked to the secondary diaphragm 34.
Further, the second support rod is urged counterclockwise by the spring force of the secondary spring 41, whereby the secondary valve 40 is pressed toward the side closing the secondary fuel inflow passage 37.
Then, liquefied petroleum gas (LPG) as gas fuel is supplied to the fuel inflow passage 26 of the vaporizer V.
When using liquefied petroleum gas (hereinafter referred to as LPG), LPG having a pressure of about 5 kg / cm 2 in the gaseous fuel source T1 is supplied directly to the fuel introduction path 26.
On the other hand, compressed natural gas (hereinafter referred to as CNG) can be used instead of LPG. At this time, CNG having a pressure of about 200 kg / cm 2 in the gas fuel source T2 is about 6 kg / cm 2 by the primary regulator R. The pressure of cm 2 is reduced, and this reduced CNG is supplied to the fuel inflow passage 26.
M is a mixing body that is supplied with the gas fuel from the vaporizer and supplies an air / gas fuel mixture to the engine via an intake pipe (not shown).
The mixing body M is bored through the intake passage 40 and a mixer venturi 41 is formed upstream thereof.
The intake passage is controlled to be opened and closed by a throttle valve 43 attached to a throttle valve shaft 42 rotatably supported by a mixing body M, while a plurality of main ports 44 are formed in the mixer venturi section 41. Therefore, the main port 44 is connected to the secondary pressure fuel introduction passage 46 via an annular groove 45 formed so as to surround the mixer venturi 41.
Reference numeral 47 denotes an idle port that opens to the intake passage 40A on the downstream side of the throttle valve 43, to which a primary pressure fuel introduction passage 48 is communicated.
The secondary pressure fuel introduction path is connected to the secondary fuel discharge path 38 of the vaporizer V, and the primary pressure fuel introduction path 48 is connected to the primary fuel discharge path 27.
[0003]
In the vaporizer V, the primary valve 24 has a fuel pressure of the gas fuel itself (a fuel pressure of about 5 kg / cm 2 for LPG and about 6 kg / cm reduced by the primary regulator R for CNG). 2 ), the fuel inflow passage 26 is opened, and the gas fuel is supplied into the primary decompression chamber 22.
When the pressure in the primary decompression chamber 22 rises above a predetermined pressure (for example, 0.3 kg / cm 2 ), the primary diaphragm 20 resists the spring force of the primary spring 23 and the primary pressure regulation chamber 21. As a result, the first support rod 25 rotates counterclockwise, and the primary valve 24 closes the fuel inflow passage 26, so that the gas fuel pressure in the primary decompression chamber 22 is 0.3 kg / cm. The pressure can be adjusted to 2 .
On the other hand, when the gas fuel pressure in the primary decompression chamber 22 decreases to a pressure of 0.3 kg / cm 2 or less, the primary spring 23 presses and moves the primary diaphragm 20 toward the primary decompression chamber 22 side, As a result, the first support rod 25 rotates clockwise and the primary valve 24 opens the fuel inflow passage 26. Accordingly, high-pressure gas fuel is supplied into the primary decompression chamber 22 from the fuel inflow passage 26, whereby the gas fuel pressure in the primary decompression chamber 22 can be restored to a predetermined 0.3 kg / cm 2 again. it can.
Thereafter, the operation of the primary valve is repeatedly performed, so that gas fuel having a predetermined pressure of 0.3 kg / cm 2 as the primary pressure is maintained in the primary decompression chamber 22. .
When the engine is started, a negative pressure is generated in the intake passage 40A on the downstream side of the throttle valve 43 of the mixing body M. This negative pressure is generated in the slow lock pressure receiving chamber 30 via the negative pressure introduction passage 32. To be introduced. According to this, the slow lock diaphragm 29 moves to the left in the figure against the spring force of the slow lock spring 31 (in other words, moves to the slow lock pressure receiving chamber 30 side), and the slow lock diaphragm 29 moves to the left. Is transmitted to the slow lock valve 28 by the connecting rod 29A, and the slow lock valve 28 opens the primary fuel discharge passage 27.
According to the above, the amount of the gas fuel in the primary decompression chamber 22 having the primary pressure is controlled by the primary adjustment screw 33, and this gas fuel is supplied to the primary fuel discharge passage 27 and the primary pressure fuel introduction passage 48. , Are supplied to the idle port 17, whereby the engine is started and the low opening operation is performed.
[0004]
On the other hand, in the secondary decompression chamber 36, the gas fuel is decompressed to atmospheric pressure.
As previously described, the gas fuel pressure in the primary vacuum chamber 22 is intended to be pressed 0.3 kg / cm 2 two tone, the gas fuel secondary fuel inflow passage 37 with a pressure of 0.3 kg / cm 2 The secondary valve 40 opens the secondary fuel inflow passage 37 and gas fuel is supplied into the secondary decompression chamber 36.
Here, when the gas fuel pressure in the secondary decompression chamber 36 rises to the atmospheric pressure or more, the secondary diaphragm 34 is displaced toward the secondary pressure regulating chamber 35, and according to this, the second support rod 39 is moved to the secondary spring 41. The secondary valve 40 closes the secondary fuel inflow passage 37 by rotating counterclockwise by the spring force of the gas, and thereby the gas fuel pressure in the secondary decompression chamber 36 is returned to the atmospheric pressure. Further, when the gas fuel pressure in the secondary decompression chamber 36 falls below the atmospheric pressure, the secondary diaphragm 34 is displaced toward the secondary decompression chamber 36 against the spring force of the secondary spring 41. The second support rod 39 rotates in the clockwise direction, and the secondary valve 44 opens the secondary fuel inflow passage 37, whereby the gas fuel pressure in the secondary decompression chamber 36 is returned to atmospheric pressure.
Thereafter, the secondary valve 40 repeats the above operation, whereby the gas fuel pressure in the secondary decompression chamber 36 can be maintained at the atmospheric pressure as the secondary pressure.
Then, when the throttle valve 43 opens the intake passage 40 to a medium opening degree and a high opening degree, a high negative pressure is generated in the mixer venturi section 41 according to the throttle valve opening degree.
This negative pressure acts on the secondary decompression chamber 36 via the main port 44, the annular groove 45, the secondary pressure fuel introduction passage 46, and the secondary fuel discharge passage 38, and is maintained in the secondary decompression chamber 36. The gas fuel in the state is sucked out to the mixer venturi section 41 through the main port 44, whereby the inside of the throttle valve 43 and the high opening operation are performed.
[0005]
[Problems to be solved by the invention]
According to such a conventional vaporizer, the operability of the engine may be hindered during a snap operation in which the throttle valve is continuously opened and closed from a low opening to a high opening.
This is due to the following reason.
When the throttle valve 43 is at a low opening, a large negative pressure is generated in the intake passage 40 </ b> A on the downstream side of the throttle valve 43, and this large negative pressure is passed through the negative pressure introduction passage 32 to the slow lock pressure receiving chamber 30. Introduced in.
According to the above, the slow lock diaphragm 29 is displaced toward the slow lock pressure receiving chamber 30 against the spring force of the slow lock spring 31. According to this, the slow lock valve 28 opens the primary fuel discharge passage 27, and 1 Gas fuel having a primary pressure in the secondary decompression chamber 22 is supplied to the intake passage 40 of the mixing body M through the idle port 47, whereby the throttle valve 43 is operated at a low opening.
When the throttle valve 43 is suddenly opened from the low opening state of the throttle valve 43, the negative pressure in the intake passage 40 temporarily decreases (approaches atmospheric pressure). When the pressure is introduced into the slow lock pressure receiving chamber 30 through the negative pressure introduction path 32, the slow lock diaphragm 29 is moved to the secondary pressure reducing chamber 36 side (right side in the figure) by the spring force of the slow lock spring 31. To do.
According to the above, the slow lock valve 28 moves to the right in the drawing in synchronization with the slow lock diaphragm 29, closes the primary fuel discharge passage 27, and has a primary pressure from the idle port 47 into the intake passage 40. The supply of gas fuel will be temporarily stopped.
Then, when a snap operation is performed in which the throttle valve is continuously opened and closed, the concentration of the gas fuel mixture flowing in the intake passage 40 is diluted, and the engine speed falls below a predetermined speed. And there is a risk of the engine stopping.
[0006]
The present invention has been made in view of the above problems, and in the snap operation in which the throttle valve is continuously opened and closed from the low opening to the high opening, the supply of the gas fuel is interrupted, and the gas fuel mixture It is an object of the present invention to provide a vaporizer for an internal combustion engine that can obtain stable engine operation without being diluted in concentration.
[0007]
[Means for achieving the object]
In order to achieve the above object, the vaporizer for an internal combustion engine according to the present invention reduces the gas fuel in the gas fuel source to a predetermined primary pressure in the primary decompression chamber and is substantially large in the secondary decompression chamber. Reduced to a secondary pressure in the atmospheric state,
A slow lock valve that opens and closes the passage according to the negative pressure in the intake passage is disposed in the primary fuel discharge passage that opens from the primary decompression chamber toward the outside, and an opening / closing operation force is applied to the slow lock valve. In a vaporizer in which a slow lock pressure receiving chamber and an intake passage separated by a slow lock diaphragm are connected by a negative pressure introduction passage;
The pressure control valve includes an upstream chamber formed facing one side of the partition wall, a downstream chamber formed facing the other side of the partition wall,
A valve hole communicating the upstream chamber and the downstream chamber, and a bypass passage communicating the upstream chamber and the downstream chamber ,
A thin plate-like control plate is arranged on one end face of the partition wall on the upstream chamber side, and a U-shaped tongue piece is formed on the control plate, so that the negative pressure generated in the intake passage is constant. opening the valve hole in the above negative pressure value, thereby forming a check valve for closing the valve hole in less negative pressure, it is disposed in the bypass passage to the control board, and a control orifice which always communicates with a predetermined opening The upstream chamber is communicated with the intake passage via the upstream negative pressure introduction passage, and the downstream chamber is communicated with the slow lock pressure receiving chamber via the downstream negative pressure introduction passage.
[0008]
[Action]
At a low opening of the throttle valve, a large negative pressure generated in the intake passage acts on the check valve of the pressure control valve, and the check valve keeps the valve hole open.
Therefore, a large negative pressure in the intake passage is introduced into the slow lock pressure receiving chamber through the valve hole and the downstream negative pressure introduction passage, whereby the slow lock valve keeps the primary fuel discharge passage open and holds the primary fuel discharge passage. Gas fuel having a primary pressure in the decompression chamber is supplied into the intake passage through the primary fuel discharge passage and the idle port.
On the other hand, if the throttle valve is suddenly opened from the low opening state to the high opening degree, the negative pressure in the intake passage is greatly reduced. When this reduced negative pressure acts on the check valve, the check valve The valve immediately closes the valve hole.
According to the above, a large negative pressure is maintained in the slow lock pressure receiving chamber, and the slow lock valve still keeps the primary fuel discharge passage open.
Therefore, when a snap operation is performed in which the throttle valve is continuously opened and closed, the supply of gas fuel from the primary fuel discharge passage is not temporarily stopped, and the operation of the engine is stabilized. Can be done.
On the other hand, a part of the large negative pressure in the slow lock pressure receiving chamber is slightly leaked from the downstream chamber to the upstream chamber through the bypass passage and the control orifice, so that the large negative pressure in the slow lock pressure receiving chamber gradually increases. Since it is weakened, it is possible to achieve an appropriate mixture concentration.
[0009]
【Example】
Hereinafter, an embodiment of a vaporizer for an internal combustion engine according to the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of a vaporizer for an internal combustion engine according to the present invention.
FIG. 2 is a longitudinal sectional view of a pressure control valve used in FIG.
3 is a longitudinal sectional view taken along line AA in FIG.
The vaporizer according to the present invention is obtained by adding a pressure control valve P to a conventional vaporizer.
Note that the same components as those in the prior art are denoted by the same reference numerals and description thereof is omitted.
The pressure control valve P consists of the following. (Particularly described with reference to FIGS. 2 and 3)
Reference numeral 1 denotes a partition wall body having a first side end surface 1A and a second side end surface 1B, and a valve hole 2 and a bypass passage 3 are drilled through from the first side end surface 1A to the second side end surface 1B.
The valve hole 2 and the bypass passage 3 are formed in parallel in the partition wall body 1, and the valve hole 2 and the bypass passage 3 are not in direct communication with each other.
4 is disposed on one end face 1A of the partition wall body 1. It is a bottomed cup-shaped upstream cover having a recess 4A, and an upstream passage 4B opens in the recess 4A.
Reference numeral 5 denotes a thin plate-like control plate disposed on one end face 1A of the partition wall body 1. The control plate 5 includes a check valve 6 that can open and close the valve hole 1 of the partition wall body 1, and a bypass. A control orifice 7 is formed facing the passage 3.
Specifically, the control plate 5 is formed of a thin stainless steel material having a thickness of, for example, about 0.5 millimeters, the check valve 6 is formed of a U-shaped tongue piece, and the control orifice 7 is It is formed with minute holes.
Note that the valve opening characteristics of the check valve 6 and the diameter of the control orifice 7 are determined by a conformity test for each engine.
8 is arrange | positioned on the other side end surface 1B of the partition wall body 1. FIG. It is a bottomed cup-shaped downstream cover having a recess 8A, and a downstream passage 8B opens in the recess 8A.
And the control board 5 and the upstream cover 4 are arrange | positioned on the one side end surface 1A of the said partition wall 1, and the downstream cover 8 is arrange | positioned on the other side end surface 1B, In this state, the upstream cover 4, the control board 5, and the partition The wall body 1 and the downstream cover 8 are assembled together by screws 9.
According to the above, the upstream chamber PA is formed by the one end face 1A of the partition wall body 1 and the recess 4A of the upstream cover 4, and the downstream chamber PB is formed by the other end face 1B and the recess 8A of the downstream cover 8, The upstream passage 4B opens in the upstream chamber PA, and the downstream passage 8B opens in the downstream chamber PB.
Further, the outer periphery of the control plate 5 is fixedly supported by the one end face 1A of the partition wall body 1 and the upstream cover 4. At this time, the check valve 6 is disposed facing the valve hole 2 and is controlled. The orifice 7 is arranged facing the bypass passage 3.
The control plate 5 is disposed in airtight contact with the one side surface 1A of the partition wall body 1, and description of a seal ring, adhesion, and the like for maintaining the airtightness is omitted.
Therefore, the valve hole 2 and the upstream chamber PA are controlled to open / close only with the check valve 6, and the bypass passage 3 is connected to the upstream chamber PA only with the control orifice 7. The periphery of the control plate 5 and the check valve 6 does not communicate with the valve hole 2, and the periphery of the control orifice 7 does not communicate with the bypass passage 3.
Reference numeral 4C denotes a pressing portion for pressing the base portion of the check valve 6 against the one end face 1A of the partition wall 1.
[0010]
The upstream passage 4B of the pressure control valve P is connected to the upstream negative pressure introduction passage 32A toward the intake passage 40A, and the downstream passage 8B is connected to the downstream negative pressure introduction passage 32B toward the slow lock pressure receiving chamber 30. The This is shown in FIG.
[0011]
The vaporizer according to the present invention performs the following actions.
When the throttle valve 43 is operated at a constant opening when the throttle valve 43 is at a low opening, a large negative pressure exceeding a certain negative pressure value is generated in the intake passage 40, and this large negative pressure is the upstream negative pressure introduction passage. 32A is introduced into the upstream chamber PA of the pressure control valve P from the upstream passage 4B.
When this large negative pressure acts on the check valve 6 in the upstream chamber PA, the reverse valve 6 opens the valve hole 2, and the large negative pressure in the upstream chamber PA is the valve hole 2. The vaporizer V is introduced into the slow lock pressure receiving chamber 30 through the downstream chamber PB, the downstream passage 8B, and the downstream negative pressure introduction passage 32B.
According to this large negative pressure acting on the slow lock pressure receiving chamber 30, the slow lock diaphragm 29 moves to the left in the figure against the spring force of the slow lock spring 11, thereby causing the slow lock valve 28 to move. The primary fuel discharge passage 27 is held open.
According to the above, the gas fuel having the primary pressure in the primary decompression chamber 22 is supplied into the intake passage 40 via the primary fuel discharge passage 27, the primary pressure fuel introduction passage 48, and the idle port 47, and thus the throttle valve. 43 is operated at a low opening.
In the throttle valve 43, the high opening operation is performed in the same manner as in the prior art, and the description thereof is omitted.
[0012]
Next, a snap operation in which the throttle valve 43 is continuously opened and closed from a low opening degree of the throttle valve 43 will be described.
When the throttle valve 43 opens the intake passage 40 more rapidly than the low opening degree, the air flow flowing in the intake passage 40 becomes slow, and the negative pressure is greatly reduced (approaching atmospheric pressure), and becomes a certain negative pressure value or less. A negative pressure equal to or lower than the certain negative pressure value reaches the upstream chamber PA of the pressure control valve P via the upstream negative pressure introduction passage 32A.
According to this, the check valve 6 in the upstream chamber PA immediately closes the valve hole 2 due to a decrease in negative pressure, so that negative pressure below a certain negative pressure value does not reach the slow lock pressure receiving chamber 30, The negative pressure in the slow lock pressure receiving chamber 30 is maintained in a high negative pressure state during the low opening operation of the throttle valve 43, and the negative pressure is prevented from decreasing.
Accordingly, since the slow lock valve 28 can continuously keep the primary fuel discharge passage 27 open, the gas fuel having the primary pressure in the primary decompression chamber 22 is continuously supplied into the intake passage 40 via the idle port 47. Can supply.
On the other hand, when the throttle valve 43 is closed from the open state to the low opening degree by the snap operation, the intake passage 40A on the downstream side of the throttle valve 43 has a large value equal to or greater than a certain negative pressure value. When such a large negative pressure acts on the check valve 6 of the pressure control valve P, the check valve 6 in the closed state opens the valve hole 2 again and becomes large. The negative pressure acts on the slow lock pressure receiving chamber 30 again, and the slow lock valve 28 keeps the primary fuel discharge passage 27 open as described above.
[0013]
According to the above, when the throttle valve 43 is in the low opening state, the slow lock pressure receiving chamber 30 is subjected to a large negative pressure greater than a certain negative pressure value in the intake passage 40A on the downstream side of the throttle valve 43, causing the slow lock. When the valve 28 keeps the primary fuel discharge passage 27 open and the throttle valve 43 is suddenly opened from the low opening state to the high opening state, it is in the intake passage 40A on the downstream side of the throttle valve 43. The check valve 6 immediately closes the valve hole 2 to maintain the high negative pressure introduced into the slow lock pressure receiving chamber 30 in the above state even if the negative pressure of the valve decreases below a certain negative pressure value. As a result, the slow lock valve 28 can still keep the primary fuel discharge passage 27 open, and when the throttle valve 43 is returned from the high opening state to the low opening state in the throttle valve, the intake passage 40A. A negative pressure exceeding a certain negative pressure value is generated again, and this negative pressure opens the check valve 6. Was introduced from the valve hole 2 to the slow locking pressure chamber, the slow lock valve 28 can be opened holds the primary fuel discharge passage 27.
[0014]
As described above, according to the vaporizer according to the present invention, the throttle valve 43 is opened from the low opening to the middle to high opening, and the snap valve 43 is returned to the low opening again. Even if the negative pressure drops below a certain negative pressure value, a negative pressure equal to or higher than the certain negative pressure value can always be secured in the slow lock pressure receiving chamber 30 and continuously from the idle port 47 during the snap operation. Gas fuel can be supplied stably, and the operability of the engine is not hindered.
[0015]
The pressure control valve P is provided with a bypass passage 3 that bypasses the valve hole 2 and connects the upstream chamber PA and the downstream chamber PB, and the bypass passage 3 is provided with a control orifice 7, which is necessary. As described above, the negative pressure in the slow lock pressure receiving chamber 30 is not maintained in a large negative pressure state.
For example, when the engine is stopped after a snap operation, a large negative pressure is maintained in the slow lock pressure receiving chamber 30 (this is an operation often performed in a two-wheeled vehicle). The secondary fuel discharge passage 27 is held open, and the fuel having the primary pressure is still supplied from the idle port 47 from the primary fuel discharge passage 27 even when the engine is stopped.
On the other hand, in the vaporizer of the present invention, the control orifice 7 is disposed in the bypass passage 3, and a large negative pressure held in the slow lock pressure receiving chamber 30 is gradually increased to the atmosphere side through the control orifice 7. The negative pressure in the slow lock pressure receiving chamber 30 can be reduced after a predetermined time has elapsed, and the primary fuel discharge passage 27 is closed by the slow lock valve 28, so that the gas fuel having the primary pressure is discharged into the idle port 47. It will not continue to be supplied.
The hole diameter of the control orifice 7 is optimally determined from the pressure holding characteristics in the slow lock pressure receiving chamber 30 during the snap operation and the negative pressure release characteristics in the slow lock pressure receiving chamber 30 when the engine is stopped.
Further, the structure of the check valve and the control orifice is not limited to the above embodiment.
[0016]
【The invention's effect】
As described above, according to the vaporizer for an internal combustion engine according to the present invention, the gas fuel in the gas fuel source is decompressed to a predetermined primary pressure in the primary decompression chamber and is substantially at atmospheric pressure in the secondary decompression chamber. To a secondary pressure of
A slow lock valve that opens and closes the passage according to the negative pressure in the intake passage is disposed in the primary fuel discharge passage that opens from the primary decompression chamber toward the outside, and an opening / closing operation force is applied to the slow lock valve. In the vaporizer in which the slow lock pressure receiving chamber and the intake passage, which are separated by the slow lock diaphragm, are connected via the negative pressure introduction passage;
The pressure control valve includes an upstream chamber formed facing one side of the partition wall, a downstream chamber formed facing the other side of the partition wall,
A valve hole communicating with the upstream chamber and the downstream chamber; a bypass passage communicating between the upstream chamber and the downstream chamber; and a valve hole is opened when the negative pressure generated in the intake passage is equal to or greater than a certain negative pressure value. A check valve that closes the valve hole with a negative pressure, and a control orifice that is disposed in the bypass passage and always communicates with a constant opening, and communicates the upstream chamber with the intake passage through the upstream negative pressure introduction passage. At the same time, the downstream chamber was connected to the slow lock pressure receiving chamber via the downstream negative pressure introduction path.
During the snap operation of the engine, stable gas fuel can be supplied, good engine operability can be obtained, and unnecessary gas fuel supply can be stopped and the gas mixture can be stopped when the engine is stopped immediately after the snap operation, etc. It can be suppressed that the concentration tends to increase.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a vaporizer for an internal combustion engine according to the present invention.
FIG. 2 is a longitudinal sectional view of a pressure control valve used in FIG.
FIG. 3 is a longitudinal sectional view taken along line AA in FIG.
FIG. 4 is a longitudinal sectional view showing a conventional vaporizer for an internal combustion engine.
[Explanation of symbols]
2 Valve hole 3 Bypass passage 6 Check valve 7 Control orifice 22 Primary decompression chamber 27 Primary fuel discharge passage 28 Slow lock valve 27 Slow lock diaphragm 30 Slow lock pressure receiving chamber 32 Negative pressure introduction passage 36 Secondary decompression chamber P Pressure control valve

Claims (1)

ガス燃料源内のガス燃料を、1次減圧室(22)にて所定の1次圧に減圧するとともに2次減圧室(36)にて略大気圧状態の2次圧に減圧され、1次減圧室(22)から外部に向かって開口する1次燃料吐出路(27)に、該通路を吸気路内の負圧に応じて開閉するスローロック弁(28)が配置されるとともにスローロック弁(28)に開閉操作力を付与するスローロックダイヤフラム(29)によって区分されるスローロック受圧室(30)と吸気路(40)とが負圧導入路(32)にて連絡されるベーパーライザにおいて;
圧力制御弁(P)は、仕切壁体(1)の一側面(1A)に臨んで形成される上流室(PA)と、仕切壁体(1)の他側面(1B)に臨んで形成される下流室(PB)と、
上流室(PA)と下流室(PB)とを連通する弁孔(2)と、上流室(PA)と下流室(PB)とを連通するバイパス通路(3)とを備え、
前記仕切壁体(1)の上流室(PA)側の一側端面(1A)上に薄板状の制御板(5)を配置し、この制御板(5)にU字状の舌片部を形成することにより、吸気路(40A)内に生起する負圧が一定負圧値以上において弁孔(2)を開口し、それ以下の負圧で弁孔(2)を閉塞する逆止弁(6)を形成すると共に、前記制御板(5)にバイパス通路(3)に配置され、一定開口をもって常時連通する制御オリフィス(7)を形成し、前記上流室(PA)を上流側負圧導入路(32A)を介して吸気通路(40A)に連絡するとともに下流室(PB)を、下流側負圧導入路(32B)を介してスローロック受圧室(30)に連絡したことを特徴とする内燃機関用のベーパーライザ。
The gas fuel in the gas fuel source is depressurized to a predetermined primary pressure in the primary depressurization chamber (22) and depressurized to a secondary pressure in a substantially atmospheric state in the secondary depressurization chamber (36). The primary fuel discharge passage (27) that opens from the chamber (22) toward the outside is provided with a slow lock valve (28) that opens and closes the passage according to the negative pressure in the intake passage, and the slow lock valve ( 28) in a vaporizer in which a slow lock pressure receiving chamber (30) and an intake passage (40) separated by a slow lock diaphragm (29) for applying an opening / closing operation force to 28) are communicated by a negative pressure introduction passage (32);
The pressure control valve (P) is formed facing an upstream chamber (PA) formed facing one side (1A) of the partition wall (1) and facing the other side (1B) of the partition wall (1). Downstream chamber (PB)
A valve hole (2) communicating the upstream chamber (PA) and the downstream chamber (PB), and a bypass passage (3) communicating the upstream chamber (PA) and the downstream chamber (PB) ,
A thin plate-shaped control plate (5) is disposed on one end surface (1A) on the upstream chamber (PA) side of the partition wall (1), and a U-shaped tongue piece is provided on the control plate (5). By forming the check valve, the valve hole (2) is opened when the negative pressure generated in the intake passage (40A) is equal to or higher than a certain negative pressure value, and the valve hole (2) is closed with a negative pressure lower than that ( 6) and a control orifice (7) which is arranged in the bypass passage (3) in the control plate (5) and is always in communication with a constant opening, and introduces upstream negative pressure into the upstream chamber (PA). It connects to the intake passage (40A) via the passage (32A) and communicates the downstream chamber (PB) to the slow lock pressure receiving chamber (30) via the downstream negative pressure introduction passage (32B). Vaporizer for internal combustion engines.
JP2001283497A 2001-09-18 2001-09-18 Vaporizer for internal combustion engines Expired - Fee Related JP4096536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283497A JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283497A JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2003090268A JP2003090268A (en) 2003-03-28
JP4096536B2 true JP4096536B2 (en) 2008-06-04

Family

ID=19106976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283497A Expired - Fee Related JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Country Status (1)

Country Link
JP (1) JP4096536B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299958A (en) * 2005-04-21 2006-11-02 TI Walbro Japan株式会社 Regulator for gas engine
JP2008255830A (en) * 2007-04-02 2008-10-23 Walbro Japan Inc Mixture device for gaseous fuel and air
KR100958878B1 (en) 2008-02-29 2010-05-20 피엔케이산업(주) Controller for idling of vaporizer for a LPG vehicle
CN105443979B (en) * 2014-08-29 2018-01-09 西安德森新能源装备有限公司 Water bath type vaporizer and the Vehicular liquefied natural gas supply system

Also Published As

Publication number Publication date
JP2003090268A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
JP4096536B2 (en) Vaporizer for internal combustion engines
US20100269796A1 (en) Regulator for gas engine and gaseous fuel supplying device
JP4767458B2 (en) Fuel supply device for internal combustion engine
JPH02286871A (en) Fuel injection device
JP2003214260A (en) Gas fuel feeding device for engine
JP2006299958A (en) Regulator for gas engine
JPH059632B2 (en)
JPH0223816Y2 (en)
JP4011876B2 (en) Fuel supply device for internal combustion engine
JP2000257508A (en) Accelerator for film type carburetor
JPH06213078A (en) Gas fuel supply system of engine
JP2003090238A (en) Fuel supplier for internal combustion engine
JP2882222B2 (en) Vaporizer pressure regulator
JPS5846648B2 (en) Secondary air control device
JPH0571421A (en) Fuel supplying device for liquefied petroleum gas engine
JP4543354B2 (en) Engine gas fuel supply device
US5817257A (en) Fuel metering system
JPH10331718A (en) High speed fuel passage structure of diaphragm type carburetor
JPH01271652A (en) Device for feeding fuel of internal combustion engine
JPS6149159A (en) Mixer for liquefied gas engine
JPS6024922Y2 (en) vaporizer
JPS6339397Y2 (en)
JPH0932649A (en) Fuel supply device
JPH0223812Y2 (en)
JPS61275555A (en) Liquidized gas controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees