JP2003090268A - Vaporizer for internal combustion engine - Google Patents

Vaporizer for internal combustion engine

Info

Publication number
JP2003090268A
JP2003090268A JP2001283497A JP2001283497A JP2003090268A JP 2003090268 A JP2003090268 A JP 2003090268A JP 2001283497 A JP2001283497 A JP 2001283497A JP 2001283497 A JP2001283497 A JP 2001283497A JP 2003090268 A JP2003090268 A JP 2003090268A
Authority
JP
Japan
Prior art keywords
pressure
valve
chamber
passage
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001283497A
Other languages
Japanese (ja)
Other versions
JP4096536B2 (en
Inventor
Takashi Tsutsumizaki
高司 堤崎
Yoshihiro Takada
美博 高田
Hiroshi Tanaka
弘志 田中
Kazuya Tanabe
和也 田邉
Tatsuji Nonaka
達司 野中
Eisaku Sakata
栄作 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Keihin Corp
Original Assignee
Honda Motor Co Ltd
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Keihin Corp filed Critical Honda Motor Co Ltd
Priority to JP2001283497A priority Critical patent/JP4096536B2/en
Publication of JP2003090268A publication Critical patent/JP2003090268A/en
Application granted granted Critical
Publication of JP4096536B2 publication Critical patent/JP4096536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PROBLEM TO BE SOLVED: To provide a vaporizer capable of stably carrying out an operation of an engine without temporarily shielding feed of a gas fuel and diluting a concentration of air-fuel mixture at the time of snap action of a throttle valve. SOLUTION: The vaporizer V reduces a pressure to a predetermined primary pressure at a primary pressure reduction chamber and adjusts the pressure to a secondary pressure in the approximately atmospheric pressure state at a secondary pressure reduction chamber 36. A slow lock valve 28 for opening/closing a primary fuel deliver passage 27 is disposed at the delivery passage 27 opened from the primary pressure reduction chamber 22 and a slow lock pressure receiving chamber 30 divided by a slow lock diaphragm 29 for imparting an opening/closing operation force to the slow lock valve 28 and a suction passage 40 are communicated by a negative pressure introduction. A pressure control valve P is disposed at the introduction passage. The pressure control valve P is divided to an upstream chamber PA and a downstream chamber PB and is communicated by a by-path passage 3 bypassing a valve hole 2 and a valve hole 2. A check valve 6 is disposed facing to the valve hole and opens the valve hole 2 when the negative pressure of the suction passage 40 acting on the upstream chamber PA is a constant value or higher and it closes the valve hole when the negative pressure is a constant value or lower. A control orifice 7 is disposed at the by-path passage 3 and the upstream chamber PA and the downstream chamber PB are always communicated by the control orifice 7.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は内燃機関に向けて液化石
油ガス(LPG)、圧縮天然ガス(CNG)等のガス燃
料を供給する燃料供給装置に関し、そのうちガス燃料源
内のガス燃料を1次減圧室にて所定の1次圧に減圧する
とともに2次減圧室にて略大気圧状態の2次圧に減圧す
るベーパーライザに関する。 【0002】 【従来の技術】従来のベーパーライザVについて図4に
より説明する。20は、筐体Bを1次調圧室21と1次
減圧室22とに区分する1次ダイヤフラムであり、1次
ダイヤフラム20は1次調圧室21内に縮設して配置さ
れる1次スプリング23のバネ力によって1次減圧室2
2側へ押圧される。24は1次減圧室22内において回
転自在に支承される第1次支持杆25の一端に配置され
る1次弁であり、この1次弁24は1次減圧室22に開
口する燃料流入路26を開閉制御する。又前記第1支持
杆25の他端は前記1次ダイヤフラム20に係止され
る。27は、1次減圧室22から外部に向かって開口す
る1次燃料吐出路であり、該1次燃料吐出路は、スロー
ロック弁28によって開閉される。29は、前記スロー
ロック弁と連結杆29Aを介して連結され、スローロッ
ク弁28に対して開閉操作力を付与するスローロックダ
イヤフラムであり、スローロックダイヤフラム29によ
って画成されるスローロック受圧室30内にはスローロ
ックダイヤフラム29を図4において右方へ押圧するス
ローロックスプリング31が縮設される。いいかえると
スローロックスプリング31はスローロック弁28が1
次燃料吐出路27を閉塞する側へ付勢するといえる。そ
してスローロック受圧室30には負圧導入路32を介し
て機関の運転によって生起する負圧が導入される。本例
では負圧導入路32の上流側は後述するミキシングボデ
ーの吸気路に連絡される。33は1次燃料吐出路27を
流れるガス燃料量を調圧、制御する1次調整スクリュー
であり、先端にテーパー針弁部が形成される。筐体B
は、更に2次ダイヤフラム34によって2次調圧室35
と2次減圧室36とに区分され、2次減圧室36には1
次減圧室22に連なる2次燃料流入路37と外部に向か
う2次燃料吐出路38とが開口する。39は2次減圧室
36内に回転自在に支承配置される第2支持杆であり、
この第2支持杆39の一端に2次燃料流入路37を開閉
する2次弁40が配置されるとともにその他端は2次ダ
イヤフラム34に係止される。又、前記第2支持杆は2
次スプリング41のバネ力によって反時計方向へ付勢さ
れるもので、これによって2次弁40は2次燃料流入路
37を閉塞する側へ押圧される。そして、ベーパーライ
ザVの燃料流入路26には、ガス燃料としての液化石油
ガス(LPG)が供給される。液化石油ガス(以下LP
Gという)を使用する際、ガス燃料源T1内の約5kg
/cm の圧力を有するLPGは、直接的に燃料導入
路26に供給される。一方LPGに代えて圧縮天然ガス
(以下CNGという)を使用することができるもので、
このときガス燃料源T2内の約200kg/cm
圧力を有するCNGは、1次レギュレターRによって約
6kg/cm の圧力を減圧され、この減圧されたC
NGが燃料流入路26へ供給される。Mは、前記ベーパ
ーライザからのガス燃料の供給を受け、機関に向けて空
気とガス燃料との混合気を図示せぬ吸気管を介して供給
するミキシングボデーで以下よりなる。ミキシングボデ
ーMは内部を吸気路40が貫通して穿設され、その上流
にミキサーベンチュリー部41が形成される。前記吸気
路はミキシングボデーMに回転自在に支承された絞り弁
軸42に取着された絞り弁43にて開閉制御され、一方
ミキサーベンチュリー部41には複数のメーンポート4
4が開口して形成されるもので、このメーンポート44
は、ミキサーベンチュリー部41を囲繞して形成された
環状溝部45を介して2次圧燃料導入路46に連絡され
る。又、47は絞り弁43より下流側の吸気路40Aに
開口するアイドルポートであり、これには1次圧燃料導
入路48が連絡される。そして、前記2次圧燃料導入路
は、ベーパーライザVの2次燃料吐出路38に接続さ
れ、1次圧燃料導入路48は1次燃料吐出路27に接続
される。 【0003】ベーパーライザVにおいて、1次弁24
は、ガス燃料自身が有する燃料圧力(LPGにあっては
約5kg/cmの燃料圧力、CNGにあっては1次レ
ギュレターRによって減圧された約6kg/cmの燃
料圧力)によって燃料流入路26を開放し、前記ガス燃
料が1次減圧室22内へ供給される。そして1次減圧室
22内の圧力が所定の圧力(例えば0.3kg/c
)を超えて上昇すると、1次ダイヤフラム20が1
次スプリング23のバネ力に抗して1次調圧室21側へ
移動し、これによって第1支持杆25が反時計方向へ回
転して1次弁24が燃料流入路26を閉塞し、もって1
次減圧室22内のガス燃料圧力を0.3kg/cm
調圧できる。一方、1次減圧室22内のガス燃料圧力が
0.3kg/cm以下の圧力に低下すると、1次スプ
リング23は、1次ダイヤフラム20を1次減圧室22
側へ押圧して移動させ、これによって第1支持杆25は
時計方向に回転して1次弁24は燃料流入路26を開放
する。従って燃料流入路26より高圧力状態のガス燃料
が1次減圧室22内へ供給され、これによって1次減圧
室22内のガス燃料圧力を再び所定の0.3kg/cm
に復帰させることができる。以後、上記1次弁の動作
がくり返し行なわれることによって、1次減圧室22内
には、1次圧としての所定の0.3kg/cmの圧力
を有するガス燃料が維持されるものである。そして、機
関が始動されると、ミキシングボデーMの絞り弁43よ
り下流側の吸気路40A内に負圧が生ずるもので、この
負圧は負圧導入路32を介してスローロック受圧室30
内へ導入される。これによるとスローロックダイヤフラ
ム29は、スローロックスプリング31のバネ力に抗し
て図において左方へ移動し、(いいかえるとスローロッ
ク受圧室30側へ移動する)このスローロックダイヤフ
ラム29の左方移動が連結杆29Aによってスローロッ
ク弁28に伝達され、スローロック弁28は1次燃料吐
出路27を開放する。以上によると、1次圧を有する1
次減圧室22内のガス燃料は、1次調整スクリュー33
によってその量が制御され、このガス燃料が1次燃料吐
出路27、1次圧燃料導入路48、を介してアイドルポ
ート17へ供給され、これによって機関の始動及び低開
度運転が行なわれる。 【0004】一方、2次減圧室36にあっては、ガス燃
料は大気圧まで減圧される。前述の如く、1次減圧室2
2内のガス燃料圧力は0.3kg/cmに調圧される
もので、この0.3kg/cmの圧力を有するガス燃
料は2次燃料流入路37を介して2次弁40に作用し、
2次弁40は2次燃料流入路37を開放し、2次減圧室
36内にガス燃料が供給される。ここで、2次減圧室3
6内のガス燃料圧力が大気圧以上に上昇すると、2次ダ
イヤフラム34は2次調圧室35側へ変位し、これによ
ると第2支持杆39は2次スプリング41のバネ力によ
って反時計方向へ回転して2次弁40は2次燃料流入路
37を閉塞し、これによって2次減圧室36内のガス燃
料圧力を大気圧に復帰させる。又、2次減圧室36内の
ガス燃料圧力が大気圧以下に低下すると、2次ダイヤフ
ラム34は2次スプリング41のバネ力に抗して2次減
圧室36側へ変位し、これによると第2支持杆39は時
計方向へ回転して2次弁44は2次燃料流入路37を開
放し、これによって2次減圧室36内のガス燃料圧力を
大気圧に復帰させる。以後、上記2次弁40が前記動作
をくり返し行なうことによって2次減圧室36内のガス
燃料圧力を2次圧としての大気圧に維持できる。そし
て、絞り弁43が吸気路40を中開度及び高開度に開放
することによると、ミキサーベンチュリー部41には絞
り弁開度に応じた高い負圧が生起するもので、この負圧
はメーンポート44、環状溝部45、2次圧燃料導入路
46、2次燃料吐出路38を介して2次減圧室36に作
用し、2次減圧室36内に維持される大気圧状態にある
ガス燃料がメーンポート44を介してミキサーベンチュ
リー部41に吸出され、これによって絞り弁43の中及
び高開度運転が行なわれる。 【0005】 【発明が解決しようとする課題】かかる従来のベーパー
ライザを用いることによると、絞り弁を低開度から高開
度に向けて連続的に開閉動作を行なうスナップ動作時に
おいて機関の運転性が阻害される恐れがある。これは以
下の理由による。絞り弁43の低開度時において、絞り
弁43より下流側の吸気路40A内には大なる負圧が生
起され、この大なる負圧が負圧導入路32を介してスロ
ーロック受圧室30内に導入される。以上によると、ス
ローロックダイヤフラム29はスローロックスプリング
31のバネ力に抗してスローロック受圧室30側へ変位
し、これによると、スローロック弁28が1次燃料吐出
路27を開放し、1次減圧室22内の1次圧を有するガ
ス燃料がアイドルポート47を介してミキシングボデー
Mの吸気路40に供給され、これによって絞り弁43の
低開度運転が行なわれる。そして、かかる絞り弁43の
低開度状態から絞り弁43が急激に開放されると、吸気
路40内の負圧は一時的に低下(大気圧に近づくこと)
するもので、この低下した負圧が負圧導入路32を介し
てスローロック受圧室30内へ導入されると、スローロ
ックダイヤフラム29は、スローロックスプリング31
のバネ力によって2次減圧室36側(図において右方)
へ移動する。以上によると、スローロック弁28はスロ
ーロックダイヤフラム29と同期して図において右方へ
移動し、1次燃料吐出路27を閉塞し、アイドルポート
47から吸気路40内に向かう1次圧を有するガス燃料
の供給を一時的に停止することになる。そして、前記絞
り弁の開及び閉動作が連続的に行なわれるスナップ動作
が行なわれると、吸気路40内を流れるガス燃料の混合
気濃度は希薄化し、機関の回転数が所定の回転数より低
下し、機関が停止する恐れがある。 【0006】本発明は前記不具合に鑑み成されたもので
絞り弁が低開度から高開度に向けて連続的に開閉される
スナップ動作時において、ガス燃料の供給が遮断され
て、ガス燃料の混合気濃度が希薄化されることがなく、
安定した機関の運転を得ることのできる内燃機関用のベ
ーパーライザを提供することを目的とする。 【0007】 【課題を達成する為の手段】本発明になる内燃機関用の
ベーパーライザは前記課題を達成する為に、ガス燃料源
内のガス燃料を、1次減圧室にて所定の1次圧に減圧す
るとともに2次減圧室にて略大気圧状態の2次圧に調圧
するベーパーライザにおいて;1次減圧室から外部に向
かって開口する1次燃料吐出路に、該通路を吸気路内の
負圧に応じて開閉するスローロック弁が配置されるとと
もにスローロック弁に開閉操作力を付与するスローロッ
クダイヤフラムによって区分されるスローロック受圧室
と吸気路とを連絡する負圧導入路に圧力制御弁が配置さ
れ、前記圧力制御弁を、吸気路内に生起する負圧が一定
負圧値以上において、弁孔によって区分される上流室と
下流室とを連通し、それ以下の負圧で弁孔を閉塞する逆
止弁と、弁孔を迂回して上流室と下流室を連絡するバイ
パス通路に配置され、一定開口をもって常時連通する制
御オリフィスと、によって形成したことを特徴とする。 【0008】 【作用】絞り弁の低開度において、圧力制御弁の逆止弁
には吸気路内に生起する大なる負圧が作用し、逆止弁は
弁孔を開放保持する。従って、吸気路内の大なる負圧
は、弁孔、負圧導入路を介してスローロック受圧室内へ
導入され、これによってスローロック弁は1次燃料吐出
路を開放保持し、1次減圧室内の1次圧を有するガス燃
料が1次燃料吐出路、アイドルポートを介して吸気路内
へ供給される。一方、絞り弁が前記低開度状態から急激
に高開度に開放されると、吸気路内の負圧は大きく低下
するもので、この低下した負圧が逆止弁に作用すると、
逆止弁は即座に弁孔を閉塞する。以上によると、スロー
ロック受圧室内には大なる負圧が保持され、スローロッ
ク弁は依然として1次燃料吐出路を開放保持する。従っ
て、絞り弁が連続的に開及び閉動作されるスナップ動作
が行なわれた際において、1次燃料吐出路からガス燃料
の供給が一時的に停止されることがなく機関の運転を安
定して行なうことができる。一方、スローロック受圧室
内の大なる負圧の一部はバイパス通路、制御オリフィス
を介して下流室から上流室に向けて微少にリークされる
ので、スローロック受圧室内の大なる負圧は徐々に弱め
られるので、混合気濃度の適性化を達成できる。 【0009】 【実施例】以下、本発明になる内燃機関用のベーパーラ
イザの一実施例を図により説明する。図1は本発明にな
る内燃機関用のベーパーライザの一実施例を示す縦断面
図。図2は図1において用いられる圧力制御弁の縦断面
図。図3は図1のA−A線における縦断面図、である。
本発明になるベーパーライザは、従来のベーパーライザ
に対し、圧力制御弁Pが付加されたものである。尚、従
来と同一なる構成部分は同一符号を使用して説明を省略
する。圧力制御弁Pは以下よりなる。(特に図2,図3
によって説明する)1は一側端面1Aと他側端面1Bと
を備える仕切壁体であり、一側端面1Aから他側端面1
Bに向けて弁孔2とバイパス通路3とが貫通して穿設さ
れる。前記弁孔2とパイパス通路3とは仕切壁体1内に
並列に形成されるもので、弁孔2とバイパス通路3とは
直接的に連絡されない。4は、仕切壁体1の一側端面1
A上に配置される。凹部4Aを有する有底カップ状の上
流カバーであり、凹部4Aには上流通路4Bが開口す
る。5は仕切壁体1の一側端面1A上に配置される薄板
状をなす制御板であり、この制御板5には仕切壁体1の
弁孔1を開閉しうる逆止弁6と、バイパス通路3に臨ん
で制御オリフィス7とが形成される。具体的にこの制御
板5は、例えば0.5ミリメートル程度の板厚を有する
薄板ステンレス材料で形成されるもので、逆止弁6はU
字状の舌片部により形成され、制御オリフィス7は微少
孔で形成される。尚、この逆止弁6の開弁特性及び制御
オリフィス7が微少孔の径はそれぞれの機関への適合テ
ストによって決定される。8は、仕切壁体1の他側端面
1B上に配置される。凹部8Aを有する有底カップ状の
下流カバーであり、凹部8Aには下流通路8Bが開口す
る。そして、前記仕切壁体1の一側端面1A上に制御板
5と上流カバー4が配置され、他側端面1B上に下流カ
バー8が配置され、この状態において上流カバー4、制
御板5、仕切壁体1、下流カバー8がネジ9によって一
体的に組みつけられる。以上によると、仕切壁体1の一
側端面1Aと上流カバー4の凹部4Aとによって上流室
PAが形成され、他側端面1Bと下流カバー8の凹部8
Aとによって下流室PBが形成され、この上流室PAに
上流通路4Bが開口し、下流室PBに下流通路8Bが開
口する。又、制御板5はその外周が仕切壁体1の一側端
面1Aと上流カバー4とによって固定的に支持されるも
ので、このとき逆止弁6は弁孔2に臨んで配置され、制
御オリフィス7はバイパス通路3に臨んで配置される。
尚、制御板5は仕切壁体1の一側面1Aと気密的に当接
配置されるもので、この気密保持の為のシールリング、
接着等の記載は省略された。従って、弁孔2と上流室P
Aとは逆止弁6をもってのみ開閉制御され、バイパス通
路3は制御オリフィス7をもってのみ上流室PAと連結
される。制御板5、逆止弁6の周囲と弁孔2が連通され
ることがなく、制御オリフィス7の周囲とバイパス通路
3が連通されることもない。尚、4Cは逆止弁6の基部
を仕切壁体1の一側端面1Aに押圧する為の押圧部であ
る。 【0010】そして、前記圧力制御弁Pの上流通路4B
が吸気路40Aに向かう上流側負圧導入路32Aに接続
され、下流通路8Bがスローロック受圧室30に向かう
下流側負圧導入路32Bに接続される。これが図1に示
される。 【0011】そして本発明になるベーパーライザは、以
下の作用をなす。絞り弁43の低開度時における一定開
度運転時において、吸気路40内には一定負圧値以上の
大なる負圧が生起するもので、この大なる負圧は上流側
負圧導入路32A、上流通路4Bから圧力制御弁Pの上
流室PA内に導入される。そして、この大なる負圧が上
流室PA内にある逆止弁6に作用すると、逆時弁6は弁
孔2を開孔するもので、上流室PA内の大なる負圧は弁
孔2、下流室PB、下流通路8B、下流側負圧導入路3
2Bを介してベーパーライザVのスローロック受圧室3
0内に導入される。この大なる負圧がスローロック受圧
室30に作用することによると、スローロックダイヤフ
ラム29は、スローロックスプリング11のバネ力に抗
して図において左方へ移動し、これによってスローロッ
ク弁28が1次燃料吐出路27を開放保持する。以上に
よると、1次減圧室22内の一次圧を有するガス燃料が
1次燃料吐出路27、1次圧燃料導入路48、アイドル
ポート47を介して吸気路40内に供給され、もって絞
り弁43の低開度運転が行なわれる。尚、絞り弁43の
中、高開度運転は前述の如く従来と同様に行なわれるの
で説明は省略する。 【0012】次に絞り弁43の低開度から絞り弁43が
連続的に開閉されるスナップ動作時について説明する。
絞り弁43が低開度より急激に吸気路40を開放する
と、吸気路40内を流れる空気流れが遅くなり負圧は大
きく低下(大気圧に近づく)し、一定負圧値以下とした
もので、この一定負圧値以下の負圧が上流側負圧導入路
32Aを介して圧力制御弁Pの上流室PAに達する。こ
れによると上流室PA内の逆止弁6は負圧の低下によっ
て即座に弁孔2を閉塞するもので、一定負圧値以下の負
圧がスローロック受圧室30内に達することがなく、ス
ローロック受圧室30内の負圧を絞り弁43の低開度運
転時における高負圧状態に維持し、その負圧が低下する
ことが抑止される。従って、スローロック弁28は継続
して1次燃料吐出路27を開放保持できるので、1次減
圧室22内の1次圧を有するガス燃料を継続的にアイド
ルポート47を介して吸気路40内に供給できる。一
方、前記による絞り弁43の開放状態から、スナップ動
作による絞り弁43の低開度への閉弁動作によると、絞
り弁43より下流側の吸気路40A内には一定負圧値以
上の大なる負圧が生起するもので、かかる大なる負圧が
圧力制御弁Pの逆止弁6に作用すると、前記において閉
弁状態にある逆止弁6は再び弁孔2を開放し、大なる負
圧が再びスローロック受圧室30に作用し、前述の如く
スローロック弁28が1次燃料吐出路27を開放保持す
る。 【0013】以上によると、絞り弁43の低開度状態に
おいて、スローロック受圧室30内には絞り弁43より
下流側の吸気路40A内の一定負圧値以上の大なる負圧
が作用してスローロック弁28が1次燃料吐出路27を
開放保持し、又、絞り弁43が低開度状態から急激に
中、高開度状態に開放された際、絞り弁43より下流側
の吸気路40A内の負圧が一定負圧値以下に低下して
も、逆止弁6が即座に弁孔2を閉塞してスローロック受
圧室30内に前記状態において導入された高い負圧を維
持することができたので、スローロック弁28が1次燃
料吐出路27を依然として開放保持でき、更に前記絞り
弁の中、高開度状態から絞り弁43が低開度状態に戻さ
れた際、吸気路40A内には再び一定負圧値以上の負圧
が生起し、この負圧は逆止弁6を開放して弁孔2よりス
ローロック受圧室内へ導入され、スローロック弁28が
1次燃料吐出路27を開放保持できる。 【0014】以上の如く、本発明になるベーパーライザ
によると、絞り弁43を低開度から中、高開度に開放
し、再び絞り弁43を低開度へ戻すスナップ動作時にお
いて、吸気路40内の負圧が一定負圧値以下に低下して
も、スローロック受圧室30内には一定負圧値以上の負
圧を常時確保できたもので、前記スナップ動作時におい
てアイドルポート47より継続的にガス燃料を安定供給
でき、機関の運転性が阻害されることがない。 【0015】又、圧力制御弁Pには弁孔2を迂回して上
流室PAと下流室PBとを連絡するバイパス通路3を設
け、該バイパス通路3に制御オリフィス7を設けたもの
で、これによると必要以上にスローロック受圧室30内
の負圧を大なる負圧状態に保持することがない。例えば
スナップ動作をした後に機関を停止する場合、(これは
二輪車においてよく行なわれる動作である)スローロッ
ク受圧室30内には前述の如く大なる負圧が保持され、
これによってスローロック弁が1次燃料吐出路27を開
放保持し、機関の停止時にあっても依然として1次燃料
吐出路27から1次圧を有する燃料がアイドルポート4
7より供給される。これに対し、本発明のベーパーライ
ザにあっては、バイパス通路3に制御オリフィス7が配
置され、スローロック受圧室30内に保持される大なる
負圧が制御オリフィス7を介して徐々に大気側に放出さ
れ、スローロック受圧室30内の負圧を一定時間経過し
た後に低下でき、スローロック弁28にて1次燃料吐出
路27を閉塞したので、1次圧を有するガス燃料がアイ
ドルポート47より供給され続けることがない。尚、か
かる制御オリフィス7の孔径はスナップ動作時における
スローロック受圧室30内の圧力保持特性及び機関停止
時におけるスローロック受圧室30内の負圧解放特性よ
り最適に決定されるものである。又、前記逆止弁及び制
御オリフィスの構造は前記実施例に限定されるものでな
い。 【0016】 【発明の効果】以上の如く、本発明になる内燃機関用の
ベーパーライザによると、1次減圧室から外部に向かっ
て開口する1次燃料吐出路に、該通路を吸気路内の負圧
に応じて開閉するスローロック弁が配置されるとともに
スローロック弁に開閉操作力を付与するスローロックダ
イヤフラムによって区分されるスローロック受圧室と吸
気路とを連絡する負圧導入路に圧力制御弁が配置され、
前記圧力制御弁を、吸気路内に生起する負圧が一定負圧
値以上において、弁孔によって区分される上流室と下流
室とを連通し、それ以下の負圧で弁孔を閉塞する逆止弁
と、弁孔を迂回して上流室と下流室を連絡するバイパス
通路に配置され、一定開口をもって常時連通する制御オ
リフィスと、によって形成したので、機関のスナップ動
作時において、安定したガス燃料を供給でき、良好な機
関の運転性を得ることができるとともにスナップ動作直
後に機関を停止した際等において無用なガス燃料の供給
を停止できるとともに混合気濃度が濃化傾向をなすこと
が抑止できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply system for supplying a gaseous fuel such as liquefied petroleum gas (LPG) or compressed natural gas (CNG) to an internal combustion engine. The present invention relates to a vapor riser in which a gas fuel in a gas fuel source is reduced to a predetermined primary pressure in a primary pressure reducing chamber and is reduced to a substantially atmospheric pressure secondary pressure in a secondary pressure reducing chamber. 2. Description of the Related Art A conventional vaporizer V will be described with reference to FIG. Reference numeral 20 denotes a primary diaphragm that divides the housing B into a primary pressure regulating chamber 21 and a primary pressure reducing chamber 22. The primary diaphragm 20 is arranged in a reduced form in the primary pressure regulating chamber 21. Primary decompression chamber 2 by the spring force of the next spring 23
Pressed to two sides. Reference numeral 24 denotes a primary valve disposed at one end of a primary support rod 25 rotatably supported in the primary decompression chamber 22. The primary valve 24 is a fuel inflow passage opening to the primary decompression chamber 22. 26 is opened and closed. The other end of the first support rod 25 is locked to the primary diaphragm 20. Reference numeral 27 denotes a primary fuel discharge passage that opens outward from the primary pressure reducing chamber 22, and the primary fuel discharge passage is opened and closed by a slow lock valve 28. Reference numeral 29 denotes a slow lock diaphragm which is connected to the slow lock valve via a connecting rod 29A and applies an opening / closing operation force to the slow lock valve 28, and a slow lock pressure receiving chamber 30 defined by the slow lock diaphragm 29. Inside, a slow lock spring 31 for pressing the slow lock diaphragm 29 rightward in FIG. 4 is contracted. In other words, the slow lock spring 31 has the slow lock valve 28 of 1
It can be said that the next fuel discharge passage 27 is urged toward the closing side. Then, the negative pressure generated by the operation of the engine is introduced into the slow lock pressure receiving chamber 30 through the negative pressure introducing passage 32. In this example, the upstream side of the negative pressure introduction path 32 is connected to an intake path of a mixing body described later. Reference numeral 33 denotes a primary adjustment screw for adjusting and controlling the amount of gas fuel flowing through the primary fuel discharge passage 27, and a tapered needle valve portion is formed at the tip. Case B
Is further adjusted by a secondary diaphragm 34 to a secondary pressure regulating chamber 35.
And a second decompression chamber 36, and one
A secondary fuel inflow passage 37 connected to the next decompression chamber 22 and a secondary fuel discharge passage 38 facing the outside are opened. 39 is a second support rod rotatably supported in the secondary decompression chamber 36,
A secondary valve 40 for opening and closing the secondary fuel inflow passage 37 is disposed at one end of the second support rod 39, and the other end is locked by the secondary diaphragm 34. Also, the second support rod is 2
The secondary valve 41 is urged in the counterclockwise direction by the spring force of the next spring 41, whereby the secondary valve 40 is pressed to the side that closes the secondary fuel inflow passage 37. Then, liquefied petroleum gas (LPG) as gas fuel is supplied to the fuel inflow passage 26 of the vaporizer V. Liquefied petroleum gas (hereinafter LP)
G), about 5 kg in the gas fuel source T1
LPG having a pressure of / cm 2 is supplied directly to the fuel introduction channel 26. On the other hand, compressed natural gas (hereinafter referred to as CNG) can be used instead of LPG,
At this time, CNG having a pressure of about 200 kg / cm 2 in the gas fuel source T2 is reduced in pressure by about 6 kg / cm 2 by the primary regulator R.
NG is supplied to the fuel inflow passage 26. M is a mixing body which receives the supply of gas fuel from the vapor riser and supplies a mixture of air and gas fuel to the engine via an intake pipe (not shown). The mixing body M is provided with an intake passage 40 penetrating therethrough, and a mixer venturi portion 41 is formed upstream thereof. The intake passage is controlled to be opened and closed by a throttle valve 43 attached to a throttle valve shaft 42 rotatably supported by the mixing body M, while a plurality of main ports 4 are provided in the mixer venturi section 41.
The main port 44 is formed with an opening.
Is connected to a secondary pressure fuel introduction passage 46 through an annular groove 45 formed surrounding the mixer venturi portion 41. Reference numeral 47 denotes an idle port that opens to the intake passage 40A downstream of the throttle valve 43, and is connected to a primary pressure fuel introduction passage 48. The secondary pressure fuel introduction path is connected to the secondary fuel discharge path 38 of the vapor riser V, and the primary pressure fuel introduction path 48 is connected to the primary fuel discharge path 27. In the vaporizer V, the primary valve 24
The fuel inlet passage by a fuel pressure having a gas fuel itself (in the LPG about 5 kg / cm 2 of the fuel pressure, fuel pressure of about 6 kg / cm 2 In the CNG reduced in pressure by the primary regulator R) 26 is opened, and the gaseous fuel is supplied into the primary decompression chamber 22. Then, the pressure in the primary decompression chamber 22 becomes a predetermined pressure (for example, 0.3 kg / c).
m 2 ), the primary diaphragm 20
It moves toward the primary pressure regulating chamber 21 against the spring force of the next spring 23, whereby the first support rod 25 rotates counterclockwise, and the primary valve 24 closes the fuel inflow passage 26. 1
The gas fuel pressure in the next decompression chamber 22 can be adjusted to 0.3 kg / cm 2 . On the other hand, when the gas fuel pressure in the primary decompression chamber 22 is reduced to a pressure of 0.3 kg / cm 2 or less, the primary spring 23 moves the primary diaphragm 20 to the primary decompression chamber 22.
The first support rod 25 is rotated clockwise, and the primary valve 24 opens the fuel inflow passage 26. Accordingly, the gas fuel in a high pressure state is supplied from the fuel inflow passage 26 into the primary decompression chamber 22, whereby the gas fuel pressure in the primary decompression chamber 22 is again reduced to a predetermined value of 0.3 kg / cm.
2 can be returned. Thereafter, by repeatedly performing the operation of the primary valve, gas fuel having a predetermined primary pressure of 0.3 kg / cm 2 is maintained in the primary decompression chamber 22. . When the engine is started, a negative pressure is generated in the intake passage 40A downstream of the throttle valve 43 of the mixing body M, and the negative pressure is generated through the negative pressure introduction passage 32 to the slow lock pressure receiving chamber 30.
Introduced into. According to this, the slow lock diaphragm 29 moves to the left in the drawing against the spring force of the slow lock spring 31 (in other words, moves to the slow lock pressure receiving chamber 30 side), and the slow lock diaphragm 29 moves to the left. Is transmitted to the slow lock valve 28 by the connecting rod 29A, and the slow lock valve 28 opens the primary fuel discharge passage 27. According to the above, 1 having the primary pressure
The gas fuel in the secondary pressure reducing chamber 22 is
The gas fuel is supplied to the idle port 17 through the primary fuel discharge passage 27 and the primary pressure fuel introduction passage 48, whereby the engine is started and the low opening operation is performed. On the other hand, in the secondary pressure reducing chamber 36, the gas fuel is reduced to atmospheric pressure. As described above, the primary decompression chamber 2
Gas fuel pressure in 2 intended to be pressed 0.3 kg / cm 2 two tone, gas fuel having a pressure of 0.3 kg / cm 2 is applied to the 2 Tsugiben 40 via the secondary fuel inlet passage 37 And
The secondary valve 40 opens the secondary fuel inflow passage 37, and gaseous fuel is supplied into the secondary pressure reducing chamber 36. Here, the secondary decompression chamber 3
When the gas fuel pressure in the cylinder 6 rises above the atmospheric pressure, the secondary diaphragm 34 is displaced toward the secondary pressure regulating chamber 35, whereby the second support rod 39 is moved counterclockwise by the spring force of the secondary spring 41. Then, the secondary valve 40 closes the secondary fuel inflow passage 37, thereby returning the gas fuel pressure in the secondary pressure reducing chamber 36 to the atmospheric pressure. When the gaseous fuel pressure in the secondary pressure reducing chamber 36 falls below the atmospheric pressure, the secondary diaphragm 34 is displaced toward the secondary pressure reducing chamber 36 against the spring force of the secondary spring 41. The second support rod 39 rotates clockwise, and the secondary valve 44 opens the secondary fuel inflow passage 37, thereby returning the gas fuel pressure in the secondary pressure reducing chamber 36 to the atmospheric pressure. Thereafter, the secondary valve 40 repeats the above operation, whereby the gas fuel pressure in the secondary pressure reducing chamber 36 can be maintained at the atmospheric pressure as the secondary pressure. When the throttle valve 43 opens the intake passage 40 to a medium opening degree and a high opening degree, a high negative pressure corresponding to the throttle valve opening degree is generated in the mixer venturi section 41, and this negative pressure is A gas in an atmospheric state maintained in the secondary pressure reducing chamber 36 through the main port 44, the annular groove 45, the secondary pressure fuel introducing path 46, and the secondary fuel discharging path 38 to act on the secondary pressure reducing chamber 36. Fuel is sucked into the mixer venturi section 41 through the main port 44, whereby the inside of the throttle valve 43 and the high opening operation are performed. According to the conventional vapor riser, the operation of the engine during a snap operation in which the throttle valve is continuously opened and closed from a low opening to a high opening is performed. Sex may be impaired. This is for the following reason. When the throttle valve 43 is at a low opening degree, a large negative pressure is generated in the intake passage 40 </ b> A downstream of the throttle valve 43, and the large negative pressure is generated through the negative pressure introduction passage 32 and the slow lock pressure receiving chamber 30. Introduced within. According to the above description, the slow lock diaphragm 29 is displaced toward the slow lock pressure receiving chamber 30 against the spring force of the slow lock spring 31. According to this, the slow lock valve 28 opens the primary fuel discharge passage 27 and Gas fuel having a primary pressure in the secondary pressure reducing chamber 22 is supplied to the intake path 40 of the mixing body M via the idle port 47, whereby the throttle valve 43 is operated at a low opening degree. Then, when the throttle valve 43 is rapidly opened from the low opening degree state of the throttle valve 43, the negative pressure in the intake passage 40 is temporarily reduced (approaching the atmospheric pressure).
When the reduced negative pressure is introduced into the slow lock pressure receiving chamber 30 through the negative pressure introduction passage 32, the slow lock diaphragm 29
Due to the spring force of the secondary decompression chamber 36 (right side in the figure)
Move to According to the above description, the slow lock valve 28 moves rightward in the figure in synchronization with the slow lock diaphragm 29, closes the primary fuel discharge passage 27, and has a primary pressure flowing from the idle port 47 into the intake passage 40. The gas fuel supply will be temporarily stopped. Then, when a snap operation is performed in which the opening and closing operations of the throttle valve are continuously performed, the concentration of the gas-fuel mixture flowing in the intake passage 40 is diluted, and the engine speed falls below a predetermined speed. And the engine may stop. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problem, and in a snap operation in which a throttle valve is continuously opened and closed from a low opening to a high opening, supply of gas fuel is cut off, The mixture concentration of is not diluted,
It is an object of the present invention to provide a vapor riser for an internal combustion engine that can obtain stable operation of the engine. In order to achieve the above object, a vaporizer for an internal combustion engine according to the present invention uses a gas fuel in a gas fuel source at a predetermined primary pressure in a primary pressure reducing chamber. In a vapor riser, the pressure is reduced to a secondary pressure of approximately atmospheric pressure in a secondary pressure reducing chamber; a primary fuel discharge passage opening from the primary pressure reducing chamber to the outside; A slow lock valve that opens and closes in response to a negative pressure is arranged, and a pressure control is applied to a negative pressure introduction passage that connects a slow lock pressure receiving chamber and an intake passage divided by a slow lock diaphragm that applies an opening and closing operation force to the slow lock valve. A valve is disposed, and when the negative pressure generated in the intake passage is equal to or higher than a predetermined negative pressure value, the pressure control valve communicates with the upstream chamber and the downstream chamber divided by the valve hole, and the valve is controlled at a negative pressure less than that. Check valve to close the hole And a control orifice that is arranged in a bypass passage that bypasses the valve hole and connects the upstream chamber and the downstream chamber, and that is always in communication with a fixed opening. When the throttle valve has a low opening, a large negative pressure generated in the intake passage acts on the check valve of the pressure control valve, and the check valve keeps the valve hole open. Therefore, a large negative pressure in the intake passage is introduced into the slow lock pressure receiving chamber through the valve hole and the negative pressure introducing passage, whereby the slow lock valve keeps the primary fuel discharge passage open and holds the primary fuel discharge chamber. Is supplied into the intake passage via the primary fuel discharge passage and the idle port. On the other hand, when the throttle valve is rapidly opened from the low opening state to the high opening state, the negative pressure in the intake passage is greatly reduced.When the reduced negative pressure acts on the check valve,
The check valve immediately closes the valve hole. According to the above, a large negative pressure is held in the slow lock pressure receiving chamber, and the slow lock valve still holds the primary fuel discharge passage open. Therefore, when the snap operation in which the throttle valve is continuously opened and closed is performed, the operation of the engine can be stably performed without temporarily stopping the supply of the gas fuel from the primary fuel discharge path. Can do it. On the other hand, a part of the large negative pressure in the slow lock pressure receiving chamber is slightly leaked from the downstream chamber to the upstream chamber via the bypass passage and the control orifice. Since it is weakened, it is possible to achieve an appropriate mixture concentration. An embodiment of a vaporizer for an internal combustion engine according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of a vaporizer for an internal combustion engine according to the present invention. FIG. 2 is a longitudinal sectional view of the pressure control valve used in FIG. FIG. 3 is a longitudinal sectional view taken along line AA of FIG.
The vaporizer according to the present invention is obtained by adding a pressure control valve P to a conventional vaporizer. Note that the same components as those in the related art are denoted by the same reference numerals, and description thereof is omitted. The pressure control valve P includes the following. (Especially, FIGS. 2 and 3
1) is a partition wall provided with one side end face 1A and the other side end face 1B, and from one side end face 1A to the other side end face 1
The valve hole 2 and the bypass passage 3 penetrate and are drilled toward B. The valve hole 2 and the bypass passage 3 are formed in parallel in the partition wall 1, and the valve hole 2 and the bypass passage 3 are not directly connected. 4 is one end face 1 of the partition wall 1
A. It is a bottomed cup-shaped upstream cover having a recess 4A, and an upstream passage 4B opens in the recess 4A. Reference numeral 5 denotes a thin plate-shaped control plate disposed on one side end surface 1A of the partition wall 1. The control plate 5 includes a check valve 6 that can open and close the valve hole 1 of the partition wall 1, and a bypass. A control orifice 7 is formed facing the passage 3. Specifically, the control plate 5 is formed of a thin stainless steel material having a thickness of, for example, about 0.5 mm, and the check valve 6 is
The control orifice 7 is formed by a small hole. The valve opening characteristics of the check valve 6 and the diameter of the control orifice 7 having a minute hole are determined by a test suitable for each engine. 8 is arranged on the other end surface 1B of the partition wall 1. It is a bottomed cup-shaped downstream cover having a recess 8A, and a downstream passage 8B opens in the recess 8A. A control plate 5 and an upstream cover 4 are arranged on one end 1A of the partition wall 1, and a downstream cover 8 is arranged on the other end 1B. In this state, the upstream cover 4, the control plate 5, the partition The wall 1 and the downstream cover 8 are integrally assembled by screws 9. According to the above description, the upstream chamber PA is formed by the one end face 1A of the partition wall 1 and the recess 4A of the upstream cover 4, and the other end face 1B and the recess 8 of the downstream cover 8 are formed.
A forms a downstream chamber PB, the upstream passage 4B opens in the upstream chamber PA, and the downstream passage 8B opens in the downstream chamber PB. The control plate 5 has its outer periphery fixedly supported by the one end face 1A of the partition wall 1 and the upstream cover 4. At this time, the check valve 6 is arranged facing the valve hole 2, and the control plate 5 is controlled. The orifice 7 is arranged facing the bypass passage 3.
Note that the control plate 5 is disposed in airtight contact with one side 1A of the partition wall 1, and a seal ring for maintaining the airtightness is provided.
Descriptions such as adhesion are omitted. Therefore, the valve hole 2 and the upstream chamber P
A is controlled to open and close only by the check valve 6, and the bypass passage 3 is connected to the upstream chamber PA only by the control orifice 7. Neither the control plate 5 nor the check valve 6 and the valve hole 2 communicate with each other, nor does the control orifice 7 and the bypass passage 3 communicate with each other. Reference numeral 4C denotes a pressing portion for pressing the base of the check valve 6 against one end surface 1A of the partition wall 1. The upstream passage 4B of the pressure control valve P
Is connected to the upstream negative pressure introduction path 32A toward the intake path 40A, and the downstream passage 8B is connected to the downstream negative pressure introduction path 32B toward the slow lock pressure receiving chamber 30. This is shown in FIG. The vaporizer according to the present invention has the following functions. When the throttle valve 43 is operated at a constant opening at a low opening, a large negative pressure that is equal to or greater than a constant negative pressure value is generated in the intake passage 40. 32A is introduced into the upstream chamber PA of the pressure control valve P from the upstream passage 4B. When the large negative pressure acts on the check valve 6 in the upstream chamber PA, the check valve 6 opens the valve hole 2, and the large negative pressure in the upstream chamber PA is reduced by the valve hole 2. , Downstream chamber PB, downstream passage 8B, downstream negative pressure introduction passage 3
Slow lock pressure receiving chamber 3 of vaporizer V via 2B
Introduced in 0. According to this large negative pressure acting on the slow lock pressure receiving chamber 30, the slow lock diaphragm 29 moves to the left in the drawing against the spring force of the slow lock spring 11, thereby causing the slow lock valve 28 to move. The primary fuel discharge passage 27 is kept open. According to the above, the gas fuel having the primary pressure in the primary pressure reducing chamber 22 is supplied into the intake path 40 through the primary fuel discharge path 27, the primary pressure fuel introduction path 48, and the idle port 47, and thus the throttle valve 43 is performed. Since the high opening operation of the throttle valve 43 is performed in the same manner as in the prior art as described above, the description is omitted. Next, a description will be given of a snap operation in which the throttle valve 43 is continuously opened and closed from the low opening degree of the throttle valve 43.
When the throttle valve 43 opens the intake passage 40 more rapidly than the low opening degree, the airflow flowing in the intake passage 40 is slowed down, the negative pressure is greatly reduced (approaching the atmospheric pressure), and the negative pressure is set to a fixed negative pressure value or less. The negative pressure equal to or lower than the predetermined negative pressure value reaches the upstream chamber PA of the pressure control valve P via the upstream negative pressure introducing passage 32A. According to this, the check valve 6 in the upstream chamber PA immediately closes the valve hole 2 due to the decrease in the negative pressure, and the negative pressure equal to or lower than the constant negative pressure value does not reach the slow lock pressure receiving chamber 30. The negative pressure in the slow lock pressure receiving chamber 30 is maintained at a high negative pressure state when the throttle valve 43 is operated at a low opening degree, and the negative pressure is prevented from lowering. Therefore, the slow lock valve 28 can continuously keep the primary fuel discharge passage 27 open, so that the gas fuel having the primary pressure in the primary pressure reducing chamber 22 is continuously supplied to the intake passage 40 through the idle port 47. Can be supplied. On the other hand, according to the closing operation of the throttle valve 43 to the low opening degree by the snap operation from the open state of the throttle valve 43 as described above, a large negative pressure equal to or more than a certain negative pressure value is present in the intake passage 40A downstream of the throttle valve 43. When such a large negative pressure acts on the check valve 6 of the pressure control valve P, the check valve 6 in the closed state opens the valve hole 2 again and becomes large. The negative pressure again acts on the slow lock pressure receiving chamber 30, and the slow lock valve 28 keeps the primary fuel discharge passage 27 open as described above. According to the above description, when the throttle valve 43 is in the low opening state, a large negative pressure greater than or equal to the predetermined negative pressure in the intake passage 40A downstream of the throttle valve 43 acts in the slow lock pressure receiving chamber 30. When the slow lock valve 28 keeps the primary fuel discharge passage 27 open and the throttle valve 43 is rapidly opened from the low opening state to the middle or high opening state, the intake air downstream of the throttle valve 43 is taken. Even if the negative pressure in the passage 40A drops below a certain negative pressure value, the check valve 6 immediately closes the valve hole 2 to maintain the high negative pressure introduced into the slow lock pressure receiving chamber 30 in the above state. Therefore, the slow lock valve 28 can still hold the primary fuel discharge path 27 open, and when the throttle valve 43 is returned from the high opening state to the low opening state in the throttle valve, In the intake passage 40A, a negative pressure equal to or higher than the predetermined negative pressure value is generated again. Stop valve 6 opens the introduced from the valve hole 2 to the slow locking pressure chamber, the slow lock valve 28 can be opened holds the primary fuel discharge passage 27. As described above, according to the vapor riser according to the present invention, when the throttle valve 43 is opened from a low opening to a medium opening and a high opening, and the throttle valve 43 is returned to a low opening again during the snap operation, the intake passage is closed. Even if the negative pressure in the pressure 40 falls below the predetermined negative pressure value, a negative pressure higher than the predetermined negative pressure value can always be ensured in the slow lock pressure receiving chamber 30. Gas fuel can be supplied stably continuously, and the operability of the engine is not hindered. The pressure control valve P is provided with a bypass passage 3 which bypasses the valve hole 2 and connects the upstream chamber PA and the downstream chamber PB. The bypass passage 3 is provided with a control orifice 7. According to this, the negative pressure in the slow lock pressure receiving chamber 30 is not maintained at a large negative pressure state more than necessary. For example, when the engine is stopped after performing the snap operation, a large negative pressure is held in the slow lock pressure receiving chamber 30 as described above (this is an operation often performed in a motorcycle).
As a result, the slow lock valve keeps the primary fuel discharge passage 27 open, and even when the engine is stopped, the fuel having the primary pressure still flows from the primary fuel discharge passage 27 to the idle port 4.
7. On the other hand, in the vapor riser of the present invention, the control orifice 7 is disposed in the bypass passage 3, and the large negative pressure held in the slow lock pressure receiving chamber 30 gradually increases through the control orifice 7 to the atmosphere side. The negative pressure in the slow lock pressure receiving chamber 30 can be reduced after a certain period of time has elapsed, and the primary fuel discharge passage 27 is closed by the slow lock valve 28. There will be no more supply. The diameter of the control orifice 7 is determined optimally based on the pressure holding characteristics in the slow lock pressure receiving chamber 30 during the snap operation and the negative pressure releasing characteristics in the slow lock pressure receiving chamber 30 when the engine is stopped. Further, the structures of the check valve and the control orifice are not limited to the above-described embodiment. As described above, according to the vapor riser for an internal combustion engine according to the present invention, the primary fuel discharge passage opening outward from the primary pressure reducing chamber is provided with the passage in the intake passage. A slow lock valve that opens and closes in response to a negative pressure is arranged, and a pressure control is applied to a negative pressure introduction passage that connects a slow lock pressure receiving chamber and an intake passage divided by a slow lock diaphragm that applies an opening and closing operation force to the slow lock valve. The valve is located,
When the negative pressure generated in the intake passage is equal to or higher than a predetermined negative pressure value, the pressure control valve communicates with the upstream chamber and the downstream chamber divided by the valve hole, and closes the valve hole with a negative pressure less than the reverse pressure. The control valve is formed by a stop valve and a control orifice which is arranged in a bypass passage which bypasses the valve hole and connects the upstream chamber and the downstream chamber, and which is always communicated with a constant opening. , It is possible to obtain good operability of the engine, to stop the supply of unnecessary gas fuel when the engine is stopped immediately after the snap operation, and to suppress the tendency of the mixture concentration to increase. .

【図面の簡単な説明】 【図1】本発明になる内燃機関用のベーパーライザの一
実施例を示す縦断面図。 【図2】図1に用いられる圧力制御弁の縦断面図。 【図3】図2のA−A線における縦断面図。 【図4】従来の内燃機関用のベーパーライザを示す縦断
面図。 【符号の説明】 2 弁孔 3 バイパス通路 6 逆止弁 7 制御オリフィス 22 1次減圧室 26 2次減圧室 27 1次燃料吐出路 28 スローロック弁 27 スローロックダイヤフラム 30 スローロック受圧室 32 負圧導入路 P 圧力制御弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing one embodiment of a vapor riser for an internal combustion engine according to the present invention. FIG. 2 is a longitudinal sectional view of a pressure control valve used in FIG. FIG. 3 is a longitudinal sectional view taken along line AA of FIG. 2; FIG. 4 is a longitudinal sectional view showing a conventional vaporizer for an internal combustion engine. [Description of Signs] 2 Valve hole 3 Bypass passage 6 Check valve 7 Control orifice 22 Primary pressure reducing chamber 26 Secondary pressure reducing chamber 27 Primary fuel discharge path 28 Slow lock valve 27 Slow lock diaphragm 30 Slow lock pressure receiving chamber 32 Negative pressure Inlet path P Pressure control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 美博 埼玉県和光市中央1−4−1 株式会社本 田技術研究所内 (72)発明者 田中 弘志 埼玉県和光市中央1−4−1 株式会社本 田技術研究所内 (72)発明者 田邉 和也 埼玉県和光市中央1−4−1 株式会社本 田技術研究所内 (72)発明者 野中 達司 栃木県塩谷郡高根沢町宝積寺2000番地 株 式会社ケーヒン栃木開発センター内 (72)発明者 阪田 栄作 栃木県塩谷郡高根沢町宝積寺2000番地 株 式会社ケーヒン栃木開発センター内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshihiro Takada             1-4-1 Chuo, Wako-shi, Saitama             Field Technology Research Institute (72) Inventor Hiroshi Tanaka             1-4-1 Chuo, Wako-shi, Saitama             Field Technology Research Institute (72) Inventor Kazuya Tanabe             1-4-1 Chuo, Wako-shi, Saitama             Field Technology Research Institute (72) Inventor Tatsushi Nonaka             2000 Hozoji Temple, Takanezawa-cho, Shioya-gun, Tochigi Prefecture             Keihin Tochigi Development Center (72) Inventor Eisaku Sakata             2000 Hozoji Temple, Takanezawa-cho, Shioya-gun, Tochigi Prefecture             Keihin Tochigi Development Center

Claims (1)

【特許請求の範囲】 【請求項1】 ガス燃料源内のガス燃料を、1次減圧室
22にて所定の1次圧に減圧するとともに2次減圧室1
6にて略大気圧状態の2次圧に調圧するベーパーライザ
において;1次減圧室22から外部に向かって開口する
1次燃料吐出路27に、該通路を吸気路内の負圧に応じ
て開閉するスローロック弁28が配置されるとともにス
ローロック弁28に開閉操作力を付与するスローロック
ダイヤフラム29によって区分されるスローロック受圧
室30と吸気路40とを連絡する負圧導入路32に圧力
制御弁Pが配置され、前記圧力制御弁を、吸気路内に生
起する負圧が一定負圧値以上において、弁孔2によって
区分される上流室PAと下流室PBとを連通し、それ以
下の負圧で弁孔2を閉塞する逆止弁6と、弁孔2を迂回
して上流室PAと下流室PBを連絡するバイパス通路3
に配置され、一定開口をもって常時連通する制御オリフ
ィス7と、によって形成したことを特徴とする内燃機関
用のベーパーライザ。
Claims: 1. A gas pressure in a gas fuel source is reduced to a predetermined primary pressure in a primary pressure reducing chamber, and a gas pressure in a secondary pressure reducing chamber is reduced.
In a vapor riser which regulates the secondary pressure to a substantially atmospheric pressure state at 6; a primary fuel discharge passage 27 which opens from the primary pressure reducing chamber 22 to the outside is connected to the primary fuel discharge passage 27 in accordance with a negative pressure in the intake passage. A slow lock valve 28 that opens and closes is disposed, and a pressure is applied to a negative pressure introduction passage 32 that connects a slow lock pressure receiving chamber 30 and an intake passage 40 separated by a slow lock diaphragm 29 that applies an opening and closing operation force to the slow lock valve 28. A control valve P is disposed to communicate the pressure control valve with the upstream chamber PA and the downstream chamber PB separated by the valve hole 2 when the negative pressure generated in the intake passage is equal to or higher than a predetermined negative pressure value. A check valve 6 that closes the valve hole 2 by the negative pressure, and a bypass passage 3 that bypasses the valve hole 2 and connects the upstream chamber PA and the downstream chamber PB.
And a control orifice 7 which is arranged at a constant opening and communicates constantly with a fixed opening.
JP2001283497A 2001-09-18 2001-09-18 Vaporizer for internal combustion engines Expired - Fee Related JP4096536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283497A JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283497A JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2003090268A true JP2003090268A (en) 2003-03-28
JP4096536B2 JP4096536B2 (en) 2008-06-04

Family

ID=19106976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283497A Expired - Fee Related JP4096536B2 (en) 2001-09-18 2001-09-18 Vaporizer for internal combustion engines

Country Status (1)

Country Link
JP (1) JP4096536B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299958A (en) * 2005-04-21 2006-11-02 TI Walbro Japan株式会社 Regulator for gas engine
JP2008255830A (en) * 2007-04-02 2008-10-23 Walbro Japan Inc Mixture device for gaseous fuel and air
KR100958878B1 (en) 2008-02-29 2010-05-20 피엔케이산업(주) Controller for idling of vaporizer for a LPG vehicle
CN105443979A (en) * 2014-08-29 2016-03-30 西安德森新能源装备有限公司 A water-bath type vaporizer and a vehicle gas-supplying system of liquefied natural gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299958A (en) * 2005-04-21 2006-11-02 TI Walbro Japan株式会社 Regulator for gas engine
JP2008255830A (en) * 2007-04-02 2008-10-23 Walbro Japan Inc Mixture device for gaseous fuel and air
KR100958878B1 (en) 2008-02-29 2010-05-20 피엔케이산업(주) Controller for idling of vaporizer for a LPG vehicle
CN105443979A (en) * 2014-08-29 2016-03-30 西安德森新能源装备有限公司 A water-bath type vaporizer and a vehicle gas-supplying system of liquefied natural gas

Also Published As

Publication number Publication date
JP4096536B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2003090268A (en) Vaporizer for internal combustion engine
JP4767458B2 (en) Fuel supply device for internal combustion engine
JP2003214260A (en) Gas fuel feeding device for engine
JP2003090238A (en) Fuel supplier for internal combustion engine
KR20040071329A (en) Fuel feed device of gas engine
JP2995203B2 (en) Engine gas fuel supply system
JP2882222B2 (en) Vaporizer pressure regulator
JPH10331718A (en) High speed fuel passage structure of diaphragm type carburetor
JPH0666204A (en) Carburetor
JPH0571421A (en) Fuel supplying device for liquefied petroleum gas engine
JPS6017261A (en) Vaporizer
JPS6149159A (en) Mixer for liquefied gas engine
JPS6339397Y2 (en)
JPS60159359A (en) Gaseous fuel feed device
JP2003247456A (en) Slidable throttle valve type carburetor
JPH0223812Y2 (en)
JP3269338B2 (en) Fuel supply device
JPH0223816Y2 (en)
JP2004028012A (en) Diaphragm carburetor
JPH1082348A (en) Bypass port for sliding throttle valve type carburetor
JPS6243066B2 (en)
JPH02176124A (en) Air-fuel ratio control mechanism for fuel injection device
JP2004124709A (en) Fuel supply control device for liquefied-petroleum-gas engine
JP2001317411A (en) Air bleed structure of film-type carburetor
JPS6043161A (en) Gas supplying amount regulating device for general use engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees