JP4096102B2 - Method for producing particle-integrated structure - Google Patents
Method for producing particle-integrated structure Download PDFInfo
- Publication number
- JP4096102B2 JP4096102B2 JP2004107282A JP2004107282A JP4096102B2 JP 4096102 B2 JP4096102 B2 JP 4096102B2 JP 2004107282 A JP2004107282 A JP 2004107282A JP 2004107282 A JP2004107282 A JP 2004107282A JP 4096102 B2 JP4096102 B2 JP 4096102B2
- Authority
- JP
- Japan
- Prior art keywords
- particle
- fine particles
- fine
- emulsion
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000010419 fine particle Substances 0.000 claims description 69
- 239000002245 particle Substances 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 25
- 239000000839 emulsion Substances 0.000 claims description 19
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 16
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 16
- 239000002356 single layer Substances 0.000 claims description 10
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 6
- 239000010409 thin film Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000001000 micrograph Methods 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 239000004038 photonic crystal Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Description
この出願の発明は、粒子集積構造体の製造方法に関するものである。さらに詳しくは、この出願の発明は、微粒子表面の電荷を制御して二次元集積化させる粒子集積構造体の製造方法に関するものである。 The invention of this application relates to a method of manufacturing a particle integrated structure. More specifically, the invention of this application relates to a method for manufacturing a particle assembly structure in which the charge on the surface of fine particles is controlled to perform two-dimensional integration.
近年、次世代の材料やデバイスの創製のために微小な粒子を規則的に集積させる粒子集積化技術が注目されており、粒子の規則的な集積構造体は、センサー、高密度記憶デバイス、そしてフォトニック結晶などへの応用が期待されている。粒子の集積化の方法としては、たとえば、粒子をピンセットなどで挟み所定の位置に運んで規則的に並べる方法、流体を用いて粒子を連続的に搬送し所定の位置に供給する方法、粒子群の全体のエネルギーを最小にするように自己組織化して規則的な構造体を形成する方法などが提案されている。一度に大量の粒子を配列させるには、自己組織化を利用する方法が最良である。従来、自己組織化を利用した方法として、たとえば、メニカス先端部の移動速度、微粒子の体積分率、液体蒸発速度をパラメーターとして微粒子膜の微粒子密度および微粒子層数を制御して微粒子薄膜を製造する方法(特許文献1)や、イオン強度の制御によって電解質液膜中の荷電微粒子の2次薄膜を形成し、この2次薄膜中にナノスケール微粒子を閉じ込めて集積する2次薄膜集積法(特許文献2)が報告されている。これら方法で作製された微粒子薄膜は、新しい機能構造の形成を可能とする革新的な技術手段として期待される。 In recent years, particle integration technology that regularly accumulates microscopic particles has been attracting attention for the creation of next-generation materials and devices. Regularly integrated structures of particles include sensors, high-density storage devices, and Application to photonic crystals is expected. Examples of particle accumulation methods include, for example, a method in which particles are sandwiched by tweezers and transported to a predetermined position and regularly arranged, a method of continuously transporting particles using a fluid and supplying the particles to a predetermined position, and a group of particles A method of forming a regular structure by self-organizing so as to minimize the overall energy is proposed. The method using self-organization is the best way to arrange a large number of particles at once. Conventionally, as a method using self-organization, for example, a fine particle thin film is manufactured by controlling the fine particle density and the number of fine particle layers with parameters such as the moving speed of the meniscus tip, the volume fraction of fine particles, and the liquid evaporation rate as parameters. A secondary thin film integration method in which a secondary thin film of charged fine particles in an electrolyte liquid film is formed by controlling the ionic strength, and nanoscale fine particles are confined and accumulated in the secondary thin film (Patent Document 1) 2) has been reported. Fine particle thin films produced by these methods are expected as innovative technical means that enable the formation of new functional structures.
しかしながら、上記の製造方法による微粒子薄膜は、今後の大きな発展が期待されているものの、より最良のものへのアプローチは依然として未踏のものであった。
そこで、この出願の発明は、以上の通りの背景から、液架橋力に伴う自己組織化を利用して、大面積領域を持つ微粒子の二次元集積構造体を簡便に作製できる、新しい粒子集積構造体の製造方法を提供することを課題としている。 Therefore, the invention of this application is based on the background as described above, a new particle integrated structure that can easily produce a two-dimensional integrated structure of fine particles having a large area by utilizing self-organization accompanying liquid crosslinking force. It is an object to provide a method for manufacturing a body.
この出願の発明は、上記の課題を解決するものとして、第1には、微粒子の乳液を基板表面に付着させ、前記基板を回転させて微粒子の乳液に遠心力をかけて、微粒子を二次元集積化させて構造体を製造する方法において、微粒子表面の電荷を制御して二次元集積化させることを特徴とする粒子集積構造体の製造方法を提供する。 In order to solve the above problems, the invention of this application firstly attaches the fine particle emulsion to the surface of the substrate, rotates the substrate and applies centrifugal force to the fine particle emulsion, and the fine particles are two-dimensionally formed. In a method of manufacturing a structure by integrating, a method for manufacturing a particle integrated structure is provided, wherein two-dimensional integration is performed by controlling charges on the surface of fine particles.
そしてこの出願の発明は、第2には、上記粒子集積構造体が、多層構造体であるか、または、単層構造体であることを特徴とする粒子集積構造体の製造方法を、第3には、多層構造体がフォトニックバンドギャップを持つことを特徴とする粒子集積構造体の製造方法を提供する。 According to the invention of the present application, secondly, there is provided a method for producing a particle assembly structure, wherein the particle assembly structure is a multilayer structure or a single layer structure. Provides a method for producing a particle-integrated structure, wherein the multilayer structure has a photonic band gap.
また、この出願の発明は、第4には、微粒子の乳液が、ポリメタクリル酸メチル(PMMA)微粒子の乳液であることを特徴とする粒子集積構造体の製造方法を、第5には、微粒子表面の電荷を過硫酸カリウムで制御することを特徴とする粒子集積構造体の製造方法を提供する。 The fourth aspect of the invention of this application is a method for producing a particle assembly structure, characterized in that the emulsion of fine particles is an emulsion of polymethyl methacrylate (PMMA) fine particles. Provided is a method for producing a particle integrated structure, wherein the surface charge is controlled by potassium persulfate.
この出願の発明によれば、微粒子が二次元集積化されて、多層または単層の大面積領域を持つ構造体を簡便に得ることができる。また、、微粒子の多層構造体は、フォトニックバンドギャップを持っているため、フォトニック結晶の材料としての適用が期待できる。 According to the invention of this application, fine particles are two-dimensionally integrated, and a structure having a large-area region of a multilayer or a single layer can be easily obtained. In addition, since the multilayer structure of fine particles has a photonic band gap, application as a material for photonic crystals can be expected.
この出願の発明は、上記のとおりの特徴をもつものであるが、以下、さらに詳しく発明の実施の形態について説明する。 The invention of this application has the characteristics as described above, and the embodiments of the invention will be described in more detail below.
この出願の発明の粒子集積構造体の製造方法を図1に沿って説明する。まず、図1(a)のように微粒子の乳液を基板表面に付着させ、(b)前記基板を回転数を制御できる回転台上に固定する。次いで、(c)所定の回転数まで基板を回転させて微粒子の乳液に遠心力をかけて、(d)基板上に集積構造体を製造する。このとき、微粒子表面の電荷を制御することにより、微粒子を2次元集積させて、集積構造体を製造する。 The manufacturing method of the particle | grain integrated structure of invention of this application is demonstrated along FIG. First, as shown in FIG. 1A, fine particle emulsion is adhered to the substrate surface, and (b) the substrate is fixed on a turntable capable of controlling the number of rotations. Next, (c) the substrate is rotated to a predetermined number of revolutions, and centrifugal force is applied to the emulsion of fine particles, and (d) an integrated structure is manufactured on the substrate. At this time, by controlling the charge on the surface of the fine particles, the fine particles are two-dimensionally accumulated to produce an integrated structure.
この出願の発明の微粒子の集積化は、微粒子間に働く液架橋力に伴う自己組織化により、微粒子が細密充填構造をとり2次元集積される。液架橋力とは、粒子間に液体が存在し液面が粒子の高さ以下のときに、液の界面エネルギーを最小にしようとして、粒子同士を引き寄せる方向に働く力である。液量が少ないほど引き寄せる力が強くなるため、最終的に液がなくなると、粒子は細密に充填されることになる。 In the accumulation of fine particles according to the invention of this application, the fine particles have a finely packed structure and are two-dimensionally accumulated by self-organization accompanying the liquid crosslinking force acting between the fine particles. The liquid cross-linking force is a force that acts in the direction of attracting particles in an attempt to minimize the interfacial energy of the liquid when a liquid exists between the particles and the liquid surface is below the height of the particles. The smaller the amount of liquid, the stronger the pulling force. Therefore, when the liquid finally runs out, the particles are packed finely.
この出願の発明の粒子集積構造体の製造方法によれば、まず、微粒子の乳液を基板表面に付着させる。微粒子としては、特に限定はされないが、たとえば、高分子、金属化合物、金属、ガラス、セラミックなどの各種の微粒子や、表面に凹凸のある微粒子が例示される。具体的には、ポリメタクリル酸メチル(PMMA)、ポリスチレン、ポリエチルメタクリレート、ポリアクリロニトリル、ポリメチルペンテンなどの高分子微粒子や、シリカ微粒子が好ましく、さらにより好ましくはポリメタクリル酸メチル(PMMA)である。高分子は、ホモポリマー、コポリマーであってもよい。微粒子の粒径は、100nmから数十μmが好ましい。また、フォトニック結晶に適用する場合には、200nmから600nm程度の微粒子の粒径が考慮される。 According to the method for manufacturing a particle assembly structure of the invention of this application, first, a fine particle emulsion is adhered to the substrate surface. Although it does not specifically limit as microparticles | fine-particles, For example, various microparticles | fine-particles, such as a polymer, a metal compound, a metal, glass, a ceramic, and the microparticles | fine-particles with an uneven surface are illustrated. Specifically, polymer fine particles such as polymethyl methacrylate (PMMA), polystyrene, polyethyl methacrylate, polyacrylonitrile, polymethylpentene, and silica fine particles are preferable, and polymethyl methacrylate (PMMA) is more preferable. . The polymer may be a homopolymer or a copolymer. The particle diameter of the fine particles is preferably from 100 nm to several tens of μm. When applied to a photonic crystal, the particle size of fine particles of about 200 nm to 600 nm is considered.
基板としては、ガラス、シリコンウェハ、金属、プラスチックなどの各種高分子などが挙げられ、親水性の表面処理を施したものが好適である。これら基板は、微粒子との親和力に応じて選択される。基板の形状としては特に限定はされないが、基板を回転させることによって、基板上の微粒子の乳液が均一に拡がり、且つ飛散しないように、平坦で外壁があるような形状が好ましい。たとえばシャーレが好適に用いられる。図1では、基板としてポリスチレン製のシャーレ(φ35mm)を用いている。 Examples of the substrate include various polymers such as glass, silicon wafer, metal, and plastic, and those having a hydrophilic surface treatment are preferable. These substrates are selected according to the affinity with the fine particles. The shape of the substrate is not particularly limited, but a shape that is flat and has an outer wall is preferred so that the emulsion of fine particles on the substrate is uniformly spread and is not scattered by rotating the substrate. For example, a petri dish is preferably used. In FIG. 1, a petri dish (φ35 mm) made of polystyrene is used as the substrate.
次に、基板を回転数を制御できる回転台上に固定し、基板を回転させて、基板上に付着させた微粒子の乳液に遠心力をかける。回転速度を等加速度で上げていくことで、基板上の微粒子の乳液に遠心力がかかり、シャーレ中心から外壁方向に向かって押し上がる。このとき、シャーレ外壁にせり上がる液の質量と遠心力が釣り合いを保ちつつ、微粒子の粒径と同程度の厚さの液膜がシャーレ外壁方向にゆっくりと環状に生成拡大していく。この微粒子の集積化の概念図を図2に示す。この図2の微粒子は、上述した微粒子の自己組織化により、細密充填構造をとり2次元集積されることになる。そして、所定時間回転させた後、シャーレ上に環状に粒子集積構造体を作製することができる。ここで、基板の回転数や回転時間は、特に限定されることはなく、基板、微粒子の種類、形状に応じて適宜選択される。 Next, the substrate is fixed on a turntable capable of controlling the number of rotations, the substrate is rotated, and centrifugal force is applied to the fine particle emulsion adhered onto the substrate. By increasing the rotation speed at a constant acceleration, a centrifugal force is applied to the emulsion of fine particles on the substrate, which pushes up from the petri dish center toward the outer wall. At this time, while maintaining the balance between the mass of the liquid rising on the outer wall of the petri dish and the centrifugal force, a liquid film having a thickness approximately the same as the particle size of the fine particles is slowly generated and expanded in an annular shape in the direction of the outer wall of the petri dish. A conceptual diagram of the integration of the fine particles is shown in FIG. The fine particles in FIG. 2 have a finely packed structure and are two-dimensionally integrated by the self-organization of the fine particles described above. And after rotating for a predetermined time, a particle | grain integrated structure can be produced circularly on a petri dish. Here, the rotation speed and rotation time of the substrate are not particularly limited, and are appropriately selected according to the substrate, the type and shape of the fine particles.
粒子集積構造体は、微粒子表面の電荷を制御して、多層構造体、または、単層の構造体とすることができる。微粒子表面の電荷は、たとえば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどを用いて、硫酸基の量を調節したり、または、イオン性ビニルモノマーを適量共重合させてもよい。特に、過硫酸カリウムを用いることが好ましい。ここで、微粒子の表面S濃度を低くし微粒子の表面電荷を小さくすると、微粒子間引力が強くなる。このため、微粒子の集積化の際に、粒子の乗り上げが起きて多層構造体が形成される。この多層構造体は、フォトニックバンドギャップを持つものである。また、微粒子の表面S濃度を高くして微粒子の表面電荷を大きくすることで、単層の構造体が形成される。たとえば、ポリメタクリル酸メチル(PMMA)微粒子を用いた場合では、多層構造体を形成するための微粒子の表面S濃度の好適は範囲は、0.1mol%から1mol%未満、単層構造体を形成するためには、表面S濃度を1mol%から10mol%以下とすることが考慮される。 The particle assembly structure can be a multilayer structure or a single layer structure by controlling the charge on the surface of the fine particles. For the charge on the surface of the fine particles, for example, potassium persulfate, sodium persulfate, ammonium persulfate or the like may be used to adjust the amount of sulfate groups, or an appropriate amount of ionic vinyl monomer may be copolymerized. In particular, it is preferable to use potassium persulfate. Here, if the surface S concentration of the fine particles is lowered and the surface charge of the fine particles is reduced, the attractive force between the fine particles becomes stronger. For this reason, when the fine particles are integrated, the particles rise and form a multilayer structure. This multilayer structure has a photonic band gap. Further, by increasing the surface S concentration of the fine particles and increasing the surface charge of the fine particles, a single layer structure is formed. For example, when polymethyl methacrylate (PMMA) fine particles are used, the preferred range of the surface S concentration of the fine particles for forming the multilayer structure is 0.1 mol% to less than 1 mol%, and a single layer structure is formed. In order to achieve this, it is considered that the surface S concentration is 1 mol% to 10 mol%.
以上のように、この出願の発明の粒子集積構造体の製造方法によれば、多層または単層の大面積領域を持つ構造体を簡便に得ることができる。この方法によれば、装置のスケールアップが容易にできるため、さらに大面積領域とすることも可能である。また、多層構造体は、フォトニックバンドギャップを持っているため、フォトニック結晶の材料としての適用が期待できる。 As described above, according to the method for producing a particle assembly structure of the invention of this application, a structure having a large-area region of a multilayer or a single layer can be easily obtained. According to this method, the apparatus can be easily scaled up, so that a larger area can be obtained. In addition, since the multilayer structure has a photonic band gap, application as a material for photonic crystals can be expected.
この出願の発明は、以上の特徴を持つものであるが、以下に実施例を示し、さらに具体的に説明する。 The invention of this application has the above-described features, and will be described more specifically with reference to examples.
<実施例1>
過硫酸カリウムで微粒子の表面S濃度を0.12mol%に調製したポリメタクリル酸メチル(PMMA)微粒子(平均粒径:420nm)の乳液(濃度:3.6wt%)1.0mlをポリスチレン製シャーレ(φ35mm)に作った。このシャーレを、回転数を制御できる回転台上に固定し、300rpmから等加速度で1100rpmまで900秒回転させ、薄膜を作製した。
<Example 1>
1.0 ml of an emulsion (concentration: 3.6 wt%) of polymethyl methacrylate (PMMA) fine particles (average particle size: 420 nm) prepared with potassium persulfate so that the surface S concentration of the fine particles was adjusted to 0.12 mol% was obtained from a polystyrene petri dish ( φ35 mm). This petri dish was fixed on a turntable capable of controlling the number of rotations, and rotated from 300 rpm to 1100 rpm at a constant acceleration for 900 seconds to produce a thin film.
作製した薄膜の走査型電子顕微鏡像(SEM)を図3に示す。 A scanning electron microscope image (SEM) of the prepared thin film is shown in FIG.
この図3から、薄膜が規則的な多層構造の粒子集積構造体であることが観察された。 From FIG. 3, it was observed that the thin film was a regular multi-layered particle integrated structure.
<実施例2>
実施例1において、微粒子の表面S濃度を1.15mol%にして薄膜を作製した。
<Example 2>
In Example 1, a thin film was prepared with the surface S concentration of fine particles set to 1.15 mol%.
作製した薄膜の走査型電子顕微鏡像(SEM)を図4に示す。 FIG. 4 shows a scanning electron microscope image (SEM) of the produced thin film.
この図4から、薄膜が規則的な単層構造の粒子集積構造体であることが観察された。 From FIG. 4, it was observed that the thin film was a regular single-layered particle integrated structure.
<実施例3>
過硫酸カリウムで微粒子の表面S濃度を0.12mol%に調製したポリメタクリル酸メチル(PMMA)微粒子の乳液(平均粒径:420nm)3.0mlをポリスチレン製シャーレ(φ55mm)に作った。このシャーレを、回転数を制御できる回転台上に固定し、300rpmから等加速度で900rpmまで900秒回転させ、薄膜を作製した。
<Example 3>
3.0 ml of a polymethyl methacrylate (PMMA) fine particle emulsion (average particle size: 420 nm) prepared with potassium persulfate so that the surface S concentration of the fine particles was adjusted to 0.12 mol% was made in a polystyrene petri dish (φ55 mm). The petri dish was fixed on a turntable capable of controlling the number of rotations, and rotated from 300 rpm to 900 rpm at a constant acceleration for 900 seconds to produce a thin film.
得られた薄膜は、規則的な単層構造の粒子集積構造体であることが観察された。 It was observed that the obtained thin film was a regular single-layer structure.
<実施例4>
過硫酸カリウムで微粒子の表面S濃度を0.12mol%に調製したポリメタクリル酸メチル(PMMA)微粒子の乳液(平均粒径:420nm)6.0mlをポリスチレン製シャーレ(φ85mm)に作った。このシャーレを、回転数を制御できる回転台上に固定し、300rpmから等加速度で700rpmまで900秒回転させ、薄膜を作製した。
<Example 4>
An emulsion (average particle size: 420 nm) of polymethyl methacrylate (PMMA) fine particles prepared with potassium persulfate so that the surface S concentration of the fine particles was adjusted to 0.12 mol% was made in a polystyrene petri dish (φ85 mm). The petri dish was fixed on a turntable capable of controlling the number of revolutions, and rotated from 300 rpm to 700 rpm at a constant acceleration for 900 seconds to produce a thin film.
得られた薄膜は、規則的な単層構造の粒子集積構造体であることが観察された。 It was observed that the obtained thin film was a regular single-layer structure.
<実施例5>
実施例1で得た多層構造の粒子集積構造体を、適当な大きさに切り出し、24時間真空乾燥させて、紫外可視分光器(日本分光製JASCO,V−500)で、紫外可視光透過スペクトルを測定した。
<Example 5>
The multilayered particle assembly structure obtained in Example 1 was cut into an appropriate size, vacuum-dried for 24 hours, and ultraviolet-visible light transmission spectrum with an ultraviolet-visible spectrometer (JASCO, JASCO, V-500) Was measured.
この測定結果を図5に示す。 The measurement results are shown in FIG.
この図5から、フォトニックバンドギャップの影響による透過率の低下が620nm付近で観察され、多層構造の粒子集積構造体はフォトニックバンドギャップを持っていることが確認された。 From FIG. 5, a decrease in transmittance due to the influence of the photonic band gap was observed near 620 nm, and it was confirmed that the multilayered particle integrated structure had a photonic band gap.
<比較例>
実施例1において、過硫酸カリウムに代えて、分散媒にリン酸緩衝液を用いて薄膜を作製した。
<Comparative example>
In Example 1, instead of potassium persulfate, a thin film was prepared using a phosphate buffer as a dispersion medium.
作製した薄膜の走査型電子顕微鏡像(SEM)を図6に示す。 A scanning electron microscope image (SEM) of the prepared thin film is shown in FIG.
この図6から、薄膜が不規則な多層構造体であることが観察された。 From FIG. 6, it was observed that the thin film was an irregular multilayer structure.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004107282A JP4096102B2 (en) | 2004-03-31 | 2004-03-31 | Method for producing particle-integrated structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004107282A JP4096102B2 (en) | 2004-03-31 | 2004-03-31 | Method for producing particle-integrated structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005288325A JP2005288325A (en) | 2005-10-20 |
JP4096102B2 true JP4096102B2 (en) | 2008-06-04 |
Family
ID=35321880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004107282A Expired - Lifetime JP4096102B2 (en) | 2004-03-31 | 2004-03-31 | Method for producing particle-integrated structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4096102B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2783487B2 (en) * | 1992-08-31 | 1998-08-06 | 科学技術振興事業団 | Crystallization method of nanometer particles |
JP3768568B2 (en) * | 1995-09-20 | 2006-04-19 | 独立行政法人科学技術振興機構 | Secondary thin film integration method of nanoscale fine particles |
JP2000063720A (en) * | 1998-08-20 | 2000-02-29 | Fujitsu Ltd | Ink, ink cartridge, and ink jet printer |
US6139626A (en) * | 1998-09-04 | 2000-10-31 | Nec Research Institute, Inc. | Three-dimensionally patterned materials and methods for manufacturing same using nanocrystals |
JP2001106927A (en) * | 1999-10-12 | 2001-04-17 | Sekisui Chem Co Ltd | Colored resin emulsion, colored particle, transparent colored film, transparent colored cured film, color filter and ink for ink jet recording |
JP2001191025A (en) * | 1999-11-04 | 2001-07-17 | Dainippon Printing Co Ltd | Method for manufacturing high molecular fine particle composite body |
JP4907012B2 (en) * | 2000-05-12 | 2012-03-28 | 株式会社日本触媒 | Fine particle aggregate and method for producing the same |
JP3554531B2 (en) * | 2000-09-01 | 2004-08-18 | 新日本製鐵株式会社 | Electrical steel sheet with extremely excellent coating properties and method for forming its insulating coating |
JP4378920B2 (en) * | 2002-09-10 | 2009-12-09 | Dic株式会社 | Photoresponsive photonic crystal |
JP4190239B2 (en) * | 2002-09-13 | 2008-12-03 | 財団法人川村理化学研究所 | Colloidal crystal and method for producing the same |
-
2004
- 2004-03-31 JP JP2004107282A patent/JP4096102B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005288325A (en) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Nanomachining by colloidal lithography | |
Chen et al. | Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating | |
KR101040805B1 (en) | Colloidal crystal using colloidal nano particle and method for preparing thereof | |
US7820270B2 (en) | Methods for forming improved self-assembled patterns of block copolymers | |
CN101454069B (en) | Production of micro- and nanopore mass arrangements by self-organization of nanoparticles and sublimation technology | |
JP5359270B2 (en) | Manufacturing method of fine structure using single particle film etching mask and manufacturing method of mold for nanoimprint or injection molding | |
CN102341524B (en) | Highly ordered arrays of nanoholes in metallic films and methods for producing the same | |
US7520933B2 (en) | Method for manufacturing colloidal crystals via confined convective assembly | |
JP5380803B2 (en) | A method for producing a non-planar single particle film, a method for producing a fine structure using the single particle film etching mask, and a fine structure obtained by the production method. | |
JP4394121B2 (en) | Method for producing fine particles and nanostructures using nanoporous material | |
US9915758B2 (en) | Mold for manufacturing optical element and production method for same, and optical element | |
JP4849375B2 (en) | Fine particle array thin film, method for manufacturing the same, and fine particle array thin film manufacturing apparatus | |
EP0541401B1 (en) | Method for the formation of two-dimensional particle arrangements | |
He et al. | Fabrication of large-area, close-packed, monolayer colloidal crystals via a hybrid method of spin coating and peeling–draining | |
Tsigara et al. | Metal microelectrode nanostructuring using nanosphere lithography and photolithography with optimization of the fabrication process | |
US9777392B2 (en) | Method of fabricating single crystal colloidal monolayer on substrate and display device comprising the substrate | |
JP4096102B2 (en) | Method for producing particle-integrated structure | |
CN107604433B (en) | Method for producing a single-layer lattice | |
KR100683942B1 (en) | Fabrication method of colloidal crystals via confined convective assembly | |
Das et al. | Growth of two-dimensional arrays of uncapped gold nanoparticles on silicon substrates | |
Ulmeanu et al. | Fabrication of 2‐D nanostructures via metal deposition through a colloidal mask: comparison between thermal evaporation and RF magnetron sputtering | |
WO1997039159A1 (en) | Coated substrate | |
Wei | Recent developments in the fabrication of ordered nanostructure arrays based on nanosphere lithography | |
JP2006116781A (en) | Forming method for particle structure, particle structure and screen | |
Liu et al. | Silica nanowires fabricated with layer-by-layer self-assembled nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4096102 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |