JP4093530B2 - Water-sealed vacuum pump for inert gas exhaust system of single crystal puller - Google Patents

Water-sealed vacuum pump for inert gas exhaust system of single crystal puller Download PDF

Info

Publication number
JP4093530B2
JP4093530B2 JP2001260680A JP2001260680A JP4093530B2 JP 4093530 B2 JP4093530 B2 JP 4093530B2 JP 2001260680 A JP2001260680 A JP 2001260680A JP 2001260680 A JP2001260680 A JP 2001260680A JP 4093530 B2 JP4093530 B2 JP 4093530B2
Authority
JP
Japan
Prior art keywords
water
chamber
rotor
vacuum pump
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001260680A
Other languages
Japanese (ja)
Other versions
JP2003065268A (en
Inventor
良一 大地
勉 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2001260680A priority Critical patent/JP4093530B2/en
Publication of JP2003065268A publication Critical patent/JP2003065268A/en
Application granted granted Critical
Publication of JP4093530B2 publication Critical patent/JP4093530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/005Removing contaminants, deposits or scale from the pump; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単結晶引上げ機に供給された不活性ガスを吸引して排出する排気系に関する。更に詳しくは排気系に設けられた水封式の真空ポンプに関するものである。
【0002】
【従来の技術】
従来、単結晶引上げ機の不活性ガス排気系では、図5に示すようにシリコン単結晶の引上げ機1が排気管2を介して水封式の真空ポンプ3の吸込口に接続され、引上げ機1に供給された不活性ガス(例えば、Arガス)が上記真空ポンプ3により排気管2を通して吸引され、引上げ機1の上部には不活性ガスを引上げ機1内に供給する吸気管4の一端が接続され、この吸気管4の他端は不活性ガスを貯留するタンク(図示せず)に接続される。また真空ポンプ3内には水5が封入され、この水は循環ポンプ4によりセパレータタンク6及び水冷却器7を通って循環して使用される。セパレータタンク6の底壁にはこのタンク6内の水5を排出可能な水排出管8が接続され、この管8には水排出弁8aが設けられる。更にセパレータタンク6の蓋には清浄水供給管9が接続され、この管9には清浄水供給弁9aが設けられる。
【0003】
このように構成された不活性ガス排気系では、引上げ機1によりシリコン単結晶を引上げるときには、吸気管4から引上げ機1内に不活性ガスを供給し、この引上げ機1内の不活性ガスを真空ポンプ3により吸引して引上げ機1内が所定の負圧に保たれる。一方、引上げ機1内の不活性ガスにはSiOやSiO2等の粉塵が混入するため、この粉塵は排気管2を通って真空ポンプ3に封入された水5に混入する。このため、引上げ機1による単結晶の引上げ完了毎(1バッチ毎)に真空ポンプ3を停止し、水排出弁8aを開いてセパレータタンク6内の水5を排出し、更に清浄水供給弁9aを開いてセパレータタンク6に粉塵を含まない清浄な水5を新たに供給している。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の単結晶引上げ機の不活性ガス排気系では、不活性ガスに混入したSiOやSiO2等の粉塵が真空ポンプの吸込口近傍に堆積して吸込口を狭め、真空ポンプによる不活性ガスの吸引力が低下する不具合があった。
また上記真空ポンプの吸込口に堆積した粉塵は、真空ポンプを頻繁に分解・洗浄して除去しなければならず、真空ポンプの保守作業が煩わしい問題点もあった。
本発明の目的は、不活性ガスに混入した粉塵が吸込口近傍に堆積するのを防止できるとともに、保守作業の間隔を長くすることができる、単結晶引上げ機の不活性ガス排気系の水封式真空ポンプを提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図4に示すように、単結晶引上げ機11に排気管14を介して連通接続されたガス導入室21と、複数のロータ羽根22が偏心した状態で回転可能に収容されかつ所定の流量の水が水供給手段35により供給されるロータ室24と、ガス導入室21とロータ室24とを区画しかつガス導入室とロータ室とを連通接続する吸込口27aを有するロータガイド板27とを備え、単結晶引上げ機11に供給された不活性ガスを吸込口27aから吸込みかつ圧縮して水23とともに排出するように構成された単結晶引上げ機の不活性ガス排気系の水封式真空ポンプの改良である。
その特徴ある構成は、先端が封止され長手方向に複数の噴射孔33aが形成されかつ基端が水供給手段35に接続された洗浄パイプ33が、複数の噴射孔33aをロータガイド板27に対向してガス導入室21の内部に設けられたところにある。
【0006】
この請求項1に記載された単結晶引上げ機の不活性ガス排気系の水封式真空ポンプでは、単結晶を構成する元素の酸化物等からなる粉塵が不活性ガスに混入し、この粉塵が不活性ガスとともに真空ポンプ16のガス導入室21に流入してロータガイド板27に付着しても、水供給手段35から洗浄パイプ33に供給された水23が複数の噴射孔33aからロータガイド板27に向って噴射されるので、この噴射された水23によりロータガイド板27に付着した粉塵は洗い流される。
【0007】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
この実施の形態では、引上げ機により引上げられる単結晶はシリコン単結晶である。図4に示すように、引上げ機11は、チャンバ12と、このチャンバの上端に接続されたケーシング13とを有する。上記チャンバ12内には、図示しないがシリコン融液が貯留される石英るつぼや、この石英るつぼを包囲し上記シリコン融液を加熱するヒータ等が収容される。またケーシング13にはシリコン単結晶を引上げる引上げ手段が設けられる。チャンバ12の下面には排気管14を介して真空ポンプ16が接続され、ケーシング13の上部には吸気管17が接続される。吸気管の一端はケーシング13の上面に接続され、吸気管の他端は不活性ガス(この実施の形態ではArガス)が貯留されるタンク(図示せず)に接続される。また排気管14は一端がチャンバ12の下面にそれぞれ接続され他端が合流する一対の第1及び第2分岐管14a,14bと、一端が第1及び第2分岐管の合流端に接続され他端が水封式の真空ポンプ16のガス導入室21に接続された集合管14cとを有する。なお、水封式の真空ポンプはメカニカルブースタと組合せて用いてもよい。
【0008】
真空ポンプ16より排気上流側の集合管14cには後述するサイクロン18(図1)が設けられ、このサイクロンの下端にはダストチャンバ19が設けられる。このサイクロン18によりArガスに含まれるSiOやSiO2等の粉塵(単結晶を構成する元素の酸化物等からなる粉塵)がArガスから分離され、分離された粉塵はダストチャンバ19に貯留されるように構成される。但し、上記サイクロン18は引上げ機11内を所定の負圧に保つために、排気管14の内径をサイクロン18の入口直前であまり絞らないようにして圧力損失を少なくしている。このため、サイクロンによる粉塵の分離能力はあまり高くない。
【0009】
真空ポンプ16は、図1〜図3に詳しく示すように、引上げ機11に排気管14を介して連通接続された上記ガス導入室21と、複数のロータ羽根22が偏心した状態で回転可能に収容されかつ所定の流量の水23が供給されるロータ室24と、ロータ室で圧縮されたArガス及びロータ室からオーバフローした水23が流入する排出室26と、ガス導入室21及び排出室26とロータ室24とを区画するロータガイド板27とを備える。ロータガイド板27の一方の面にはカバー体28が取付けられ、このロータガイド板27とカバー体28により第1空間31が形成される(図1及び図2)。カバー体28の内部には一対の第1仕切り板41,41(図2)が配設され、これらの仕切り板により第1空間31が狭いガス導入室21と広い排出室26に区画される(図1及び図2)。
【0010】
上記カバー体28の側壁28a上部にはガス導入室21に臨む第1導入口28bが形成され、この第1導入口には集合管14cが接続される(図1)。ガス導入室21の内部には洗浄パイプ33が設けられる(図1及び図2)。この洗浄パイプ33は予め先端が封止されかつ長手方向に複数の噴射孔33a(図1)が形成される。また洗浄パイプ33の基端はカバー体28の周壁28c上部を通って循環ポンプ35(水供給手段)に接続され(図4)、複数の噴射孔33aはロータガイド板27に対向して設けられる(図1)。更にカバー体28の周壁28c下部には第2排出口28dが形成される(図1及び図2)。この第2排出口には気水排出管34の一端が接続され、気水排出管の他端は不活性ガスと水23を分離するセパレータタンク36(図4)に接続される。
【0011】
ロータ室24は、ロータガイド板27の他方の面にケーシング29の一方の面を取付けることにより形成され(図1及び図3)、ケーシングの他方の面には第1モータ51が取付けられる(図1)。この第1モータ51はその出力軸51aがケーシング29の中心線から偏心した状態でケーシング29に取付けられ(図1及び図3)、出力軸51aには複数のロータ羽根22と一体的に形成されたロータホルダ37が嵌着される(図1)。これにより複数のロータ羽根22はケーシング29の中心線から偏心した状態でロータ室24に回転可能に収容される。
【0012】
またロータガイド板27にはポートシリンダ38が一体的に設けられる(図1及び図3)。このポートシリンダは第1モータ51の出力軸51aと中心線が一致し、かつロータ室24内に突出するように設けられる。このポートシリンダ38は同心状の外筒38a及び内筒38bを有し、外筒及び内筒間の空間は一対の第2仕切り板42,42(図3)により狭い吸込室38c及び広い吐出室38dに区画される。上記一対の第2仕切り板42,42は一対の第1仕切り板41,41と第1モータ51の出力軸51aを中心としてそれぞれ同一角度になるように形成される、即ち一対の第2仕切り板42,42は一対の第1仕切り板41,41にそれぞれ重合するように形成される(図2及び図3)。またロータガイド板27には、外筒38a及び内筒38bの間に位置しかつガス導入室21及び吸込室38cを連通接続する円弧状の吸込口27aと、外筒38a及び内筒38bの間に位置しかつ排出室34及び吐出室38dを連通接続する円弧状の吐出口27bとが形成される(図2)。更に外筒38aには、吸込室38c及びロータ室24を連通接続する第2導入口38eと、ロータ室24及び吐出室38dを連通接続する第1排出口38fとがそれぞれ形成される(図1及び図3)。なお、複数のロータ羽根22は外筒38aの外周面に接しかつ外筒の外周面を摺動しながら回転するようにロータホルダ37に等間隔に配設される。
【0013】
一方、図4に示すように、セパレータタンク36の下部には循環パイプ53の一端が接続され、循環パイプの他端は第1及び第2分岐パイプ61,62の一端に接続される。第1分岐パイプ61の他端は真空ポンプ16のケーシング29の上部に接続され、第2分岐パイプ62の他端は洗浄パイプ33の基端に接続される。循環パイプ53には、水23を循環させる前述の循環ポンプ35(水供給手段)と、水23を冷却する水冷却器55とが設けられる。また第1分岐パイプ61にはこのパイプを流れる水23の流量を測定する第1流量計71が設けられ、第2分岐パイプ62にはこのパイプを流れる水23の流量を測定する第2流量計72が設けられる。なお、上記循環ポンプ35は第2モータ52により駆動される。
【0014】
セパレータタンク36の側壁36a上部には清浄水供給管54が接続され、清浄水供給管にはこの管を開閉可能な清浄水供給弁56が設けられる。セパレータタンク36の底壁36bには水排出管57が接続され、この水排出管にはこの管を開閉可能な水排出弁58が設けられる。清浄水供給弁56及び水排出弁58は2ポート2位置切換の電磁弁であり、オンすると管54,57を開き、オフすると管54,57を閉じるように構成される。更にセパレータタンク36の蓋36cには回収管59の一端が接続され、回収管の他端はArガスを回収する回収タンク(図示せず)に接続される。
【0015】
なお、図4の符号63及び64は吸気管17及び集合管14cを流れるArガスの流量をそれぞれ調整する電動式のコントロール弁であり、これらの弁63,64によりチャンバ12内の圧力が制御される。また符号66及び67は集合管14cを開閉するエア作動式のアングル弁であり、符号68は集合管14cの途中から分岐する第3分岐管14dの上端に設けられたフラッパバルブである。このバルブ68は排気管14内に堆積した粉塵が燃焼して排気管内の圧力が急激に上昇したときに排気管内を大気に開放するために設けられる。更に第1分岐パイプ61には第1電磁弁81及び第1絞り弁91が設けられ、第2分岐パイプ62には第2電磁弁82及び第2絞り弁92が設けられる。第1及び第2電磁弁81,82は第1及び第2分岐パイプ61,62を電磁気的にそれぞれ開閉する開閉弁であり、第1及び第2絞り弁91,92は第1及び第2分岐パイプ61,62を流れる水23の流量をそれぞれ調整する弁である。
【0016】
このように構成されたシリコン単結晶引上げ機11の不活性ガス排気系の水封式真空ポンプ16の動作を説明する。
引上げ機11を稼働してシリコン単結晶を引上げるときには、吸気管17から引上げ機11内にArガスを供給し、この引上げ機内のArガスを真空ポンプ16により吸引して引上げ機内を所定の負圧に保つ。第1モータ51により駆動されて真空ポンプ16のロータ羽根22が回転すると、ロータ室24に供給された水23がロータ室の内周面に沿って流れ、ロータ室24の略中央に、複数のロータ羽根22の間に位置しかつポートシリンダ38の外筒38aの外径より大径の略円柱状の第2空間32(ロータポケット)が発生する(図3)。このとき第2空間の外周面に対して、即ちロータ室24内をリング状に流れる水23の内周面に対して、複数のロータ羽根22の回転中心が偏心しているので、ガス導入室21内のArガスは吸込口27a及び第2導入口38eを通ってロータ室24のロータ羽根22間に流入した後に、ロータ羽根の回転に伴って次第に圧縮され、第1排出口38f及び吐出口27bを通って排出室26に排出される。同時にロータ室24からオーバフローした水23も第1排出口38f及び吐出口27bを通って排出室26に排出される。
【0017】
一方、引上げ機11内のArガスには、SiOやSiO2等の粉塵が混入するため、この粉塵はArガスとともに排気管14を通って真空ポンプ16のガス導入室21に流入する。このときArガスは第1導入口28bからガス導入室21に流入してロータガイド板27に吹付けられるため、Arガスに含まれる粉塵の多くはロータガイド板27に付着する。しかし真空ポンプ16の稼働中には、循環ポンプ35により洗浄パイプ33に水23が供給されるので、洗浄パイプに形成された複数の噴射孔33aからロータガイド板27に向って水23が噴射される(図1)。この結果、上記噴射された水によりロータガイド板27に付着した粉塵が洗い流され、Arガスに混入した粉塵が吸込口27a近傍に堆積するのを防止できるので、真空ポンプ16によるArガスの吸引力が低下することはない。また真空ポンプ16のガス導入室21の内面に粉塵が堆積しないので、真空ポンプを分解して洗浄する保守作業の間隔を長くし、保守作業の頻度を少なくすることができる。
【0018】
上記噴射孔33aから噴射された水23は洗い流した粉塵とともに、吸込口27a及び第2導入口38eを通ってロータ室24に流入し、ロータ室24内の水23と混合される。また排出室26に流入したArガス及び水23は気水排出管34を通ってセパレータタンク36に戻され、更に循環ポンプ35により再びロータ室24及びガス導入室21に送出される。このため、上記水23に含まれる粉塵は次第に増大するので、引上げ機11によるシリコン単結晶の引上げ完了毎(1バッチ毎)に真空ポンプ16を停止し、水排出弁58を開いてセパレータタンク36内の水23を排出した後に、水排出弁58を閉じ、更に清浄水供給弁56を開いてセパレータタンク36に、粉塵を含まない清浄な水23を新たに供給する。
なお、この実施の形態では、不活性ガスとしてArガスを挙げたが、窒素ガス等でもよい。
【0019】
【発明の効果】
以上述べたように、本発明によれば、先端が封止され長手方向に複数の噴射孔が形成されかつ基端が水供給手段に接続された洗浄パイプを、複数の噴射孔をロータガイド板に対向してガス導入室の内部に設けたので、不活性ガスに混入した粉塵が不活性ガスとともに真空ポンプのガス導入室に流入してロータガイド板に付着しても、この粉塵は洗浄パイプの複数の噴射孔から噴射される水により洗い流される。この結果、不活性ガスに混入した粉塵が真空ポンプの吸込口近傍に堆積するのを防止できるので、真空ポンプによる不活性ガスの吸引力が低下することはない。また真空ポンプのガス導入室の内面に粉塵が堆積しないので、真空ポンプを分解して洗浄する保守作業の間隔を長くし、保守作業の頻度を少なくすることができる。
【図面の簡単な説明】
【図1】本発明実施形態の水封式真空ポンプの縦断面図。
【図2】図1のA−A線断面図。
【図3】図1のB−B線断面図。
【図4】その真空ポンプを含む単結晶引上げ機の不活性ガス排気系の回路構成図。
【図5】従来例を示す図4に対応する単結晶引上げ機の不活性ガス排気系の回路構成図。
【符号の説明】
11 単結晶引上げ機
14 排気管
21 ガス導入室
22 ロータ羽根
23 水
24 ロータ室
27 ロータガイド板
27a 吸込口
33 洗浄パイプ
33a 噴射孔
35 循環ポンプ(水供給手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust system that sucks and discharges an inert gas supplied to a single crystal puller. More specifically, the present invention relates to a water-sealed vacuum pump provided in an exhaust system.
[0002]
[Prior art]
Conventionally, in an inert gas exhaust system of a single crystal puller, a silicon single crystal puller 1 is connected to a suction port of a water-sealed vacuum pump 3 via an exhaust pipe 2 as shown in FIG. An inert gas (for example, Ar gas) supplied to 1 is sucked through the exhaust pipe 2 by the vacuum pump 3, and one end of an intake pipe 4 that supplies the inert gas into the puller 1 is provided above the puller 1. The other end of the intake pipe 4 is connected to a tank (not shown) for storing an inert gas. Further, water 5 is enclosed in the vacuum pump 3, and this water is circulated and used through the separator tank 6 and the water cooler 7 by the circulation pump 4. A water discharge pipe 8 capable of discharging the water 5 in the tank 6 is connected to the bottom wall of the separator tank 6, and a water discharge valve 8 a is provided on the pipe 8. Further, a clean water supply pipe 9 is connected to the lid of the separator tank 6, and a clean water supply valve 9 a is provided on the pipe 9.
[0003]
In the inert gas exhaust system configured as described above, when the silicon single crystal is pulled by the puller 1, the inert gas is supplied from the intake pipe 4 into the puller 1, and the inert gas in the puller 1 is supplied. Is sucked by the vacuum pump 3 to keep the inside of the pulling machine 1 at a predetermined negative pressure. On the other hand, since dust such as SiO and SiO 2 is mixed in the inert gas in the pulling machine 1, this dust passes through the exhaust pipe 2 and is mixed into the water 5 sealed in the vacuum pump 3. For this reason, the vacuum pump 3 is stopped each time the single crystal is pulled by the puller 1 (every batch), the water discharge valve 8a is opened, the water 5 in the separator tank 6 is discharged, and the clean water supply valve 9a is further discharged. Is opened, and clean water 5 not containing dust is newly supplied to the separator tank 6.
[0004]
[Problems to be solved by the invention]
However, in the inert gas exhaust system of the conventional single crystal puller, dust such as SiO and SiO 2 mixed in the inert gas accumulates in the vicinity of the suction port of the vacuum pump, narrowing the suction port, There was a problem that the suction force of the active gas was reduced.
In addition, the dust accumulated at the suction port of the vacuum pump must be removed by frequently disassembling and cleaning the vacuum pump, and there is a problem that maintenance work of the vacuum pump is troublesome.
The object of the present invention is to prevent the dust mixed in the inert gas from accumulating in the vicinity of the suction port and to increase the interval between maintenance operations, and to seal the inert gas exhaust system of the single crystal puller. It is to provide a vacuum pump.
[0005]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIGS. 1 and 4, the gas introduction chamber 21 connected to the single crystal puller 11 through the exhaust pipe 14 and the plurality of rotor blades 22 are eccentric. A suction chamber that partitions the rotor chamber 24, the gas introduction chamber 21, and the rotor chamber 24 that are rotatably accommodated and supplied with water at a predetermined flow rate by the water supply means 35, and that connects the gas introduction chamber and the rotor chamber. And a rotor guide plate 27 having a port 27a. The inert gas supplied to the single crystal puller 11 is sucked from the suction port 27a, compressed, and discharged together with the water 23. This is an improvement of the water-sealed vacuum pump of the active gas exhaust system.
The characteristic configuration is that the cleaning pipe 33 whose tip is sealed and a plurality of injection holes 33 a are formed in the longitudinal direction and whose base end is connected to the water supply means 35 is connected to the rotor guide plate 27. Oppositely provided in the gas introduction chamber 21.
[0006]
In the water-sealed vacuum pump of the inert gas exhaust system of the single crystal puller described in claim 1, dust consisting of oxides of elements constituting the single crystal is mixed in the inert gas, and the dust is Even if the inert gas flows into the gas introduction chamber 21 of the vacuum pump 16 and adheres to the rotor guide plate 27, the water 23 supplied from the water supply means 35 to the cleaning pipe 33 is supplied from the plurality of injection holes 33a to the rotor guide plate. Since the spray is directed toward the rotor 27, the dust adhering to the rotor guide plate 27 is washed away by the sprayed water 23.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
In this embodiment, the single crystal pulled by the puller is a silicon single crystal. As shown in FIG. 4, the puller 11 includes a chamber 12 and a casing 13 connected to the upper end of the chamber. Although not shown, the chamber 12 houses a quartz crucible in which a silicon melt is stored, a heater that surrounds the quartz crucible and heats the silicon melt, and the like. The casing 13 is provided with a pulling means for pulling up the silicon single crystal. A vacuum pump 16 is connected to the lower surface of the chamber 12 via an exhaust pipe 14, and an intake pipe 17 is connected to the upper part of the casing 13. One end of the intake pipe is connected to the upper surface of the casing 13, and the other end of the intake pipe is connected to a tank (not shown) in which an inert gas (Ar gas in this embodiment) is stored. The exhaust pipe 14 has one end connected to the lower surface of the chamber 12 and the other end joined to the pair of first and second branch pipes 14a and 14b, and one end connected to the joining end of the first and second branch pipes. The collecting pipe 14c is connected to the gas introduction chamber 21 of the water-sealed vacuum pump 16 at its end. A water-sealed vacuum pump may be used in combination with a mechanical booster.
[0008]
A cyclone 18 (FIG. 1) described later is provided in the collecting pipe 14c upstream of the vacuum pump 16, and a dust chamber 19 is provided at the lower end of the cyclone. The cyclone 18 separates dust such as SiO and SiO 2 contained in the Ar gas (dust made of oxides of elements constituting a single crystal) from the Ar gas, and the separated dust is stored in the dust chamber 19. Configured as follows. However, in order to keep the inside of the pulling machine 11 at a predetermined negative pressure, the cyclone 18 reduces the pressure loss by reducing the inner diameter of the exhaust pipe 14 just before the inlet of the cyclone 18. For this reason, the separation capacity of the dust by the cyclone is not so high.
[0009]
As shown in detail in FIGS. 1 to 3, the vacuum pump 16 is rotatable in a state where the gas introduction chamber 21 connected to the puller 11 through the exhaust pipe 14 and the plurality of rotor blades 22 are eccentric. A rotor chamber 24 that is accommodated and supplied with water 23 of a predetermined flow rate, a discharge chamber 26 into which Ar gas compressed in the rotor chamber and water 23 overflowed from the rotor chamber flow, a gas introduction chamber 21 and a discharge chamber 26. And a rotor guide plate 27 that partitions the rotor chamber 24. A cover body 28 is attached to one surface of the rotor guide plate 27, and a first space 31 is formed by the rotor guide plate 27 and the cover body 28 (FIGS. 1 and 2). A pair of first partition plates 41 and 41 (FIG. 2) is disposed inside the cover body 28, and the first space 31 is partitioned into a narrow gas introduction chamber 21 and a wide discharge chamber 26 by these partition plates ( 1 and 2).
[0010]
A first introduction port 28b facing the gas introduction chamber 21 is formed on the upper side wall 28a of the cover body 28, and a collecting pipe 14c is connected to the first introduction port (FIG. 1). A cleaning pipe 33 is provided inside the gas introduction chamber 21 (FIGS. 1 and 2). The cleaning pipe 33 is sealed in advance and has a plurality of injection holes 33a (FIG. 1) formed in the longitudinal direction. The proximal end of the cleaning pipe 33 passes through the upper part of the peripheral wall 28c of the cover body 28 and is connected to the circulation pump 35 (water supply means) (FIG. 4), and the plurality of injection holes 33a are provided to face the rotor guide plate 27. (FIG. 1). Furthermore, the 2nd discharge port 28d is formed in the lower part of the surrounding wall 28c of the cover body 28 (FIG.1 and FIG.2). One end of an air / water discharge pipe 34 is connected to the second discharge port, and the other end of the air / water discharge pipe is connected to a separator tank 36 (FIG. 4) that separates the inert gas and the water 23.
[0011]
The rotor chamber 24 is formed by attaching one surface of the casing 29 to the other surface of the rotor guide plate 27 (FIGS. 1 and 3), and the first motor 51 is attached to the other surface of the casing (FIG. 1). 1). The first motor 51 is attached to the casing 29 with the output shaft 51a being eccentric from the center line of the casing 29 (FIGS. 1 and 3), and the output shaft 51a is formed integrally with the plurality of rotor blades 22. The rotor holder 37 is fitted (FIG. 1). Accordingly, the plurality of rotor blades 22 are rotatably accommodated in the rotor chamber 24 in a state of being eccentric from the center line of the casing 29.
[0012]
Further, a port cylinder 38 is provided integrally with the rotor guide plate 27 (FIGS. 1 and 3). This port cylinder is provided so that the output shaft 51 a of the first motor 51 and the center line coincide with each other and project into the rotor chamber 24. The port cylinder 38 has a concentric outer cylinder 38a and an inner cylinder 38b, and a space between the outer cylinder and the inner cylinder is narrowed by a pair of second partition plates 42, 42 (FIG. 3) and a wide discharge chamber. It is divided into 38d. The pair of second partition plates 42, 42 are formed to have the same angle around the pair of first partition plates 41, 41 and the output shaft 51 a of the first motor 51, that is, a pair of second partition plates. 42 and 42 are formed to be superposed on the pair of first partition plates 41 and 41, respectively (FIGS. 2 and 3). The rotor guide plate 27 includes an arcuate suction port 27a located between the outer cylinder 38a and the inner cylinder 38b and connecting the gas introduction chamber 21 and the suction chamber 38c, and between the outer cylinder 38a and the inner cylinder 38b. And an arcuate discharge port 27b that communicates and connects the discharge chamber 34 and the discharge chamber 38d (FIG. 2). Further, the outer cylinder 38a is formed with a second introduction port 38e that connects the suction chamber 38c and the rotor chamber 24, and a first discharge port 38f that connects the rotor chamber 24 and the discharge chamber 38d (FIG. 1). And FIG. 3). The plurality of rotor blades 22 are arranged on the rotor holder 37 at equal intervals so as to contact the outer peripheral surface of the outer cylinder 38a and rotate while sliding on the outer peripheral surface of the outer cylinder.
[0013]
On the other hand, as shown in FIG. 4, one end of the circulation pipe 53 is connected to the lower part of the separator tank 36, and the other end of the circulation pipe is connected to one end of the first and second branch pipes 61 and 62. The other end of the first branch pipe 61 is connected to the upper part of the casing 29 of the vacuum pump 16, and the other end of the second branch pipe 62 is connected to the base end of the cleaning pipe 33. The circulation pipe 53 is provided with the above-described circulation pump 35 (water supply means) that circulates the water 23 and a water cooler 55 that cools the water 23. The first branch pipe 61 is provided with a first flow meter 71 for measuring the flow rate of the water 23 flowing through the pipe, and the second branch pipe 62 is provided with a second flow meter for measuring the flow rate of the water 23 flowing through the pipe. 72 is provided. The circulation pump 35 is driven by the second motor 52.
[0014]
A clean water supply pipe 54 is connected to the upper part of the side wall 36a of the separator tank 36, and a clean water supply valve 56 capable of opening and closing the pipe is provided in the clean water supply pipe. A water discharge pipe 57 is connected to the bottom wall 36b of the separator tank 36, and a water discharge valve 58 capable of opening and closing the pipe is provided in the water discharge pipe. The clean water supply valve 56 and the water discharge valve 58 are 2-port 2-position switching electromagnetic valves, and are configured to open the tubes 54 and 57 when turned on and close the tubes 54 and 57 when turned off. Further, one end of a recovery pipe 59 is connected to the lid 36c of the separator tank 36, and the other end of the recovery pipe is connected to a recovery tank (not shown) for recovering Ar gas.
[0015]
Reference numerals 63 and 64 in FIG. 4 are electric control valves for adjusting the flow rates of Ar gas flowing through the intake pipe 17 and the collecting pipe 14c, respectively, and the pressure in the chamber 12 is controlled by these valves 63 and 64. The Reference numerals 66 and 67 are air-operated angle valves for opening and closing the collecting pipe 14c, and reference numeral 68 is a flapper valve provided at the upper end of the third branch pipe 14d branched from the middle of the collecting pipe 14c. The valve 68 is provided to open the exhaust pipe to the atmosphere when dust accumulated in the exhaust pipe 14 burns and the pressure in the exhaust pipe suddenly increases. Further, the first branch pipe 61 is provided with a first electromagnetic valve 81 and a first throttle valve 91, and the second branch pipe 62 is provided with a second electromagnetic valve 82 and a second throttle valve 92. The first and second electromagnetic valves 81 and 82 are open / close valves that electromagnetically open and close the first and second branch pipes 61 and 62, respectively. The first and second throttle valves 91 and 92 are the first and second branches. It is a valve for adjusting the flow rate of the water 23 flowing through the pipes 61 and 62, respectively.
[0016]
The operation of the water-sealed vacuum pump 16 of the inert gas exhaust system of the silicon single crystal puller 11 configured as described above will be described.
When pulling up the silicon single crystal by operating the pulling machine 11, Ar gas is supplied into the pulling machine 11 from the intake pipe 17, and the Ar gas in the pulling machine is sucked by the vacuum pump 16 so that the inside of the pulling machine has a predetermined negative pressure. Keep pressure. When the rotor blades 22 of the vacuum pump 16 are rotated by being driven by the first motor 51, the water 23 supplied to the rotor chamber 24 flows along the inner peripheral surface of the rotor chamber, and a plurality of A substantially cylindrical second space 32 (rotor pocket) located between the rotor blades 22 and having a diameter larger than the outer diameter of the outer cylinder 38a of the port cylinder 38 is generated (FIG. 3). At this time, the rotation center of the plurality of rotor blades 22 is eccentric with respect to the outer peripheral surface of the second space, that is, the inner peripheral surface of the water 23 flowing in the rotor chamber 24 in a ring shape. After the Ar gas passes through the suction port 27a and the second introduction port 38e and flows between the rotor blades 22 of the rotor chamber 24, it is gradually compressed as the rotor blades rotate, and the first discharge port 38f and the discharge port 27b. It is discharged to the discharge chamber 26 through. At the same time, the water 23 overflowing from the rotor chamber 24 is also discharged into the discharge chamber 26 through the first discharge port 38f and the discharge port 27b.
[0017]
On the other hand, since dust such as SiO and SiO 2 is mixed in the Ar gas in the puller 11, this dust flows into the gas introduction chamber 21 of the vacuum pump 16 through the exhaust pipe 14 together with the Ar gas. At this time, since Ar gas flows into the gas introduction chamber 21 from the first introduction port 28 b and is blown onto the rotor guide plate 27, much of the dust contained in the Ar gas adheres to the rotor guide plate 27. However, since the water 23 is supplied to the cleaning pipe 33 by the circulation pump 35 while the vacuum pump 16 is in operation, the water 23 is sprayed from the plurality of injection holes 33a formed in the cleaning pipe toward the rotor guide plate 27. (FIG. 1). As a result, the dust adhering to the rotor guide plate 27 is washed away by the jetted water, and the dust mixed in the Ar gas can be prevented from accumulating in the vicinity of the suction port 27a. Will not drop. Further, since dust does not accumulate on the inner surface of the gas introduction chamber 21 of the vacuum pump 16, the interval of maintenance work for disassembling and cleaning the vacuum pump can be increased, and the frequency of maintenance work can be reduced.
[0018]
The water 23 injected from the injection hole 33a flows into the rotor chamber 24 through the suction port 27a and the second introduction port 38e together with the washed dust, and is mixed with the water 23 in the rotor chamber 24. The Ar gas and water 23 that have flowed into the discharge chamber 26 are returned to the separator tank 36 through the gas / water discharge pipe 34, and further sent out to the rotor chamber 24 and the gas introduction chamber 21 by the circulation pump 35. For this reason, since the dust contained in the water 23 gradually increases, the vacuum pump 16 is stopped every time the pulling machine 11 pulls up the silicon single crystal (every batch), the water discharge valve 58 is opened, and the separator tank 36 is opened. After the water 23 is discharged, the water discharge valve 58 is closed, and the clean water supply valve 56 is further opened to supply fresh water 23 containing no dust to the separator tank 36.
In this embodiment, Ar gas is used as the inert gas, but nitrogen gas or the like may be used.
[0019]
【The invention's effect】
As described above, according to the present invention, the cleaning pipe having the tip sealed and the plurality of injection holes formed in the longitudinal direction and the base end connected to the water supply means is connected to the rotor guide plate. Since the dust mixed in the inert gas flows into the gas introduction chamber of the vacuum pump together with the inert gas and adheres to the rotor guide plate, the dust is still washed in the cleaning pipe. It is washed away with water sprayed from the plurality of spray holes. As a result, the dust mixed in the inert gas can be prevented from accumulating in the vicinity of the suction port of the vacuum pump, so that the suction force of the inert gas by the vacuum pump does not decrease. Further, since dust does not accumulate on the inner surface of the gas introduction chamber of the vacuum pump, the interval between maintenance operations for disassembling and cleaning the vacuum pump can be increased, and the frequency of maintenance operations can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a water ring vacuum pump according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
3 is a cross-sectional view taken along line BB in FIG.
FIG. 4 is a circuit configuration diagram of an inert gas exhaust system of a single crystal puller including the vacuum pump.
FIG. 5 is a circuit configuration diagram of an inert gas exhaust system of a single crystal puller corresponding to FIG. 4 showing a conventional example.
[Explanation of symbols]
11 Single crystal pulling machine 14 Exhaust pipe 21 Gas introduction chamber 22 Rotor blade 23 Water 24 Rotor chamber 27 Rotor guide plate 27a Suction port 33 Cleaning pipe 33a Injection hole 35 Circulation pump (water supply means)

Claims (1)

単結晶引上げ機(11)に排気管(14)を介して連通接続されたガス導入室(21)と、複数のロータ羽根(22)が偏心した状態で回転可能に収容されかつ所定の流量の水(23)が水供給手段(35)により供給されるロータ室(24)と、前記ガス導入室(21)と前記ロータ室(24)とを区画しかつ前記ガス導入室と前記ロータ室とを連通接続する吸込口(27a)を有するロータガイド板(27)とを備え、前記単結晶引上げ機(11)に供給された不活性ガスを吸込口(27a)から吸込みかつ圧縮して前記水(23)とともに排出するように構成された単結晶引上げ機の不活性ガス排気系の水封式真空ポンプにおいて、
先端が封止され長手方向に複数の噴射孔(33a)が形成されかつ基端が前記水供給手段(35)に接続された洗浄パイプ(33)が、前記複数の噴射孔(33a)を前記ロータガイド板(27)に対向して前記ガス導入室(21)の内部に設けられたことを特徴とする単結晶引上げ機の不活性ガス排気系の水封式真空ポンプ。
A gas introduction chamber (21) connected to the single crystal puller (11) through an exhaust pipe (14) and a plurality of rotor blades (22) are rotatably accommodated in an eccentric state and have a predetermined flow rate. The rotor chamber (24) in which water (23) is supplied by the water supply means (35), the gas introduction chamber (21), and the rotor chamber (24) are partitioned, and the gas introduction chamber and the rotor chamber And a rotor guide plate (27) having a suction port (27a) that communicates with each other, and sucks and compresses the inert gas supplied to the single crystal puller (11) through the suction port (27a) to compress the water. In the water-sealed vacuum pump of the inert gas exhaust system of the single crystal puller configured to be discharged together with (23),
A cleaning pipe (33) having a distal end sealed and a plurality of injection holes (33a) formed in the longitudinal direction and having a proximal end connected to the water supply means (35) includes the plurality of injection holes (33a). A water-sealed vacuum pump for an inert gas exhaust system of a single crystal puller, which is provided inside the gas introduction chamber (21) so as to face the rotor guide plate (27).
JP2001260680A 2001-08-30 2001-08-30 Water-sealed vacuum pump for inert gas exhaust system of single crystal puller Expired - Lifetime JP4093530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260680A JP4093530B2 (en) 2001-08-30 2001-08-30 Water-sealed vacuum pump for inert gas exhaust system of single crystal puller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260680A JP4093530B2 (en) 2001-08-30 2001-08-30 Water-sealed vacuum pump for inert gas exhaust system of single crystal puller

Publications (2)

Publication Number Publication Date
JP2003065268A JP2003065268A (en) 2003-03-05
JP4093530B2 true JP4093530B2 (en) 2008-06-04

Family

ID=19087846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260680A Expired - Lifetime JP4093530B2 (en) 2001-08-30 2001-08-30 Water-sealed vacuum pump for inert gas exhaust system of single crystal puller

Country Status (1)

Country Link
JP (1) JP4093530B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067406B2 (en) * 2009-08-26 2012-11-07 信越半導体株式会社 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2015036516A (en) * 2013-08-12 2015-02-23 株式会社ネクスト Water sealing type steam compressor
KR101642842B1 (en) * 2015-02-16 2016-07-26 (주)에프티이 System for seawater concentrating and scale crystallizing
CN115078018B (en) * 2022-08-19 2022-11-18 张家港谱析传感科技有限公司 Automatic dust detection of clearance uses sampling pump

Also Published As

Publication number Publication date
JP2003065268A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
KR20010094295A (en) Air flow system of vacuum cleaner
US7488374B2 (en) Trapping device, processing system, and method removing impurities
JP4093530B2 (en) Water-sealed vacuum pump for inert gas exhaust system of single crystal puller
JP3599703B2 (en) Powder dryer
JP3367910B2 (en) Apparatus and method for cleaning inert gas exhaust system of single crystal pulling machine
JPH05141397A (en) Impeller washing device for rotary machine having impeller
JP3632526B2 (en) Separator tank cleaning device for inert gas exhaust system of single crystal puller
CN207970928U (en) A kind of horizontal sand mill for being easy to that inner cavity coating is discharged
KR102276103B1 (en) An air-compressor system that is having a filter cleaning and heating function
KR100593382B1 (en) Cleaning structure of dust filter for vacuum cleaner
JP3963682B2 (en) Positive displacement dry vacuum pump
JP3136377B2 (en) Trap for collecting solids
KR102305242B1 (en) An air-compressor that is having a function to clear of filters automatically
KR20020038266A (en) Exhaust air feed back vacuum cleaner
JP3510139B2 (en) Pulse jet type dust collector
CN217773546U (en) High-efficiency pulse type composite bag dust collector
KR200151993Y1 (en) Discharging apparatus of impurity in filter box used deposition process for semiconductor device fabrication
CN112065580B (en) Cleaning system for engine and supercharger air compressor
KR100400566B1 (en) Ejector for vacuum cleaner
JPH0230498Y2 (en)
KR102054471B1 (en) Dust collector for vacuum cleaner
JPH06173607A (en) Corrosion preventive device for steam turbine blade
JPH09133100A (en) Blower device
JPH05133385A (en) Dry vacuum pump
JPS601787Y2 (en) Air supply device for dust removal in dust collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term