JP4093409B2 - Fluid purification method and fluid purification device - Google Patents

Fluid purification method and fluid purification device Download PDF

Info

Publication number
JP4093409B2
JP4093409B2 JP2003011848A JP2003011848A JP4093409B2 JP 4093409 B2 JP4093409 B2 JP 4093409B2 JP 2003011848 A JP2003011848 A JP 2003011848A JP 2003011848 A JP2003011848 A JP 2003011848A JP 4093409 B2 JP4093409 B2 JP 4093409B2
Authority
JP
Japan
Prior art keywords
inner cylinder
reaction vessel
cylinder
photocatalyst
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011848A
Other languages
Japanese (ja)
Other versions
JP2004223345A (en
Inventor
泰郎 伊藤
正夫 土屋
Original Assignee
正夫 土屋
土屋 淳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正夫 土屋, 土屋 淳 filed Critical 正夫 土屋
Priority to JP2003011848A priority Critical patent/JP4093409B2/en
Publication of JP2004223345A publication Critical patent/JP2004223345A/en
Application granted granted Critical
Publication of JP4093409B2 publication Critical patent/JP4093409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、浴槽水、生活排水、飲料水、プール水、冷却水、洗浄水、貯留水、養殖用水、産業廃水、水耕栽培等の農業用水、空気などの流体を殺菌・浄化処理等する流体浄化方法および流体浄化装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開平8−89725号公報
【特許文献2】
特開平11−262759号公報
従来、水や空気の殺菌・浄化装置としては、紫外線殺菌装置、オゾン殺菌装置、光触媒殺菌装置等があった。そのうち、紫外線殺菌装置は、紫外線波長帯の光を発生するランプを用いているが、このランプの寿命が短く、寿命の長い無電極放電ランプは高価で維持管理コストもかかるものであった。またランプ全周に均一な配光が出来ず、大型の処理装置においては複数の光源が必要であり設備コストがかかるものであった。さらに、処理対象の汚水等が接触するランプ面又はカバーは、有機物や無機物の汚れが付着し定期的な清掃作業が必要であった。
【0003】
オゾン殺菌装置は、一般的な無声放電方式により放電させて酸素をオゾン化しているので、酸素と放電箇所との接触が短時間であり、高濃度のオゾンを生成できないものであった。またオゾンを効率的に水に溶解することができず、生成したオゾンが酸素に戻ったり水に溶解せずに大気中に逃げてしまっていた。さらに、オゾンを高濃度にすると、漏れたオゾンによる臭気があり人体に有害であるという問題点もあった。
【0004】
光触媒殺菌装置は、光触媒である酸化チタンの固定が困難であり、長期の使用により酸化チタンが剥離し、性能の低下をきたすものであった。さらに、光触媒を利用した殺菌には酸素が必要であるが、汚水や浴槽水には酸素が少なく光触媒の殺菌作用を効果的に発揮できないものであった。しかも光触媒は、光が必要であり、光触媒全体に均一な光を当てることが困難である上、光触媒に菌や有機物が接触して殺菌作用を発揮することから、大表面積化が必要であるが、光触媒の大表面積化は困難なものであった。
【0005】
さらに、特許文献1,2に開示されているように、被処理水を循環させる経路の途中に光触媒が設けられた反応容器を設け、この反応容器に紫外線を照射して、光触媒により被処理水中の菌を無害化するものも提案されている。この流体浄化装置は、酸化チタンが溶射された網を反応容器中に入れ紫外線ランプを照射して、被処理水を通過させ光触媒の作用により殺菌するものである。また、特許文献2では同様の装置を用いて、被処理水中にオゾンを含有した気体を供給する処理方法も提案されている。
【0006】
この光触媒を用いた殺菌処理等の原理は以下のようなものである。半導体物質である二酸化チタン等の光触媒に波長が400nm以下の紫外光が照射されると、価電子帯に正孔が発生するとともに伝導帯に電子が生じる。この正孔の酸化電位は、フッ素、オゾン、過酸化水素等の酸化電位よりも高く、有機物は光触媒により完全に酸化分解されて最終的には二酸化炭素ガスと水、硫酸、硝酸などに完全酸化される。光触媒による酸化反応のメカニズムは、光触媒に紫外光が照射された際に生じる正孔またはこの正孔と水が反応して生じる極めて反応活性に富むヒドロオキシルラジカル(OHラジカル)により、酸化反応が起こると考えられている。このとき、紫外線が照射された際に生じる正孔と同時に発生する電子と酸素ガス等との還元反応が、並行して進行する。光触媒の作用は、このような強力な酸化反応により、従来のオゾンや過酸化水素、塩素等の殺菌剤よりも強い殺菌能力を有し、有機物の分解機能も備えている。また、光照射により生じた正孔やOHラジカルの寿命はミリ秒以下と短いので、オゾンや過酸化水素等の酸化剤のように処理後に残留がなく、残留酸化剤を処理する装置が不要であるという利点がある。このようなことから、これまでに光触媒を用いた多くの流体浄化装置が提案されている。
【0007】
しかしながら、光触媒による作用は光が照射される光触媒表面のみで起こるため、効率良く処理を行うには光触媒の表面積を大きくして被処理水との接触効率を高める必要がある。また、光触媒に紫外光が照射された際に生じる正孔またはOHラジカルは寿命が短いので短時間で反応させる必要がある。また、紫外光は水に吸収されやすく、水中で減衰しやすいという問題がある。
【0008】
さらに、上記従来の技術の場合、酸化および殺菌作用は紫外線が照射された光触媒の表面のみで起こり、酸化チタン等の光触媒が表面に溶射された網の表面に接触するごく一部の被処理水のみしか処理されず、処理能力が低いものであった。また、酸化チタン等の光触媒が溶射された網は、表面の光触媒が剥離等しやすく耐久性が低い。溶射された光触媒がなくなると、光触媒としての作用がなくなり、その部分を交換しなければならないという問題があった。
【0009】
【発明が解決しようとする課題】
この発明は、上記従来の技術の問題点に鑑みてなされたもので、被処理流体に均一に効果的に殺菌・浄化処理が施され、構成も簡単で維持も容易な流体浄化方法および流体浄化装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明は、汚水や浴槽水、水道水や空気等の被処理流体が流れる配管の途中に設けられ外筒を備えた反応容器と、この反応容器の上記外筒内面全周に設けられた一方の電極と、この反応容器の外筒内に所定の空間を空けて設けられるとともに入口と出口が各々上記配管に連通した透明な内筒と、この内筒内に設けられ上記一方の電極と対を成す他方の電極とを設け、上記外筒と内筒との間の密閉された空間に酸素を供給し、上記外筒と内筒との間で上記電極間に放電を発生させ、上記酸素が上記電極間の放電区間を通過することによりオゾンを生成し、このオゾンを、上記内筒に流入する流体に混合する流体浄化方法である。
【0011】
さらに、上記内筒内に光触媒を設け、上記放電により紫外線を発生させ、この紫外線により上記透明な内筒内の上記光触媒を機能させるものである。また、上記内筒内に、チタンまたはチタン合金製の大表面積材料を設け、この大表面積材料の表面に上記オゾンの酸化作用により二酸化チタンの光触媒を形成し、上記放電により紫外線を発生させ、この紫外線により上記透明な内筒内の上記大表面積材料の光触媒を機能させるものである。
【0012】
またこの発明は、汚水や浴槽水、水道水や空気等の被処理流体が流れる配管の途中に設けられ外筒を備えた反応容器と、この反応容器の上記外筒内面全周に設けられた一方の電極と、この反応容器の外筒内に所定の空間を空けて設けられるとともに入口と出口が各々上記配管に連通した透明な内筒と、この内筒内に設けられ上記一方の電極と対を成す他方の電極と、上記反応容器の外筒と内筒との密閉された空間に酸素を供給する酸素供給手段と、上記外筒と内筒との間を通過した上記酸素から、上記電極間の放電によって生成されたオゾンを、上記内筒の上流側の流体に混合する混合装置とを備えた流体浄化装置である。
【0013】
上記反応容器はステンレスの筒により形成され、この筒が外筒を兼用し、上記一方の電極を構成している。上記内筒内には、チタンまたはチタン合金製の大表面積材料を有し、この大表面積材料が光触媒であり、且つ上記他方の電極を構成している。光触媒は、ガラスビーズ表面に光触媒を設けたものや、その他ステンレス、セラミックス、ガラス繊維等の大表面積材料の表面に酸化チタン等の光触媒を設けたものでも良い。
【0014】
この発明は、被処理流体を反応容器の内筒間で放電を発生させ、その間を酸素が通過することによりオゾンを発生させ、このオゾンを被処理水中に混合して殺菌・浄化処理を行なうものである。さらに、放電により発生した紫外線を、内筒内の大表面積材料の光触媒に当てて、光触媒による殺菌・浄化作用を起こさせ、さらに、チタンを含む大表面積材料の表面に上記オゾン等により光り触媒を常時再生させるようにしたものである。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態について図面に基づいて説明する。図1は、この発明の流体浄化装置の一実施形態を示す概略図で、この実施形態の流体浄化装置10は、被処理流体である被処理水12として温泉や健康施設等において循環するお風呂の湯を処理するものである。この実施形態の流体浄化装置10は、大浴槽14の被処理水12が流れ込み循環させる循環用配管16に、髪の毛を回収するヘアーキャッチャー18と、ヘアーキャッチャー18の下流に設けられた循環ポンプ20とを有している。循環ポンプ20の下流側には、濾過タンク22が設けられ、濾過タンク22の下流に熱交換器24が設けられ、被処理水12の温度を所定温度に昇温し、循環用配管16を介して大浴槽14に被処理水12を戻している。
【0016】
ヘアーキャッチャー18と循環ポンプ20との間の循環用配管16には、図1,図2に示すように、内部にチタンまたはチタン合金製の、網やチタン線、繊維状チタン材料の集合体、その他多孔質チタン材料等の大表面積材料30を収容した反応容器32が取り付けられている。大表面積材料30は、チタンまたはチタン合金の表面に予め二酸化チタンの光触媒が形成されていても良く、後述するように、オゾンにより、使用中に二酸化チタンの光触媒を形成するものでも良い。さらに、ガラスやステンレス等のチタン以外の材料の大表面積材料に光触媒を付着させたものでも良い。
【0017】
反応容器32はステンレス製の筒体であり、その両端部に循環用配管16が接続されている。外筒である反応容器32内には、同心的に透明な内筒34が取り付けられ、内筒34は、循環用配管16との接続部の入口34aと出口34bに各々気密状態で連通している。従って、反応容器32の内壁と内筒34の外壁間は筒状の密閉された空間32aとなっている。この反応容器32の内壁と内筒34の外壁間は筒状の密閉された空間32aには、その下流側の端部に酸素を含む空気を供給する配管36が接続され、配管36には、エアーポンプ38が設けられ、埃や湿気を除去するフィルタ40を介して空気を供給可能に設けられている。
【0018】
反応容器32と内筒34との間の空間32aの上流側には、この空間32aに連通した配管42が接続され、配管42は上流側の循環用配管16に取り付けられた混合装置44に接続されている。混合装置44は、図3に示すように配管42が側面に接続されたリング状のセラミックスや金属、または連続気泡樹脂等の多孔質体であり、気体を微細気泡にして放出する。
【0019】
内筒34は、紫外線を通しやすい石英ガラスまたはホウ珪酸ガラスにより形成されている。ステンレス製の反応容器32は、後述する放電用の一方の電極として電源装置のプラス側に接続されるので、ステンレス部分は絶縁された状態で設置される。チタン線等の大表面積材料30は、内筒34内の被処理水12とともに他方の電極を構成し、電源装置の接地側に接続されている。
【0020】
次に、この実施形態の動作作用について説明する。被処理水12は循環ポンプ20により加圧されて、流体浄化装置10の濾過タンク22内に圧送され、異物等がある程度除去され、熱交換器24を介して一定の温度に温められて大浴槽14内に戻される。また、循環ポンプ20の上流側では、大浴槽14からの被処理水12が、循環用配管16によりヘアーキャッチャー18で髪の毛等を除去され、反応容器32を経て循環ポンプ20に吸引される。
【0021】
反応容器32内では、この反応容器32による電極と大表面積材料30及びそれに接触した被処理水12による他方の電極により、空間32a内に無声放電を発生させる。このときの電圧は、適宜調節されるもので、良好な無声放電が可能な電圧に図示しない電源装置を設定する。さらに、空間32a内全周で無声放電による紫外線が発生する。発生した紫外線は、ステンレス製の反応容器32の内面で反射し、透明な内筒34内に照射され、光触媒が表面に形成された大表面積材料30の表面に照射される。さらに、空間32a内には、エアーポンプ38から酸素を含む空気が配管36を介して送られ、その酸素が、空間32aでの放電区間を通過することによりオゾンに変化し、配管42から送り出される。このオゾンは、循環用配管16を流れる被処理水12中に、混合装置44により微細気泡にされて混合され、内筒34の上流側に流れ込む。
【0022】
被処理水12に混合されたオゾンは被処理水12が反応容器32内の大表面積材料30の隙間を通過する。大表面積材料30の表面の光触媒は、無声放電による紫外線照射によりOHラジカルを発生させ、これにより殺菌や有機物の分解が行われる。この殺菌・浄化メカニズムは上述の通りである。同時に、上流側で混合されたオゾンによる殺菌も行われる。また、チタンまたはチタン合金製の大表面積材料30は、その表面の光触媒が剥離した場合でも、露出したチタン原子に対して被処理液12中のオゾンにより酸化反応し、容易に表面に二酸化チタンの光触媒が形成される。
【0023】
この実施形態の流体浄化方法と装置によれば、紫外線ランプを用いる必要が無く、常時均一な紫外線を内筒34内に照射することができる。しかも内筒34内では光触媒の作用により内面に有機物が付着せず、常時きれいな面を維持することができ、清掃工数を大幅に削減することができる。また、反応容器32内全周で無声放電が起き、内筒34の全周から紫外線が入射するので、大表面積材料30の光触媒に効率的に紫外線が照射される。
【0024】
また、反応容器32内の空間32aでは、比較的長い区間に亘って放電が生じ、酸素が効率的にオゾンに変化し、高濃度のオゾンを生成することができる。そして、被処理水12の殺菌及び有機物の分解処理を、紫外線とオゾン及び光触媒により高効率で確実に行うことができる。例えば、レジオラ菌等による浴槽水の汚染を確実に防止することができ、大量の被処理水12の処理が可能となる。さらに、反応容器32内の大表面積材料30の二酸化チタンによる光触媒が、長期間の使用により剥離しても、オゾン発生器26からのオゾンにより、チタンまたはチタン合金製の大表面積材料30の表面には、常時二酸化チタンが生成され、光触媒が剥離してなくなるということはない。
【0025】
また、紫外光照射時に光触媒では、正孔と同時に生成した電子が酸素と迅速に反応してスーパーオキサイド(O )が生成する。このとき、酸素が不足すると未反応の電子が正孔と再結合し、正孔の酸化反応を阻害することになるが、この発明では、オゾンを含む十分な酸素含有気体が光触媒表面に供給されるので、上記の電子と正孔の再結合を防止することができ、その結果、被処理水12と二酸化チタンの光触媒との酸化反応効率を高めることができる。
【0026】
さらに、この実施形態によれば、反応容器32における被処理水12の混合攪拌効果により、被処理水12を光触媒表面に効率良く接触させることができるとともに、十分な酸素が供給され、二酸化チタン等の光触媒と被処理水12との反応効率を飛躍的に高めることができる。
【0027】
なお、この発明の流体浄化装置は上記実施形態に限定されず、図5に示すように、反応容器32内の内筒34内周面に長手方向に複数本の電極50を設け、ステンレス製の反応容器32と電極50間で、空間32a内に無声放電を発生させるようにしても良い。これにより、内筒34内を流れる流体の導電率が低い場合も良好に空間32a内に無声放電を発生させることができる。例えば、飲料水等は液中の電解質が少ないため導電率が低いが、これにより無声放電を良好に発生させ、効率的にオゾンを生成し、内筒34内を流れる飲料水に溶解させることが出来る。また、無声放電による紫外線によっても殺菌される。飲料水を流す場合は、光触媒によるオゾンの消費を防ぐため、光触媒を内筒34内に入れず、図5に示す態様で用いる。
【0028】
また、図4に示す反応容器32の内筒34に空気を流して、空気の殺菌・消臭等に用いても良い。この場合、内筒34内に流れる空気は、オゾン及び紫外線により殺菌され、さらに光触媒によっても殺菌及び有機物の分解、消臭等が行われる。また、オゾンは、光触媒により消費され、また酸素に変換し、オゾン臭が漏れることはない。
【0029】
この他、この発明の流体浄化装置は、図6に示すように、反応容器32内の空間32aからのオゾンガスを、加圧ポンプ52を介して配管16の被処理水12に混合しても良い。この場合、加圧ポンプ52に流れ込む配管の負圧を利用してオゾンを含む空気を吸引し、加圧ポンプ52の羽根車により微細気泡に撹拌され、オゾンガスがより多く被処理水12中に溶解する。加圧ポンプ52を用いることにより、配管16内の被処理水内圧が高い場合も、確実に効率的にオゾンを被処理水12中に混合し、溶解させることができる。また、被処理水12中に混合した微細気泡のオゾン及び酸素は、光触媒をより活性化させる。
【0030】
また、反応容器32をヘアーキャッチャー18等の処理槽と兼用し、反応容器32の被処理水12の入り口側にヘアーキャッチャーの籠を設け、反応容器32内の隔壁を隔てて、下流側に内筒34を設けその中に大表面積材料30を設けても良い。この場合も上記と同様に、内筒34と反応容器32の内壁との間で無声放電を発生させ、内筒内に紫外線を照射するとともに、発生したオゾンを反応容器32の上流側で、被処理水12に混合する。これにより、さらに装置の小型化、省スペース化を図ることができる。
【0031】
また、内筒34の外表面には、効果的に紫外線を発生させるための蛍光剤を塗布しておいても良い。
【0032】
この発明の流体浄化方法と装置の対象とする被処理水は、浴槽の湯以外に生活排水や工業用水、水耕栽培等の農業用水、その他殺菌処理等を必要とする水や、空気、その他の気体等、全ての流体に利用可能である。
【0033】
【発明の効果】
この発明に係る光触媒を用いた流体浄化方法と装置によれば、紫外線ランプを用いることなく効果的に紫外線を発生させることができ、被処理水を紫外線やオゾンとともに確実に殺菌・浄化することができる。また、発生する紫外線は内筒全周から内側に照射され、光触媒を用いる場合も、光触媒である大表面積材料に効率的に紫外線が照射され、光触媒による殺菌及び有機物の分解処理を効率的に行わせることができる。そして、光触媒による処理を組み合わせることにより、被処理水等に含まれる有害有機物、細菌等の微生物、臭気物質や難分解物質などを効率良く大量に殺菌、分解除去することができる。
【0034】
さらに、光触媒を表面に形成した大表面積材料を、チタンまたはチタン合金により形成することにより、二酸化チタンの光触媒が長期使用により剥離しても、オゾンによる強力な酸化作用で、大表面積材料のチタン原子を酸化し、表面に二酸化チタンの光触媒を常に再生する。これにより、大表面積材料は、半永久的に光触媒として機能することができ、使用による光触媒の剥離等の問題を解決することができる。
【図面の簡単な説明】
【図1】 この発明の一実施形態の流体浄化装置の概略配管図である。
【図2】 この実施形態の反応容器の縦断面図である。
【図3】 この実施形態の混合装置の正面図である。
【図4】 この実施形態の反応容器の横断面図である。
【図5】 この発明の反応容器の他の実施形態を示す横断面図である。
【図6】 この発明の反応容器のさらに他の実施形態を示す縦断面図である。
【符号の説明】
10 流体浄化装置
12 被処理水
14 大浴槽
16 循環用配管
20 循環ポンプ
22 濾過タンク
24 熱交換器
30 大表面積材料
32 反応容器
34 内筒
38 エアーポンプ
44 混合装置
[0001]
BACKGROUND OF THE INVENTION
This invention sterilizes and purifies fluids such as bath water, domestic wastewater, drinking water, pool water, cooling water, washing water, stored water, aquaculture water, industrial waste water, agricultural water such as hydroponics, and air. The present invention relates to a fluid purification method and a fluid purification apparatus.
[0002]
[Prior art]
[Patent Document 1]
JP-A-8-89725 [Patent Document 2]
JP, 11-262759, A Conventionally, as a sterilization and purification device of water and air, there were an ultraviolet sterilizer, an ozone sterilizer, a photocatalyst sterilizer, etc. Among them, the ultraviolet sterilizer uses a lamp that generates light in the ultraviolet wavelength band. However, the electrodeless discharge lamp having a short lifetime and a long lifetime is expensive and requires a high maintenance cost. In addition, uniform light distribution cannot be performed around the entire circumference of the lamp, and a large processing apparatus requires a plurality of light sources, which requires equipment costs. Furthermore, the lamp surface or cover that comes into contact with the sewage to be treated is contaminated with organic matter or inorganic matter, so that periodic cleaning work is required.
[0003]
Since the ozone sterilization apparatus discharges oxygen by a general silent discharge method to ozonize oxygen, the contact between oxygen and the discharge site is short, and high concentration ozone cannot be generated. In addition, ozone could not be efficiently dissolved in water, and the generated ozone escaped into the atmosphere without returning to oxygen or dissolving in water. Furthermore, when ozone is made high, there is also a problem that there is an odor due to leaked ozone and it is harmful to the human body.
[0004]
In the photocatalyst sterilization apparatus, it is difficult to fix the titanium oxide as the photocatalyst, and the titanium oxide peels off due to long-term use, resulting in a decrease in performance. Furthermore, although oxygen is required for sterilization using a photocatalyst, sewage and bath water have little oxygen and cannot effectively exhibit the sterilization action of the photocatalyst. In addition, the photocatalyst needs light, and it is difficult to irradiate the entire photocatalyst with uniform light, and bacteria and organic substances come into contact with the photocatalyst to exert a bactericidal action, so a large surface area is necessary. It was difficult to increase the surface area of the photocatalyst.
[0005]
Furthermore, as disclosed in Patent Documents 1 and 2, a reaction vessel provided with a photocatalyst is provided in the middle of a path for circulating the water to be treated, and the reaction vessel is irradiated with ultraviolet rays to be treated with the photocatalyst. Some have been proposed to detoxify these bacteria. In this fluid purification device, a net sprayed with titanium oxide is placed in a reaction vessel, irradiated with an ultraviolet lamp, passed through water to be treated and sterilized by the action of a photocatalyst. Patent Document 2 also proposes a treatment method for supplying a gas containing ozone into the water to be treated using the same apparatus.
[0006]
The principle of sterilization treatment using this photocatalyst is as follows. When a photocatalyst such as titanium dioxide which is a semiconductor material is irradiated with ultraviolet light having a wavelength of 400 nm or less, holes are generated in the valence band and electrons are generated in the conduction band. The oxidation potential of the holes is higher than that of fluorine, ozone, hydrogen peroxide, etc., and the organic matter is completely oxidized and decomposed by the photocatalyst, and finally it is completely oxidized to carbon dioxide gas, water, sulfuric acid, nitric acid, etc. Is done. The mechanism of the oxidation reaction by the photocatalyst is that the oxidation reaction occurs due to the hydroxyl radical (OH radical) that is rich in the reaction activity that is generated by the reaction of holes or water generated when ultraviolet light is irradiated to the photocatalyst. It is believed that. At this time, the reduction reaction between the electrons generated simultaneously with the holes generated when the ultraviolet rays are irradiated and oxygen gas or the like proceeds in parallel. The action of the photocatalyst has a stronger sterilizing ability than conventional sterilizing agents such as ozone, hydrogen peroxide, chlorine, and the like, and has a function of decomposing organic substances. In addition, the lifetime of holes and OH radicals generated by light irradiation is as short as less than milliseconds, so there is no residue after treatment like oxidants such as ozone and hydrogen peroxide, and no equipment for treating residual oxidants is required. There is an advantage of being. For this reason, many fluid purification devices using a photocatalyst have been proposed so far.
[0007]
However, since the action of the photocatalyst occurs only on the surface of the photocatalyst irradiated with light, it is necessary to increase the surface area of the photocatalyst to increase the contact efficiency with the water to be treated in order to perform the treatment efficiently. In addition, since holes or OH radicals generated when the photocatalyst is irradiated with ultraviolet light have a short lifetime, it is necessary to react in a short time. Further, there is a problem that ultraviolet light is easily absorbed by water and easily attenuates in water.
[0008]
Furthermore, in the case of the above-mentioned conventional technology, the oxidation and sterilization action occurs only on the surface of the photocatalyst irradiated with ultraviolet rays, and only a part of the water to be treated that contacts the surface of the net sprayed with the photocatalyst such as titanium oxide. Only the processing was performed, and the processing capability was low. In addition, a net on which a photocatalyst such as titanium oxide is sprayed easily peels off the photocatalyst on the surface and has low durability. When the thermally sprayed photocatalyst disappears, there is a problem that the function as a photocatalyst is lost and the portion needs to be replaced.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems of the prior art. A fluid purification method and fluid purification in which a fluid to be treated is uniformly and effectively sterilized and purified, and has a simple configuration and is easy to maintain. An object is to provide an apparatus.
[0010]
[Means for Solving the Problems]
The present invention provides a reaction vessel provided with an outer cylinder in the middle of a pipe through which a fluid to be treated such as sewage, bathtub water, tap water or air flows, and one provided on the entire inner circumference of the outer cylinder of the reaction vessel. A transparent inner cylinder provided with a predetermined space in the outer cylinder of the reaction vessel and having an inlet and an outlet communicating with the pipe, respectively, and a pair of the electrode and the one electrode provided in the inner cylinder. And supplying oxygen to a sealed space between the outer cylinder and the inner cylinder, generating a discharge between the electrodes between the outer cylinder and the inner cylinder, and Is a fluid purification method in which ozone is generated by passing through the discharge section between the electrodes, and this ozone is mixed with the fluid flowing into the inner cylinder.
[0011]
Further, a photocatalyst is provided in the inner cylinder, ultraviolet rays are generated by the discharge , and the photocatalyst in the transparent inner cylinder is caused to function by the ultraviolet rays. In addition, a titanium or titanium alloy large surface area material is provided in the inner cylinder, a titanium dioxide photocatalyst is formed on the surface of the large surface area material by the oxidizing action of ozone, and ultraviolet rays are generated by the discharge. The photocatalyst of the large surface area material in the transparent inner cylinder is caused to function by ultraviolet rays.
[0012]
Further the invention, sewage and bath water, a reaction vessel equipped with an outer cylinder provided in the middle of the pipe in which the processing fluid flows, such as tap water or air, is provided on the entire circumference the outer tube inner surface of the reaction vessel One electrode, a transparent inner cylinder provided with a predetermined space in the outer cylinder of the reaction vessel and having an inlet and an outlet each communicating with the pipe, and the one electrode provided in the inner cylinder From the other electrode forming a pair, an oxygen supply means for supplying oxygen to a sealed space between the outer cylinder and the inner cylinder of the reaction vessel, and the oxygen that has passed between the outer cylinder and the inner cylinder, The fluid purification device includes a mixing device that mixes ozone generated by the discharge between the electrodes with the fluid on the upstream side of the inner cylinder.
[0013]
The reaction vessel is formed of a stainless steel cylinder, and this cylinder also serves as an outer cylinder to constitute the one electrode. The inner cylinder has a large surface area material made of titanium or a titanium alloy, and the large surface area material is a photocatalyst and constitutes the other electrode. The photocatalyst may be a glass bead surface provided with a photocatalyst, or a photocatalyst such as titanium oxide provided on the surface of a large surface area material such as stainless steel, ceramics, or glass fiber.
[0014]
This invention generates discharge between the inner cylinders of the reaction vessel of the fluid to be treated, generates ozone by passing oxygen between them, and mixes this ozone in the water to be treated for sterilization and purification treatment It is. Furthermore, the ultraviolet light generated by the discharge is applied to the photocatalyst of the large surface area material in the inner cylinder to cause sterilization and purification action by the photocatalyst, and further, the light catalyst is applied to the surface of the large surface area material containing titanium by the above ozone or the like. It is designed to be played back at all times.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of a fluid purification apparatus of the present invention. A fluid purification apparatus 10 according to this embodiment is a bath that circulates in a hot spring, a health facility, or the like as treated water 12 that is a treated fluid. Of hot water. The fluid purification device 10 of this embodiment includes a hair catcher 18 that collects hair in a circulation pipe 16 through which the water 12 to be treated in the bathtub 14 flows and circulates, and a circulation pump 20 that is provided downstream of the hair catcher 18. have. A filtration tank 22 is provided on the downstream side of the circulation pump 20, and a heat exchanger 24 is provided on the downstream side of the filtration tank 22, and the temperature of the water to be treated 12 is raised to a predetermined temperature, and is passed through the circulation pipe 16. The treated water 12 is returned to the large bathtub 14.
[0016]
As shown in FIGS. 1 and 2, the circulation pipe 16 between the hair catcher 18 and the circulation pump 20 has a mesh or a titanium wire, a collection of fibrous titanium materials, In addition, a reaction vessel 32 containing a large surface area material 30 such as a porous titanium material is attached. The large surface area material 30 may be preliminarily formed with a titanium dioxide photocatalyst on the surface of titanium or a titanium alloy, or may be one that forms a titanium dioxide photocatalyst during use with ozone, as will be described later. Further, a photocatalyst may be attached to a large surface area material other than titanium such as glass or stainless steel.
[0017]
The reaction vessel 32 is a stainless steel cylinder, and circulation pipes 16 are connected to both ends thereof. A concentrically transparent inner cylinder 34 is attached in the reaction vessel 32 which is an outer cylinder, and the inner cylinder 34 communicates with an inlet 34a and an outlet 34b of a connection portion with the circulation pipe 16 in an airtight state. Yes. Therefore, the space between the inner wall of the reaction vessel 32 and the outer wall of the inner cylinder 34 is a cylindrical sealed space 32a. Between the inner wall of the reaction vessel 32 and the outer wall of the inner cylinder 34, a pipe 36 for supplying air containing oxygen to the downstream end thereof is connected to a cylindrical sealed space 32a. An air pump 38 is provided so that air can be supplied through a filter 40 that removes dust and moisture.
[0018]
A pipe 42 communicating with the space 32a is connected to the upstream side of the space 32a between the reaction vessel 32 and the inner cylinder 34, and the pipe 42 is connected to a mixing device 44 attached to the circulation pipe 16 on the upstream side. Has been. As shown in FIG. 3, the mixing device 44 is a porous body such as a ring-shaped ceramics or metal having a pipe 42 connected to the side surface, or an open cell resin, and discharges the gas as fine bubbles.
[0019]
The inner cylinder 34 is made of quartz glass or borosilicate glass that allows easy passage of ultraviolet rays. Since the stainless steel reaction vessel 32 is connected to the positive side of the power supply device as one electrode for discharge described later, the stainless steel portion is installed in an insulated state. The large surface area material 30 such as a titanium wire constitutes the other electrode together with the water to be treated 12 in the inner cylinder 34 and is connected to the ground side of the power supply device.
[0020]
Next, the operation and action of this embodiment will be described. The water to be treated 12 is pressurized by the circulation pump 20 and is pumped into the filtration tank 22 of the fluid purification device 10 to remove foreign matter and the like to some extent, and is heated to a certain temperature via the heat exchanger 24 and is sent to the large bathtub. 14 is returned. Further, on the upstream side of the circulation pump 20, the water 12 to be treated from the large bathtub 14 is removed by the hair catcher 18 by the circulation pipe 16 and is sucked into the circulation pump 20 through the reaction container 32.
[0021]
In the reaction vessel 32, silent discharge is generated in the space 32a by the electrode by the reaction vessel 32 and the other electrode by the large surface area material 30 and the water to be treated 12 in contact therewith. The voltage at this time is adjusted as appropriate, and a power supply device (not shown) is set to a voltage that allows good silent discharge. Furthermore, ultraviolet rays are generated by silent discharge all around the space 32a. The generated ultraviolet rays are reflected from the inner surface of the stainless steel reaction vessel 32, are irradiated into the transparent inner cylinder 34, and are irradiated onto the surface of the large surface area material 30 on which the photocatalyst is formed. Furthermore, air containing oxygen is sent from the air pump 38 through the pipe 36 into the space 32a, and the oxygen is converted into ozone by passing through the discharge section in the space 32a and sent out from the pipe 42. . This ozone is mixed into the treated water 12 flowing through the circulation pipe 16 by being made into fine bubbles by the mixing device 44, and flows into the upstream side of the inner cylinder 34.
[0022]
The ozone mixed with the water to be treated 12 passes through the gap between the large surface area materials 30 in the reaction vessel 32. The photocatalyst on the surface of the large surface area material 30 generates OH radicals by irradiation with ultraviolet rays by silent discharge, thereby sterilizing and decomposing organic substances. This sterilization / purification mechanism is as described above. At the same time, sterilization with ozone mixed on the upstream side is also performed. Further, the large surface area material 30 made of titanium or a titanium alloy oxidizes the exposed titanium atoms with ozone in the liquid to be treated 12 even when the photocatalyst on the surface is peeled off, and the surface of the titanium dioxide is easily formed on the surface. A photocatalyst is formed.
[0023]
According to the fluid purification method and apparatus of this embodiment, it is not necessary to use an ultraviolet lamp, and it is possible to always irradiate the inner cylinder 34 with uniform ultraviolet rays. In addition, in the inner cylinder 34, organic substances do not adhere to the inner surface due to the action of the photocatalyst, so that a clean surface can be maintained at all times, and the number of cleaning steps can be greatly reduced. Further, since silent discharge occurs around the entire circumference of the reaction vessel 32 and ultraviolet rays are incident from the whole circumference of the inner cylinder 34, the ultraviolet rays are efficiently irradiated onto the photocatalyst of the large surface area material 30.
[0024]
Moreover, in the space 32a in the reaction vessel 32, discharge occurs over a relatively long section, oxygen can be efficiently converted into ozone, and high concentration ozone can be generated. And the to-be-processed water 12 sterilization and the decomposition | disassembly process of organic substance can be reliably performed with high efficiency with an ultraviolet-ray, ozone, and a photocatalyst. For example, it is possible to reliably prevent contamination of bath water by Legionella bacteria and the like, and a large amount of water to be treated 12 can be treated. Furthermore, even if the photocatalyst by titanium dioxide of the large surface area material 30 in the reaction vessel 32 is peeled off due to long-term use, the ozone from the ozone generator 26 causes the surface of the large surface area material 30 made of titanium or a titanium alloy. In this case, titanium dioxide is always produced and the photocatalyst is not peeled off.
[0025]
Further, in the photocatalyst upon irradiation with ultraviolet light, electrons generated simultaneously with holes react rapidly with oxygen to generate superoxide (O 2 ). At this time, if oxygen is insufficient, unreacted electrons recombine with holes and inhibit the oxidation reaction of holes. In this invention, sufficient oxygen-containing gas including ozone is supplied to the photocatalyst surface. Therefore, recombination of the electrons and holes can be prevented, and as a result, the oxidation reaction efficiency between the water to be treated 12 and the titanium dioxide photocatalyst can be increased.
[0026]
Furthermore, according to this embodiment, due to the mixing and stirring effect of the water to be treated 12 in the reaction vessel 32, the water to be treated 12 can be efficiently brought into contact with the surface of the photocatalyst, and sufficient oxygen is supplied. The reaction efficiency between the photocatalyst and the water to be treated 12 can be dramatically increased.
[0027]
The fluid purification device of the present invention is not limited to the above embodiment, and as shown in FIG. 5, a plurality of electrodes 50 are provided in the longitudinal direction on the inner peripheral surface of the inner cylinder 34 in the reaction vessel 32, and are made of stainless steel. A silent discharge may be generated in the space 32 a between the reaction vessel 32 and the electrode 50. Thereby, even when the conductivity of the fluid flowing in the inner cylinder 34 is low, silent discharge can be generated in the space 32a. For example, drinking water or the like has low conductivity because there is little electrolyte in the liquid, but this can generate silent discharge well, efficiently generate ozone, and dissolve in drinking water flowing in the inner cylinder 34. I can do it. It is also sterilized by ultraviolet rays caused by silent discharge. When flowing drinking water, in order to prevent consumption of ozone by the photocatalyst, the photocatalyst is not put in the inner cylinder 34 and is used in the mode shown in FIG.
[0028]
Further, air may be passed through the inner cylinder 34 of the reaction vessel 32 shown in FIG. 4 to be used for air sterilization and deodorization. In this case, the air flowing in the inner cylinder 34 is sterilized by ozone and ultraviolet rays, and further, sterilization, decomposition of organic substances, deodorization, and the like are performed by a photocatalyst. In addition, ozone is consumed by the photocatalyst and is converted to oxygen so that the ozone odor does not leak.
[0029]
In addition, as shown in FIG. 6, the fluid purification apparatus of the present invention may mix ozone gas from the space 32 a in the reaction vessel 32 into the water to be treated 12 in the pipe 16 through the pressurizing pump 52. . In this case, air containing ozone is sucked using the negative pressure of the pipe flowing into the pressurizing pump 52, and is stirred into fine bubbles by the impeller of the pressurizing pump 52, so that more ozone gas is dissolved in the water 12 to be treated. To do. By using the pressurizing pump 52, even when the internal pressure of the water to be treated in the pipe 16 is high, ozone can be reliably and efficiently mixed and dissolved in the water to be treated 12. In addition, the fine bubbles of ozone and oxygen mixed in the water to be treated 12 further activate the photocatalyst.
[0030]
Further, the reaction vessel 32 is also used as a treatment tank such as the hair catcher 18, and a hair catcher basket is provided on the inlet side of the water to be treated 12 of the reaction vessel 32. The cylinder 34 may be provided and the large surface area material 30 may be provided therein. In this case as well, a silent discharge is generated between the inner cylinder 34 and the inner wall of the reaction vessel 32 to irradiate the inner cylinder with ultraviolet rays, and the generated ozone is exposed to the upstream side of the reaction vessel 32. Mix in treated water 12. Thereby, further downsizing and space saving of the apparatus can be achieved.
[0031]
Further, a fluorescent agent for effectively generating ultraviolet rays may be applied to the outer surface of the inner cylinder 34.
[0032]
Water to be treated which is the target of the fluid purification method and apparatus of the present invention includes domestic wastewater, industrial water, agricultural water such as hydroponics, water that requires sterilization, air, etc. It can be used for all fluids such as gas.
[0033]
【The invention's effect】
According to the fluid purification method and apparatus using a photocatalyst according to the present invention, ultraviolet rays can be generated effectively without using an ultraviolet lamp, and the water to be treated can be reliably sterilized and purified together with ultraviolet rays and ozone. it can. In addition, the generated ultraviolet rays are irradiated from the entire circumference of the inner cylinder to the inside, and even when a photocatalyst is used, the large surface area material that is the photocatalyst is efficiently irradiated with ultraviolet rays, and the sterilization by the photocatalyst and the decomposition of organic matter are performed efficiently Can be made. By combining the treatment with the photocatalyst, harmful organic substances, microorganisms such as bacteria, odorous substances and hardly decomposable substances contained in the water to be treated can be efficiently sterilized and decomposed and removed in large quantities.
[0034]
In addition, by forming a large surface area material with a photocatalyst on its surface using titanium or a titanium alloy, even if the photocatalyst of titanium dioxide is peeled off after long-term use, the titanium atoms of the large surface area material can be obtained by a strong oxidizing action by ozone. Oxidize and constantly regenerate the titanium dioxide photocatalyst on the surface. Thereby, the large surface area material can function semipermanently as a photocatalyst, and can solve problems such as peeling of the photocatalyst due to use.
[Brief description of the drawings]
FIG. 1 is a schematic piping diagram of a fluid purification device according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a reaction vessel according to this embodiment.
FIG. 3 is a front view of the mixing apparatus of this embodiment.
FIG. 4 is a cross-sectional view of the reaction vessel of this embodiment.
FIG. 5 is a cross-sectional view showing another embodiment of the reaction vessel of the present invention.
FIG. 6 is a longitudinal sectional view showing still another embodiment of the reaction vessel of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fluid purification device 12 Water to be treated 14 Large bathtub 16 Circulation piping 20 Circulation pump 22 Filtration tank 24 Heat exchanger 30 Large surface area material 32 Reaction vessel 34 Inner cylinder 38 Air pump 44 Mixing device

Claims (4)

被処理流体が流れる配管の途中に設けられ外筒を備えた反応容器と、この反応容器の上記外筒内面全周に設けられた一方の電極と、この反応容器の上記外筒内に所定の空間を空けて設けられるとともに入口と出口が各々上記配管に連通した透明な内筒と、この内筒内に設けられ上記一方の電極と対を成す他方の電極と、上記内筒内に設けられた光触媒とを備え、上記外筒と内筒との間の密閉された空間に酸素を供給し、上記外筒と内筒との間で上記電極間に放電を発生させ、上記酸素が上記各電極間の放電区間を通過することによりオゾンを生成し、このオゾンを上記内筒に流入する流体に混合するとともに、上記放電により紫外線を発生させ、この紫外線により上記透明な内筒内の上記光触媒を機能させることを特徴とする流体浄化方法。A reaction vessel provided in the middle of a pipe through which the fluid to be treated is provided and provided with an outer cylinder , one electrode provided on the entire inner surface of the outer cylinder of the reaction vessel, and a predetermined inside of the outer cylinder of the reaction vessel A transparent inner cylinder provided with a space and having an inlet and an outlet each communicating with the pipe, the other electrode provided in the inner cylinder and paired with the one electrode, and provided in the inner cylinder Provided with a photocatalyst , supplying oxygen into a sealed space between the outer cylinder and the inner cylinder, generating a discharge between the electrodes between the outer cylinder and the inner cylinder, Ozone is generated by passing through the discharge section between the electrodes, and this ozone is mixed with the fluid flowing into the inner cylinder, and ultraviolet light is generated by the discharge, and the photocatalyst in the transparent inner cylinder is generated by the ultraviolet light. A fluid purification method characterized by causing the function to function . 被処理流体が流れる配管の途中に設けられ外筒を備えた反応容器と、この反応容器の上記外筒内面全周に設けられた一方の電極と、この反応容器の上記外筒内に所定の空間を空けて設けられるとともに入口と出口が各々上記配管に連通した透明な内筒と、この内筒内に設けられ上記一方の電極と対を成す他方の電極と、上記内筒内に位置したチタンまたはチタン合金製の大表面積材料を設け、上記外筒と内筒との間の密閉された空間に酸素を供給し、上記外筒と内筒との間で上記電極間に放電を発生させ、上記酸素が上記各電極間の放電区間を通過することによりオゾンを生成し、このオゾンを上記内筒に流入する流体に混合し、上記大表面積材料の表面に上記オゾンによる酸化作用により二酸化チタンの光触媒を形成し、上記放電により紫外線を発生させ、この紫外線により上記透明な内筒内の上記大表面積材料の光触媒を機能させることを特徴とする流体浄化方法。 A reaction vessel provided in the middle of a pipe through which the fluid to be treated is provided and provided with an outer cylinder, one electrode provided on the entire inner surface of the outer cylinder of the reaction vessel, and a predetermined inside of the outer cylinder of the reaction vessel A transparent inner cylinder provided with a space and an inlet and an outlet each communicating with the pipe, the other electrode provided in the inner cylinder and paired with the one electrode, and positioned in the inner cylinder A large surface area material made of titanium or titanium alloy is provided, oxygen is supplied to a sealed space between the outer cylinder and the inner cylinder, and a discharge is generated between the electrodes between the outer cylinder and the inner cylinder. The oxygen passes through the discharge section between the electrodes to generate ozone, and this ozone is mixed with the fluid flowing into the inner cylinder, and the surface of the large surface area material is oxidized by the ozone to produce titanium dioxide. The photocatalyst is formed and purple is generated by the above discharge. Line to generate a fluid purification method, characterized in that to function photocatalyst of the large surface area materials in the inner cylinder the clear by ultraviolet. 被処理流体が流れる配管の途中に設けられ外筒を備えた反応容器と、この反応容器の上記外筒内面全周に設けられた一方の電極と、この反応容器の上記外筒内に所定の空間を空けて設けられるとともに入口と出口が各々上記配管に連通した透明な内筒と、この内筒内に設けられチタンまたはチタン合金製の大表面積材料から成るとともに上記一方の電極と対を成す他方の電極と、上記反応容器の外筒と内筒との密閉された空間に酸素を供給する酸素供給手段と、上記外筒と内筒との間を通過した上記酸素から、上記電極間の放電によって生成されたオゾンを、上記内筒の上流側の流体に混合する混合装置とを備えたことを特徴とする流体浄化装置。A reaction vessel provided in the middle of a pipe through which the fluid to be treated is provided and provided with an outer cylinder , one electrode provided on the entire inner surface of the outer cylinder of the reaction vessel, and a predetermined inside of the outer cylinder of the reaction vessel A transparent inner cylinder provided with a space and an inlet and an outlet communicating with the pipe respectively, and a large surface area material made of titanium or titanium alloy provided in the inner cylinder and paired with the one electrode From the other electrode, the oxygen supply means for supplying oxygen to the sealed space between the outer cylinder and the inner cylinder of the reaction vessel, and the oxygen passing between the outer cylinder and the inner cylinder, A fluid purification device comprising: a mixing device that mixes ozone generated by electric discharge with a fluid upstream of the inner cylinder. 上記反応容器はステンレスの筒により形成され、この筒が外筒を兼用し、上記一方の電極を構成していることを特徴とする請求項3記載の流体浄化装置。    4. The fluid purification apparatus according to claim 3, wherein the reaction vessel is formed of a stainless steel cylinder, and the cylinder also serves as an outer cylinder to constitute the one electrode.
JP2003011848A 2003-01-21 2003-01-21 Fluid purification method and fluid purification device Expired - Fee Related JP4093409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011848A JP4093409B2 (en) 2003-01-21 2003-01-21 Fluid purification method and fluid purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011848A JP4093409B2 (en) 2003-01-21 2003-01-21 Fluid purification method and fluid purification device

Publications (2)

Publication Number Publication Date
JP2004223345A JP2004223345A (en) 2004-08-12
JP4093409B2 true JP4093409B2 (en) 2008-06-04

Family

ID=32900631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011848A Expired - Fee Related JP4093409B2 (en) 2003-01-21 2003-01-21 Fluid purification method and fluid purification device

Country Status (1)

Country Link
JP (1) JP4093409B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911915B2 (en) 2005-05-09 2012-04-04 トヨタ自動車株式会社 Target decomposition method and decomposition apparatus
JP4355315B2 (en) * 2005-12-26 2009-10-28 東洋バルヴ株式会社 Fluid purification device
US9493817B2 (en) 2007-03-05 2016-11-15 Genesis Research Institute, Inc. Decomposition method and decomposition apparatus for nucleic acid polymer
JP2010069353A (en) * 2008-09-16 2010-04-02 Toyo Valve Co Ltd Cleaning apparatus
JP2011031227A (en) * 2009-08-06 2011-02-17 Techno Ryowa Ltd Air cleaning system
CN114950244B (en) * 2022-05-05 2023-04-11 深圳市耀星新材料有限公司 Multi-channel production equipment and process for epoxy structural adhesive

Also Published As

Publication number Publication date
JP2004223345A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4355315B2 (en) Fluid purification device
AU698109B2 (en) Method and apparatus for treatment of fluids
JP5015542B2 (en) Water purification equipment
JP2010069353A (en) Cleaning apparatus
JP4229363B2 (en) Water treatment equipment
JPH1133567A (en) Ozone decomposing method and apparatus
JP4093409B2 (en) Fluid purification method and fluid purification device
JPH0651190B2 (en) Water purification method
JP3646509B2 (en) Water treatment equipment using photocatalyst
KR200399286Y1 (en) Sterilizer using uv rays and fine gas drops
KR100641065B1 (en) Sterilizer using uv rays and fine gas drops
JP2005193216A (en) Contaminant removing apparatus
KR20040049470A (en) Water sterilization device
CN111072101A (en) Heterogeneous catalytic reactor
JPH1177031A (en) Method and apparatus for ultraviolet radiation sterilizing purification
CN219259705U (en) Advanced oxidation disinfection equipment for hydroxyl radicals
KR102525217B1 (en) Non-degradable Waste Water Treatment System
JPH08155445A (en) Water treatment apparatus
JPH11347576A (en) Method and apparatus for treating water
JP2004089935A (en) Water treatment method and water treatment apparatus
KR200294904Y1 (en) The Treatment Equipment of Special Organic Liquid Wastes - GP&E's AOP Units
JP2001252652A (en) Water purifying device
CN117658274A (en) Low-power-consumption high-efficiency ultraviolet light catalytic oxidation method
CN117886396A (en) Assembled reaction cylinder for exciting catalytic oxidation function of ultraviolet germicidal lamp
JP2001170625A (en) Water treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160314

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees