JP4092790B2 - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
JP4092790B2
JP4092790B2 JP27739298A JP27739298A JP4092790B2 JP 4092790 B2 JP4092790 B2 JP 4092790B2 JP 27739298 A JP27739298 A JP 27739298A JP 27739298 A JP27739298 A JP 27739298A JP 4092790 B2 JP4092790 B2 JP 4092790B2
Authority
JP
Japan
Prior art keywords
adhesive
resin
alkyl group
circuit board
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27739298A
Other languages
Japanese (ja)
Other versions
JP2000114317A (en
Inventor
朗 永井
伊津夫 渡辺
悟 太田
賢三 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27739298A priority Critical patent/JP4092790B2/en
Publication of JP2000114317A publication Critical patent/JP2000114317A/en
Application granted granted Critical
Publication of JP4092790B2 publication Critical patent/JP4092790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばフリップチップ実装方式により半導体チップを基板と接着剤で接着固定すると共に、両者の電極同士を電気的に接続する回路板に関する。
【0002】
【従来の技術】
半導体実装分野では、低コスト化・高精細化に対応した新しい実装形態としてICチップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装が注目されている。フリップチップ実装方式としては、チップの端子にはんだバンプを設け、はんだ接続を行う方式や導電性接着剤を介して電気的接続を行う方式が知られている。これらの方式では、接続するチップと基板の熱膨張係数差に基づくストレスが、各種環境に曝した場合、接続界面で発生し接続信頼性が低下するという問題がある。このため、接続界面のストレスを緩和する目的で一般にエポキシ樹脂系のアンダフィル材をチップ/基板の間隙に注入する方式が検討されている。しかし、このアンダフィル注入工程は、プロセスを煩雑化し、生産性、コストの面で不利になるという問題がある。このような問題を解決すべく最近では、異方導電性と封止機能を有する異方導電性接着剤を用いたフリップチップ実装が、プロセス簡易性という観点から注目されている。
【0003】
【発明が解決しようとする課題】
チップを異方導電材を介して基板に搭載する場合、吸湿条件下では接着剤とチップまたは接着剤と基板界面の接着力が低下し、さらに、温度サイクル条件下ではチップと基板の熱膨張係数差に基づくストレスが接続部において生じることによって、熱衝撃試験、PCT試験、高温高湿試験等の信頼性試験を行うと接続抵抗の増大や接着剤の剥離が生じるという問題がある。また、半導体パッケージでは高温高湿試験で吸湿させた後に耐はんだリフロー温度試験を行うため、接着剤中に吸湿された水分が急激に膨張することによって接続抵抗の増大や接着剤の剥離が生じるという問題がある。一般に、エポキシ樹脂の内部応力を緩和し強靭化を図る目的で、液状ゴムや架橋ゴム及びコアシェル型のゴム粒子を分散させる技術が知られている。しかしながら、エポキシ樹脂中にゴムを分散させた硬化物はエポキシ樹脂単体の硬化物に対して軟化点温度(又はガラス転移温度、以下Tgと記す)が低下することが知られており、高耐熱性が要求される分野では信頼性を低下させる原因となる。一方、ゴム分散系でTgを向上させるべくエポキシ樹脂の架橋密度を増加させることは、ゴム分散の効果を低下させ、硬化物の脆さを増加させると共に、吸水率を増加させ、信頼性を低下させる原因となる。また、Tgを低下させずにエポキシ樹脂を強靭化させる方法として、エンジニアリングプラスチックとして知られる高耐熱性の熱可塑性樹脂との配合が知られているが、一般に、これらのエンジニアリングプラスチックは溶剤に対する溶解性に乏しい為、エポキシ樹脂との配合は粉体の練り込みによるものであり、接着剤用途への展開は不適当である。
本発明は、接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する回路板を提供するものである。
【0004】
【課題を解決するための手段】
本発明の回路板は、第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第一の回路部材より熱膨張係数が大きい第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に接着剤を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させた回路板であって、前記接着剤が、少なくとも三次元架橋性樹脂及び吸水率0.01〜0.2重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂を含む接着剤であることを特徴とする回路板。相対向する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路部材接続用接着剤であって、接着樹脂組成物が少なくとも三次元架橋性樹脂及び吸水率0.01〜0.2重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂を含むことを特徴とするものである。吸水率0.01〜0.3重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂は、下記一般式(1)で示され、芳香族炭化水素系溶剤に溶解できるポリアリレート樹脂が使用される。
【0005】
【化4】

Figure 0004092790
(ここでRは水素原子または炭素数1〜2のアルキル基、好ましくは炭素数1〜4の直鎖または分岐したアルキル基であり、Rは炭素数2〜13の直鎖状または分岐したアルキル基であり、nは10〜250の整数である)
【0006】
三次元架橋性樹脂は、少なくともエポキシ系樹脂と潜在性硬化剤を含有しているものが好ましい。接着剤樹脂組成物はフィルム状であることが好ましい。接着剤樹脂組成物には、導電粒子が0.1〜20体積%含有されていてもよい。
【0007】
【発明の実施の形態】
本発明に用いられる回路部材として半導体チップ等の能動素子、抵抗体、コンデンサ等の受動素子、プリント基板、ポリイミドやポリエステルを基材としたフレキシブル配線等が挙げられる。半導体チップや基板の電極パッド上には、めっきで形成されるバンプや金ワイヤの先端をトーチ等により溶融させ、金ボールを形成し、このボールを電極パッド上に圧着した後、ワイヤを切断して得られるワイヤバンプ等の突起電極を設け、接続端子として用いることができる。
本発明に用いられる接着剤の吸水率0.01〜0.3重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂としては一般式(1)で示され、芳香族炭化水素系溶媒に可溶であるポリアリレート樹脂が使用される。
前記ポリアリレート樹脂は、ビスフェノール化合物又はそのエステル化誘導体と芳香族ジカルボン酸又はその酸塩化物から合成される。
【0008】
前記ポリアリレート樹脂を合成するためのビスフェノール化合物としては、1,1(4,4’−ジヒドロキシジフェニル)3−メチルブタン(R1は水素原子、R2は炭素数4の分岐したアルキル基)、2,2(4,4’−ジヒドロキシジフェニル)4−メチルペンタン(R1は炭素数1のアルキル基、R2は炭素数4の分岐したアルキル基)、1,1(4,4’−ジヒドロキシジフェニル)3ーエチルヘキサン(R1は水素原子、R2は炭素数7の分岐したアルキル基)3,3(4,4’−ジヒドロキシジフェニル)ペンタン(R1は炭素数2のアルキル基、R2は炭素数2のアルキル基)、2,2(4,4’−ジヒドロキシジフェニル)ヘプタン(R1は炭素数1のアルキル基、R2は炭素数5の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)ヘプタン(R1は水素原子、R2は炭素数6の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)オクタン(R1は炭素数1のアルキル基、R2は炭素数6の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)オクタン(R1は炭素数1のアルキル基、R2は炭素数7の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)ノナン(R1は炭素数1のアルキル基、R2は炭素数7の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)ノナン(R1は炭素数1のアルキル基、R2は炭素数8の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)デカン(R1は炭素数1のアルキル基、R2は炭素数8の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)デカン(R1は炭素数1のアルキル基、R2は炭素数9の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)ウンデカン(R1は炭素数1のアルキル基、R2は炭素数9の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)ウンデカン(R1は水素原子、R2は炭素数10の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)ドデカン(R1は炭素数1のアルキル基、R2は炭素数10の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)ドデカン(R1は水素原子、R2は炭素数11の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)トリデカン(R1は炭素数1のアルキル基、R2は炭素数11の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)トリデカン(R1は水素原子、R2は炭素数12の直鎖状アルキル基)、2,2(4,4’−ジヒドロキシジフェニル)テトラデカン(R1は炭素数1のアルキル基、R2は炭素数12の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)テトラデカン(R1は水素原子、R2は炭素数13の直鎖状アルキル基)、及び2,2(4,4’−ジヒドロキシジフェニル)ペンタデカン(R1は炭素数1のアルキル基、R2は炭素数13の直鎖状アルキル基)が挙げられ、これらは2種以上が混合されていてもよい。好ましくは2,2(4,4’−ジヒドロキシジフェニル)オクタン(R1は炭素数1のアルキル基、R2は炭素数6の直鎖状アルキル基)、1,1(4,4’−ジヒドロキシジフェニル)デカン(R1は炭素数1のアルキル基、R2は炭素数9の直鎖状アルキル基)が使用される。
【0009】
また、前記ポリアリレート樹脂を合成するための芳香族ジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、4ーメチルフタル酸、5ーtertーブチルーイソフタル酸及び2,5ージメチルフタル酸が挙げられる。これらは単独もしくは2種以上が混合されてもよく、好ましくは(A)イソフタル酸または5ーtertーブチルーイソフタル酸及び(B)テレフタル酸が(A):(B)=1:99〜99:1の混合比であることが好ましく、さらに好ましくは(A):(B)=50:50であることが好ましい。
【0010】
前記ポリアリレート樹脂は界面重合法、溶液重合法又は溶融重合法等の通常の方法で合成することができる。例えば、界面重合法の場合、ビスフェノール化合物をベンジルトリエチルアンモニウムクロリド等の触媒と共に水酸化ナトリウム水溶液に溶解し、芳香族ジカルボン酸塩化物を水に溶解せず、生成したポリアリレート樹脂が溶解する溶媒、例えば、トルエンに溶解し、これらの溶液を混合して10〜50℃で30分〜3時間反応させて目的のポリアリレート樹脂を合成する。
また、溶液重合法の場合、生成するポリアリレート樹脂が溶解するような溶媒、例えば、トルエン、クロロホルム、テトラヒドロフラン、1、4−ジオキサン、シクロヘキサノン、ピリジン等にビスフェノール化合物及び芳香族ジカルボン酸塩化物を溶解し、トリエチルアミン等の塩基存在下に10℃〜50℃で30分〜3時間反応させて目的のポリアリレート樹脂を合成する。
さらに、溶融重合法の場合、ビスフェノール化合物のエステル化誘導体例えばビスフェノールジアセテートと芳香族ジカルボン酸を200〜350℃の高温でエステル交換反応を行うことによって、目的のポリアリレート化合物を合成する。
【0011】
本発明のポリアリレート樹脂は、接着剤に強靭性を付与する目的で、テトラヒドロフランを溶媒としたゲルパーミテーションクロマトグラフィーで測定した際の分子量が、ポリスチレン換算で2万以上30万以下が好ましい。2万以下では硬化物が脆くなくおそれがあり、30万以上では樹脂組成物の流動性が低下するため、電子部品と回路基板の接続行った際、電子部品と回路基板間の接着剤樹脂による充填が困難になる。
【0012】
本発明に用いられる三次元架橋性樹脂は、接着時の高信頼性を得られる樹脂として、エポキシ系樹脂とイミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤の混合物が用いられる。
【0013】
本発明の接着剤樹脂組成物は、前記ポリアリレート樹脂と前記三次元架橋性樹脂の配合比が重量部で1:99〜99:1で使用することができ、好ましくは10:90〜90:10である。
本発明の接着剤樹脂組成物には、硬化物の弾性率を低減する目的でアクリルゴム等のゴム成分を配合することもできる。
本発明の接着剤樹脂組成物には、フィルム形成性をより容易にするために、フェノキシ樹脂等の熱可塑性樹脂を配合することもできる。特に、フェノキシ樹脂は、エポキシ系樹脂をベース樹脂とした場合、エポキシ樹脂と構造が類似しているため、エポキシ樹脂との相溶性、接着性に優れる等の特徴を有するので好ましい。フィルム形成は、これら少なくともポリアリレート樹脂、エポキシ樹脂、潜在性硬化剤からなる接着組成物を有機溶剤に溶解あるいは分散により、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。
【0014】
本発明の接着剤には、チップのバンプや基板電極の高さばらつきを吸収するために、異方導電性を積極的に付与する目的で導電粒子を分散することもできる。本発明において導電粒子は、例えばAu、Ni、Ag、Cuやはんだ等の金属の粒子またはこれらの金属表面に、金やパラジウムなどの薄膜をめっきや蒸着によって形成した金属粒子であり、また、ポリスチレン等の高分子の球状の核材にNi、Cu、Au、はんだ等の導電層を設けた導電粒子を用いることができる。粒径は、基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましく、かつ無機充填材の平均粒径より大きいことが好ましく、1〜10μmが好ましい。また、接着剤に分散される導電粒子量は、0.1〜30体積%であり、好ましくは0.2〜15体積%である。
【0015】
本発明の回路部材接続用接着剤は、各成分を有機溶剤に溶解あるいは分散させ、任意の方法で攪拌、混合することによって容易に製造することができ、さらに、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することによってフィルム形成を行うことができる。その際に、上記の配合組成物以外にも、通常のエポキシ樹脂系組成物の調整で用いられる添加剤を加えて差し支えない。
本発明のフィルム状接着剤の膜厚は、特に限定するものではないが、第一および第2の回路部材間のギャップに比べ、厚いほうが好ましく、一般にはギャップに対して5μm以上厚い膜厚が望ましい。
【0016】
【実施例】
以下に、本発明を実施例に基づいて詳細に説明する。
実施例1
2,2(4,4’−ジヒドロキシジフェニル)オクタン2.98gとトリエチルアミン2.63gをTHF50ml中で窒素雰囲気下10℃で攪拌した。この混合物に、イソフタル酸クロリド1.01gとテレフタルサンクロリド1.01gを加え、ゆっくりと攪拌した。2時間攪拌した後、アセトン300ml中に滴下し、生成した沈殿物をろ取した。沈殿物をTHFに溶解し、不溶物をろ別した後、ろ液をメタノール300mlに滴下した。生成した沈殿物をろ取してポリアリレート樹脂1.3gを得た。
GPC測定の結果、ポリスチレン換算でMn=17400、Mw=32000、Mw/Mn=1.83であった。
生成物のFT−IR分析を行い、原料のジフェノール由来のOH伸縮振動(3200〜3400cm-1)の消失とエステル結合に由来するC−CO−O伸縮振動(1260〜1170cm-1)の存在を確認した。
生成したポリアリレート樹脂をTHFに溶解させ、シャーレに塗布し、溶媒を気散させることによってキャストフィルムを作製した。キャストフィルムを2cm角に切断し、減圧下に100℃で乾燥させた後、重量を測定し、さらに、純水に24時間浸漬後、重量を測定して重量増加を算出することによって、ポリアリレート樹脂の吸水率を測定した。吸水率測定の結果、生成したポリアリレート樹脂の吸水率は0.05であった。また、キャストフィルムを動的粘弾性測定装置を用いて弾性率を測定し、tanδのピーク値によってTgを測定した結果、Tg145℃であった。
生成したポリアリレート樹脂1.0gをトルエン5gに溶解し、20%溶液を得た。次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)1.85gをこの溶液に加え、攪拌し、さらにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5容量%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃、10分乾燥し厚み40μmの接着フィルムを作製した。接着フィルムを150℃で3時間硬化させ、硬化フィルムを動的粘弾性測定装置を用いて弾性率を測定し、tanδのピーク値によってTgを測定した結果、Tg150℃であった。
次に、作製した接着フィルムを用いて、金バンプ(面積:80×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10×10mm、厚み:0.5mm)とNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)の接続を以下に示すように行った。接着フィルム3(12×12mm)をNi/AuめっきCu回路プリント基板に60℃、0.5MPaで仮接続工程を行った。仮接続工程後、セパレータを剥離した。チップのバンプとNi/AuめっきCu回路プリント基板の位置合わせを行った後、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。
本接続後の接続抵抗は、1バンプあたり最高で5mΩ、平均で1.5mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
【0017】
【発明の効果】
本発明の回路板は、接着剤として、接着樹脂組成物が少なくとも三次元架橋性樹脂及び吸水率0.01〜0.2重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂を含むことによって、耐湿特性及び耐熱性の良好な硬化物を得ることができ、結果として、接続信頼性を大幅に向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board in which a semiconductor chip is bonded and fixed to a substrate with an adhesive by, for example, a flip chip mounting method, and the electrodes of both are electrically connected.
[0002]
[Prior art]
In the semiconductor mounting field, flip chip mounting, in which an IC chip is directly mounted on a printed circuit board or a flexible wiring board, has attracted attention as a new mounting form corresponding to cost reduction and high definition. As the flip chip mounting method, there are known a method in which solder bumps are provided on the terminals of the chip and solder connection is made, and a method in which electrical connection is made through a conductive adhesive. In these methods, there is a problem that when the stress based on the difference in thermal expansion coefficient between the chip to be connected and the substrate is exposed to various environments, the stress is generated at the connection interface and the connection reliability is lowered. For this reason, a method of injecting an epoxy resin-based underfill material into the gap between the chip and the substrate is generally studied for the purpose of alleviating the stress at the connection interface. However, this underfill injection process has a problem that the process becomes complicated and disadvantageous in terms of productivity and cost. Recently, flip-chip mounting using an anisotropic conductive adhesive having anisotropic conductivity and a sealing function has attracted attention from the viewpoint of process simplicity in order to solve such problems.
[0003]
[Problems to be solved by the invention]
When the chip is mounted on the substrate via an anisotropic conductive material, the adhesive strength between the adhesive and the chip or the adhesive and the substrate interface decreases under moisture absorption conditions, and the thermal expansion coefficient between the chip and the substrate under temperature cycling conditions. When stress based on the difference is generated in the connection portion, there is a problem that when reliability tests such as a thermal shock test, a PCT test, and a high temperature and high humidity test are performed, the connection resistance increases and the adhesive peels off. In addition, since the semiconductor package performs a solder reflow temperature test after absorbing moisture in a high-temperature and high-humidity test, the moisture absorbed in the adhesive expands rapidly, resulting in increased connection resistance and peeling of the adhesive. There's a problem. In general, a technique of dispersing liquid rubber, cross-linked rubber, and core-shell type rubber particles is known for the purpose of relaxing internal stress of the epoxy resin and strengthening it. However, it is known that a cured product in which rubber is dispersed in an epoxy resin has a lower softening point temperature (or glass transition temperature, hereinafter referred to as Tg) than a cured product of an epoxy resin alone, and has high heat resistance. This is a cause of lowering reliability in the field where the demand is required. On the other hand, increasing the crosslinking density of the epoxy resin to improve Tg in the rubber dispersion system decreases the rubber dispersion effect, increases the brittleness of the cured product, increases the water absorption rate, and decreases the reliability. Cause it. In addition, as a method for toughening an epoxy resin without lowering Tg, blending with a high heat-resistant thermoplastic resin known as engineering plastic is known. Generally, these engineering plastics are soluble in solvents. Therefore, the compounding with the epoxy resin is due to the kneading of the powder, and the development to the adhesive use is inappropriate.
The present invention provides a circuit board that does not increase connection resistance at the connection portion and does not peel off the adhesive, and greatly improves connection reliability.
[0004]
[Means for Solving the Problems]
The circuit board of the present invention includes a first circuit member having a first connection terminal and a second circuit member having a larger thermal expansion coefficient than the first circuit member having a second connection terminal. The connection terminal and the second connection terminal are arranged to face each other , an adhesive is interposed between the first connection terminal and the second connection terminal arranged to face each other, and the first and the second arrangement terminals are arranged to face each other by heating and pressing. A circuit board in which a connection terminal and a second connection terminal are electrically connected, wherein the adhesive comprises at least a three-dimensional crosslinkable resin and a water absorption of 0.01 to 0.2% by weight and a glass transition temperature of 80 ° C. A circuit board, which is an adhesive containing a thermoplastic resin at ˜150 ° C. Interposed between opposing circuit electrodes, a circuit member connecting adhesive for electrically connecting the circuit electrodes pressurize the pressure direction of the electrode facing each other, the adhesive resin composition is at least three-dimensional cross-linking And a thermoplastic resin having a water absorption of 0.01 to 0.2% by weight and a glass transition temperature of 80 ° C to 150 ° C. Water absorption 0.01 to 0.3 wt% and the glass transition temperature of 80 ° C. to 150 DEG ° C. for the thermoplastic resin is represented by the following general formula (1), polyarylate resins used can be dissolved in an aromatic hydrocarbon solvent Is done.
[0005]
[Formula 4]
Figure 0004092790
(Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 is a linear or branched group having 2 to 13 carbon atoms. And n is an integer of 10 to 250)
[0006]
The three-dimensional crosslinkable resin preferably contains at least an epoxy resin and a latent curing agent. The adhesive resin composition is preferably in the form of a film. The adhesive resin composition may contain 0.1 to 20% by volume of conductive particles.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of circuit members used in the present invention include active elements such as semiconductor chips, passive elements such as resistors and capacitors, printed boards, flexible wiring based on polyimide or polyester, and the like. On the electrode pad of the semiconductor chip or substrate, the bump formed by plating or the tip of the gold wire is melted with a torch or the like to form a gold ball, and after the ball is pressed onto the electrode pad, the wire is cut. Protruding electrodes such as wire bumps obtained in this way can be provided and used as connection terminals.
The thermoplastic resin having a water absorption of 0.01 to 0.3% by weight and a glass transition temperature of 80 to 150 ° C. used in the present invention is represented by the general formula (1), and is used as an aromatic hydrocarbon solvent. Polyarylate resins that are soluble are used.
The polyarylate resin is synthesized from a bisphenol compound or an esterified derivative thereof and an aromatic dicarboxylic acid or an acid chloride thereof.
[0008]
Examples of the bisphenol compound for synthesizing the polyarylate resin include 1,1 (4,4′-dihydroxydiphenyl) 3-methylbutane (R1 is a hydrogen atom, R2 is a branched alkyl group having 4 carbon atoms), 2,2 (4,4′-dihydroxydiphenyl) 4-methylpentane (R1 is an alkyl group having 1 carbon atom, R2 is a branched alkyl group having 4 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) 3-ethylhexane ( R1 is a hydrogen atom, R2 is a branched alkyl group having 7 carbon atoms, 3,3 (4,4′-dihydroxydiphenyl) pentane (R1 is an alkyl group having 2 carbon atoms, R2 is an alkyl group having 2 carbon atoms), 2 , 2 (4,4′-dihydroxydiphenyl) heptane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 5 carbon atoms), 1,1 (4,4′-dihydride) Xidiphenyl) heptane (R1 is a hydrogen atom, R2 is a linear alkyl group having 6 carbon atoms), 2,2 (4,4'-dihydroxydiphenyl) octane (R1 is an alkyl group having 1 carbon atom, R2 is a carbon number) 6 linear alkyl group), 1,1 (4,4'-dihydroxydiphenyl) octane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 7 carbon atoms), 2,2 (4 , 4′-dihydroxydiphenyl) nonane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 7 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) nonane (R1 is 1 carbon atom) R2 is a linear alkyl group having 8 carbon atoms), 2,2 (4,4′-dihydroxydiphenyl) decane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 8 carbon atoms) Group), 1,1 (4,4'-di) Droxydiphenyl) decane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 9 carbon atoms), 2,2 (4,4′-dihydroxydiphenyl) undecane (R1 is an alkyl group having 1 carbon atom) , R2 is a linear alkyl group having 9 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) undecane (R1 is a hydrogen atom, R2 is a linear alkyl group having 10 carbon atoms), 2,2 ( 4,4′-dihydroxydiphenyl) dodecane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 10 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) dodecane (R1 is a hydrogen atom) , R2 is a linear alkyl group having 11 carbon atoms), 2,2 (4,4'-dihydroxydiphenyl) tridecane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 11 carbon atoms), 1,1 (4 4′-dihydroxydiphenyl) tridecane (R1 is a hydrogen atom, R2 is a linear alkyl group having 12 carbon atoms), 2,2 (4,4′-dihydroxydiphenyl) tetradecane (R1 is an alkyl group having 1 carbon atom, R2 Is a linear alkyl group having 12 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) tetradecane (R1 is a hydrogen atom, R2 is a linear alkyl group having 13 carbon atoms), and 2,2 (4 , 4′-dihydroxydiphenyl) pentadecane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 13 carbon atoms), and two or more of these may be mixed. Preferably, 2,2 (4,4′-dihydroxydiphenyl) octane (R1 is an alkyl group having 1 carbon atom, R2 is a linear alkyl group having 6 carbon atoms), 1,1 (4,4′-dihydroxydiphenyl) Decane (R1 is an alkyl group having 1 carbon atom and R2 is a linear alkyl group having 9 carbon atoms) is used.
[0009]
Examples of the aromatic dicarboxylic acid for synthesizing the polyarylate resin include phthalic acid, isophthalic acid, terephthalic acid, 4-methylphthalic acid, 5-tert-butyl-isophthalic acid, and 2,5-dimethylphthalic acid. These may be used alone or in admixture of two or more. Preferably, (A) isophthalic acid or 5-tert-butyl-isophthalic acid and (B) terephthalic acid are (A) :( B) = 1: 99 to 99. The mixing ratio is preferably 1: 1, more preferably (A) :( B) = 50: 50.
[0010]
The polyarylate resin can be synthesized by an ordinary method such as an interfacial polymerization method, a solution polymerization method or a melt polymerization method. For example, in the case of the interfacial polymerization method, a solvent in which a bisphenol compound is dissolved in an aqueous sodium hydroxide solution together with a catalyst such as benzyltriethylammonium chloride, an aromatic dicarboxylic acid chloride is not dissolved in water, and the produced polyarylate resin is dissolved, For example, it melt | dissolves in toluene, these solutions are mixed, and it is made to react for 30 minutes-3 hours at 10-50 degreeC, and synthesize | combines the target polyarylate resin.
In the case of a solution polymerization method, a bisphenol compound and an aromatic dicarboxylic acid chloride are dissolved in a solvent in which the resulting polyarylate resin is dissolved, for example, toluene, chloroform, tetrahydrofuran, 1,4-dioxane, cyclohexanone, pyridine and the like. Then, the reaction is carried out at 10 ° C. to 50 ° C. for 30 minutes to 3 hours in the presence of a base such as triethylamine to synthesize the desired polyarylate resin.
Furthermore, in the case of the melt polymerization method, an esterified derivative of a bisphenol compound, for example, bisphenol diacetate and an aromatic dicarboxylic acid is subjected to a transesterification reaction at a high temperature of 200 to 350 ° C., thereby synthesizing a target polyarylate compound.
[0011]
The polyarylate resin of the present invention preferably has a molecular weight of 20,000 or more and 300,000 or less in terms of polystyrene as measured by gel permeation chromatography using tetrahydrofuran as a solvent for the purpose of imparting toughness to the adhesive. If it is 20,000 or less, the cured product may not be brittle, and if it is 300,000 or more, the fluidity of the resin composition decreases. Therefore, when the electronic component and the circuit board are connected, the adhesive resin between the electronic component and the circuit board is used. Filling becomes difficult.
[0012]
The three-dimensional crosslinkable resin used in the present invention is an epoxy resin and an imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt as a resin that can obtain high reliability at the time of adhesion. A mixture of latent curing agents such as dicyandiamide is used.
[0013]
The adhesive resin composition of the present invention can be used at a blending ratio of the polyarylate resin and the three-dimensional crosslinkable resin of 1:99 to 99: 1 by weight, preferably 10:90 to 90: 10.
In the adhesive resin composition of the present invention, a rubber component such as acrylic rubber can be blended for the purpose of reducing the elastic modulus of the cured product.
In the adhesive resin composition of the present invention, a thermoplastic resin such as a phenoxy resin can also be blended in order to make film forming easier. In particular, a phenoxy resin is preferable when an epoxy resin is used as a base resin, since the structure is similar to that of an epoxy resin, and thus has characteristics such as excellent compatibility with an epoxy resin and adhesiveness. For film formation, an adhesive composition comprising at least a polyarylate resin, an epoxy resin, and a latent curing agent is liquefied by dissolving or dispersing in an organic solvent, and applied onto a peelable substrate, and the temperature is below the activation temperature of the curing agent. By removing the solvent. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.
[0014]
In the adhesive of the present invention, conductive particles can be dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb variations in the height of the bumps of the chip and the substrate electrodes. In the present invention, the conductive particles are, for example, metal particles such as Au, Ni, Ag, Cu, and solder, or metal particles formed by plating or vapor deposition of a thin film such as gold or palladium on the metal surface, and polystyrene. Conductive particles in which a conductive spherical layer such as Ni, Cu, Au, or solder is provided on a high-molecular spherical core material such as the above can be used. The particle size needs to be smaller than the minimum distance between the electrodes of the substrate, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in height and larger than the average particle size of the inorganic filler. 1 to 10 μm is preferable. The amount of conductive particles dispersed in the adhesive is 0.1 to 30% by volume, preferably 0.2 to 15% by volume.
[0015]
The adhesive for connecting a circuit member of the present invention can be easily produced by dissolving or dispersing each component in an organic solvent, stirring and mixing by an arbitrary method, and applying the adhesive on a peelable substrate. Film formation can be performed by removing the solvent below the activation temperature of the curing agent. In that case, the additive used by adjustment of a normal epoxy resin type composition other than said compounding composition may be added.
The film thickness of the film adhesive of the present invention is not particularly limited, but is preferably thicker than the gap between the first and second circuit members, and generally has a thickness of 5 μm or more with respect to the gap. desirable.
[0016]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
Example 1
2.98 g of 2,2 (4,4′-dihydroxydiphenyl) octane and 2.63 g of triethylamine were stirred in 50 ml of THF at 10 ° C. in a nitrogen atmosphere. To this mixture, 1.01 g of isophthalic acid chloride and 1.01 g of terephthalic acid chloride were added and stirred slowly. After stirring for 2 hours, it was dropped into 300 ml of acetone, and the produced precipitate was collected by filtration. The precipitate was dissolved in THF and insoluble matter was filtered off, and the filtrate was added dropwise to 300 ml of methanol. The produced precipitate was collected by filtration to obtain 1.3 g of a polyarylate resin.
As a result of GPC measurement, it was Mn = 17400, Mw = 32000, and Mw / Mn = 1.83 in terms of polystyrene.
The product was subjected to FT-IR analysis, and disappearance of OH stretching vibration (3200 to 3400 cm −1 ) derived from the raw material diphenol and presence of C—CO—O stretching vibration (1260 to 1170 cm −1 ) derived from the ester bond. It was confirmed.
The produced polyarylate resin was dissolved in THF, applied to a petri dish, and the solvent was diffused to prepare a cast film. The cast film was cut into 2 cm squares, dried at 100 ° C. under reduced pressure, measured for weight, further immersed in pure water for 24 hours, and then measured for weight increase to calculate weight increase. The water absorption of the resin was measured. As a result of the water absorption measurement, the water absorption of the produced polyarylate resin was 0.05. Moreover, the elastic modulus of the cast film was measured using a dynamic viscoelasticity measuring apparatus, and the Tg was measured by the peak value of tan δ.
1.0 g of the produced polyarylate resin was dissolved in 5 g of toluene to obtain a 20% solution. Next, 1.85 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule-type latent curing agent was added to this solution, stirred, and a conductive layer having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm). The particles were dispersed by 5% by volume to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film having a thickness of 40 μm. The adhesive film was cured at 150 ° C. for 3 hours, the elastic modulus of the cured film was measured using a dynamic viscoelasticity measuring apparatus, and Tg was measured according to the peak value of tan δ. As a result, Tg was 150 ° C.
Next, using the produced adhesive film, a chip (10 × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plating A Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) was connected as shown below. The adhesive film 3 (12 × 12 mm) was temporarily connected to a Ni / Au plated Cu circuit printed board at 60 ° C. and 0.5 MPa. After the temporary connection step, the separator was peeled off. After alignment of the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board, heating and pressurization were performed from above the chip under the conditions of 170 ° C., 30 g / bumps for 20 seconds to perform the main connection.
The connection resistance after this connection is 5 mΩ maximum per bump, 1.5 mΩ on average, and the insulation resistance is 108 Ω or more. These values are the thermal shock test 1000 cycle treatment at −55 to 125 ° C., PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.
[0017]
【The invention's effect】
In the circuit board of the present invention, the adhesive resin composition contains at least a three-dimensional crosslinkable resin and a thermoplastic resin having a water absorption of 0.01 to 0.2% by weight and a glass transition temperature of 80 to 150 ° C. as an adhesive. Thus, a cured product having good moisture resistance and heat resistance can be obtained, and as a result, connection reliability can be greatly improved.

Claims (8)

第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第一の回路部材より熱膨張係数が大きい第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に接着剤を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させた回路板であって、
前記接着剤が、少なくとも三次元架橋性樹脂及び吸水率0.01〜0.2重量%かつガラス転移温度80℃〜150℃の熱可塑性樹脂を含む接着剤であり、
接着剤樹脂組成物の熱可塑性樹脂が下記一般式(1)で示されるポリアリレート樹脂である回路板。
Figure 0004092790
(ここでR は水素原子または炭素数1〜2のアルキル基であり、R は炭素数2〜13の直鎖状または分岐したアルキル基であり、nは10〜250の整数である)
A first circuit member having a first connection terminal and a second circuit member having a larger coefficient of thermal expansion than the first circuit member having a second connection terminal; and arranged to face the terminal, the opposed to the adhesive is interposed between the first connecting terminal and second connecting terminal, by heating and pressing the first connecting terminal and a second connection to the facing A circuit board with electrically connected terminals,
Wherein the adhesive is an adhesive containing at least three-dimensionally crosslinked resin and water absorption of 0.01 to 0.2 wt% and the glass transition temperature of 80 ° C. to 150 DEG ° C. for the thermoplastic resin,
A circuit board in which the thermoplastic resin of the adhesive resin composition is a polyarylate resin represented by the following general formula (1).
Figure 0004092790
(Here, R 1 is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, R 2 is a linear or branched alkyl group having 2 to 13 carbon atoms, and n is an integer of 10 to 250)
接着剤樹脂組成物の三次元架橋性樹脂がエポキシ樹脂と潜在性硬化剤を含有している請求項記載の回路板。The circuit board according to claim 1 , wherein the three-dimensional crosslinkable resin of the adhesive resin composition contains an epoxy resin and a latent curing agent. 第一の接続端子を有する第一の回路部材と、第二の接続端子を有する第一の回路部材より熱膨張係数が大きい第二の回路部材とを、第一の接続端子と第二の接続端子を対向して配置し、前記対向配置した第一の接続端子と第二の接続端子の間に接着剤を介在させ、加熱加圧して前記対向配置した第一の接続端子と第二の接続端子を電気的に接続させた回路板であって、
接着樹脂組成物が少なくともエポキシ系樹脂と、芳香族炭化水素系溶剤に溶解するポリアリレート樹脂及び潜在性硬化剤を含有している回路板
A first circuit member having a first connection terminal and a second circuit member having a larger coefficient of thermal expansion than the first circuit member having a second connection terminal; Terminals are arranged opposite to each other, an adhesive is interposed between the first and second connection terminals arranged opposite to each other, and the first connection terminal and the second connection arranged opposite to each other by heating and pressing. A circuit board with electrically connected terminals,
An adhesive resin composition contains at least an epoxy resin, the circuit board containing the polyarylate resin and latent curing agent which is soluble in an aromatic hydrocarbon solvent.
前記ポリアリレート樹脂が下記一般式(1)で示されるポリアリレート樹脂である、請求項3記載の回路板。The circuit board according to claim 3, wherein the polyarylate resin is a polyarylate resin represented by the following general formula (1).
Figure 0004092790
Figure 0004092790
(ここでR(Where R 1 は水素原子または炭素数1〜2のアルキル基であり、RIs a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, R 2 は炭素数2〜13の直鎖状または分岐したアルキル基であり、nは10〜250の整数である)Is a linear or branched alkyl group having 2 to 13 carbon atoms, and n is an integer of 10 to 250)
接着剤がフィルム状である請求項1〜4いずれかに記載の回路板。  The circuit board according to claim 1, wherein the adhesive is in a film form. 接着剤に0.2〜20体積%の導電粒子が分散されていることを特徴とする請求項1〜5いずれかに記載の回路板。  6. The circuit board according to claim 1, wherein 0.2 to 20% by volume of conductive particles are dispersed in the adhesive. エポキシ系樹脂、芳香族炭化水素系溶剤に溶解するポリアリレート樹脂及び潜在性硬化剤を含有している接着剤樹脂組成物。An adhesive resin composition containing an epoxy resin, a polyarylate resin dissolved in an aromatic hydrocarbon solvent, and a latent curing agent. 前記ポリアリレート樹脂が下記一般式(1)で示されるポリアリレート樹脂である、請求項7記載の接着剤樹脂組成物。The adhesive resin composition according to claim 7, wherein the polyarylate resin is a polyarylate resin represented by the following general formula (1).
Figure 0004092790
Figure 0004092790
(ここでR(Where R 1 は水素原子または炭素数1〜2のアルキル基であり、RIs a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, R 2 は炭素数2〜13の直鎖状または分岐したアルキル基であり、nは10〜250の整数である)Is a linear or branched alkyl group having 2 to 13 carbon atoms, and n is an integer of 10 to 250)
JP27739298A 1998-09-30 1998-09-30 Circuit board Expired - Fee Related JP4092790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27739298A JP4092790B2 (en) 1998-09-30 1998-09-30 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27739298A JP4092790B2 (en) 1998-09-30 1998-09-30 Circuit board

Publications (2)

Publication Number Publication Date
JP2000114317A JP2000114317A (en) 2000-04-21
JP4092790B2 true JP4092790B2 (en) 2008-05-28

Family

ID=17582909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27739298A Expired - Fee Related JP4092790B2 (en) 1998-09-30 1998-09-30 Circuit board

Country Status (1)

Country Link
JP (1) JP4092790B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182942A (en) * 2004-12-28 2006-07-13 Three M Innovative Properties Co Epoxy resin adhesive film
JP2008118091A (en) * 2006-10-10 2008-05-22 Sumitomo Electric Ind Ltd Wiring board, wiring board connecting body and wiring board module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112622A (en) * 1985-11-11 1987-05-23 Toshiba Chem Corp Sealing resin composition
KR100568491B1 (en) * 1997-07-04 2006-04-07 제온 코포레이션 Adhesive for semiconductor components
JPH11302620A (en) * 1998-04-23 1999-11-02 Sumitomo Bakelite Co Ltd Filmy adhesive for die bonding

Also Published As

Publication number Publication date
JP2000114317A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
EP0995784B1 (en) Adhesive for semiconductor components
CN102559072B (en) The syndeton of adhesive composite, film-like adhesive and circuit block
JP3475959B2 (en) ADHESIVE COMPOSITION, PROCESS FOR PRODUCING FILM ADHESIVE USING THE ADHESIVE COMPOSITION, CONNECTOR OF ELECTRODES USING THE ADHESIVE, AND METAL FOIL WITH ADHESIVE
CN101970525B (en) Curable composition, anisotropic conductive material and connection structure
CN1406262A (en) Adhesive polyimide resin and adhesive laminate
JP2009041019A (en) Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component joined body
JP5044880B2 (en) Resin composition, adhesive for connecting circuit members using the same, and circuit board
JP4433564B2 (en) Adhesive for circuit connection
JP4092790B2 (en) Circuit board
Kwon et al. Mechanical and wetting properties of epoxy resins: Amine-containing epoxy-terminated siloxane oligomer with or without reductant
JP4514840B2 (en) Adhesive for connecting circuit members
JP4151081B2 (en) Adhesive for connecting circuit members
JP4440352B2 (en) Adhesive for connecting circuit members
JP2003147306A (en) Conductive adhesive
JP4221809B2 (en) Resin composition
JP4221810B2 (en) Resin composition
JP3786409B2 (en) adhesive
JP4496562B2 (en) Resin composition
JP3326806B2 (en) Anisotropic conductive adhesive for circuit connection
JP4379940B2 (en) Circuit board
JP4626495B2 (en) Adhesive for circuit connection
JPH10204153A (en) Adhesive
JP2003147287A (en) Adhesive film for connecting circuit
KR100756799B1 (en) Anisotropic conductive adhesive composition including two or more hardeners having different melting point
JPH01121385A (en) Adhesive film for bonding electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees