JP4091753B2 - Method for producing silicon nitride strip - Google Patents

Method for producing silicon nitride strip Download PDF

Info

Publication number
JP4091753B2
JP4091753B2 JP2001175658A JP2001175658A JP4091753B2 JP 4091753 B2 JP4091753 B2 JP 4091753B2 JP 2001175658 A JP2001175658 A JP 2001175658A JP 2001175658 A JP2001175658 A JP 2001175658A JP 4091753 B2 JP4091753 B2 JP 4091753B2
Authority
JP
Japan
Prior art keywords
silicon nitride
elongated
elongated product
sintered body
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175658A
Other languages
Japanese (ja)
Other versions
JP2002362976A (en
Inventor
伸二 本村
孝治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001175658A priority Critical patent/JP4091753B2/en
Publication of JP2002362976A publication Critical patent/JP2002362976A/en
Application granted granted Critical
Publication of JP4091753B2 publication Critical patent/JP4091753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直動軸受用レール等の厳しい真直度が要求される窒化珪素製細長物の製造方法に関する。特に詳しくは、焼成時に反りが発生しやすい直動軸受用レール等の窒化珪素製細長物について、焼成後に所定の加熱処理を施して反りを矯正する窒化珪素製細長物の製造方法に関するものである。
【0002】
【従来の技術】
従来から、直動軸受用レールや、軸、熱電対保護管などのセラミック製細長物に対し、寸法精度の良好なものが望まれている。
【0003】
上記のセラミック製細長物は、焼成時に反りが発生しやすく、寸法精度に狂いが生じることが多い。反りの原因としては、焼成炉内の温度差、成形体の形状、成形体の密度差等が考えられる。このような反り解消手段としては、細長物では、従来から、成形体を吊って焼成する、いわゆる吊り焼成が採られているが、反り解消のためには充分ではなかった。
【0004】
一方、反り量を加味して焼結体寸法を設定すると、原料ロスや研削代が増加し、コストアップにつながる。特に、直動軸受用レール等は、厳しい真直度が要求されるため、焼結体の反り具合によって焼成後の研削代が所定以上に大きくなりコストに大きく影響する。
そこで、特開昭61−44782号公報では、セラミック磁器をスライシング後、3〜10g/cm2の加重をかけ500〜900℃の範囲で熱処理を行うことにより、スライシングによる歪み(反り)を取り除くことが提案されている。
【0005】
しかしながら、この方法によっても、直動軸受用レール等の窒化珪素製細長物に発生した反りを充分に矯正することはできなかった。
また、形状の異なる細長物の場合、錘の設置面積が狭く、錘を安定して設置できない為、錘を細長物に安定して設置する方法を検討する必要があった。
【0006】
【発明が解決しようとする課題】
従って、本発明は、上記した従来の問題に鑑みてなされたものであり、その目的は、厳しい真直度が要求されるとともに焼成時に反りが発生しやすい直動軸受用レール等の窒化珪素製細長物について、複数個の窒化珪素製細長物を同時に反り矯正することにより、作業効率を大幅に向上することができるため、強度等の特性低下がなく、反りが矯正された真直度の優れた窒化珪素製細長物を低コストで製造することができる窒化珪素製細長物の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明によれば、窒化珪素製細長物の焼結体を、三角形状の三辺を構成するように保持用治具にそれぞれ載置し、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することを特徴とする窒化珪素製細長物の製造方法が、提供される。
【0008】
また、本発明によれば、窒化珪素製細長物の焼結体を、三角形状の三辺を構成するようにそれぞれ配置した一段目を保持用治具に載置し、該細長物焼結体の反りが互い違いになるように、該細長物焼結体を多段に積み重ねた後、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することを特徴とする窒化珪素製細長物の製造方法が、提供される。
このとき、一段目と最上段目の細長物焼結体の反り方向は、同一であることが好ましく、更に、一段目が、細長物焼結体の反りの凸部が上になるように保持用治具に載置されることが好ましい。
【0009】
また、本発明では、細長物焼結体に、5MPa以上の曲げ応力を付与することが好ましく、更に細長物焼結体の長手方向に垂直な方向に曲げ応力を付与することが好ましい。
【0010】
これらの窒化珪素製細長物の具体例としては、厳しい真直度が要求される直動軸受用レールや軸が挙げられる。
【0011】
なお、本発明において、「細長物」とは、図3に示すような単純形状を想定した場合、次式で表されるように、断面における外周寸法(外周長)の総和に対して3倍以上の長さを有する部材をいう。
(20+20+10+10)×3≦A(長さ:180以上)
(10×π)×3≦A(長さ:30π以上)
【0012】
【発明の実施の形態】
以下、本発明をその実施の形態に従ってさらに詳しく説明するが、本発明はこれらの実施の形態に限定されるものではない。
本発明(第一発明)では、窒化珪素製細長物の焼結体を、三角形状の三辺を構成するように保持用治具にそれぞれ載置し、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することに特徴を有する。
また、本発明(第二発明)では、窒化珪素製細長物の焼結体を、三角形状の三辺を構成するようにそれぞれ配置した一段目を保持用治具に載置し、細長物焼結体の反りが互い違いになるように、細長物焼結体を多段に積み重ねた後、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することに特徴を有する。
【0013】
ここで、本発明の主な特徴は、図1(a)に示すように、3体の細長物焼結体(10a〜10c)を三角形になるように保持用治具上に載置することにある。
これにより、細長物焼結体10を多段に積み重ね、押圧用治具で挟み押圧した場合(図2参照)であっても載置安定性に優れ、且つ3組の細長物焼結体(10a〜10c)に均一に荷重を掛けることができる。
【0014】
また、本発明では、図2(b)に示すように、細長物焼結体10の反りが互い違いになるように、細長物焼結体10を多段に積み重ね、且つ一段目と最上段目の細長物焼結体の反り方向を同一にすることが好ましい。
本発明では、細長物焼結体10の反りの凸部を対向させて積むことにより、矯正の曲げ応力が作用する断面係数を1製品分とすることができ、押圧用治具14で挟み押圧した時に、段数の多少に関わらず、全ての細長物焼結体10に有効に荷重を負荷させることができるため、一度に強度等の特性低下がなく、反りが矯正された真直度の優れた窒化珪素製細長物を大量に得ることができる。
一方、細長物焼結体10の反りの凸部を対向させず、同方向に積み上げると、矯正の曲げ応力の作用する断面係数が、製品を積んだ個数分となるため、大量に処理する場合は矯正に多大な荷重を必要とし、油圧荷重など重荷重を負荷できる装置が必要となり、経済的でない。
【0015】
更に、本発明では、一段目が、細長物焼結体の反りの凸部が上になるように保持用治具に載置することが、細長物焼結体を多段に積み重ねる際の安定性を向上させる上で好ましい。
【0016】
以下、本発明の反り矯正方法について更に詳細に説明する。
本発明では、窒化珪素製細長物の焼結体に対して、反りを矯正する方向に5MPa以上の曲げ応力を付与する。曲げ応力としては、好ましくは8MPa以上、さらに好ましくは10MPa以上である。曲げ応力が5MPa未満の場合には、反り矯正の効果が低い。
細長物焼結体に対する曲げ応力の付与方向は、反りの矯正方向、通常は厚み方向である。
【0017】
また、細長物焼結体に対しては、曲げ応力を付加するとともに、1300〜1500℃の範囲の温度で加熱処理を施す。1300℃未満の温度では、反り矯正効果を得ることができず、一方、1500℃を超える温度で加熱処理を施すと、反りの矯正は可能でも、得られる細長物焼結体の強度が著しく低下する。
なお、加熱処理は、窒化珪素製の焼結体が対象であることから、通常、窒素雰囲気等の不活性雰囲気で行われる。また、加熱圧力としては限定されず、常圧、加圧のいずれの圧力条件でも、当該処理を行うことができるが、HIPなどの高圧焼結を行ったものに対しては加圧下の方が好ましい。
【0018】
本発明では、窒化珪素製細長物の焼結体を対象とする。このような窒化珪素焼結体の細長物は、たとえば次のようにして製造することができる。
まず、窒化珪素原料に焼結助剤と適当量のバインダーを添加、混合する。この混合物を成形後仮焼してバインダーを除去し、得られた仮焼体を窒素雰囲気中、1700〜1800℃程度の高温で焼結することにより窒化珪素焼結体を得る。次いで、得られた窒化珪素焼結体をスライスなどの加工により、窒化珪素製細長物の焼結体を得ることができる。
なお、スライスなどの加工を行わず、直接焼結体として細長物として得ることももちろん可能である。
上記のようにして得られる窒化珪素製細長物の焼結体は、通常真直度が低く、反り等が生じており、寸法精度が劣っている。本発明では、このような窒化珪素製細長物の焼結体を対象とするものである。
【0019】
【実施例】
(実施例1)
窒化珪素原料に焼結助剤と所定量のバインダーを添加し、混合機にて混合した後、スプレードライヤーにて乾燥造粒した。この造粒原料をゴム型より構成される成形型に充填し、静水圧プレス機により成形し角柱成形体を製作した。
これらの成形体を大気中400℃にて仮焼しバインダーを除去した後、NCフライス盤により所定形状に加工した。
【0020】
これらを高圧窒素雰囲気中で1700℃×1hr焼成し窒化珪素製の角柱(12mm×10mm×長さ300mm)焼結体を得た。
得られた窒化珪素製角柱焼結体の中から反り量1mm以上のものを3体選択し、SiC基板12上に三角形を描くように置き、更に窒化珪素角柱焼結体10の曲げ応力が5MPaになるような荷重用SiC基板14を上から載せた(図1参照)。
この状態で、常圧窒素雰囲気中にて処理温度1300℃、1500℃にてそれぞれ1時間キープして反り修正を行った。
【0021】
得られた反り修正品の反り量を測定した。その後、反り修正品から試験片を切りだしJIS R1601に基づき4点曲げ強度測定を、JIS R1607に基づき破壊靭性測定を行った。合格値は、反り量0.5mm以下、曲げ強度900MPa以上、破壊靭性値5.8MPam1/2以上とし、○と表示した。不合格品は、×と表示した。その結果を表1に示す。
【0022】
(実施例2)
実施例1と同様に製作した窒化珪素角柱焼結体の中から反り量1mm以上のものを63体選択した。
まず、3体選択し、SiC基板12上に三角形を描くように置いた後、反り方向が互い違いになるように、各辺に21体ずつ積み上げ、更に窒化珪素角柱焼結体10の曲げ応力が5MPaになるような荷重用SiC基板14を上から載せた(図2参照)。
この状態で、実施例1と同様の反り修正を行い評価した。その結果を表1に示す。
【0023】
(比較例1)
処理温度を1250℃、1550℃とした以外は、実施例1と同様に窒化珪素製角柱焼結体を製造し、評価を行った。その結果を表1に示す。
【0024】
(比較例2)
曲げ応力を4MPaになるように設定した以外は、実施例1と同様に窒化珪素製角柱焼結体を製造し、評価を行った。その結果を表1に示す。
【0025】
【表1】

Figure 0004091753
【0026】
まず、表1の結果から明らかなように、角柱焼結体に付与する最大曲げ応力が5MPa以上、及び加熱処理温度が1300〜1500℃の範囲という要件が臨界的であるということがわかる。この範囲を逸脱した温度で加熱した場合には、反り矯正が不十分であるか、あるいは得られる角柱焼結体の曲げ強度が著しく低下している。
【0027】
【発明の効果】
以上説明したように、本発明方法によれば、厳しい真直度が要求されるとともに焼成時に反りが発生しやすい直動軸受用レール等の窒化珪素製細長物について、複数個の窒化珪素製細長物を同時に反り矯正することにより、作業効率を大幅に向上することができるため、強度等の特性低下がなく、反りが矯正された真直度の優れた窒化珪素製細長物を低コストで製造することができる。
【図面の簡単な説明】
【図1】 細長物焼結体の反り矯正方法の一例を示すものであり、(a)は正面図、(b)は(a)のA−A断面図である。
【図2】 細長物焼結体の反り矯正方法の他の例を示すものであり、(a)は正面図、(b)は(a)のA−A断面図である。
【図3】 単純形状の細長物を示す斜視図である。
【符号の説明】
10…細長物焼結体(窒化珪素角柱焼結体)、12…保持用治具(SiC基板)、14…押圧用治具(荷重用SiC基板)。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for manufacturing an elongated product made of silicon nitride that requires strict straightness such as a rail for a linear motion bearing. More particularly, the present invention relates to a method for manufacturing a silicon nitride elongated product that corrects warpage by performing a predetermined heat treatment after firing for a silicon nitride elongated product such as a rail for a linear motion bearing that is likely to be warped during firing. .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it has been desired that a ceramic bearing such as a linear motion bearing rail, a shaft, a thermocouple protective tube, and the like has good dimensional accuracy.
[0003]
The above-mentioned ceramic elongated products are likely to be warped during firing, and are often distorted in dimensional accuracy. As a cause of the warp, a temperature difference in the firing furnace, a shape of the molded body, a density difference of the molded body, and the like are considered. As such warp eliminating means, so-called suspension firing, in which a molded product is suspended and fired, has been conventionally used for slender products, but this has not been sufficient for eliminating warp.
[0004]
On the other hand, if the size of the sintered body is set in consideration of the amount of warpage, the raw material loss and the grinding allowance increase, leading to an increase in cost. In particular, since a linear bearing rail or the like requires a strict straightness, the grinding allowance after firing becomes larger than a predetermined value due to the warpage of the sintered body, which greatly affects the cost.
Therefore, in Japanese Patent Laid-Open No. 61-44782, after slicing a ceramic porcelain, a strain of 3 to 10 g / cm 2 is applied and heat treatment is performed in a range of 500 to 900 ° C. to remove distortion (warp) due to slicing. Has been proposed.
[0005]
However, even with this method, it has not been possible to sufficiently correct the warp generated in the elongated silicon nitride material such as the rail for the linear motion bearing.
In the case of elongated objects having different shapes, the installation area of the weight is narrow and the weight cannot be stably installed. Therefore, it has been necessary to examine a method for stably installing the weight on the elongated object.
[0006]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to make a silicon nitride elongated body such as a rail for a linear motion bearing that requires strict straightness and easily warps during firing. Since the work efficiency can be greatly improved by simultaneously correcting the warpage of a plurality of silicon nitride strips, there is no deterioration in properties such as strength, and the nitridation is excellent in straightness with the warpage corrected. An object of the present invention is to provide a method for producing a silicon nitride elongated product, which can produce a silicon elongated product at a low cost.
[0007]
[Means for Solving the Problems]
That is, according to the present invention, the sintered compact of silicon nitride is placed on the holding jig so as to constitute the triangular three sides, and is sandwiched and pressed by the pressing jig, A method for producing an elongated product made of silicon nitride, characterized by correcting warpage by heating at a temperature in the range of 1300 to 1500 ° C., is provided.
[0008]
In addition, according to the present invention, the sintered body of the elongated product made of silicon nitride is placed on the holding jig arranged in the first stage so as to constitute the three sides of the triangle , Warp is corrected by heating at a temperature in the range of 1300-1500 ° C. in a state where the elongated sintered bodies are stacked in multiple stages and then sandwiched and pressed by a pressing jig so that the warpage of the sheet is staggered. A method for producing a silicon nitride strip is provided.
At this time, it is preferable that the warp directions of the elongated sintered body at the first stage and the uppermost stage are the same, and further, the first stage is held so that the convex portion of the warped elongated body is at the top. It is preferably placed on a jig for use.
[0009]
In the present invention, it is preferable to apply a bending stress of 5 MPa or more to the elongated product sintered body, and it is preferable to apply a bending stress in a direction perpendicular to the longitudinal direction of the elongated product sintered body.
[0010]
Specific examples of these silicon nitride strips include linear bearing rails and shafts that require strict straightness.
[0011]
In the present invention, the “elongated object” is assumed to be three times the sum of the outer peripheral dimensions (outer peripheral length) in the cross section, as represented by the following equation, assuming a simple shape as shown in FIG. The member which has the above length is said.
(20 + 20 + 10 + 10) × 3 ≦ A (length: 180 or more)
(10 × π) × 3 ≦ A (length: 30π or more)
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail according to the embodiments thereof, but the present invention is not limited to these embodiments.
In the present invention (first invention), the sintered compact of silicon nitride is placed on the holding jig so as to constitute three triangular sides, and is sandwiched and pressed by the pressing jig. It is characterized by correcting the warp by heating at a temperature in the range of 1300 to 1500 ° C.
Further, in the present invention (second invention), the sintered body of the elongated silicon nitride material is placed on the holding jig arranged in the first stage so as to constitute the triangular three sides, and the elongated product is fired. After stacking the elongated sintered bodies in multiple stages so that the warping of the bonded body is staggered, the warping is caused by heating at a temperature in the range of 1300 to 1500 ° C. while being sandwiched and pressed by a pressing jig. Characterized by straightening.
[0013]
Here, the main feature of the present invention is that, as shown in FIG. 1A, three elongated sintered bodies (10a to 10c) are placed on a holding jig so as to form a triangle. It is in.
Thereby, even when the elongated product sintered bodies 10 are stacked in multiple stages and sandwiched and pressed by a pressing jig (see FIG. 2), the mounting stability is excellent, and three sets of elongated product sintered bodies (10a) -10c) can be uniformly loaded.
[0014]
Further, in the present invention, as shown in FIG. 2 (b), the elongated product sintered bodies 10 are stacked in multiple stages so that the warpage of the elongated product sintered bodies 10 is alternate, and the first and uppermost stages are stacked. It is preferable to make the warpage direction of the elongated product sintered body the same.
In the present invention, the convex sections of warpage of the elongated sintered body 10 are stacked to face each other, so that the section modulus on which the corrective bending stress acts can be made into one product, and is sandwiched and pressed by the pressing jig 14. When this is done, it is possible to effectively apply a load to all the elongated sintered bodies 10 regardless of the number of stages, so that there is no deterioration in properties such as strength at one time, and the straightness in which the warp has been corrected is excellent. A large amount of elongated silicon nitride can be obtained.
On the other hand, when stacking in the same direction without facing the warped convex parts of the elongated product sintered body 10, the section modulus on which the bending stress of correction acts is equal to the number of stacked products, so when processing in large quantities Requires a large load for correction and requires a device capable of applying a heavy load such as a hydraulic load, which is not economical.
[0015]
Furthermore, in the present invention, the first stage is placed on the holding jig so that the warped convex part of the elongated product sintered body is on top, so that the stability when stacking the elongated product sintered body in multiple stages is increased. It is preferable for improving the ratio.
[0016]
Hereinafter, the warp correction method of the present invention will be described in more detail.
In the present invention, a bending stress of 5 MPa or more is applied to the silicon nitride elongated product in the direction of correcting warpage. The bending stress is preferably 8 MPa or more, more preferably 10 MPa or more. When the bending stress is less than 5 MPa, the effect of warp correction is low.
The direction in which the bending stress is applied to the elongated product sintered body is the correction direction of warpage, usually the thickness direction.
[0017]
The elongated product sintered body is subjected to heat treatment at a temperature in the range of 1300 to 1500 ° C. while applying bending stress. When the temperature is lower than 1300 ° C., the warp correction effect cannot be obtained. On the other hand, when heat treatment is performed at a temperature higher than 1500 ° C., the warp can be corrected, but the strength of the obtained elongated sintered body is significantly reduced. To do.
Note that the heat treatment is usually performed in an inert atmosphere such as a nitrogen atmosphere because a sintered body made of silicon nitride is an object. In addition, the heating pressure is not limited, and the treatment can be performed under any pressure condition of normal pressure or pressurization. However, for those subjected to high pressure sintering such as HIP, the pressure is lower. preferable.
[0018]
In the present invention, a sintered body of an elongated product made of silicon nitride is an object. Such an elongated product of a silicon nitride sintered body can be produced, for example, as follows.
First, a sintering aid and an appropriate amount of binder are added to and mixed with the silicon nitride raw material. The mixture is calcined after molding to remove the binder, and the resulting calcined body is sintered at a high temperature of about 1700 to 1800 ° C. in a nitrogen atmosphere to obtain a silicon nitride sintered body. Next, the obtained silicon nitride sintered body can be processed by slicing or the like to obtain an elongated silicon nitride sintered body.
Needless to say, it is possible to obtain an elongated product directly as a sintered body without processing such as slicing.
The sintered body of elongated silicon nitride obtained as described above usually has low straightness, warpage, etc., and dimensional accuracy is inferior. The present invention is directed to a sintered body of such an elongated product made of silicon nitride.
[0019]
【Example】
Example 1
A sintering aid and a predetermined amount of binder were added to the silicon nitride raw material, mixed with a mixer, and then dried and granulated with a spray dryer. This granulated raw material was filled in a mold composed of a rubber mold and molded by a hydrostatic press to produce a prismatic molded body.
These molded bodies were calcined at 400 ° C. in the atmosphere to remove the binder, and then processed into a predetermined shape by an NC milling machine.
[0020]
These were fired at 1700 ° C. for 1 hr in a high-pressure nitrogen atmosphere to obtain a silicon nitride prism (12 mm × 10 mm × length 300 mm) sintered body.
Three of the obtained silicon nitride prismatic sintered bodies having a warpage amount of 1 mm or more are selected, placed on the SiC substrate 12 so as to draw a triangle, and the bending stress of the silicon nitride prismatic sintered body 10 is 5 MPa. A load SiC substrate 14 was placed from above (see FIG. 1).
In this state, the warpage was corrected by keeping at a treatment temperature of 1300 ° C. and 1500 ° C. for 1 hour in a normal pressure nitrogen atmosphere.
[0021]
The amount of warpage of the obtained warp corrected product was measured. Thereafter, a test piece was cut out from the warp-corrected product, a four-point bending strength measurement was performed based on JIS R1601, and a fracture toughness measurement was performed based on JIS R1607. The acceptable values were warped amount 0.5 mm or less, bending strength 900 MPa or more, fracture toughness value 5.8 MPa 1/2 or more, and indicated as ◯. An unacceptable product was indicated as x. The results are shown in Table 1.
[0022]
(Example 2)
63 silicon nitride prismatic sintered bodies manufactured in the same manner as in Example 1 were selected with a warpage of 1 mm or more.
First, after selecting three bodies and placing them in a triangular shape on the SiC substrate 12, 21 bodies are stacked on each side so that the warping directions are staggered, and further, the bending stress of the silicon nitride prismatic sintered body 10 is increased. A load SiC substrate 14 of 5 MPa was placed from above (see FIG. 2).
In this state, the same warp correction as in Example 1 was performed for evaluation. The results are shown in Table 1.
[0023]
(Comparative Example 1)
A silicon nitride prismatic sintered body was produced and evaluated in the same manner as in Example 1 except that the treatment temperatures were 1250 ° C. and 1550 ° C. The results are shown in Table 1.
[0024]
(Comparative Example 2)
A silicon nitride prismatic sintered body was produced and evaluated in the same manner as in Example 1 except that the bending stress was set to 4 MPa. The results are shown in Table 1.
[0025]
[Table 1]
Figure 0004091753
[0026]
First, as is clear from the results in Table 1, it is understood that the requirements that the maximum bending stress applied to the prismatic sintered body is 5 MPa or more and the heat treatment temperature is in the range of 1300 to 1500 ° C. are critical. When heated at a temperature outside this range, the warp correction is insufficient or the bending strength of the resulting prismatic sintered body is significantly reduced.
[0027]
【The invention's effect】
As described above, according to the method of the present invention, a plurality of silicon nitride strips are required for silicon nitride strips such as rails for linear motion bearings that require strict straightness and are likely to warp during firing. By simultaneously correcting the warpage, the work efficiency can be greatly improved, so that it is possible to produce silicon nitride strips with excellent straightness with reduced warpage and no deterioration in properties such as strength, at low cost. Can do.
[Brief description of the drawings]
1A and 1B show an example of a method for correcting warpage of a long and narrow sintered body, in which FIG. 1A is a front view and FIG. 1B is a cross-sectional view taken along line AA in FIG.
FIGS. 2A and 2B show another example of a method for correcting warpage of an elongated product sintered body, wherein FIG. 2A is a front view, and FIG. 2B is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a perspective view showing an elongated object having a simple shape.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Slender body sintered body (silicon nitride prismatic sintered body), 12 ... Holding jig (SiC substrate), 14 ... Pressing jig (SiC substrate for load)

Claims (10)

窒化珪素製細長物の焼結体を、三角形状の三辺を構成するように保持用治具にそれぞれ載置し、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することを特徴とする窒化珪素製細長物の製造方法。The sintered compact of silicon nitride is placed on a holding jig so as to constitute three sides of a triangle , and is sandwiched and pressed by a pressing jig, and the temperature is in the range of 1300 to 1500 ° C. Warping is corrected by heating with a silicon nitride elongated product, 該細長物焼結体に、5MPa以上の曲げ応力を付与する請求項1に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to claim 1, wherein a bending stress of 5 MPa or more is applied to the elongated product sintered body. 該細長物焼結体の長手方向に垂直な方向に曲げ応力を付与する請求項1又は2に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to claim 1 or 2, wherein bending stress is applied in a direction perpendicular to the longitudinal direction of the elongated product sintered body. 該窒化珪素製細長物が、直動軸受用レール、又は軸である請求項1〜3のいずれか1項に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to any one of claims 1 to 3, wherein the silicon nitride elongated product is a rail for a linear motion bearing or a shaft. 窒化珪素製細長物の焼結体を、三角形状の三辺を構成するようにそれぞれ配置した一段目を保持用治具に載置し、該細長物焼結体の反りが互い違いになるように、該細長物焼結体を多段に積み重ねた後、押圧用治具で挟み押圧した状態で、1300〜1500℃の範囲の温度で加熱することにより、反りを矯正することを特徴とする窒化珪素製細長物の製造方法。The sintered bodies of elongated silicon nitride are placed on holding jigs arranged to form three triangular sides so that the warpage of the elongated sintered bodies is staggered. The silicon nitride is characterized by correcting warping by heating the elongated sintered body in multiple stages and then heating it at a temperature in the range of 1300 to 1500 ° C. while being sandwiched and pressed by a pressing jig. A method for producing elongated products. 該一段目と最上段目の該細長物焼結体の反り方向が、同一である請求項5に記載の窒化珪素製細長物の製造方法。  6. The method for producing an elongated product made of silicon nitride according to claim 5, wherein warpage directions of the elongated product sintered bodies at the first stage and the uppermost stage are the same. 該一段目が、該細長物焼結体の反りの凸部が上になるように保持用治具に載置される請求項5又は6に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to claim 5 or 6, wherein the first stage is placed on a holding jig such that a warped convex portion of the elongated product sintered body faces upward. 該細長物焼結体に、5MPa以上の曲げ応力を付与する請求項5〜7のいずれか1項に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to any one of claims 5 to 7, wherein a bending stress of 5 MPa or more is applied to the elongated product sintered body. 該細長物焼結体の長手方向に垂直な方向に曲げ応力を付与する請求項5〜8のいずれか1項に記載の窒化珪素製細長物の製造方法。  The method for producing an elongated product made of silicon nitride according to any one of claims 5 to 8, wherein bending stress is applied in a direction perpendicular to a longitudinal direction of the elongated product sintered body. 該窒化珪素製細長物が、直動軸受用レール、又は軸である請求項5〜9のいずれか1項に記載の窒化珪素製細長物の製造方法。  The method for producing a silicon nitride elongated product according to any one of claims 5 to 9, wherein the silicon nitride elongated product is a rail for a linear motion bearing or a shaft.
JP2001175658A 2001-06-11 2001-06-11 Method for producing silicon nitride strip Expired - Fee Related JP4091753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175658A JP4091753B2 (en) 2001-06-11 2001-06-11 Method for producing silicon nitride strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175658A JP4091753B2 (en) 2001-06-11 2001-06-11 Method for producing silicon nitride strip

Publications (2)

Publication Number Publication Date
JP2002362976A JP2002362976A (en) 2002-12-18
JP4091753B2 true JP4091753B2 (en) 2008-05-28

Family

ID=19016750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175658A Expired - Fee Related JP4091753B2 (en) 2001-06-11 2001-06-11 Method for producing silicon nitride strip

Country Status (1)

Country Link
JP (1) JP4091753B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948075B2 (en) 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP6994863B2 (en) * 2017-08-03 2022-01-14 日本特殊陶業株式会社 Manufacturing method of ceramic parts

Also Published As

Publication number Publication date
JP2002362976A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
EP0679616B1 (en) Method of producing silicon nitride ceramic component
WO2002024605A1 (en) Method for toughening modification of ceramic and ceramic product
EP3498415A1 (en) Friction stir welding tool member and friction stir welding device using same, and friction stir welding method
JP4091753B2 (en) Method for producing silicon nitride strip
CN1713968A (en) Method for improving toughness of surface of ceramic and ceramic article
JP4955864B2 (en) Method for producing silicon nitride strip
JP4703387B2 (en) Friction material flatness correcting jig used for clutch facing in which fiber base material is bonded by organic binder, and flatness correcting method of the friction material
JPH05270957A (en) Ceramic sintered product
EP0727399A2 (en) Silicon nitride ceramic sliding member and process for producing the same
JP4338994B2 (en) High rigidity low thermal expansion ceramic material
JP2000169265A (en) Method for correcting warpage of ceramic substrate
JPH05318427A (en) Pressure mechanism for hot press and pressure sintering method utilizing the same
JP5315563B2 (en) Method for manufacturing sintered body
Slavin et al. Mechanical property evaluation at elevated temperature of sintered β-silicon carbide
KR20170104329A (en) Loading system for producing ceramic substrate and method of producing ceramic board using thereof
JP2006169056A (en) Method for correcting shape of sintered compact
KR101953433B1 (en) apparatus set for producing warpage of ceramic substrate and method for producing warpage of ceramic substrate using there of
JPS6389467A (en) Mold release sheet for burning ceramic substrate
JP2003238260A (en) Method of manufacturing long-sized cylindrical ceramic body
JP4581575B2 (en) Manufacturing method of plate-shaped ceramic body and load applying member for ceramic firing
JP2003090372A (en) Silicon nitride made disc spring material, its manufacturing method and its use
JPH0745341B2 (en) Method for manufacturing silicon nitride-bonded silicon carbide refractory
JP3156171B2 (en) Method for sintering ZrO2 compact
JP3938359B2 (en) Lead glass softening jig
JPH02111849A (en) Method for annealing aluminum-based metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees