JP4090345B2 - Liquid phase crystal growth method - Google Patents

Liquid phase crystal growth method Download PDF

Info

Publication number
JP4090345B2
JP4090345B2 JP2002371754A JP2002371754A JP4090345B2 JP 4090345 B2 JP4090345 B2 JP 4090345B2 JP 2002371754 A JP2002371754 A JP 2002371754A JP 2002371754 A JP2002371754 A JP 2002371754A JP 4090345 B2 JP4090345 B2 JP 4090345B2
Authority
JP
Japan
Prior art keywords
solution
crystal growth
platinum
liquid phase
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371754A
Other languages
Japanese (ja)
Other versions
JP2004203637A (en
Inventor
公士 大山
貴幸 飯野
政美 小島
Original Assignee
株式会社グラノプト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グラノプト filed Critical 株式会社グラノプト
Priority to JP2002371754A priority Critical patent/JP4090345B2/en
Publication of JP2004203637A publication Critical patent/JP2004203637A/en
Application granted granted Critical
Publication of JP4090345B2 publication Critical patent/JP4090345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液相結晶成長法に関するもので、詳しくは、過飽和状態においた溶液に基板材料を浸せきさせ、基板上に溶質を析出させる液相結晶成長法に関するものである。
【0002】
【従来の技術】
液相結晶成長法は従来から広く知られている結晶成長方法の1種である。これは、一般に溶媒となる物質を一定温度の液体状態に保持し、該溶媒に溶質成分を飽和状態に溶解し、しかる後、基板となる材料を溶液中に浸した状態で、徐々に温度を下げていくことで過飽和状態を作り出し、溶解できなくなった溶質成分を基板表面に結晶として析出させるという方法である。
【0003】
この方法は、円盤状の単結晶を基板として用いると、基板表面に析出する結晶が基板結晶と同一の方位を持つ結晶となり、引き上げ法などと比較して成長速度がきわめて小さいという欠点はあるものの、結晶品質のきわめて良い結晶が得られる。このため、発光ダイオードやレーザーダイオードの製造過程で多用されている技術である。
【0004】
液相成長法では、液体状態の溶液を用いるため、何らかの容器を使用する。この容器は溶液に浸食され容器を構成する元素が目的とする結晶中に不純物として析出することが多い。光アイソレーターに用いられる磁性ガーネット膜の成長においては、白金容器に、溶媒となる酸化鉛、酸化硼素を液体状に保持し、そこに、溶質となる各種酸化物を溶かし込む。そして、基板上に磁性カーネット膜を得る。この際、容器が侵され、溶液中に白金が溶出し、磁性ガーネット膜に混入することが知られている。混入する白金は、その濃度により光アイソレーターの基本性能であるファラデー回転角や挿入損失に影響を与えることが知られている。
【0005】
また、本発明者らの検討結果によれば、不純物として存在する白金が同心円状の亀裂を発生させる原因の一つであること、すなわち、YbTbBiFe系ガーネット結晶中に1%以上のPtが混入すると、目的とする磁性ガーネット結晶とは異なった組成となるため、その格子定数が変化し、基板材料との格子定数差が増大し、図1に示すような同心円状の亀裂の発生を引き起こす。
【0006】
こうした液相成長法の欠点を解消すべく主種の検討が行われている。例えば、溶媒に対して、非常に溶解度の低い材質で作られた容器を用いることである。この方法は一般的である。しかし、如何に容器材質の溶液中への溶解度が低くても、熱力学的には混入量がゼロになることはない。このため、どうしても容器からの不純物混入を避けたい場合には、液相成長法ではない方法、たとえば気相成長などにて結晶を成長させる。しかし全ての結晶材料を気相成長で得ることはできない。
【0007】
【発明が解決しようとする課題】
本発明は、液相結晶成長法により磁性ガーネット結晶を得るに際して溶液保持容器の材質が目的とする結晶中に混入し結晶品質を低下させない方法の提供、具体的には溶液保持材としてPt容器を用いて液相結晶成長により磁性ガーネット膜等の結晶成長を行うに際して目的結晶中のPt濃度を低減させる方法の提供を目的とする。
【0008】
【問題を解決するための手段】
前記課題を解決する本発明の第1請求項は白金容器を溶液保持材料とし、白金を、不可避不純物濃度を越えて含まない溶液を用い液相結晶成長法により磁性ガーネット膜を得る方法において、結晶育成中の溶液中の白金濃度を常に飽和濃度以下に抑制するために、容器の一部を強制冷却して容器から溶出したPtを該冷却部に析出させ続けることで、結晶育成時の溶液中の濃度を1mass%未満に維持するものである。
そして、第2請求項に係る発明は、該溶液が、酸化鉛、酸化硼素、酸化テルビウム、酸化イッテルビウム、酸化鉄、酸化ビスマスにて構成されることを特徴とし、この溶液を用いて育成した磁性ガーネットの組成がYbTbBiFeで構成される請求項1記載の液相結晶成長法によるものである。
【0009】
【発明の実施の形態】
液相結晶成長法において、目的結晶が、磁性ガーネット厚膜結晶のような酸化物結晶の場合、白金坩堝がしばしば用いられる。白金坩堝を用いての液相エピタキシャル成長では、結晶成長温度での溶媒成分への白金の溶解は避けられないことから、目的結晶へ白金が不純物として混入することは避けられない。磁性ガーネット厚膜結晶に、不純物として白金が混入した場合、その割合が0.5mass%を越えると同心円状の亀裂が発生し、歩留まりの低下を引き起こす。
【0010】
図2にこの関係を示す。図2は溶液中の白金濃度を種々の値に保持しつつ基板として3インチ径の、格子定数1.2497±0.0003nmのガーネットウェハーを用い、基板の片面のみを溶液に浸漬し、同時に基板を回転し、溶液温度を1時間当たり0.6℃の割合で降下させつつ、20時間の液相結晶成長を行い、TbTbBiFe系磁性ガーネットエピタキシャル膜(以下FR膜と記す)を作製し、FR膜中の白金濃度と該FR膜の100μm以上のピット状欠陥数と亀裂欠陥の有無との関係を求め、これを示したものである。図2より前記した白金の割合が0.5mass%を越えると同心円状の亀裂が発生し、歩留まりの低下を引き起こすことは明らかである。
【0011】
本第1の請求項に係る発明において、結晶育成時の溶液中の白金濃度を飽和濃度以下、好ましくは1mass%未満に維持するのは、目的結晶への白金混入量は溶液中の白金濃度に比例することから、白金濃度を低下させた溶液を用いることにより、目的結晶中への白金混入量を低減させるためである。ここで重要なことは、目的結晶が成長する間、溶液中の白金濃度を1mass%未満に維持することである。
【0012】
溶液中のPt濃度低減化の方法は特に制限はない。基本的には請求項に記載したように、溶液の一部を冷却し、その冷却部に溶解したPtを凝集させることで溶液中の白金濃度を1mass%未満に維持しうる。ここで重要なことは、前と同様に、このような凝集過程を目的結晶が成長する間維持することである。すなわち、白金容器からの溶液中への白金の溶出は目的結晶の成長期間中継続されるからである。
【0013】
本発明は、白金容器を用いて、目的結晶中に白金を含まないような液相結晶成長法において有効であるが、とくに、酸化鉛、酸化硼素、酸化テルビウム、酸化イッテルビウム、酸化鉄、酸化ビスマスを溶融させた溶液から、磁性ガーネット厚膜結晶を成長させる場合に有効である。
【0014】
本発明において、溶液の一部を冷却する方法として用いうるものは不活性気体の吹きつけ、ヒートポンプの採用等があり、溶液の一部を直接冷却しても、溶液が入っている容器部の一部を冷却しても良い。
【0015】
【実施例】
以下に本発明を磁性ガーネット厚膜結晶に適用した実施例及び比較例を示す。
(実施例1〜7)
白金容器に、酸化鉛2300g、酸化硼素140g、酸化ビスマス3100g、酸化鉄460g、酸化テルビウム56.6g、酸化イッテルビウム4.4gを仕込んだ。これを縦型管状炉内に設置し、全体を950℃まで加熱して、十分撹拌し均一に混合し、磁性ガーネットエピタキシャル膜成長溶液とした。
【0016】
この溶液の温度を結晶成長温度まで低下させ、同時に、図3に示すように、溶液表面の一部に窒素ガスを吹き付け、当該部位を強制的に冷却し、溶解している白金の一部を析出させ、溶液内の白金濃度が1mass%以下となっている溶液1(実施例1)、2(実施例2)、3(実施例3)、4(実施例4)、5(実施例5)、6(実施例6)、7(実施例7)を作製した。
【0017】
次に、基板として3インチ径の、格子定数1.2497±0.0003nmのガーネットウェハーを用い、基板の片面のみを溶液に浸漬し、同時に基板を回転した。
この状態にて、溶液温度を1時間当たり0.6℃の割合で降下させつつ、20時間のエピタキシャル成長を行い、FR膜1(実施例1)、2(実施例2)、3(実施例3)、4(実施例4)、5(実施例5)、6(実施例6)、7(実施例7)を作製した。
【0018】
いずれのFR膜1〜7にも同心円状の亀裂は発生しなかった。また、各FR膜に全面に存在する100μm以上のピット状欠陥数を求めた。また、結晶成長中の溶液中の白金濃度とFR膜の白金濃度を求めた。これらの結果を表1に示した。
【0019】
【表1】

Figure 0004090345
表からわかる通り、本発明に従って結晶成長中の溶液中の白金濃度を1mass%以下とすれば、得られる結晶中の白金濃度を0.5mass%以下とすることができ、100μm以上のピット数も少なく、割れのないFR膜を得ることが可能である。
【0020】
(比較例1〜7)
溶液の一部に窒素を吹き当てることなく実施例1と同様にしてFR膜11(比較例1)、12(比較例2)、13(比較例3)、14(比較例4)、15(比較例5)、16(比較例6)、17(比較例7)を作製した。
【0021】
いずれのFR膜11〜17にも同心円状の亀裂が見られた。また、各FR膜に全面に存在する100μm以上のピット状欠陥数を求めた。また、結晶成長中の溶液中の白金濃度とFR膜の白金濃度とを求めた。これらの結果を表2に示した。
【0022】
【表2】
Figure 0004090345
【0023】
表2よりわかる通り、本発明に従って結晶成長中の溶液中の白金濃度を1mass%以下としなければ、良好なFR膜が得られない。
【0024】
【発明の効果】
本発明は白金容器を用いて液相結晶成長する際に、溶液の一部の温度を冷却することにより溶液中の白金濃度を低減させ、もって目的結晶中への白金混入量を低減化させ、目的結晶の結晶品質を向上させる。本発明を、磁性ガーネット結晶に適用した実施例の結果からわかるように、本発明による溶液から成長した磁性ガーネット結晶の品質が向上することは明らかである。
【図面の簡単な説明】
【図1】液相エピタキシャル成長にて得られる磁性ガーネット厚膜結晶に見られる同心円状の亀裂の様子を表す模式図である。
【図2】本発明の検討で得られたFR膜における、同心円状亀裂、ピット状欠陥とFR膜中の白金濃度との関係を示す図である。
【図3】実施例の磁性ガーネット厚膜結晶成長に用いた成長炉の構成図である。
【符号の説明】
1:FR膜
2:割れ
3:Pt製坩堝
4:成長溶液
5:耐火物
6:電熱ヒーター
7:窒素ガス導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid phase crystal growth method, and more particularly, to a liquid phase crystal growth method in which a substrate material is immersed in a supersaturated solution to precipitate a solute on the substrate.
[0002]
[Prior art]
The liquid phase crystal growth method is one type of crystal growth methods that have been widely known. In general, a substance serving as a solvent is maintained in a liquid state at a constant temperature, and a solute component is dissolved in the solvent in a saturated state. Thereafter, the temperature is gradually increased in a state where a material serving as a substrate is immersed in the solution. This is a method of creating a supersaturated state by lowering and precipitating a solute component that cannot be dissolved as crystals on the substrate surface.
[0003]
This method has the disadvantage that when a disk-shaped single crystal is used as a substrate, the crystal deposited on the substrate surface has the same orientation as the substrate crystal, and the growth rate is extremely low compared to the pulling method. Crystals with very good crystal quality can be obtained. For this reason, it is a technique that is widely used in the manufacturing process of light emitting diodes and laser diodes.
[0004]
In the liquid phase growth method, since a solution in a liquid state is used, some kind of container is used. The container is often eroded by the solution, and the elements constituting the container often precipitate as impurities in the target crystal. In the growth of a magnetic garnet film used in an optical isolator, lead oxide and boron oxide as solvents are held in a liquid state in a platinum container, and various oxides as solutes are dissolved therein. Then, a magnetic carnet film is obtained on the substrate. At this time, it is known that the container is attacked and platinum is eluted into the solution and mixed into the magnetic garnet film. It is known that platinum mixed in affects the Faraday rotation angle and insertion loss, which are the basic performance of an optical isolator, depending on the concentration.
[0005]
Further, according to the examination results of the present inventors, platinum that is present as an impurity is one of the causes of generating concentric cracks, that is, when 1% or more of Pt is mixed in the YbTbBiFe-based garnet crystal. Since the composition differs from that of the intended magnetic garnet crystal, the lattice constant thereof changes, the lattice constant difference from the substrate material increases, and concentric cracks as shown in FIG. 1 are generated.
[0006]
In order to eliminate the disadvantages of the liquid phase growth method, the main species are being studied. For example, using a container made of a material having a very low solubility in a solvent. This method is common. However, no matter how low the solubility of the container material in the solution, the mixing amount does not become zero thermodynamically. For this reason, when it is inevitably desired to avoid contamination from the container, the crystal is grown by a method other than the liquid phase growth method, for example, vapor phase growth. However, not all crystal materials can be obtained by vapor phase growth.
[0007]
[Problems to be solved by the invention]
The present invention provides a method in which the material of the solution holding container is not mixed into the target crystal when the magnetic garnet crystal is obtained by the liquid phase crystal growth method, and specifically, a Pt container is used as the solution holding material. An object of the present invention is to provide a method for reducing the Pt concentration in a target crystal when a crystal such as a magnetic garnet film is grown by liquid phase crystal growth.
[0008]
[Means for solving problems]
The first aspect of the present invention for solving the above-mentioned problem is a method for obtaining a magnetic garnet film by a liquid phase crystal growth method using a platinum container as a solution holding material and using a solution containing no platinum exceeding an inevitable impurity concentration. In order to keep the platinum concentration in the solution during crystal growth below the saturation concentration at all times, a part of the vessel is forcibly cooled and Pt eluted from the vessel is continuously deposited on the cooling part, so that the solution during crystal growth The concentration inside is maintained at less than 1 mass%.
The invention according to the second aspect is characterized in that the solution is composed of lead oxide, boron oxide, terbium oxide, ytterbium oxide, iron oxide, bismuth oxide, and a magnetic material grown using this solution. The liquid crystal growth method according to claim 1, wherein the composition of the garnet is composed of YbTbBiFe.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the liquid crystal growth method, when the target crystal is an oxide crystal such as a magnetic garnet thick film crystal, a platinum crucible is often used. In liquid phase epitaxial growth using a platinum crucible, it is unavoidable that platinum is dissolved in a solvent component at the crystal growth temperature, so that platinum is mixed into the target crystal as an impurity. When platinum is mixed as an impurity in the magnetic garnet thick film crystal, if the ratio exceeds 0.5 mass%, concentric cracks are generated, resulting in a decrease in yield.
[0010]
FIG. 2 shows this relationship. Figure 2 shows a 3 inch diameter garnet wafer with a lattice constant of 1.2497 ± 0.0003 nm, while maintaining the platinum concentration in the solution at various values, soaking only one side of the substrate in the solution, and simultaneously rotating the substrate. While the solution temperature is lowered at a rate of 0.6 ° C. per hour, liquid phase crystal growth is performed for 20 hours to produce a TbTbBiFe-based magnetic garnet epitaxial film (hereinafter referred to as FR film), and platinum in the FR film. This shows the relationship between the concentration, the number of pit-like defects of 100 μm or more in the FR film, and the presence or absence of crack defects. FIG. 2 clearly shows that when the platinum ratio exceeds 0.5 mass%, concentric cracks are generated and the yield is reduced.
[0011]
In the invention according to the first claim, the platinum concentration in the solution at the time of crystal growth is maintained at a saturation concentration or less, preferably less than 1 mass%. This is because the amount of platinum mixed into the target crystal is reduced by using a solution having a reduced platinum concentration because it is proportional. What is important here is to keep the platinum concentration in the solution below 1 mass% while the target crystal grows.
[0012]
The method for reducing the Pt concentration in the solution is not particularly limited. Basically, as described in claim 1 , the platinum concentration in the solution can be maintained at less than 1 mass% by cooling a part of the solution and aggregating Pt dissolved in the cooling part. It is important that, as before reporting, is to maintain during such aggregation process purpose crystal grows. That is, the elution of platinum into the solution from the platinum container is continued during the growth period of the target crystal.
[0013]
The present invention is effective in a liquid phase crystal growth method in which platinum is not contained in a target crystal by using a platinum container, and in particular, lead oxide, boron oxide, terbium oxide, ytterbium oxide, iron oxide, bismuth oxide. It is effective when growing a magnetic garnet thick film crystal from a solution in which the smelt is melted.
[0014]
In the present invention, what can be used as a method for cooling a part of the solution includes blowing an inert gas, adopting a heat pump, etc. Even if the part of the solution is directly cooled, the container part containing the solution is used. Some may be cooled.
[0015]
【Example】
Examples and comparative examples in which the present invention is applied to a magnetic garnet thick film crystal are shown below.
(Examples 1-7)
A platinum container was charged with 2300 g of lead oxide, 140 g of boron oxide, 3100 g of bismuth oxide, 460 g of iron oxide, 56.6 g of terbium oxide, and 4.4 g of ytterbium oxide. This was installed in a vertical tubular furnace, the whole was heated to 950 ° C., sufficiently stirred and mixed uniformly to obtain a magnetic garnet epitaxial film growth solution.
[0016]
The temperature of this solution is lowered to the crystal growth temperature, and at the same time, as shown in FIG. 3, nitrogen gas is blown onto a part of the solution surface to forcibly cool the part, and a part of the dissolved platinum is removed. Solution 1 (Example 1), 2 (Example 2), 3 (Example 3), 4 (Example 4), 5 (Example 5) in which the platinum concentration in the solution is 1 mass% or less. ), 6 (Example 6), and 7 (Example 7).
[0017]
Next, a 3 inch diameter garnet wafer having a lattice constant of 1.2497 ± 0.0003 nm was used as the substrate, and only one side of the substrate was immersed in the solution, and the substrate was simultaneously rotated.
In this state, while the solution temperature was lowered at a rate of 0.6 ° C. per hour, epitaxial growth was performed for 20 hours, and FR films 1 (Example 1), 2 (Example 2), and 3 (Example 3). ), 4 (Example 4), 5 (Example 5), 6 (Example 6), and 7 (Example 7).
[0018]
None of the FR films 1 to 7 had concentric cracks. Further, the number of pit-like defects of 100 μm or more existing on the entire surface of each FR film was determined. Further, the platinum concentration in the solution during crystal growth and the platinum concentration in the FR film were determined. These results are shown in Table 1.
[0019]
[Table 1]
Figure 0004090345
As can be seen from the table, if the platinum concentration in the solution during crystal growth is 1 mass% or less according to the present invention, the platinum concentration in the resulting crystal can be 0.5 mass% or less, and the number of pits of 100 μm or more is also possible. It is possible to obtain an FR film with few and no cracks.
[0020]
(Comparative Examples 1-7)
FR film 11 (Comparative Example 1), 12 (Comparative Example 2), 13 (Comparative Example 3), 14 (Comparative Example 4), 15 (similar to Example 1 without blowing nitrogen to part of the solution) Comparative Examples 5), 16 (Comparative Example 6), and 17 (Comparative Example 7) were produced.
[0021]
Concentric cracks were observed in any of the FR films 11-17. Further, the number of pit-like defects of 100 μm or more existing on the entire surface of each FR film was determined. Further, the platinum concentration in the solution during crystal growth and the platinum concentration in the FR film were determined. These results are shown in Table 2.
[0022]
[Table 2]
Figure 0004090345
[0023]
As can be seen from Table 2, a good FR film cannot be obtained unless the platinum concentration in the solution during crystal growth is 1 mass% or less according to the present invention.
[0024]
【The invention's effect】
The present invention reduces the platinum concentration in the solution by cooling the temperature of a part of the solution during liquid phase crystal growth using a platinum container, thereby reducing the amount of platinum mixed into the target crystal, Improve the crystal quality of the target crystal. As can be seen from the results of the examples in which the present invention was applied to magnetic garnet crystals, it is clear that the quality of magnetic garnet crystals grown from solutions according to the present invention is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a concentric crack seen in a magnetic garnet thick film crystal obtained by liquid phase epitaxial growth.
FIG. 2 is a diagram showing the relationship between concentric cracks, pit-like defects and platinum concentration in the FR film in the FR film obtained by the study of the present invention.
FIG. 3 is a structural diagram of a growth furnace used for magnetic garnet thick film crystal growth in an example.
[Explanation of symbols]
1: FR film 2: Crack 3: Pt crucible 4: Growth solution 5: Refractory 6: Electric heater 7: Nitrogen gas introduction tube

Claims (2)

白金容器を溶液保持材料とし、白金を、不可避不純物濃度を越えて含まない溶液を用い液相結晶成長法により磁性ガーネット膜を得る方法において、結晶育成中の溶液中の白金濃度を常に飽和濃度以下に抑制するために、容器の一部を強制冷却して容器から溶出したPtを該冷却部に析出させ続けることで、結晶育成時の溶液中の濃度を1mass%未満に維持することを特徴とする液相結晶成長法。In a method for obtaining a magnetic garnet film by a liquid phase crystal growth method using a platinum container as a solution holding material and using a solution that does not contain platinum exceeding the concentration of inevitable impurities, the concentration of platinum in the solution during crystal growth is always saturated. In order to suppress the following, the concentration in the solution at the time of crystal growth is maintained at less than 1 mass% by forcibly cooling a part of the container and continuously precipitating Pt eluted from the container in the cooling part. Liquid phase crystal growth method. 該溶液が、酸化鉛、酸化硼素、酸化テルビウム、酸化イッテルビウム、酸化鉄、酸化ビスマスにて構成されることを特徴とし、この溶液を用いて育成した磁性ガーネットの組成がYbTbBiFeで構成される請求項1記載の液相結晶成長法。The solution is composed of lead oxide, boron oxide, terbium oxide, ytterbium oxide, iron oxide, bismuth oxide, and the composition of magnetic garnet grown using this solution is composed of YbTbBiFe. The liquid phase crystal growth method according to 1.
JP2002371754A 2002-12-24 2002-12-24 Liquid phase crystal growth method Expired - Fee Related JP4090345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371754A JP4090345B2 (en) 2002-12-24 2002-12-24 Liquid phase crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371754A JP4090345B2 (en) 2002-12-24 2002-12-24 Liquid phase crystal growth method

Publications (2)

Publication Number Publication Date
JP2004203637A JP2004203637A (en) 2004-07-22
JP4090345B2 true JP4090345B2 (en) 2008-05-28

Family

ID=32810556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371754A Expired - Fee Related JP4090345B2 (en) 2002-12-24 2002-12-24 Liquid phase crystal growth method

Country Status (1)

Country Link
JP (1) JP4090345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925445A (en) 2004-07-09 2020-11-13 中外制药株式会社 Anti-glypican 3 antibody
CN103180492B (en) * 2010-10-13 2016-10-26 Tdk株式会社 The raw material used in LGS type oxide material, its manufacture method and this manufacture method

Also Published As

Publication number Publication date
JP2004203637A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
EP1997941A1 (en) PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH
EP2857562B1 (en) Sic single-crystal ingot and production method for same
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
EP3333287A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JP4090345B2 (en) Liquid phase crystal growth method
US4013501A (en) Growth of neodymium doped yttrium aluminum garnet crystals
JPWO2004070091A1 (en) Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof
EP1498518A1 (en) Silicon carbide single crystal and method for preparation thereof
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP4253220B2 (en) Method for producing magnetic garnet single crystal film
US4277519A (en) Simultaneous formation of garnet epilayer on a plurality of substrates
JP2818343B2 (en) Substrate holder for single crystal growth
JPH01249691A (en) Production of superconducting thin film
RU2156327C2 (en) Method of preparing charge for growing lanthanum-gallium silicate monocrystals
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP3216297B2 (en) Liquid phase epitaxial growth equipment
JP2018080063A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JPS6385085A (en) Method for growing silicon single crystal
JP2000239097A (en) Method for pulling up silicon single crystal for semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees