JP4089194B2 - Nitride semiconductor light emitting diode - Google Patents

Nitride semiconductor light emitting diode Download PDF

Info

Publication number
JP4089194B2
JP4089194B2 JP2001300915A JP2001300915A JP4089194B2 JP 4089194 B2 JP4089194 B2 JP 4089194B2 JP 2001300915 A JP2001300915 A JP 2001300915A JP 2001300915 A JP2001300915 A JP 2001300915A JP 4089194 B2 JP4089194 B2 JP 4089194B2
Authority
JP
Japan
Prior art keywords
electrode
gallium nitride
compound semiconductor
emitting diode
nitride compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001300915A
Other languages
Japanese (ja)
Other versions
JP2003110138A (en
Inventor
稔生 小牧
健 楠瀬
隆志 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001300915A priority Critical patent/JP4089194B2/en
Publication of JP2003110138A publication Critical patent/JP2003110138A/en
Application granted granted Critical
Publication of JP4089194B2 publication Critical patent/JP4089194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体発光ダイオードに関し、特に発光表面上に金属薄膜よりなる透光性電極を設けた窒化物半導体発光ダイオードに関する。
【0002】
【従来の技術】
窒化物半導体は、青色又は緑色を呈する発光ダイオード(light emission diode:LED)の材料として、フルカラーLEDディスプレイ、交通信号灯、イメージスキャナ光源等の各種光源として実用化されている。また、窒化ガリウム系化合物を用いた青色のLED黄色の蛍光を発する蛍光体を組合わせると、白色のLEDを得ることができる。白色LEDは、長寿命、低消費電力といったLEDの特性を生かして、既存の白色蛍光灯の代替光源として期待され、外部量子効率の高効率化が要求されている。
【0003】
窒化ガリウム系化合物半導体発光ダイオードでは、p型窒化ガリウム系化合物半導体層のシート抵抗が大きいため、発光部分が不透明なp電極近傍で強くなるという問題がある。これを解決するために、p型窒化ガリウム系化合物半導体層の表面に金属薄膜から成る透光性p電極を形成し、発光の均一化を図っていた。この透光性p電極の全面を介して電流が流れ、発光した光は透光性p電極を透過して外に取り出されていた。
また、国際公開公報WO01/041223には、導電性フィンガ20a、20bを有する第2のコンタクト19が辺部に形成されたLED10が開示されている(図2参照)。導電性フィンガ20a、20bは、コンタクト19が形成された辺と、その辺に直交する辺に沿って延びている。導電性フィンガ20a、20bと導電層18の辺縁との距離は、コンタクト19が形成された辺側で大きく、その辺と直交する辺側で小さい。
【0004】
【発明が解決しようとする課題】
したがって、透光性p電極は、シート抵抗を極力低くし、光の透過率を極力高くすることが望まれる。しかしながら、シート抵抗を低くするため厚膜にすると光の透過率は低くなり、光の透過率を上げようとするとシート抵抗が高くなるため、同時に実現するのは難しい。そこで、本発明は外部量子効率が最もよくなるように、透光性p電極のシート抵抗と光の透過率との調和を図った窒化ガリウム系化合物半導体発光ダイオードを形成することを目的とする。
【0005】
【課題を解決するための手段】
本発明の窒化ガリウム系化合物半導体発光ダイオードは、透光性p電極の最適化を図るにあたり、透光性p電極とn型コンタクト層との間における、シート抵抗の関係に着目した。n型不純物濃度1017〜1020/cmのコンタクト層を有するn型窒化ガリウム系化合物半導体層と、n型窒化ガリウム系化合物半導体層上に形成され、p型不純物濃度1017〜1020/cmのコンタクト層を有するp型窒化ガリウム系化合物半導体層と、n型窒化ガリウム系化合物半導体層とp型窒化ガリウム系化合物半導体層とで挟まれた量子井戸構造から成る活性層と、n型窒化ガリウム系化合物半導体層のコンタクト層上に形成したn電極と、p型窒化ガリウム系化合物半導体層のコンタクト層のほぼ全面に形成された金属薄膜より成る透光性p電極と、透光性p電極上に形成されているワイヤボンディング用台座電極とを備えた窒化ガリウム系化合物半導体発光ダイオードであって、その透光性p電極が、金および白金族元素の群から選択された1種を含む金属電極からなりかつ膜厚が200Å以下であり、n型窒化ガリウム系化合物層のコンタクト層は膜厚4〜6μmであり、n電極が発光ダイオードの部に形成されており、台座電極は、n電極に対向する部に配置され、かつ透光性p電極上にp型窒化ガリウム系化合物半導体層の辺縁から少なくとも20μm以上離れて2本以上の線状の延長導電部が形成されており、前記延長導電部は先端で前記辺縁と最近接する円弧線状であることを特徴とする。
【0007】
さらに、透光性p電極のシート抵抗Rは10Ω/□以上となるように形成されていると、R≧Rとなるシート抵抗Rを有するn型窒化ガリウム系化合物半導体層が比較的容易に作成できるので好ましい。また、透光性p電極の膜厚が200Å以下であると、300Å以上の時に比べて光の透過性が急によくなり外部量子効率が飛躍的に向上するので好ましい。
【0008】
また、透光性p電極が、金および白金族元素の群から選択された1種と、少なくとも1種の他の元素とから成る多層膜または合金で形成されているときには、透光性p電極のシート抵抗の調節は、金および白金族元素の含有量によって調節すると好ましい。金および白金族元素は、青色〜緑色の短波長領域の吸収係数が高いため、その含有量が少ないほど光の透過率がよくなるためである。シート抵抗の調節も、金又は白金族元素の含有量の調節によって成すと好ましい。
【0009】
上記のように、本発明の特徴は、上記透光性p電極とn側コンタクト層のシート抵抗とのバランスをとることにあり、その結果、外部量子効率が良好になる作用効果を発揮することができる。実際の窒化ガリウム系化合物半導体発光ダイオードでは、透光性p電極上に所定の台座電極が形成される。
【0010】
本発明の窒化ガリウム系化合物半導体発光ダイオードでは、n型電極が発光ダイオードの辺部に沿って帯状に形成される場合、台座電極は、n型電極と平行に形成されるとよい。台座電極とn電極とを平行に形成することで、台座電極とn電極とを向かい合う2辺とする四角形の辺上および内部において、電流密度が均一となりやすい。
【0011】
本発明の窒化ガリウム系化合物半導体発光ダイオードでは、n型電極が発光ダイオードの1辺部近傍に例えば略矩形や円形といった帯状以外の形状とする場合には、n型電極が設けられているダイオードの辺部と対向した辺部の近傍に、台座電極が設けられるとよい。台座電極の形状は特に限定されず、帯状、略矩形、円形などで形成される。n型電極は帯状に形成するより面積が小さくできるので、n型層を露出させるために行う発光面の切り欠き面積を小さくすることが可能となる。ここで、台座電極を円形や略矩形などに形成すると、帯状に形成した台座電極と比べて、強発光する台座周辺部が減少する。そこで、台座電極から延長導電部を設け、強発光領域を増加させるとよい。このときには、n電極と台座電極との距離がなるべく均一となるように延長導電部が形成されることが好ましい。
【0012】
本発明の窒化ガリウム系化合物半導体発光ダイオードでは、n型電極が発光ダイオードの隅部に形成される場合、台座電極はn電極に対向する発光ダイオードの隅部に形成されている形態も好ましい。さらに、台座電極が2つ以上の延長導電部を設けた形状に成形されているとよい。隅部にある台座電極から、扇状に電流を広げることができれば発光領域が広くなる。そのため、隅部の台座電極を中心として広がった、少なくとも2つ以上の延長導電部が形成されていると好ましい。
【0013】
また、台座電極とn電極との距離をできるだけ等しく形成しようとすると、延長導電部は辺部と平行に形成されているのは望ましくない。特に前記延長導電部がn電極を中心とした円弧線状に形成されているとより好ましい。また。このとき余剰な面積を有する延長導電部を形成すると遮光効果が増大して好ましくないので、台座電極は必要最小限の面積に押さえるとよい。
【0014】
延長導電部は、p型窒化ガリウム系化合物半導体層の辺縁から離して形成されていると、より好ましい。延長導電部をp型窒化ガリウム系化合物半導体層の辺縁ぎりぎりに形成すると、強発光領域となりうる範囲の一部がp型窒化ガリウム系化合物半導体層から外れてしまい、外部量子効率を減少させることになる。
【0015】
延長導電部と発光ダイオードの辺部とを離すとき、その距離は、外部量子効率を損なわないことを考えて、強発光領域のうちのでもかなり強く発光する部分が辺部にかからないようにするのが好ましい。少なくとも、最大発光強度に対して90%以上の強度を有する領域はp型窒化ガリウム系化合物半導体層の範囲に入るように、延長導電部とp型窒化ガリウム系化合物半導体の辺縁とが離して形成されているのが好ましい。しかし、延長導電部と辺部との距離が離れすぎると、その間に外部量子効率にさほど寄与しない無発光又は微弱発光領域が含まれるため、かえって外部量子効率を下げる結果となる。よって、p型窒化ガリウム系化合物半導体の辺縁の発光強度が、最大発光強度に対して100%以下80%以上となる程度に延長導電部をp型窒化ガリウム系化合物半導体の辺縁から離して配置すると、さらに好ましい。
【0016】
または、延長導電部とp型窒化ガリウム系化合物半導体の辺縁との距離が、少なくとも20μm以上となるように形成されていてもよく、さらに好ましくは20μm以上50μm以下に形成されるとよい。
【0017】
【発明の実施の形態】
[実施の形態1]
図1は、本発明における窒化ガリウム系化合物半導体の発光ダイオードの断面図である。窒化ガリウム系化合物半導体発光ダイオード1は、サファイヤ基板10の上に、GaN又はAlGa1- N(0≦x<1)からなる低温成長バッファ層(図示せず)を介して、n型窒化ガリウム系化合物半導体からなるn型コンタクト層11、n型窒化ガリウム系化合物半導体層12が形成されている。その上に、量子井戸構造を有する活性層13、p型窒化ガリウム系化合物半導体層14が形成されている。
【0018】
不純物濃度1017〜1020/cmで形成されるn型コンタクト層11のシート抵抗と、透光性p電極15のシート抵抗とは、R≧Rの関係に形成される。n型コンタクト層11は、例えば膜厚4〜6μmに形成されると好ましく、そのシート抵抗は15〜10Ω/□と見積もられることから、このときのRは10Ω/□以上の薄膜に形成されるとよい。また、透光性p電極15は、膜厚が200μm以下の薄膜で形成されていてもよい。
【0019】
また、透光性p電極が、金および白金族元素の群から選択された1種と、少なくとも1種の他の元素とから成る多層膜または合金で形成されている場合、透光性p電極15のシート抵抗の調節は、含有されている金又は白金族元素の含有量によって成されるとよい。金又は白金族元素は、本発明の窒化ガリウム系化合物半導体発光ダイオード1の波長領域における吸収係数が高いので、透光性p電極に含まれる金又は白金族元素の量は少ないほど光透過性がよくなる。従来の発光ダイオードにおけるシート抵抗の関係がR<Rであったが、本発明ではR≧Rであるので、透光性p電極15のシート抵抗は高く形成されることになる。つまり、透光性p電極は従来のものと比べて薄膜に形成されることになるが、このとき金又は白金族元素の含有量を減らすことで薄膜化すると好ましい。
【0020】
本発明の発光ダイオードでは、n型コンタクト層11のシート抵抗RΩ/□と、透光性p電極15のシート抵抗RΩ/□とが、R≧Rの関係を有するように形成される。発光ダイオードとして形成した後にRを測定するのは難しく、RとRとの関係を知るのは実質上不可能であるが、発光時の光強度分布の状態からどのようなRとRとの関係となっているかを知ることができる。
【0021】
図2は本発明の一実施形態の上面図である。p型窒化ガリウム系化合物半導体層14の基板の1辺に沿った一部分を切除して、n型コンタクト層11を露出させ、露出したn型コンタクト層11の上にn電極17を帯状に形成する。切除されずに残ったp型窒化ガリウム系化合物半導体層14の上面部のほぼ全面に、金属薄膜から成る透光性p電極15が形成され、さらに透光性p電極15の上にはn電極と平行に台座電極16が形成されている。
【0022】
[実施の形態2]
他の実施の形態としては、R≧Rの関係を満たす発光ダイオードであって、かつ図3(a)に示すように台座電極16とn電極17が素子の辺々に配置されてもよい。n電極17は帯状以外の形状、たとえば円形や略矩形などに形成される。台座電極16は帯状、円形、略矩形など、どのような形状でもよい。n型電極17は、帯状に形成するより面積が小さくできるので、n型層を露出させるために行う発光面の切り欠き面積を小さくすることが可能で、発光可能領域の余剰な削減を押さえる効果がある。また、台座電極16を円形や略矩形などに形成すると、帯状に形成した場合に比べて、不透明な台座電極による遮光領域が減るという長所はあるが、台座外周が減少するため強発光領域が減少するという短所も有する。そこで、台座電極16から線状延長導電部を設け、外周を長くして強発光領域を増加させると好ましい。
【0023】
透光性p電極15とn型コンタクト層11とがR≧Rの関係であるとき、延長伝導部106を有する台座電極16とすると、さらなる外部量子効率の向上が見込まれる。図3(b)〜(e)に示した台座電極16は好ましい形態の一部あるが、この形状に限らず、台座電極16の外周が長く、台座電極16による遮光領域が狭く、n電極17との距離が等しくなるように形成されていれば、好ましい形態となりうる。R≧Rの関係を満たす発光ダイオードであった場合に限り、上記3つのの条件を満たす発光ダイオードは、強発光で、かつ均一発光しやすい発光ダイオードとなる。この3つの条件を完全に満たすことは難しいので、ずべて完全に満たしていなくてもよく、バランス良く条件を満たしているのが好ましい。遮光領域を減らすためには、延長伝導部106は線状であると好ましいが、台座電極16の外周を長くするためには、メッシュ状も好ましい。また形状は図3のような直線状以外に、曲線状、格子状、枝状でもよい。
【0024】
延長導電部106は、いろいろな位置に形成することができるが、外部量子効率を下げないためには、p型窒化ガリウム系化合物半導体層14の辺縁から離して形成されているとよい。延長導電部の周囲には、その延長導電部を中心として強発光領域が現れ、延長導電部から離れるほど発光強度が低くなる発光分布を示す。延長導電部106をp型窒化ガリウム系化合物半導体層14の辺縁ぎりぎりに形成すると、発光可能な範囲がp型窒化ガリウム系化合物半導体層14からはみ出して、発光領域の減少につながりるので好ましくない。そこで、延長導電部106とp型窒化ガリウム系化合物半導体層14の辺縁とを離して形成し、発光する領域が素子からはみ出さないようにするのがよい。
【0025】
延長導電部とp型窒化ガリウム系化合物半導体層の辺縁との離間距離は、外部量子効率を悪くしないことを考慮して決定するとよい。延長導電部106近接範囲で確認される最大発光強度を100%とすると、少なくとも発光強度90%以上の領域はp型窒化ガリウム系化合物半導体層14からはみ出さないように、延長導電部と発光ダイオード辺部とを離して形成されていると好ましい。しかし、あまり距離を離しすぎると、延長導電部と辺縁との間に無発光又は微弱発光領域が現れ、その領域は延長導電部106から見てn電極17とは逆側に位置するため、それ以上電流が流れ込むことはなく、発光ロス領域となる。よって、延長導電部とp型窒化ガリウム系化合物半導体の辺縁との離間距離は、最大発光強度100%に対して100%以下90%以上の発光強度の領域の範囲において、p型窒化ガリウム系化合物半導体層14の辺縁に到達するような距離とすると、より好ましい。
【0026】
ここで形成する窒化ガリウム系化合物半導体発光ダイオードにおいては、延長導電部106とp型窒化ガリウム系化合物半導体層14の辺縁との距離は、少なくとも20μm以上となるように形成されているとよく、さらに好ましくは20μm以上50μm以下となるように形成されることである。
【0027】
[実施の形態3]
さらなる実施の形態では、図4(a)に示すように台座電極16とn電極17を素子の向かい合う隅部に配置してもよい。台座電極16は延長伝導部106をすると好ましい。図4(b)〜(e)に示す台座電極16は、好ましい形態の1部であり、その他の形状でもよい。R≧Rの関係を満たしているときには、台座電極16の外周を長く、台座電極16による遮光領域を狭く、n電極17との距離を等しくした発光ダイオードは、強発光で、かつ均一発光しやすい発光ダイオードとなる。しかし、台座電極の外周が長く、遮光面積が小さく、n電極と等距離という条件を完全に満たす台座電極を形成するのは難しいので、必ずしも完璧に条件に合致しなくてもよく、できるだけこれら3つの条件をバランス良く満たしていることが好ましい。延長導電部106の形状は線状、メッシュ状、曲線状、格子状、枝状でもよい。
【0028】
実施の形態2と同様に、実施の形態3においても、延長導電部106はいろいろな位置に形成することができる。しかし、外部量子効率を下げないために、p型窒化ガリウム系化合物半導体層14の辺縁と延長導電部106とは離して形成し、発光の強い領域は辺縁からはみ出ないようにすると好ましい。
【0029】
ここで延長導電部は、少なくとも最大発光強度を100として90%以上の発光強度を有する領域が辺縁からはみ出ないように、延長導電部と発光ダイオード辺部とが離れて形成されているのが好ましい。さらに好ましくは、100%以下80%以上の発光強度を有する領域で辺縁と重なる程度の距離を離して形成されていることである。このようにすると、強発光領域を損なわず、発光しない領域が少なくできるので好ましい。または、延長導電部106とp型窒化ガリウム系化合物半導体層14の辺縁とが、少なくとも20μm以上離間して形成されていてもよく、さらに好ましくは離間距離が20μm以上50μm以下であるように形成されることである。
【0030】
【実施例】
[実施例1]
2インチφ、(0001)C面を主面とするサファイア基板10の上に500℃にて、GaNよりなるバッファ層(図示せず)を200オングストロームの膜厚で成長させた後、温度を1050℃にしてアンドープGaN層を5μm膜厚で成長させる。尚、この成長させる膜厚は、5μmに限定されるものではなく、バッファ層よりも厚い膜厚で成長させて、10μm以下の膜厚に調整することが望ましい。次にこのアンドープGaN層の成長後、ウェーハを反応容器から取り出し、このGaN層の表面に、ストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅15μm、ストライプ間隔(窓部)5μmのSiO2よりなるマスク12を0.1μmの膜厚で形成する。マスクを形成後、ウェーハを再度反応容器内にセットし、1050℃で、アンドープGaN14を10μmの膜厚に成長させる。アンドープGaN層11の結晶欠陥は1010/cm2以上であったが、GaN層の結晶欠陥は106/cm2以下であった。
【0031】
(n型コンタクト層11、n型窒化ガリウム系化合物半導体層12)
次に、n型コンタクト層11、およびn側窒化ガリウム系化合物半導体層12を形成する。まず、1050℃で、同じく原料ガスにTMG、アンモニアガス、不純物ガスにシランガスを用い、Siを4.5×1018/cm3ドープしたGaNよりなるn側コンタクト層11を2.25μmの膜厚で成長させる。次にシランガスのみを止め、1050℃で、TMG、アンモニアガスを用い、アンドープGaN層を75オングストロームの膜厚で成長させ、続いて同温度にてシランガスを追加しSiを4.5×1018/cm3ドープしたGaN層を25オングストロームの膜厚で成長させる。このようにして、75オングストロームのアンドープGaN層からなるA層と、SiドープGaN層を有する25オングストロームのB層とからなるペアを成長させる。そしてペアを25層積層して2500オングストローム厚として、超格子構造の多層膜よりなるn側窒化ガリウム系化合物半導体層を成長させる。
【0032】
(活性層13)
次に、アンドープGaNよりなる障壁層を250オングストロームの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニアを用いアンドープIn0.3Ga0.7Nよりなる井戸層を30オングストロームの膜厚で成長させる。そして障壁+井戸+障壁+井戸・・・・+障壁の順で障壁層を7層、井戸層を6層、交互に積層して、総膜厚1930オングストロームの多重量子井戸構造よりなる活性層13を成長させる。
【0033】
(p型層14)
次に、p側多層膜クラッド層及びp側コンタクト層から成るp型層14を形成する。まず、温度1050℃でTMG、TMA、アンモニア、Cp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cm3ドープしたp型Al0.2Ga0.8Nよりなる第3の窒化物半導体層を40オングストロームの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニア、Cp2Mgを用いMgを1×1020/cm3ドープしたIn0.03Ga0.97Nよりなる第4の窒化物半導体層を25オングストロームの膜厚で成長させる。そしてこれらの操作を繰り返し、第3+第4の順で交互に5層ずつ積層し、最後に第3の窒化物半導体層を40オングストロームの膜厚で成長させた超格子構造の多層膜よりなるp側多層膜クラッド層を365オングストロームの膜厚で成長させる。続いて1050℃で、TMG、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層を700オングストロームの膜厚で成長させる。
【0034】
反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェーハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。
【0035】
次に、ウェーハを反応容器から取り出し、表面に所定の形状のマスクを形成し、RIE(反応性イオンエッチング)装置でp型窒化ガリウム系化合物半導体層側からエッチングを行い、図4に示すように素子の隅部において、n側コンタクト層11の表面を露出させる。
【0036】
(透光性p電極15、台座電極16、n電極17)
エッチング後、p型層14のほぼ全面を覆うように、膜厚110オングストロームの透光性p電極15(Ni/Au=60/70)と、そのp電極26の上に膜厚0.5μmのAuよりなる台座電極16を形成する。台座電極16は、図5に示すように、隅部にワイヤボンディング用の略矩形領域と、円弧線状の延長導電部106とを有する台座電極16を形成する。最近接となる延長導電部の先端と発光ダイオードの辺部との距離は20μmである。一方、エッチングにより露出させたn側コンタクト層11の表面にはWとAlを含む略矩形のn電極17を形成して発光ダイオード素子とした。
【0037】
このように形成したLEDを発光させたときの、発光強度の分布を図6に示す。図6のヒストグラムでは、横軸は測定レンジの最大発光強度を1.0としたときの相対発光強度であり、縦軸はその相対発光強度となっているLEDの表面積に比例する値となっている。よって、ピークの位置が右にシフトしてピークの高さが高いほど外部量子効率が良く、ピーク幅が狭いほど発光強度が均一であることを示す。図6は比較例の図7と比べてピーク位置が右にシフトしてピークの高さが高くなっていることから、外部量子効率の上昇していることがわかる。
【0038】
[比較例]
透光性p電極15の膜厚は260オングストローム(Ni/Au=60/200)に形成し、台座電極16は延長伝導部106を有しない形状とする以外は、実施例1と同様にした。実施例と同じ条件で発光させたところ、図7に示す発光強度分布を示した。
【0039】
【発明の効果】
本発明では、透光性p電極15のシート抵抗Rとn型コンタクト層11のシート抵抗Rとの関係がR≧Rとなるようにしたことにより、外部量子効率が向上した。さらに、このようなシート抵抗の関係が成立していると、台座電極の外周を長くすることにより強発光領域を増加させることができる。
【図面の簡単な説明】
【図1】 本発明における発光ダイオードの概略断面図である。
【図2】 本発明の実施形態の一例の概略図である。
【図3】 本発明の実施形態の一例の概略図である。
【図4】 本発明の実施形態の一例の概略図である。
【図5】 本発明の実施例の概略図である。
【図6】 本発明の実施例の発光強度分布のヒストグラムである。
【図7】 比較例の発光強度分布のヒストグラムである。
【符号の説明】
10・・・基板
11・・・n型コンタクト層
12・・・n型窒化ガリウム系化合物半導体層
13・・・活性層
14・・・p型窒化ガリウム系化合物半導体
15・・・透光性p電極
16・・・台座電極
106・・・台座電極の延長導電部
17・・・n電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitride semiconductor light emitting diode, and more particularly to a nitride semiconductor light emitting diode in which a light transmissive electrode made of a metal thin film is provided on a light emitting surface.
[0002]
[Prior art]
Nitride semiconductors have been put to practical use as various light sources such as full-color LED displays, traffic signal lights, and image scanner light sources, as materials for light emitting diodes (LEDs) that exhibit blue or green color. In addition, when a blue LED using a gallium nitride compound is combined with a phosphor emitting yellow fluorescence, a white LED can be obtained. White LEDs are expected as an alternative light source for existing white fluorescent lamps by taking advantage of the characteristics of LEDs such as long life and low power consumption, and high external quantum efficiency is required.
[0003]
The gallium nitride compound semiconductor light-emitting diode has a problem that the light-emitting portion becomes strong in the vicinity of the opaque p-electrode because the sheet resistance of the p-type gallium nitride compound semiconductor layer is large. In order to solve this problem, a light-transmitting p-electrode made of a metal thin film is formed on the surface of the p-type gallium nitride compound semiconductor layer to achieve uniform light emission. A current flows through the entire surface of the translucent p electrode, and emitted light is transmitted through the translucent p electrode and extracted outside.
In addition, International Publication No. WO01 / 041223 discloses an LED 10 in which a second contact 19 having conductive fingers 20a and 20b is formed on a side (see FIG. 2). The conductive fingers 20a and 20b extend along the side where the contact 19 is formed and the side orthogonal to the side. The distance between the conductive fingers 20a and 20b and the edge of the conductive layer 18 is large on the side where the contact 19 is formed, and is small on the side perpendicular to the side.
[0004]
[Problems to be solved by the invention]
Therefore, it is desired that the translucent p-electrode has a sheet resistance as low as possible and a light transmittance as high as possible. However, if the film thickness is increased in order to reduce the sheet resistance, the light transmittance is lowered. If the light transmittance is increased, the sheet resistance is increased, so that it is difficult to realize at the same time. Accordingly, an object of the present invention is to form a gallium nitride-based compound semiconductor light-emitting diode in which the sheet resistance of the translucent p-electrode and the light transmittance are harmonized so that the external quantum efficiency is the best.
[0005]
[Means for Solving the Problems]
The gallium nitride-based compound semiconductor light-emitting diode of the present invention focuses on the sheet resistance relationship between the light-transmitting p-electrode and the n-type contact layer in optimizing the light-transmitting p-electrode. An n-type gallium nitride compound semiconductor layer having a contact layer with an n-type impurity concentration of 10 17 to 10 20 / cm 3 and a p-type impurity concentration of 10 17 to 10 20 // are formed on the n-type gallium nitride compound semiconductor layer. an active layer having a quantum well structure sandwiched between a p-type gallium nitride compound semiconductor layer having a contact layer of cm 3 , an n-type gallium nitride compound semiconductor layer and a p-type gallium nitride compound semiconductor layer, and an n-type An n-electrode formed on the contact layer of the gallium nitride-based compound semiconductor layer; a translucent p-electrode composed of a metal thin film formed on substantially the entire contact layer of the p-type gallium nitride-based compound semiconductor layer; and a translucent p A gallium nitride-based compound semiconductor light emitting diode having a wire bonding base electrode formed on the electrode, wherein the translucent p-electrode is made of gold And a metal electrode comprising one selected from the group of platinum group elements, and is a film thickness is 200Å or less, a contact layer of n-type gallium nitride compound layer is a thickness 4 to 6 [mu] m, the n electrode is formed in the corner portion of the light-emitting diodes, the base electrodes are arranged in opposite corners on the n electrode, and at least 20μm or more from the edge of the p-type gallium nitride-based compound semiconductor layer on the light transmitting p electrode extension conductive portions of two or more linear apart are formed, the extension conductive portion and said arcuate linear der Rukoto contacting the edge and recently tip.
[0007]
Further, the sheet resistance R p of the transparent p-electrode is formed so as to be 10 [Omega / □ or more, R p ≧ R n to become the sheet resistance n-type gallium nitride-based with a R n compound semiconductor layer is compared It is preferable because it can be easily created. Moreover, it is preferable that the film thickness of the translucent p-electrode is 200 mm or less because the light transmittance is improved sharply and the external quantum efficiency is remarkably improved as compared with the case of 300 mm or more.
[0008]
Further, when the translucent p-electrode is formed of a multilayer film or an alloy composed of one kind selected from the group of gold and platinum group elements and at least one other element, the translucent p-electrode The sheet resistance is preferably adjusted according to the contents of the gold and platinum group elements. This is because gold and platinum group elements have a high absorption coefficient in a short wavelength region of blue to green, and thus the light transmittance is improved as the content is smaller. The sheet resistance is preferably adjusted by adjusting the content of the gold or platinum group element.
[0009]
As described above, the feature of the present invention is to balance the translucent p-electrode and the sheet resistance of the n-side contact layer, and as a result, to exhibit the effect of improving the external quantum efficiency. Can do. In an actual gallium nitride-based compound semiconductor light emitting diode, a predetermined pedestal electrode is formed on the translucent p-electrode.
[0010]
In the gallium nitride compound semiconductor light-emitting diode of the present invention, when the n-type electrode is formed in a strip shape along the side of the light-emitting diode, the pedestal electrode is preferably formed in parallel with the n-type electrode. By forming the pedestal electrode and the n electrode in parallel, the current density tends to be uniform on and inside a quadrangular side having the pedestal electrode and the n electrode facing each other.
[0011]
In the gallium nitride-based compound semiconductor light-emitting diode of the present invention, when the n-type electrode has a shape other than a belt shape such as a substantially rectangular shape or a circular shape near one side of the light-emitting diode, the diode of the diode provided with the n-type electrode is used. A pedestal electrode may be provided in the vicinity of the side facing the side. The shape of the pedestal electrode is not particularly limited, and is formed in a band shape, a substantially rectangular shape, a circular shape, or the like. Since the n-type electrode can have a smaller area than that formed in a strip shape, it is possible to reduce the cut-out area of the light emitting surface for exposing the n-type layer. Here, when the pedestal electrode is formed in a circular shape, a substantially rectangular shape, or the like, the pedestal peripheral portion that emits strong light is reduced as compared with the pedestal electrode formed in a band shape. Therefore, it is preferable to provide an extended conductive portion from the pedestal electrode to increase the strong light emitting region. In this case, the extended conductive portion is preferably formed so that the distance between the n electrode and the pedestal electrode is as uniform as possible.
[0012]
In the gallium nitride-based compound semiconductor light-emitting diode of the present invention, when the n-type electrode is formed at the corner of the light-emitting diode, the form in which the pedestal electrode is formed at the corner of the light-emitting diode facing the n-electrode is also preferable. Furthermore, the pedestal electrode may be formed into a shape provided with two or more extended conductive portions. If the current can be expanded in a fan shape from the pedestal electrode at the corner, the light emitting region becomes wider. For this reason, it is preferable that at least two or more extended conductive portions extending around the corner base electrode are formed.
[0013]
Further, if the distance between the base electrode and the n electrode is to be formed as equal as possible, it is not desirable that the extended conductive portion is formed in parallel with the side portion. In particular, it is more preferable that the extended conductive portion is formed in a circular arc shape centering on the n electrode. Also. At this time, if an extended conductive portion having an excessive area is formed, the light shielding effect is increased, which is not preferable. Therefore, the pedestal electrode may be suppressed to a necessary minimum area.
[0014]
More preferably, the extended conductive portion is formed away from the edge of the p-type gallium nitride compound semiconductor layer. When the extended conductive portion is formed at the edge of the p-type gallium nitride compound semiconductor layer, a part of the range that can be a strong light emitting region is removed from the p-type gallium nitride compound semiconductor layer, thereby reducing the external quantum efficiency. become.
[0015]
When separating the extended conductive part and the side of the light-emitting diode, the distance should be set so that the part that emits considerably strong light does not cover the side, considering that the external quantum efficiency is not impaired. Is preferred. The extended conductive portion and the edge of the p-type gallium nitride compound semiconductor are separated so that at least a region having an intensity of 90% or more with respect to the maximum emission intensity falls within the range of the p-type gallium nitride compound semiconductor layer. Preferably it is formed. However, if the distance between the extended conductive portion and the side portion is too large, a non-light-emitting or weak light-emitting region that does not contribute much to the external quantum efficiency is included between them, and as a result, the external quantum efficiency is lowered. Therefore, the extended conductive portion is separated from the edge of the p-type gallium nitride compound semiconductor so that the emission intensity of the edge of the p-type gallium nitride compound semiconductor is 100% or less and 80% or more with respect to the maximum emission intensity. More preferably, it is arranged.
[0016]
Alternatively, the distance between the extended conductive portion and the edge of the p-type gallium nitride compound semiconductor may be at least 20 μm, more preferably 20 μm or more and 50 μm or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
FIG. 1 is a cross-sectional view of a gallium nitride compound semiconductor light emitting diode according to the present invention. The gallium nitride compound semiconductor light-emitting diode 1 is n-type on a sapphire substrate 10 via a low-temperature growth buffer layer (not shown) made of GaN or Al x Ga 1- x N (0 ≦ x <1). An n-type contact layer 11 and an n-type gallium nitride compound semiconductor layer 12 made of a gallium nitride compound semiconductor are formed. On top of that, an active layer 13 having a quantum well structure and a p-type gallium nitride compound semiconductor layer 14 are formed.
[0018]
The sheet resistance of the n-type contact layer 11 formed at an impurity concentration of 10 17 to 10 20 / cm 3 and the sheet resistance of the translucent p-electrode 15 are formed in a relationship of R p ≧ R n . The n-type contact layer 11 is preferably formed to a thickness of 4 to 6 μm, for example, and its sheet resistance is estimated to be 15 to 10 Ω / □, so that the R p at this time is formed as a thin film of 10 Ω / □ or more. Good. The translucent p-electrode 15 may be formed of a thin film having a thickness of 200 μm or less.
[0019]
Further, when the translucent p-electrode is formed of a multilayer film or an alloy composed of one kind selected from the group of gold and platinum group elements and at least one other element, the translucent p-electrode The adjustment of the sheet resistance of 15 may be made by the content of the contained gold or platinum group element. Since the gold or platinum group element has a high absorption coefficient in the wavelength region of the gallium nitride compound semiconductor light emitting diode 1 of the present invention, the smaller the amount of gold or platinum group element contained in the translucent p-electrode, the more light-transmitting. Get better. Although the relationship of sheet resistance in the conventional light emitting diode is R p <R n , in the present invention, since R p ≧ R n , the sheet resistance of the translucent p electrode 15 is formed high. That is, the translucent p-electrode is formed in a thin film as compared with the conventional one, but at this time, it is preferable to reduce the thickness by reducing the content of gold or platinum group elements.
[0020]
In the light emitting diode of the present invention, the sheet resistance R n Omega / □ of the n-type contact layer 11, the sheet resistance R p Omega / □ and transparent p-electrode 15, so as to have a relationship of R p ≧ R n It is formed. It is difficult to measure R n after forming as a light emitting diode, and it is practically impossible to know the relationship between R p and R n , but from the state of light intensity distribution at the time of light emission, what R p and it is possible to know and has a relationship with the R n.
[0021]
FIG. 2 is a top view of an embodiment of the present invention. A portion of the p-type gallium nitride compound semiconductor layer 14 along one side of the substrate is cut away to expose the n-type contact layer 11, and an n-electrode 17 is formed in a strip shape on the exposed n-type contact layer 11. . A translucent p-electrode 15 made of a metal thin film is formed on almost the entire upper surface of the p-type gallium nitride-based compound semiconductor layer 14 that is left uncut, and an n-electrode is formed on the translucent p-electrode 15. A pedestal electrode 16 is formed in parallel with the pedestal.
[0022]
[Embodiment 2]
In another embodiment, the light-emitting diode satisfies the relationship of R p ≧ R n , and the pedestal electrode 16 and the n-electrode 17 are arranged on the sides of the element as shown in FIG. Good. The n-electrode 17 is formed in a shape other than a band shape, for example, a circle or a substantially rectangle. The base electrode 16 may have any shape such as a band shape, a circle shape, or a substantially rectangular shape. Since the area of the n-type electrode 17 can be made smaller than that formed in a band shape, the cut-out area of the light emitting surface for exposing the n-type layer can be reduced, and the effect of suppressing excessive reduction of the light emitting area can be suppressed. There is. Further, when the pedestal electrode 16 is formed in a circular shape, a substantially rectangular shape, or the like, there is an advantage in that the light shielding region by the opaque pedestal electrode is reduced as compared with the case where the pedestal electrode 16 is formed in a band shape, but the strong light emitting region is reduced because the outer periphery of the pedestal is reduced. It also has the disadvantage of being. Therefore, it is preferable to provide a linearly extending conductive portion from the base electrode 16 to increase the strong light emitting region by extending the outer periphery.
[0023]
When the translucent p-electrode 15 and the n-type contact layer 11 have a relationship of R p ≧ R n , further improvement in external quantum efficiency is expected when the base electrode 16 having the extended conductive portion 106 is used. Although the pedestal electrode 16 shown in FIGS. 3B to 3E is a part of a preferred form, the shape is not limited to this, and the outer periphery of the pedestal electrode 16 is long, the light shielding region by the pedestal electrode 16 is narrow, and the n-electrode 17 If it is formed so that the distance between and becomes equal, it can be a preferable form. Only when the light emitting diode satisfies the relationship of R p ≧ R n, the light emitting diode that satisfies the above three conditions is a light emitting diode that emits strong light and easily emits light uniformly. Since it is difficult to completely satisfy these three conditions, it is not necessary to satisfy all of them, and it is preferable to satisfy the conditions in a well-balanced manner. In order to reduce the light shielding region, the extended conductive portion 106 is preferably linear, but in order to lengthen the outer periphery of the base electrode 16, a mesh shape is also preferable. Further, the shape may be a curved shape, a lattice shape, or a branch shape in addition to the linear shape as shown in FIG.
[0024]
The extended conductive portion 106 can be formed at various positions. However, in order not to reduce the external quantum efficiency, the extended conductive portion 106 is preferably formed away from the edge of the p-type gallium nitride compound semiconductor layer 14. A strong light emitting region appears around the extended conductive portion around the extended conductive portion, and shows a light emission distribution in which the emission intensity decreases as the distance from the extended conductive portion increases. Forming the extended conductive portion 106 at the edge of the p-type gallium nitride compound semiconductor layer 14 is not preferable because the light-emitting range protrudes from the p-type gallium nitride compound semiconductor layer 14 and leads to a decrease in the light emitting region. . Therefore, it is preferable to form the extended conductive portion 106 and the peripheral edge of the p-type gallium nitride compound semiconductor layer 14 so that the light emitting region does not protrude from the element.
[0025]
The distance between the extended conductive portion and the edge of the p-type gallium nitride compound semiconductor layer may be determined in consideration of not deteriorating the external quantum efficiency. Assuming that the maximum light emission intensity confirmed in the vicinity of the extended conductive portion 106 is 100%, the extended conductive portion and the light emitting diode are arranged so that at least a region having a light emission intensity of 90% or more does not protrude from the p-type gallium nitride compound semiconductor layer 14. It is preferable that it is formed apart from the side portion. However, if the distance is too great, a non-light emitting or weak light emitting region appears between the extended conductive portion and the edge, and the region is located on the side opposite to the n electrode 17 when viewed from the extended conductive portion 106. The current does not flow any further and becomes a light emission loss region. Therefore, the distance between the extended conductive portion and the edge of the p-type gallium nitride compound semiconductor is within the range of the emission intensity of 100% or less and 90% or more with respect to the maximum emission intensity of 100%. A distance that reaches the edge of the compound semiconductor layer 14 is more preferable.
[0026]
In the gallium nitride compound semiconductor light-emitting diode formed here, the distance between the extended conductive portion 106 and the edge of the p-type gallium nitride compound semiconductor layer 14 is preferably at least 20 μm or more, More preferably, it is formed to be 20 μm or more and 50 μm or less.
[0027]
[Embodiment 3]
In a further embodiment, as shown in FIG. 4A, the base electrode 16 and the n-electrode 17 may be arranged at the corners of the device facing each other. The pedestal electrode 16 is preferably an extended conductive portion 106. The pedestal electrode 16 shown in FIGS. 4B to 4E is a part of a preferred form, and may have other shapes. When the relationship of R p ≧ R n is satisfied, a light emitting diode having a long outer periphery of the pedestal electrode 16, a narrow light shielding region by the pedestal electrode 16, and an equal distance from the n electrode 17 emits strong light and emits light uniformly. It becomes a light emitting diode easy to be used. However, since it is difficult to form a pedestal electrode that has the long outer periphery of the pedestal electrode, the light-shielding area is small, and the distance between the n-electrode and the n-electrode is completely satisfied, it is not always necessary to meet the conditions perfectly. It is preferable that the two conditions are satisfied in a well-balanced manner. The shape of the extended conductive portion 106 may be linear, mesh, curved, lattice, or branched.
[0028]
Similar to the second embodiment, in the third embodiment, the extended conductive portion 106 can be formed at various positions. However, in order not to lower the external quantum efficiency, it is preferable that the edge of the p-type gallium nitride compound semiconductor layer 14 is formed apart from the extended conductive portion 106 so that a region with strong light emission does not protrude from the edge.
[0029]
Here, the extended conductive portion is formed such that the extended conductive portion and the side of the light emitting diode are separated so that a region having a light emission intensity of 90% or more with at least the maximum light emission intensity of 100 is not protruded from the edge. preferable. More preferably, it is formed in a region having a light emission intensity of 100% or less and 80% or more with a distance that overlaps the edge. This is preferable because the strong light-emitting region is not impaired and the region that does not emit light can be reduced. Alternatively, the extended conductive portion 106 and the edge of the p-type gallium nitride compound semiconductor layer 14 may be formed so as to be separated from each other by at least 20 μm or more, and more preferably formed such that the separation distance is 20 μm or more and 50 μm or less. It is to be done.
[0030]
【Example】
[Example 1]
A buffer layer (not shown) made of GaN is grown to a thickness of 200 angstroms at 500 ° C. on a sapphire substrate 10 having a 2 inch φ, (0001) C plane as a main surface, and then the temperature is set to 1050. An undoped GaN layer is grown to a thickness of 5 μm at a temperature of 0 ° C. Note that the film thickness to be grown is not limited to 5 μm, and it is desirable to grow the film thicker than the buffer layer and adjust the film thickness to 10 μm or less. Next, after the growth of the undoped GaN layer, the wafer is taken out of the reaction vessel, a striped photomask is formed on the surface of the GaN layer, and a SiO 2 having a stripe width of 15 μm and a stripe interval (window) of 5 μm is formed by a CVD apparatus. A mask 12 is formed with a thickness of 0.1 μm. After forming the mask, the wafer is set again in the reaction vessel, and undoped GaN 14 is grown to a thickness of 10 μm at 1050 ° C. The crystal defect of the undoped GaN layer 11 was 10 10 / cm 2 or more, but the crystal defect of the GaN layer was 10 6 / cm 2 or less.
[0031]
(N-type contact layer 11, n-type gallium nitride compound semiconductor layer 12)
Next, the n-type contact layer 11 and the n-side gallium nitride compound semiconductor layer 12 are formed. First, at 1050 ° C., the n-side contact layer 11 made of GaN doped with 4.5 × 10 18 / cm 3 of Si using TMG and ammonia gas as source gas and silane gas as impurity gas, has a thickness of 2.25 μm. Grow in. Next, the silane gas alone was stopped, and at 1050 ° C., TMG and ammonia gas were used to grow an undoped GaN layer with a film thickness of 75 Å. Subsequently, silane gas was added at the same temperature, and Si was added to 4.5 × 10 18 / A cm 3 doped GaN layer is grown to a thickness of 25 Å. In this way, a pair consisting of an A layer composed of an undoped GaN layer of 75 angstroms and a 25 angstrom B layer having an Si doped GaN layer is grown. Then, 25 pairs are stacked so as to have a thickness of 2500 Å, and an n-side gallium nitride compound semiconductor layer made of a multilayer film having a superlattice structure is grown.
[0032]
(Active layer 13)
Next, a barrier layer made of undoped GaN is grown to a thickness of 250 Å, and subsequently the temperature is set to 800 ° C., and a well layer made of undoped In 0.3 Ga 0.7 N is formed to a thickness of 30 Å using TMG, TMI, and ammonia. Grow with thickness. Then, an active layer 13 having a multiple quantum well structure having a total film thickness of 1930 angstroms is formed by alternately laminating seven barrier layers and six well layers in the order of barrier + well + barrier + well. Grow.
[0033]
(P-type layer 14)
Next, a p-type layer 14 composed of a p-side multilayer clad layer and a p-side contact layer is formed. First, a third nitride made of p-type Al 0.2 Ga 0.8 N doped with 1 × 10 20 / cm 3 of Mg using TMG, TMA, ammonia, Cp 2 Mg (cyclopentadienyl magnesium) at a temperature of 1050 ° C. A semiconductor layer is grown to a thickness of 40 angstroms, followed by a temperature of 800 ° C. and made of In 0.03 Ga 0.97 N doped with 1 × 10 20 / cm 3 of Mg using TMG, TMI, ammonia, Cp 2 Mg. A fourth nitride semiconductor layer is grown to a thickness of 25 angstroms. Then, these operations are repeated, and 5 layers are alternately stacked in the order of 3 + 4, and finally, the third nitride semiconductor layer is grown to a thickness of 40 angstroms and is formed of a superlattice multilayer film. A side multilayer cladding layer is grown to a film thickness of 365 angstroms. Subsequently, at 1050 ° C., a p-side contact layer made of p-type GaN doped with 1 × 10 20 / cm 3 of Mg using TMG, ammonia, and Cp 2 Mg is grown to a thickness of 700 Å.
[0034]
After completion of the reaction, the temperature is lowered to room temperature, and the wafer is annealed in a reaction vessel at 700 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type layer.
[0035]
Next, the wafer is taken out from the reaction vessel, a mask having a predetermined shape is formed on the surface, and etching is performed from the p-type gallium nitride compound semiconductor layer side with an RIE (reactive ion etching) apparatus, as shown in FIG. The surface of the n-side contact layer 11 is exposed at the corner of the element.
[0036]
(Translucent p-electrode 15, pedestal electrode 16, n-electrode 17)
After etching, a light-transmitting p-electrode 15 (Ni / Au = 60/70) having a thickness of 110 Å and a thickness of 0.5 μm are formed on the p-electrode 26 so as to cover almost the entire surface of the p-type layer 14. A base electrode 16 made of Au is formed. As shown in FIG. 5, the pedestal electrode 16 forms a pedestal electrode 16 having a substantially rectangular region for wire bonding and an arcuate line-shaped extended conductive portion 106 at a corner. The distance between the tip of the extended conductive portion that is closest to the side of the light emitting diode is 20 μm. On the other hand, a substantially rectangular n-electrode 17 containing W and Al was formed on the surface of the n-side contact layer 11 exposed by etching to obtain a light-emitting diode element.
[0037]
FIG. 6 shows the distribution of light emission intensity when the LED thus formed emits light. In the histogram of FIG. 6, the horizontal axis is the relative light emission intensity when the maximum light emission intensity of the measurement range is 1.0, and the vertical axis is a value proportional to the surface area of the LED that is the relative light emission intensity. Yes. Thus, the peak position shifts to the right, and the higher the peak height, the better the external quantum efficiency, and the narrower the peak width, the more uniform the emission intensity. FIG. 6 shows that the external quantum efficiency is increased because the peak position is shifted to the right and the height of the peak is higher than in FIG. 7 of the comparative example.
[0038]
[Comparative example]
The thickness of the translucent p electrode 15 was set to 260 angstroms (Ni / Au = 60/200), and the base electrode 16 was the same as that of Example 1 except that the extended conductive portion 106 was not formed. When light was emitted under the same conditions as in the example, the emission intensity distribution shown in FIG. 7 was shown.
[0039]
【The invention's effect】
In the present invention, by the relationship between the sheet resistance R n of the sheet resistance R p and n-type contact layer 11 of the transparent p-electrode 15 was set to be R p ≧ R n, and improved external quantum efficiency. Further, when such a sheet resistance relationship is established, it is possible to increase the strong light emitting region by lengthening the outer periphery of the base electrode.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a light-emitting diode according to the present invention.
FIG. 2 is a schematic diagram of an example of an embodiment of the present invention.
FIG. 3 is a schematic view of an example of an embodiment of the present invention.
FIG. 4 is a schematic diagram of an example of an embodiment of the present invention.
FIG. 5 is a schematic diagram of an embodiment of the present invention.
FIG. 6 is a histogram of light emission intensity distribution according to an embodiment of the present invention.
FIG. 7 is a histogram of emission intensity distribution of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Substrate 11 ... n-type contact layer 12 ... n-type gallium nitride compound semiconductor layer 13 ... active layer 14 ... p-type gallium nitride compound semiconductor 15 ... translucent p Electrode 16 ... pedestal electrode 106 ... extended conductive portion 17 of pedestal electrode ... n electrode

Claims (4)

n型不純物濃度1017〜1020/cmのコンタクト層を有するn型窒化ガリウム系化合物半導体層と、前記n型窒化ガリウム系化合物半導体層上に形成され、p型不純物濃度1017〜1020/cmのコンタクト層を有するp型窒化ガリウム系化合物半導体層と、前記n型窒化ガリウム系化合物半導体層と前記p型窒化ガリウム系化合物半導体層とで挟まれた量子井戸構造から成る活性層と、前記n型窒化ガリウム系化合物半導体層のコンタクト層上に形成したn電極と、前記p型窒化ガリウム系化合物半導体層のコンタクト層のほぼ全面に形成された金属薄膜より成る透光性p電極と、前記透光性p電極上に形成されているワイヤボンディング用台座電極とを備えた窒化ガリウム系化合物半導体発光ダイオードであって、
前記透光性p電極が、金および白金族元素の群から選択された1種を含む金属電極からなり、かつ膜厚が200Å以下であり、
前記n型窒化ガリウム系化合物層のコンタクト層は膜厚4〜6μmであり、
前記n電極が前記発光ダイオードの隅部に形成されており、前記台座電極は、前記n電極に対向する隅部に配置され、かつ前記透光性p電極上に前記p型窒化ガリウム系化合物半導体層の辺縁から少なくとも20μm以上離れて2本以上の線状の延長導電部が形成されており、前記延長導電部は先端で前記辺縁と最近接する円弧線状であることを特徴とする窒化ガリウム系化合物半導体発光ダイオード。
An n-type gallium nitride compound semiconductor layer having a contact layer with an n-type impurity concentration of 10 17 to 10 20 / cm 3 and a p-type impurity concentration of 10 17 to 10 20 formed on the n-type gallium nitride compound semiconductor layer. A p-type gallium nitride compound semiconductor layer having a / cm 3 contact layer, an active layer having a quantum well structure sandwiched between the n-type gallium nitride compound semiconductor layer and the p-type gallium nitride compound semiconductor layer, An n-electrode formed on the contact layer of the n-type gallium nitride compound semiconductor layer, and a translucent p-electrode comprising a metal thin film formed on substantially the entire contact layer of the p-type gallium nitride compound semiconductor layer; A gallium nitride compound semiconductor light emitting diode comprising a wire bonding base electrode formed on the translucent p-electrode,
The translucent p-electrode is made of a metal electrode containing one selected from the group of gold and platinum group elements, and has a film thickness of 200 mm or less,
The contact layer of the n-type gallium nitride compound layer has a thickness of 4 to 6 μm,
Wherein and n electrode is formed in a corner portion of the light emitting diode, said base electrode, the n electrode is disposed in a corner portion opposed to, and the translucent p SL before on the electrode p-type gallium nitride-based compound extension conductive portion from the side edge of at least 20μm or more apart two or more linear semiconductor layer is formed, the extension conductive portion and said arcuate linear der Rukoto contacting the edge and recently tip Gallium nitride compound semiconductor light emitting diode.
前記延長導電部及び前記台座電極と、前記n電極との距離は、略均一であることを特徴とする請求項に記載の窒化ガリウム系化合物半導体発光ダイオード。Wherein the extension conductor portion and the base electrode, the distance between the n-electrode, a gallium nitride-based compound semiconductor light emitting diode according to claim 1, characterized in that it is substantially uniform. 前記延長導電部が前記発光ダイオード素子の辺部から20μm以上50μm以下だけ離間して形成されていることを特徴とする請求項1又は2のいずれか1項に記載の窒化ガリウム系化合物半導体発光ダイオード。 3. The gallium nitride-based compound semiconductor light-emitting diode according to claim 1, wherein the extended conductive portion is formed to be separated from a side portion of the light-emitting diode element by 20 μm or more and 50 μm or less. . 前記台座電極が円形または略矩形であることを特徴とする請求項1乃至のいずれか1項に記載の窒化ガリウム系化合物半導体発光ダイオード。The pedestal electrode is circular or features to claims 1 to 3 or 1 gallium nitride-based compound semiconductor light emitting diode according to Section that substantially rectangular.
JP2001300915A 2001-09-28 2001-09-28 Nitride semiconductor light emitting diode Expired - Fee Related JP4089194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300915A JP4089194B2 (en) 2001-09-28 2001-09-28 Nitride semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300915A JP4089194B2 (en) 2001-09-28 2001-09-28 Nitride semiconductor light emitting diode

Publications (2)

Publication Number Publication Date
JP2003110138A JP2003110138A (en) 2003-04-11
JP4089194B2 true JP4089194B2 (en) 2008-05-28

Family

ID=19121408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300915A Expired - Fee Related JP4089194B2 (en) 2001-09-28 2001-09-28 Nitride semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JP4089194B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117020A (en) 2003-09-16 2005-04-28 Stanley Electric Co Ltd Gallium nitride based compound semiconductor device and its manufacturing method
KR100586949B1 (en) * 2004-01-19 2006-06-07 삼성전기주식회사 Flip chip type nitride semiconductor light emitting diode
US7420218B2 (en) 2004-03-18 2008-09-02 Matsushita Electric Industrial Co., Ltd. Nitride based LED with a p-type injection region
EP1746664B1 (en) 2004-03-31 2017-05-17 Nichia Corporation Nitride semiconductor light emitting element
DE102004025610A1 (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Optoelectronic component with several current spreading layers and method for its production
JP2006024913A (en) * 2004-06-09 2006-01-26 Showa Denko Kk Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
US20060002442A1 (en) * 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
KR100661614B1 (en) * 2005-10-07 2006-12-26 삼성전기주식회사 Nitride semiconductor light emitting device and method of manufacturing the same
US7829909B2 (en) * 2005-11-15 2010-11-09 Verticle, Inc. Light emitting diodes and fabrication methods thereof
KR100833309B1 (en) * 2006-04-04 2008-05-28 삼성전기주식회사 Nitride semiconductor light emitting device
JP5326225B2 (en) * 2006-05-29 2013-10-30 日亜化学工業株式会社 Nitride semiconductor light emitting device
JP5614938B2 (en) * 2009-02-26 2014-10-29 日亜化学工業株式会社 Semiconductor light emitting device
JP5428684B2 (en) * 2009-09-11 2014-02-26 豊田合成株式会社 Semiconductor light emitting device
KR100986560B1 (en) * 2010-02-11 2010-10-07 엘지이노텍 주식회사 Light emitting device and fabrication method thereof
JP2012252078A (en) * 2011-06-01 2012-12-20 Stanley Electric Co Ltd Semiconductor light-emitting element and stroboscopic device
JP2015109332A (en) * 2013-12-04 2015-06-11 シャープ株式会社 Semiconductor light emitting element

Also Published As

Publication number Publication date
JP2003110138A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP4089194B2 (en) Nitride semiconductor light emitting diode
US7291865B2 (en) Light-emitting semiconductor device
JP5719110B2 (en) Light emitting element
JP3693468B2 (en) Semiconductor light emitting device
US7141445B2 (en) Semiconductor light emitting device and method for manufacturing same
JP5326225B2 (en) Nitride semiconductor light emitting device
US7592633B2 (en) Semiconductor light emitting device
JP4572597B2 (en) Nitride semiconductor device
JP5055678B2 (en) Nitride semiconductor light emitting device
CN108140700B (en) Light emitting device
JP5992174B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2008034822A (en) Semiconductor light-emitting element
JP2008135554A (en) Semiconductor light-emitting element, light-emitting device, and manufacturing method for semiconductor light-emitting element
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP2007116153A (en) Nitride-based semiconductor light emitting element
US11843076B2 (en) Single chip multi band led and application thereof
JPH10163531A (en) Light-emitting diode having electrode at periphery
JP2003243700A (en) Iii nitride based compound semiconductor light emitting element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP2003124517A (en) Semiconductor light emitting element
JP2007220709A (en) Light emitting diode
JP2003051610A (en) Led element
KR100506736B1 (en) Gallium nitride based semiconductor light emitting diode and method of producing the same
KR20190101787A (en) Led lighting apparatus having improved color lendering and led filament
JP4255710B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Ref document number: 4089194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees