JP4088847B2 - Stator winding of brushless motor - Google Patents

Stator winding of brushless motor Download PDF

Info

Publication number
JP4088847B2
JP4088847B2 JP33336297A JP33336297A JP4088847B2 JP 4088847 B2 JP4088847 B2 JP 4088847B2 JP 33336297 A JP33336297 A JP 33336297A JP 33336297 A JP33336297 A JP 33336297A JP 4088847 B2 JP4088847 B2 JP 4088847B2
Authority
JP
Japan
Prior art keywords
winding
stator
rotor
detection
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33336297A
Other languages
Japanese (ja)
Other versions
JPH11168867A (en
Inventor
筒井  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP33336297A priority Critical patent/JP4088847B2/en
Publication of JPH11168867A publication Critical patent/JPH11168867A/en
Application granted granted Critical
Publication of JP4088847B2 publication Critical patent/JP4088847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械や電気自動車等に用いられる安価、堅牢かつ小形で高性能なブラシレスのサーボモータに関し、特に回転子の角度検出を行うための検出巻線を内蔵したモータに関する。
【0002】
【従来の技術】
モータの小形化・低コスト化のためにモータから別付けの角度検出器を排除することを目的としたブラシレスモータとしては、特公平5−88077号公報に開示された技術がある。これは、凹凸形状をした磁性体の凹部に永久磁石を固着した回転子と、Y結線された電機子巻線を有する固定子と、前記回転子の回転角を検出するための検出部巻線とを備え、前記検出部巻線から得られる検出信号に基づいてインバータ駆動されるブラシレスモータにおいて、前記検出部巻線をY結線にして、これを前記電機子巻線と共に前記固定子に併設し、前記検出部なき栓の出力側に、Y結線された抵抗体を含んでなる同期整流回路を接続すると共に、これら検出部巻線及び同期整流回路の各中性点間に高周波電源を接続し、高周波励磁された前記検出部巻線からの信号を前記同期整流回路で同期整流することにより回転角の検出信号を得るブラシレスモータが開示されている。この従来技術は、不平衡界磁構造の表面磁石形回転子、Y結線した検出部巻線と同期整流回路を組み合わせ、高周波励磁された検出部巻線からの信号を同期整流回路で同期整流することにより回転角の検出信号を得るというものである。
【0003】
【発明が解決しようとする課題】
しかしながら、前述の特公平5−88077号公報に開示された発明は、適するモータ極数や検出巻線の配置法に関しては殆ど触れられておらず、そのため、次のような問題を招く可能性が高かった。
1)検出巻線に発生する、回転子の回転に伴う誘起電圧や、固定子や回転子の寸法精度のバラツキの影響が、回転子角度の検出精度を低下させる要因となる。
2)電機子巻線によって発生する磁界の影響によっても、回転子角度の検出精度が低下する。
3)高速回転への対応や、永久磁石取り付け工程の省力化、その取り付けの信頼性向上、リラクタンストルク活用による高トルク化を目的として、回転子を表面磁石形から埋め込み磁石形に変更することは容易に考えることができるが、回転子の単純な置き換えでは磁極を判別することができない。したがって、本来の角度検出機能を生かすことができない。
4)検出巻線と電機子巻線間に発生する容量性結合により、検出巻線に高周波の振動電圧が発生し、そのため回転子角度の検出精度が低下したり、検出巻線の絶縁劣化を引き起こす。
そこで本発明が解決しようとする課題は、従来の特許の改良として、極数や検出巻線の配置を最適なものに限定することによって、誘起電圧や寸法精度のバラツキの影響を低減し、更には埋め込み磁石形回転子にも対応可能な、角度検出巻線付きのサーボモータを提供することである。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は、
1)n組(nは整数)の凸凹形状をした磁性体のn個の凹部のそれぞれに、半径方向に同一極の着磁を施した永久磁石を固着し、前記磁性体の凸部と前記永久磁石とで2n個の磁極を構成する回転子と、Y結線された電機子巻線を有する固定子と、前記回転子の回転角度を検出するための検出巻線とを備え、前記検出巻線をY結線にして、これを前記電機子巻線と共に前記固定子に併設し、前記検出巻線の出力側に、Y結線された抵抗体を含んでなる同期整流回路を接続すると共に、前記検出巻線及び前記同期整流回路の各中性点間に高周波電源を接続し、高周波励磁された前記検出巻線からの信号を前記同期整流回路で同期整流することにより得られる、前記回転子の回転角度の信号に基づいて、インバータ駆動されるブラシレスモータの固定子巻線において、前記回転子の前記凹部、及びそこに固着する永久磁石共に偶数であり、前記検出巻線は、前記電機子巻線の1相当たり2つの隣接する素コイルで形成され、かつ、前記2つの隣接する素コイルが逆向きに巻回してなる直列接続された1つの要素巻線を形成し、前記要素巻線は、前記回転子の凸部或いは前記永久磁石と同数、かつ前記固定子内で等間隔に配置されると共に、前記要素巻線の、前記回転子の軸を中心として対称位置にあるもの同志を各々逆接続とするものである。
【0005】
2)加えて、先の要素巻線を、固定子内において、電機子巻線の巻線ピッチ以下の角度範囲、かつ対応する相の電機子巻線の中心位置に納めるものである。
3)更には、固定子内に併設される電機子巻線と検出巻線との間の絶縁部分に、導電体からなる薄板を介在させ、この導電体を固定子と電気的に接続し、或いは固定子を通じて更にフレームアースへと電気的に接続するものである。上記手段によれば、誘起電圧や寸法精度のバラツキの影響、電機子の影響を受け難い、更には埋め込み磁石形回転子にも対応可能な、角度検出巻線付きのサーボモータが提供される。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例に基づいて説明する。
図1は本発明の第1実施例を示すブラシレスモータの概略断面図である。同図では、説明の都合上、検出巻線は1相(X相)のみを示している。
ブラシレスモータ1は、固定子11に対して回転子12を所定のギャップ13を隔てて対向させ、回転自由に支持している。固定子11は鉄心111及びそのギャップ円周に沿って設けた電機子巻線112と検出巻線113の2つの巻線を有している。また、回転子12は鉄心120の凸部121と永久磁石122からなる多極界磁及び軸123を備えており、磁極極対数が偶数の4である不平衡界磁構造となっている。
【0007】
トルク発生部は固定子鉄心111と電機子巻線112とからなる固定の電機子、及び凸部121と永久磁石122とからなる回転界磁で構成される3相8極
【数1】

Figure 0004088847
の永久磁石同期機であり、また駆動系(図示せず)に用いられる整流用信号源としての回転角検出部には、凸部121を誘導子としても活用とするとともに、これと固定子鉄心111に設けた3相の星形結線
【数2】
Figure 0004088847
の検出部巻線113とを組み合わせることによって、多枝路巻線間の差電流を検出量とする直結差動方式の誘導子形回転角検出装置の検出部と同一の形式としている。
【0008】
検出巻線113は、素コイル
【数3】
Figure 0004088847
の2つを、磁束5を形成するよう逆向きに直列接続したものを1つの要素巻線とし、これと同様のものを4つ、ギャップ13の外周に沿って等間隔に
【数4】
Figure 0004088847
のように配置し、それら全てを直列接続してしている。同図において、軸対称の要素巻線同志の接続が逆向きとなっているのは、回転子12が回転した場合に発生する誘起電圧と、固定子11や回転子12の寸法ずれ、軸の偏心などによる影響を各々で打ち消すためである。同図では、1相分のX相分のみを示しているが、実際には同様のY相、Z相の検出巻線を、各々電気角で120°ずらして配置する。
【0009】
更に、この検出巻線113の1つの要素巻線
【数5】
Figure 0004088847
を見た場合、これは電機子巻線112のU相1極分
【数6】
Figure 0004088847
と重なるように配置されている。これにより、電機子巻線112により発生する駆動磁界が要素巻線
【数7】
Figure 0004088847
の中で打ち消され、検出巻線113が影響を受け難くなる。
【0010】
図2は、本発明の第2実施例を示す、埋め込み磁石形回転子を用いたブラシレスモータの概略断面図である。同図でも、説明の都合上検出巻線は1相(X相)のみを示している。本発明では、前述の第1実施例と異なり、回転子12は鉄心124内のスリット126内に納められる、半径方向に着磁された永久磁石127、スリット及び永久磁石を持たない鉄心部分125と、磁石磁束の漏れを制限する空孔128と輔129を備えている。
本発明の特徴の1つとして、回転子12に含まれる多極界磁はNまたはSのいずれか1方の同極性の磁極にだけスリット126及び永久磁石127を有し、残りの異極性は鉄心127と一体となって鉄心凸部125とした磁石埋め込み形不平衡界磁構造を採用している。
【0011】
検出巻線113は、4つの素コイル
【数8】
Figure 0004088847
をギャップ13の外周に沿って等間隔に配置し、各々で磁束5を形成するよう逆向きに直列接続してしている。同図において、軸対称の要素巻線同志の接続が逆向きとなっているのは、回転子12が回転した場合に発生する誘起電圧と、固定子11や回転子12の寸法ずれ、軸の偏心などによる影響を各々で打ち消すためである。同図では、1相分のX相分のみを示しているが、実際には同様のY相、Z相の検出巻線を、各々電気角で120°ずらして配置する。
第1実施例と異なり、要素巻線が1つの巻線で構成され、磁束5が回転子12の複数の磁極に跨って流れるようになっているが、これは回転子12の磁極のNSを判別するための工夫である。第1実施例と同様の検出巻線を用いた場合は、磁極の位置は検出できるが、それがNかSかは判別できない。
【0012】
更に、この検出巻線113の2つの要素巻線
【数9】
Figure 0004088847
を見た場合、これらは電機子巻線112のU相
【数10】
Figure 0004088847
と重なるように配置されている。これにより、電機子巻線112により発生する駆動磁界がこれら要素巻線で打ち消され、検出巻線113が影響を受け難くなる。
【0013】
図3は、本発明の第1及び第2実施例で示したブラシレスモータに適した駆動系の回路構成を示すブロック図である。
この系はブラシレスモータ1、信号処理回路21と操作回路22とを設けた制御部2、及び駆動電源4の制御部2からの操作に応じて整流してブラシレスモータ1に給電するインバータ3によって構成されており、制御部2の信号処理回路21は前記の回転角度検出方式にしたがって、ブラシレスモータ1の検出部巻線113の高周波励磁電源211と検出部巻線113から受ける信号を整流用の制御信号に変換するための同期整流回路212とを設けて構成される。なお、2101〜2106はダイオード、2107〜2109は抵抗、2110〜2112はコンデンサである。
【0014】
図4は、本発明に適した巻線構造の一例を示す断面図である。
ティース114とスロット115で構成される固定子11内面の、スロット115に電機子巻線112及び検出巻線113を併設する時、鉄心絶縁116内において、電機子巻線112と検出巻線113の相間絶縁117a、117bの間に、導電体からなる静電シールド118を設ける。この静電シールドは、別途電線や短絡板(図示せず)を用いて鉄心111と電気的に接続する。或いは更に、固定子11を通じてこれをフレームアースと電気的に接続する。このようにすることで、電機子巻線112と検出巻線113との間の容量性結合が低減され、検出巻線113が電機子巻線112からの影響を受け難くなる。
【0015】
【発明の効果】
以上述べたように、本発明によれば、下記の効果を奏する。
1)検出巻線を構成する要素巻線、輔対称な位置にあるもの同志を逆向きに直列接続することにより、回転子の回転に伴う誘起電圧や、固定子或いは回転子の寸法精度、特に偏心による影響を打ち消すことができるので、角度検出精度を向上させることが容易となる。
2)要素巻線を、電機子巻線の巻線ピッチ以下の角度範囲、かつ対応する相の電機子巻線の中心位置に納めることにより、対応する相の検出巻線と電機子巻線同志のみで、各々の発生磁界による影響を相殺することができるので、角度検出精度を向上させることが容易となる。
3)回転子を表面磁石形から埋め込み磁石形に変えた場合にも、同様に角度検出を行うことが可能となる。
4)検出巻線と電機子巻線との間に静電シールドを介在させることで、両者間の容量性結合の影響が軽減され、角度検出精度や検出巻線の絶縁の信頼性を向上させることが容易となる。
【図面の簡単な説明】
【図1】 本発明の第1実施例の断面図である。
【図2】 本発明の第2実施例の断面図である。
【図3】 本発明の第1及び第2実施例で示したブラシレスモータに適した駆動系の回路構成を示すブロック図である。
【図4】 本発明に適した巻線構造の一例を示す断面図である。
【符号の説明】
1 ブラシレスモータ、11 固定子、111 固定子鉄心、112 電機子巻線、113 検出巻線、12 回転子、120,124 回転子鉄心、121,125 鉄心凸部、122,127 永久磁石、123,129 軸、126 スリット、128 空孔、13 ギャップ、2 制御部、21 信号処理部、22 操作回路、211 励磁電源、212 同期整流回路、2101〜2106ダイオード、2107〜2109 抵抗、2110〜2112 コンデンサ、3 インバータ、4 駆動電源、5 磁束[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-cost, robust, small, and high-performance brushless servomotor used for machine tools, electric vehicles, and the like, and more particularly, to a motor with a built-in detection winding for detecting the angle of a rotor.
[0002]
[Prior art]
Japanese Patent Publication No. 5-88077 discloses a technique as a brushless motor intended to eliminate a separate angle detector from the motor in order to reduce the size and cost of the motor. This includes a rotor having a permanent magnet fixed to a concave portion of a concave and convex magnetic body, a stator having a Y-connected armature winding, and a detector winding for detecting the rotation angle of the rotor In a brushless motor driven by an inverter based on a detection signal obtained from the detection unit winding, the detection unit winding is Y-connected, and this is attached to the stator together with the armature winding. A synchronous rectification circuit including a Y-connected resistor is connected to the output side of the plug without the detection unit, and a high-frequency power source is connected between each neutral point of the detection unit winding and the synchronous rectification circuit. A brushless motor is disclosed in which a detection signal of a rotation angle is obtained by synchronously rectifying a signal from the detector winding, which has been excited at high frequency, by the synchronous rectifier circuit. This prior art combines a surface magnet rotor with an unbalanced field structure, a Y-connected detector winding and a synchronous rectifier circuit, and synchronously rectifies the signal from the high-frequency excited detector winding with the synchronous rectifier circuit. Thus, a rotation angle detection signal is obtained.
[0003]
[Problems to be solved by the invention]
However, the invention disclosed in the above-mentioned Japanese Patent Publication No. 5-88077 hardly mentions a suitable number of motor poles and a method of arranging the detection windings, and therefore may cause the following problems. it was high.
1) The influence of the induced voltage accompanying the rotation of the rotor and the variation in the dimensional accuracy of the stator and the rotor generated in the detection winding causes the rotor angle detection accuracy to decrease.
2) The detection accuracy of the rotor angle also decreases due to the influence of the magnetic field generated by the armature winding.
3) Changing the rotor from a surface magnet type to an embedded magnet type for the purpose of supporting high-speed rotation, saving labor in the permanent magnet mounting process, improving the mounting reliability, and increasing torque by utilizing reluctance torque. Although it can be easily considered, the magnetic pole cannot be determined by simple replacement of the rotor. Therefore, the original angle detection function cannot be utilized.
4) Capacitive coupling generated between the detection winding and the armature winding generates a high-frequency oscillating voltage in the detection winding, which reduces the detection accuracy of the rotor angle and degrades the insulation of the detection winding. cause.
Therefore, the problem to be solved by the present invention is to reduce the influence of variations in induced voltage and dimensional accuracy by limiting the number of poles and the arrangement of the detection windings to an optimum one as an improvement of the conventional patent. Is to provide a servo motor with an angle detection winding, which can be applied to an embedded magnet type rotor.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides:
1) n group (n in each of the n recesses magnetic material has an irregular shape integer), fixing a permanent magnet subjected to magnetization of the pole in the radial direction, the convex portion of the magnetic body comprising a rotor which constitutes the 2n pieces of magnetic poles in the permanent magnet, a stator having a Y-connected armature winding, and a detection winding for detecting the rotation angle of the rotor, the detection winding and a line Y-connection, it features on the stator with the armature winding, the output side of the detection winding, with connecting the synchronous rectifier circuit comprising a Y-connected resistors, said a high-frequency power source is connected between the neutral point of the detection winding and the synchronous rectifier circuit is obtained by synchronous rectification the signal from the detection winding which is high-frequency excited by the synchronous rectifier circuit, the rotor Based on the rotation angle signal, the inverter-driven brushless motor In stator windings, the recess of the rotor, and are both even-permanent magnet fixed thereto, the detection winding is formed by two adjacent elementary coils per phase of the armature winding, In addition, one element winding connected in series is formed by winding the two adjacent element coils in opposite directions, and the number of the element windings is the same as the number of convex portions of the rotor or the permanent magnets, and wherein in the stator while being arranged at regular intervals, of the element winding, in which each other and each reverse connection what is symmetrically positioned about the axis of the rotor.
[0005]
2) In addition, the previous element winding is placed in the stator in an angle range equal to or smaller than the winding pitch of the armature winding and in the center position of the armature winding of the corresponding phase.
3) Further, a thin plate made of a conductor is interposed in an insulating portion between the armature winding and the detection winding provided in the stator, and the conductor is electrically connected to the stator. Alternatively, it is further electrically connected to the frame ground through the stator. According to the above means, there is provided a servo motor with an angle detection winding which is not easily affected by variations in induced voltage and dimensional accuracy, and is not easily affected by an armature, and which can also be applied to an embedded magnet type rotor.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.
FIG. 1 is a schematic sectional view of a brushless motor showing a first embodiment of the present invention. In the figure, for convenience of explanation, the detection winding shows only one phase (X phase).
The brushless motor 1 has a rotor 12 opposed to a stator 11 with a predetermined gap 13 therebetween, and supports the rotor 11 freely. The stator 11 has an iron core 111 and two windings of an armature winding 112 and a detection winding 113 provided along the circumference of the gap. Further, the rotor 12 includes a multipolar field magnet and a shaft 123 composed of the convex portion 121 of the iron core 120 and the permanent magnet 122, and has an unbalanced field structure in which the number of pole pole pairs is an even number of four.
[0007]
The torque generating part is a three-phase eight-pole composed of a fixed armature composed of a stator core 111 and an armature winding 112, and a rotating field composed of a convex part 121 and a permanent magnet 122.
Figure 0004088847
The rotation angle detector as a rectification signal source used in a drive system (not shown) is also used as an inductor, and this and a stator core 3-phase star connection provided in 111
Figure 0004088847
The detection unit winding 113 is combined to form the same type as the detection unit of the direct-coupled differential type inductor-type rotation angle detection device in which the difference current between the multi-branch windings is detected.
[0008]
The detection winding 113 is an elementary coil
Figure 0004088847
Are connected in series in opposite directions so as to form a magnetic flux 5 as one element winding, and four of them are equally spaced along the outer periphery of the gap 13
Figure 0004088847
All of them are connected in series. In the same figure, the connection between the axially symmetric element windings is reversed because the induced voltage generated when the rotor 12 rotates, the dimensional deviation of the stator 11 and the rotor 12, the shaft This is to counteract the effects of eccentricity and the like. In the figure, only the X phase for one phase is shown, but actually the same Y-phase and Z-phase detection windings are arranged with an electrical angle shifted by 120 °.
[0009]
Furthermore, one element winding of this detection winding 113
Figure 0004088847
When this is seen, this is equivalent to one pole of the U-phase of the armature winding 112
Figure 0004088847
It is arranged to overlap. As a result, the drive magnetic field generated by the armature winding 112 is converted into the element winding
Figure 0004088847
The detection winding 113 is hardly affected.
[0010]
FIG. 2 is a schematic cross-sectional view of a brushless motor using an embedded magnet type rotor according to a second embodiment of the present invention. Also in the figure, for convenience of explanation, the detection winding shows only one phase (X phase). In the present invention, unlike the first embodiment described above, the rotor 12 is housed in a slit 126 in an iron core 124, and a radially magnetized permanent magnet 127, an iron core portion 125 having no slit and no permanent magnet, and , Holes 128 and 129 for limiting leakage of magnetic flux are provided.
As one of the features of the present invention, the multipole field included in the rotor 12 has a slit 126 and a permanent magnet 127 only in the same polarity magnetic pole of either N or S, and the remaining different polarities are A magnet-embedded unbalanced field structure is adopted in which the iron core 127 and the iron core convex portion 125 are integrated.
[0011]
The detection winding 113 has four elementary coils
Figure 0004088847
Are arranged at equal intervals along the outer periphery of the gap 13 and are connected in series in opposite directions so as to form the magnetic flux 5 in each. In the same figure, the connection between the axially symmetric element windings is reversed because the induced voltage generated when the rotor 12 rotates, the dimensional deviation of the stator 11 and the rotor 12, the shaft This is to counteract the effects of eccentricity and the like. In the figure, only the X phase for one phase is shown, but actually the same Y-phase and Z-phase detection windings are arranged with an electrical angle shifted by 120 °.
Unlike the first embodiment, the element winding is composed of a single winding, and the magnetic flux 5 flows over a plurality of magnetic poles of the rotor 12. It is a device for discriminating. When the same detection winding as in the first embodiment is used, the position of the magnetic pole can be detected, but it cannot be determined whether it is N or S.
[0012]
Furthermore, the two element windings of the detection winding 113
Figure 0004088847
When these are seen, these are the U phase of the armature winding 112
Figure 0004088847
It is arranged to overlap. As a result, the drive magnetic field generated by the armature winding 112 is canceled by these element windings, and the detection winding 113 is hardly affected.
[0013]
FIG. 3 is a block diagram showing a circuit configuration of a drive system suitable for the brushless motor shown in the first and second embodiments of the present invention.
This system includes a brushless motor 1, a control unit 2 provided with a signal processing circuit 21 and an operation circuit 22, and an inverter 3 that rectifies and supplies power to the brushless motor 1 according to an operation from the control unit 2 of the drive power supply 4. The signal processing circuit 21 of the control unit 2 controls the rectification of signals received from the high-frequency excitation power supply 211 and the detection unit winding 113 of the detection unit winding 113 of the brushless motor 1 in accordance with the rotation angle detection method. A synchronous rectifier circuit 212 for converting the signal into a signal is provided. Reference numerals 2101 to 2106 are diodes, 2107 to 2109 are resistors, and 2110 to 2112 are capacitors.
[0014]
FIG. 4 is a cross-sectional view showing an example of a winding structure suitable for the present invention.
When the armature winding 112 and the detection winding 113 are provided in the slot 115 on the inner surface of the stator 11 composed of the teeth 114 and the slots 115, the armature winding 112 and the detection winding 113 are arranged in the iron core insulation 116. An electrostatic shield 118 made of a conductor is provided between the phase insulations 117a and 117b. This electrostatic shield is electrically connected to the iron core 111 using a separate electric wire or a short-circuit plate (not shown). Alternatively, it is electrically connected to the frame ground through the stator 11. By doing so, capacitive coupling between the armature winding 112 and the detection winding 113 is reduced, and the detection winding 113 is hardly affected by the armature winding 112.
[0015]
【The invention's effect】
As described above, the present invention has the following effects.
1) The element windings constituting the detection windings, which are in symmetrical positions, are connected in series in the opposite direction so that the induced voltage accompanying the rotation of the rotor, the dimensional accuracy of the stator or the rotor, Since the influence of the eccentricity can be canceled out, it becomes easy to improve the angle detection accuracy.
2) By placing the element winding in the angle range below the winding pitch of the armature winding and the center position of the armature winding of the corresponding phase, both the detection winding and the armature winding of the corresponding phase Thus, the influence of each generated magnetic field can be canceled out, and it becomes easy to improve the angle detection accuracy.
3) Even when the rotor is changed from the surface magnet type to the embedded magnet type, the angle detection can be performed similarly.
4) By interposing an electrostatic shield between the detection winding and the armature winding, the influence of capacitive coupling between them is reduced, and the angle detection accuracy and the insulation reliability of the detection winding are improved. It becomes easy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
FIG. 3 is a block diagram showing a circuit configuration of a drive system suitable for the brushless motor shown in the first and second embodiments of the present invention.
FIG. 4 is a cross-sectional view showing an example of a winding structure suitable for the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Brushless motor, 11 Stator, 111 Stator iron core, 112 Armature winding, 113 Detection winding, 12 Rotor, 120, 124 Rotor core, 121, 125 Iron core convex part, 122, 127 Permanent magnet, 123, 129 axis, 126 slit, 128 hole, 13 gap, 2 control unit, 21 signal processing unit, 22 operation circuit, 211 excitation power source, 212 synchronous rectification circuit, 2101 to 2106 diode, 2107 to 2109 resistor, 2110 to 2112 capacitor, 3 Inverter, 4 Drive power supply, 5 Magnetic flux

Claims (3)

n組(nは整数)の凸凹形状をした磁性体のn個の凹部のそれぞれに、半径方向に同一極の着磁を施した永久磁石を固着し、前記磁性体の凸部と前記永久磁石とで2n個の磁極を構成する回転子と、Y結線された電機子巻線を有する固定子と、前記回転子の回転角度を検出するための検出巻線とを備え、
前記検出巻線をY結線にして、これを前記電機子巻線と共に前記固定子に併設し、
前記検出巻線の出力側に、Y結線された抵抗体を含んでなる同期整流回路を接続すると共に、前記検出巻線及び前記同期整流回路の各中性点間に高周波電源を接続し、
高周波励磁された前記検出巻線からの信号を前記同期整流回路で同期整流することにより得られる、前記回転子の回転角度の信号に基づいて、インバータ駆動されるブラシレスモータの固定子巻線において、
前記回転子の前記凹部、及びそこに固着する永久磁石が共に偶数であり、
前記検出巻線は、前記電機子巻線の1相当たり2つの隣接する素コイルで形成され、 かつ、前記2つの隣接する素コイルが逆向きに巻回してなる直列接続された1つの要素巻線を形成し、
前記要素巻線は、前記回転子の凸部或いは前記永久磁石と同数、かつ前記固定子内で等間隔に配置されると共に、
前記要素巻線の、前記回転子の軸を中心として対称位置にあるもの同志が各々逆接続となっていることを特徴とするブラシレスモータの固定予巻線。
A permanent magnet magnetized with the same polarity in the radial direction is fixed to each of n concave portions of a magnetic material having an irregular shape of n sets (n is an integer), and the convex portion of the magnetic material and the permanent magnet are fixed. A rotor having 2n magnetic poles, a stator having Y-connected armature windings, and a detection winding for detecting the rotation angle of the rotor,
The detection winding is Y-connected, and this is attached to the stator together with the armature winding,
The output side of the detection winding, with connecting the synchronous rectifier circuit comprising a Y-connected resistors, a high-frequency power source is connected between the neutral point of the detection coil and the synchronous rectifier circuit,
In a stator winding of a brushless motor driven by an inverter based on a signal of a rotation angle of the rotor, which is obtained by synchronously rectifying a signal from the detection winding excited at a high frequency by the synchronous rectification circuit,
The concave portion of the rotor and the permanent magnet fixed thereto are both even numbers,
The detection winding is formed of two adjacent element coils per phase of the armature winding , and one element winding connected in series is formed by winding the two adjacent element coils in opposite directions . Forming a line ,
The element windings are arranged in the same number as the convex portions of the rotor or the permanent magnets and at equal intervals in the stator,
A fixed pre-winding for a brushless motor, wherein the element windings in symmetrical positions about the axis of the rotor are reversely connected.
前記要素巻線が、前記固定子内において、前記電機子巻線の巻線ピッチ以下の角度範囲、かつ対応する相の前記電機子巻線の中心位置に納められていることを特徴とする、請求項1記載のブラシレスモータの固定子巻線。In the stator, the element winding is stored in an angle range equal to or less than the winding pitch of the armature winding, and in the center position of the armature winding of the corresponding phase, The stator winding of the brushless motor according to claim 1. 前記固定子内に併設される前記電機子巻線と前記検出巻線との間の絶縁部分に、導電体からなる薄板を介在させ、前記導電体を前記固定子と電気的に接続し、或いは前記固定子を通じて更にフレームアースへと電気的に接続することを特徴とする、請求項1または2に記載のブラシレスモータの固定子巻線。 A thin plate made of a conductor is interposed in an insulating portion between the armature winding and the detection winding provided in the stator, and the conductor is electrically connected to the stator, or The stator winding of a brushless motor according to claim 1 or 2, wherein the stator winding is further electrically connected to a frame ground through the stator .
JP33336297A 1997-12-03 1997-12-03 Stator winding of brushless motor Expired - Lifetime JP4088847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33336297A JP4088847B2 (en) 1997-12-03 1997-12-03 Stator winding of brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33336297A JP4088847B2 (en) 1997-12-03 1997-12-03 Stator winding of brushless motor

Publications (2)

Publication Number Publication Date
JPH11168867A JPH11168867A (en) 1999-06-22
JP4088847B2 true JP4088847B2 (en) 2008-05-21

Family

ID=18265264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33336297A Expired - Lifetime JP4088847B2 (en) 1997-12-03 1997-12-03 Stator winding of brushless motor

Country Status (1)

Country Link
JP (1) JP4088847B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811145B2 (en) * 2005-06-14 2011-11-09 日産自動車株式会社 Multi-phase motor rotation angle detector
JP5242096B2 (en) * 2007-07-30 2013-07-24 株式会社東芝 Permanent magnet motor control device and permanent magnet motor
US10848014B2 (en) * 2019-04-12 2020-11-24 Jacobi Motors LLC Variable-flux memory motor and methods of controlling a variable-flux motor

Also Published As

Publication number Publication date
JPH11168867A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
US7282827B2 (en) Permanent magnet motor
JP4092128B2 (en) Electric machine having at least one magnetic field detector
JP2695332B2 (en) Permanent magnet field type rotor
US4280072A (en) Rotating electric machine
US6777842B2 (en) Doubly salient machine with permanent magnets in stator teeth
US6724114B2 (en) Doubly salient machine with angled permanent magnets in stator teeth
US6133663A (en) Brushless permanent magnet machine
US20120228980A1 (en) Two-phase brushless dc motor
US20090243423A1 (en) Rotating electric machine
US20100013333A1 (en) Magnetic radial bearing having permanent-magnet generated magnetic bias, and a magnetic bearing system having a magnetic radial bearing of this type
CN106208578B (en) A kind of permasyn morot
JP2011041433A (en) Dynamo-electric machine driving system
CN102355108B (en) High-quality three-phase alternating current permanent magnet servo synchronous motor
US20210135554A1 (en) Novel double-stator combined electric machine suitable for achieving sensorless control of absolute position of rotor
JP2000041367A (en) Hybrid excitation type synchronous machine
CN110838779B (en) Mixed excitation wound rotor and mixed excitation wound synchronous motor
US20020148099A1 (en) Coil for a rotary electric machine
JP4088847B2 (en) Stator winding of brushless motor
JP4823425B2 (en) DC motor
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
US6844639B2 (en) High current rotating exciter
US7119472B2 (en) Method and device for compensating the armature reaction of a rotating exciter
KR102038084B1 (en) A rotor structure for detecting position of motor
JP3598625B2 (en) Synchronous rotating electric machine
Sharma et al. A Novel Ring Permanent Magnet Flux Reversal Machine for a Direct-Drive Wind Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5