JP4085601B2 - Process for producing optically active pyridyl alcohols - Google Patents

Process for producing optically active pyridyl alcohols Download PDF

Info

Publication number
JP4085601B2
JP4085601B2 JP2001233119A JP2001233119A JP4085601B2 JP 4085601 B2 JP4085601 B2 JP 4085601B2 JP 2001233119 A JP2001233119 A JP 2001233119A JP 2001233119 A JP2001233119 A JP 2001233119A JP 4085601 B2 JP4085601 B2 JP 4085601B2
Authority
JP
Japan
Prior art keywords
formula
group
pyridyl
optically active
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001233119A
Other languages
Japanese (ja)
Other versions
JP2003048896A (en
Inventor
真人 松儀
正朋 野島
泰行 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2001233119A priority Critical patent/JP4085601B2/en
Publication of JP2003048896A publication Critical patent/JP2003048896A/en
Application granted granted Critical
Publication of JP4085601B2 publication Critical patent/JP4085601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、光学活性trans −2−(2−ピリジル)シクロアルカン−1−オール類(以下、ピリジルアルコール類と略記することもある)の製造方法に関し、より詳しくは、特定の光学活性カルボン酸を用いて(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類を光学分割する方法に関する。本発明により、医薬品や農薬およびこれらの合成中間体として有用な高い光学純度を示す光学活性ピリジルアルコール類を得ることができる。本発明はまた上記光学分割工程中に得られる縮合体のジアステレオマーを含む、新規ピリジルアルコール類のエステル、およびその製造方法にも関する。
【0002】
【従来の技術】
一般に、分離目的物であるラセミ体から誘導した2種のジアステレオマーを単離・精製するには、再結晶やカラムクロマトグラフィー、高速液体クロマトグラフィー等の手法が用いられてきた。
【0003】
【発明が解決しようとする課題】
しかしながら、2種のジアステレオマーを再結晶により単離、精製しようとする場合、対象となる化合物は結晶性の物質であることが要求される。そのため、結晶性を示さないジアステレオマーを単離、精製するのは困難である。一方、カラムクロマトグラフィーや高速液体クロマトグラフィーの場合、2種のジアステレオマーをそれぞれ単離できる条件を検索する必要があり、それらの条件が見つからないと、これらの方法を採用するのは困難となる。
【0004】
【課題を解決するための手段】
本発明は、2種のジアステレオマーの単離方法として従来法よりも操作容易な抽出を用いて行うことができる光学分割法に関する。その原理は、一般式[III] で示されるジアステレオマー対において、同式中の縮合環の2位のメチル基とピリジン環との分子内炭素CH/π相互作用が一方のエナンチオマーから誘導したジアステレオマーにのみ発現することによるものと考えられる。この分子内CH/π相互作用がピリジン環の塩基性に影響を及ぼすことによって2種のジアステレオマー体の溶解度間に差を生み、この溶解度差が各ジアステレオマーの単離を可能にしていると考えられる。
【0005】
すなわち、本発明による光学活性ピリジルアルコール類の製造方法は、
一般式[I]
【化10】

Figure 0004085601
【0006】
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表し、nは3〜5の整数を表す。)
で示される(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類と、一般式[II]
【化11】
Figure 0004085601
【0007】
(式中、1位のカルボキシル基またはその誘導基とこれに隣接する2位のメチル基の立体配置はcis であり、Xは水酸基、アルコキシ基またはハロゲン原子を表し、R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。)で示される絶対配置既知の光学活性カルボン酸またはその誘導体とをエステル化反応により縮合し、一般式[III]
【化12】
Figure 0004085601
【0008】
(式中、R 、R 、R およびnは上記式のものと同じ意味を表す。)で示される縮合体のジアステレオマー対を得た後、これを水不溶性の有機溶媒に溶解し、得られた有機溶液を酸性水溶液で洗浄することによって一方のジアステレオマーを有機層に他方のジアステレオマーを水層にそれぞれ分配し、得られた各ジアステレオマーのエステル結合を還元するかまたは加水分解して、対応する光学活性trans −2−(2−ピリジル)シクロアルカン−1−オールを得ることを特徴とする方法である。
【0009】
本発明は、また、一般式[VII]
【化13】
Figure 0004085601
【0010】
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表す。R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。nは3〜5の整数を表す。)
で示される新規ピリジルアルコール類のエステルを提供する。
【0011】
上記ピリジルアルコール類のエステル[VII] は、一般式[I]
【化14】
Figure 0004085601
【0012】
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表し、nは3〜5の整数を表す。)
で示される2−(2−ピリジル)シクロアルカン−1−オール類と、
一般式[VI]
【化15】
Figure 0004085601
【0013】
(式中、Xは水酸基、アルコキシ基またはハロゲン原子を表し、R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。)
で示されるカルボン酸またはその誘導体とをエステル化反応により縮合することにより得ることができる。
【0014】
【発明の実施の形態】
本発明方法により分割されるべきラセミ体は、一般式[I]で示される(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類である。ここで、nは3〜5の整数を表すが、特に4が好ましい。R は、置換基を有していてもよい低級アルキル基、またはハロゲン原子を表すが、低級アルキル基としてはメチル基、エチル基などの炭素数1〜3のアルキル基が好ましく、ハロゲン原子としては塩素、臭素が好ましい。R は好ましくは水素原子、メチル基または塩素原子である。ピリジン環上のR の位置は好ましくは4位である。
【0015】
一方、ジアステレオマー体を形成するために用いる光学活性体は、上記一般式[II]で示される絶対配置既知の光学活性カルボン酸またはその誘導体であり、好ましくは一般式[IV]
【化16】
Figure 0004085601
【0016】
(式中、13位のメチル基と17位のカルボキシル基またはその誘導基の立体配置はcis であり、13位および17位以外の環形成炭素原子は置換基を有していてもよく隣接炭素間に二重結合を有していてもよい。Xは水酸基、アルコキシ基またはハロゲン原子を表す。)
で示されるステロイド骨格を有する絶対配置既知の光学活性カルボン酸またはその誘導体であり、さらに好ましくは一般式[V]
【化17】
Figure 0004085601
【0017】
(式中、Xは水酸基、アルコキシ基またはハロゲン原子を表す。)
で示される3β−アセトキシ−Δ5−エチオコレン酸(3β-acetoxy-Δ5-etiocholenic acid)またはその誘導体である。
【0018】
一般式[I]で示される(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類と一般式[II]で示される光学活性カルボン酸またはその誘導体とを縮合させる方法は特に限定されず、例えば前者の化合物[I]とカルボン酸の酸塩化物とを、塩基性条件下でまたはカルボジイミド類等の脱水縮合剤の存在下で、エステル化反応させることにより縮合する方法等がある。
【0019】
縮合によって得られた縮合体[III] のジアステレオマーを溶解する有機溶媒としては、水と混合しないものであれば特に限定されず、ヘキサンやヘプタン等の脂肪族炭化水素類、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジブチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、塩化メチレン、1,2−ジクロロエタン等のハロゲン化炭化水素類、n−ブチルアルコール、n−ヘキサノール、シクロヘキサノール等のアルコール類、またはこれらの混合溶媒が挙げられるが、エーテル類が好ましく、特に好ましくはジエチルエーテルである。
【0020】
有機溶液の洗浄に用いられる酸性水溶液としては、塩酸、硫酸、硝酸等の鉱酸の水溶液が好ましく、特に好ましくは塩酸水溶液である。
【0021】
有機層と水層に各々分配された各ジアステレオマーを光学活性trans −2−(2−ピリジル)シクロアルカン−1−オールへと変換する方法としては、水素化アルミニウムリチウムや水素化ジイソブチルアルミニウム、水素化ホウ素リチウムなどの還元剤を用いてエステル結合を還元する方法や、酸あるいは塩基の存在下でエステル結合を加水分解する方法が挙げられる。前者の方法が好ましく、特に還元剤としては水素化アルミニウムリチウムや水素化ジイソブチルアルミニウムを用いる方法が好ましい。
【0022】
また、カルボン酸またはその誘導体[VI]、およびピリジルアルコール類のエステル[VII] における、R 、R 、R 、Xおよびnは上述したものと同じであってよい。2−(2−ピリジル)シクロアルカン−1−オール類[I]とカルボン酸またはその誘導体[VI]のエステル化反応は、上述したように、例えば前者の化合物[I]とカルボン酸の酸塩化物とを、塩基性条件下でまたはカルボジイミド類等の脱水縮合剤の存在下で、エステル化反応させることにより縮合する方法等であってよい。
【0023】
ピリジルアルコール類のエステル[VII] は新規化合物である。このうち、ピリジルアルコール類部分の水酸基とピリジル基がtrans に位置し、カルボン酸(またはその誘導体)部分の1位のカルボキシル基またはその誘導基とこれに隣接する2位のメチル基の立体配置がcis である化合物は、上述したように、(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類の光学分割工程中に得られる縮合体のジアステレオマーであって有用であり、特に(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類[I]と、ステロイド骨格を有する化合物[IV]のエステルが好ましく、(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類[I]と、3β−アセトキシ−Δ5−エチオコレン酸またはその誘導体[V]のエステルが最も好ましい。
【0024】
【実施例】
以下の実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
実施例1
3β−アセトキシ−Δ5−エチオコレン酸クロライド(2.19g,5.77mmol)を塩化メチレン(10mL)に溶解し、これにトリエチルアミン(0.64mL,4.62mmol)と、(±)−trans −2−(2−ピリジル)シクロヘキサン−1−オール(682mg,3.85mmol)の塩化メチレン溶液(2mL)を氷冷下で加え、さらに塩化メチレン(8mL)を追加した後、全体を室温で68時間撹拌した。反応液を水洗した後、塩化メチレンを留去し、得られた残渣をカラムクロマトグラフィー(溶離剤:ヘキサン/酢酸エチル=5/1)により精製することにより、化学式[VIII]で示される縮合体(trans −2−[(2−ピリジル)シクロヘキシル]−Δ5−3β−アセトキシエチオコレン酸エステル)をジアステレオマー混合物として1.84g(90%)得た。
【0026】
【化18】
Figure 0004085601
【0027】
このジアステレオマー混合物を単離、精製して、下記の特性を有する(1S,2R)体と(1R,2S)体を得た。
【0028】
(1S,2R)体
白色結晶;
m.p.:126.0−129.0℃(ジエチルエーテル−ヘキサン);
[α] 28:+22.3(c0.63,CHCl );
H NMR(300MHz,CDCl )δ:8.52(d,J=4.5Hz,1H),7.57(td,J=7.7 and 1.8Hz,1H),7.18(d,J=7.7Hz,1H),7.09(ddd,J=7.7,4.5 and 0.8Hz,1H),5.33(d,J=4.2Hz,1H),5.24(td,J=10.8 and 4.3Hz,1H),4.58(m,1H),2.91(td,J=11.5 and 3.5Hz,1H),2.31−0.84(m,28H),2.03(s,3H),0.95(s,3H),0.11(s,3H);
IR(KBr):1732cm−1
MS EI(+)m/z:520[(M+H),3],519(M,3),460(22),459(59),300(9),176(56),175(32),161(19),160(100),159(20),93(18),81(26);
HRMS:C3345NO(M)としての計算値:519.3348、実測値:519.3367;
元素分析:C3345NOとしての計算値:C,76.26;H,8.73;N,2.70、実測値:C,76.06;H,8.72;N,2.62;
【0029】
(1R,2S)体
白色結晶;
m.p.:149.5−150.0℃(ジエチルエーテル−ヘキサン);
[α] 28:−70.7(c0.59,CHCl );
H NMR(300MHz,CDCl )δ:8.51(d,J=4.4Hz,1H),7.56(td,J=7.7 and 1.8Hz,1H),7.13(d,J=7.7Hz,1H),7.09(ddd,J=7.7,4.4 and 0.9Hz,1H),5.34(d,J=4.4Hz,1H),5.13(td,J=11.0 and 4.2Hz,1H),4.59(m,1H),2.88(td,J=11.0 and 3.6Hz,1H),2.32−0.88(m,28H),2.03(s,3H),0.99(s,3H),0.46(s,3H);
IR(KBr):1732cm−1
MS EI(+)m/z:520[(M+H),1],519(M,1),460(35),459(100),300(6),176(40),161(16),160(97),159(15),93(11),81(8);
HRMS:C3345NO(M)としての計算値:519.3348、実測値:519.3358;
元素分析:C3345NOとしての計算値:C,76.26;H,8.73;N,2.70 、実測値:C,75.96;H,8.62;N,2.70;
【0030】
このジアステレオマー混合物(300mg)をジエチルエーテル(50mL)に溶解し、得られた有機溶液を3%塩酸水溶液(20mL)で洗浄した。有機層と水層を分離し、有機層は炭酸ナトリウムで乾燥し、ジエチルエーテルを留去した後に残渣を再度ジエチルエーテル(37mL)に溶解し、得られた有機溶液を7%塩酸(15mL)で洗浄した。その後、有機層を上記と同様に処理することによって一方のジアステレオマーを57mg(44%,81%de)得た。水層は炭酸水素ナトリウムでpH8に調整した後、吸引ろ過により他方のジアステレオマーを75mg(23%,93%de)回収した。
【0031】
有機層より得られた一方のジアステレオマー(81%de,57mg,0.11mmol)のTHF溶液(1mL)を水素化アルミニウムリチウム(42mg,1.10mmol)のTHF懸濁液(1mL)に氷冷下でゆっくり滴下し、さらにTHF(3mL)を追加した後、全体を室温で2時間撹拌した。反応液を氷冷した後、飽和硫酸ナトリウム水溶液を滴下してしばらく撹拌した後、反応液を炭酸カリウムで乾燥した。乾燥剤を除去し、塩化メチレンで洗浄した後、洗浄溶液を濃縮し、残渣を再度塩化メチレンに溶解し、得られた有機溶液を5%塩酸水溶液で洗浄した。塩酸水溶液層を炭酸カリウムでアルカリ性(pH12)とし、塩化メチレンで抽出し、有機層を炭酸ナトリウムで乾燥し、乾燥剤を除去し、塩化メチレンを留去した。得られた残渣をカラムクロマトグラフィー(溶離剤剤:ヘキサン/酢酸エチル=1/1)により精製し、(+)−trans −2−(2−ピリジル)シクロヘキサン−1−オールを13mg(68%,77%ee)得た。
【0032】
水層より得られた他方のジアステレオマー(93%de,60mg,0.12mmol)も上記と同様の操作で処理することによって(−)−trans −2−(2−ピリジル)シクロヘキサン−1−オールを18mg(90%,93%ee)得た。
【0033】
(+)−trans −2−(2−ピリジル)シクロヘキサン−1−オール
白色結晶;
m.p.:62.5−65.0℃;
[α] 28:+20.4(c0.49,CHCl );
光学純度:77%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:9.9分)により測定した。]
【0034】
(−)−trans −2−(2−ピリジル)シクロヘキサン−1−オール
白色結晶;
m.p.:81.0−82.5℃;
[α] 27:−23.5(c0.53,CHCl );
光学純度:93%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:14.2分)により測定した。]
【0035】
実施例2
3β−アセトキシ−Δ5−エチオコレン酸クロライド(1.16g,3.05mmol)を塩化メチレン(8mL)に溶解し、これにトリエチルアミン(0.34mL,2.44mmol)と、(±)−trans −2−(4−メチル−2−ピリジル)シクロヘキサン−1−オール(389mg,2.03mmol)の塩化メチレン溶液(2mL)を氷冷下で加え、さらに塩化メチレン(6mL)を追加した後、全体を室温で19時間撹拌した。反応液を水洗した後、塩化メチレンを留去し、得られた残渣をカラムクロマトグラフィー(溶離剤:ヘキサン/酢酸エチル=5/1)により精製し、化学式[IX]で示される縮合体(trans −2−[(4−メチル−2−ピリジルシ)クロヘキシル]−Δ5−3β−アセトキシエチオコレン酸エステル)をジアステレオマー混合物として934mg(86%)を得た。
【0036】
【化19】
Figure 0004085601
【0037】
このジアステレオマー混合物を単離、精製して、下記の特性を有する(1S,2R)体と(1R,2S)体を得た。
【0038】
(1S,2R)体
無色結晶;
m.p.:199.0−202.0℃(酢酸エチル−ヘキサン);
[α] 29=+19.2(c0.51,CHCl );
H NMR(300MHz,CDCl)δ:8.37(d,J=5.0Hz,1H),6.99(s,1H),6.91(d,J=5.0Hz,1H),5.33(d,J=4.4Hz,1H),5.22(td,J=10.7 and 4.3Hz,1H),4.58(m,1H),2.86(td,J=11.4 and3.4Hz,1H),2.30−0.84(m,28H),2.30(s,3H),2.03(s,3H),0.95(s,3H),0.10(s,3H);
IR(KBr):1732,1721cm−1
MS EI(+)m/z:534[(M+H),4],533(M,10),474(36),473(100),300(9),190(34),175(12),174(71),173(14);
HRMS:C3447NO(M)としての計算値:533.3505、実測値:533.3499;
元素分析:C3447NOとしての計算値:C,76.51;H,8.88;N,2.62 、実測値:C,76.33;H,8.74;N,2.62;
【0039】
(1R,2S)体
白色結晶;
m.p.:149.0−151.0℃(酢酸エチル−ヘキサン);
H NMR(300MHz,CDCl)δ:8.36(d,J=4.7Hz,1H),6.94(s,1H),6.90(d,J=4.7Hz,1H),5.35(d,J=4.8Hz,1H),5.11(td,J=10.3 and 4.3Hz,1H),4.59(m,1H),2.86(td,J=11.4 and3.3Hz,1H),2.30(s,3H),2.21−0.88(m,28H),2.03(s,3H),1.00(s,3H),0.46(s,3H);
IR(KBr):1732cm−1;
元素分析:C3447NOとしての計算値:C,76.51;H,8.88;N,2.62 、実測値:C,76.33;H,8.87;N,2.58;
【0040】
このジアステレオマー混合物(307mg)をジエチルエーテル(51mL)に溶解し、得られた有機溶液を2%塩酸水溶液(21mL)で洗浄した。有機層と水層を分離した後、有機層は炭酸ナトリウムで乾燥し、ジエチルエーテルを留去することにより一方のジアステレオマーを172mg(56%,67%de)得た。水層は炭酸水素ナトリウムでpH8に調整した後、吸引ろ過により他方のジアステレオマーを136mg(44%,82%de)回収した。
【0041】
有機層より得られた一方のジアステレオマー(67%de,85mg,0.16mmol)のTHF溶液(1mL)を水素化アルミニウムリチウム(60mg,1.60mmol)のTHF懸濁液(1mL)に氷冷下でゆっくり滴下し、THF(3mL)を追加した後、全体を室温で2時間撹拌した。反応液を氷冷した後、飽和硫酸ナトリウム水溶液を滴下してしばらく撹拌した後、反応液を炭酸カリウムで乾燥した。乾燥剤を除去し、塩化メチレンで洗浄した後溶液を濃縮し、残渣を再度塩化メチレンに溶解し、得られた有機溶液を5%塩酸水溶液で洗浄した。塩酸水溶液層を炭酸カリウムでアルカリ性(pH12)とし、塩化メチレンで抽出し、有機層を炭酸ナトリウムで乾燥し、乾燥剤を除去し、塩化メチレンを留去した。得られた残渣をカラムクロマトグラフィー(溶離剤:ヘキサン/酢酸エチル=1/1)により精製し、(+)−(1S,2R)−2−(4−メチル−2−ピリジル)シクロヘキサン−1−オールを25mg(83%,64%ee)得た。
【0042】
水層より得られた他方のジアステレオマー(82%de,80mg,0.15mmol)も上記と同様の操作で処理することによって(−)−(1R,2S)−2−(4−メチル−2−ピリジル)シクロヘキサン−1−オールを26mg(90%,79%ee)得た。
【0043】
(+)−(1S,2R)−2−(4−メチル−2−ピリジル)シクロヘキサン−1−オール
白色結晶;
m.p.:100.0−102.0℃;
[α] 27:+17.0(c0.53,CHCl );
光学純度:64%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:8.9分)により測定した。]
【0044】
(−)−(1R,2S)−2−(4−メチル−2−ピリジル)シクロヘキサン−1−オール
白色結晶;
m.p.:93.5−95.0℃;
[α] 29:−24.8(c0.56,CHCl );
光学純度:80%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:11.0分)により測定した。]
【0045】
実施例3
3β−アセトキシ−Δ5−エチオコレン酸クロライド(1.37g,3.61mmol)を塩化メチレン(8mL)に溶解し、これにトリエチルアミン(0.40ml,2.88mmol)と、(±)−trans −2−(4−クロロ−2−ピリジル)シクロヘキサン−1−オール(509mg,2.40mmol)の塩化メチレン溶液(2ml)を氷冷下で加え、さらに塩化メチレン(5mL)を追加した後、全体を室温で18.5時間撹拌した。反応液を水洗した後、塩化メチレンを留去し、得られた残渣をカラムクロマトグラフィー(溶離剤:ヘキサン/酢酸エチル=7/1)により精製し、化学式[X]で示される縮合体(trans −2−[(4−クロロ−2−ピリジル)シクロヘキシル]−Δ5−3β−アセトキシエチオコレン酸エステル)をジアステレオマー混合物として1.22g(96%)を得た。
【0046】
【化20】
Figure 0004085601
【0047】
(1S,2R)体と(1R,2S)体の混合物
白色結晶;
m.p.:61.0−63.0℃;
H NMR(300MHz,CDCl)δ:8.43(d,J=5.3Hz,1H),8.42(d,J=5.1Hz,1H),7.20(d,J=2.0Hz,1H),7.15(d,J=2.1Hz,1H),7.12(dd,J=5.3 and 2.0Hz,1H),7.12(dd,J=5.1 and 2.1Hz,1H),5.34(m,1H),5.19(td,J=10.6 and 4.2Hz,1H),5.08(td,J=10.4 and 4.2Hz,1H),4.58(m,1H),2.86(m,1H),2.31−0.84(m,28H),2.03(s,3H),1.00(s,3H),0.96(s,3H),0.48(s,3H),0.13(s,3H);
IR(KBr):1732cm−1
【0048】
このジアステレオマー混合物(319mg)をジエチルエーテル(53mL)に溶解し、得られた有機溶液を15%塩酸水溶液(21mL)で洗浄した。有機層と水層を分離した後、有機層は炭酸ナトリウム乾燥し、ジエチルエーテルを留去することにより一方のジアステレオマーを134mg(42%,82%de)得た。水層は炭酸水素ナトリウムでpH8に調整した後、吸引ろ過により他方のジアステレオマーを179mg(56%,54%de)回収した。
【0049】
有機層より得られた一方のジアステレオマー(82%de,60mg,0.11mmol)の塩化メチレン溶液(1.5mL)に水素化ジイソブチルアルミニウムのヘキサン溶液(0.95M,0.57mL,0.54mmol)を−20℃下でゆっくり滴下し、塩化メチレン(1mL)を追加した後、徐々に温度を上げ、全体を2時間撹拌した。反応液を氷冷した後、精製水を滴下してしばらく撹拌し、セライトろ過により白色沈殿物を除去し、濾液を濃縮した。残渣を再度塩化メチレンに溶解し、得られた有機溶液を5%塩酸水溶液で洗浄した。塩酸水溶液層を炭酸カリウムでアルカリ性(pH12)とし、塩化メチレンで抽出し、有機層を炭酸ナトリウムで乾燥し、乾燥剤を除去し、塩化メチレンを留去した。得られた残渣をカラムクロマトグラフィー(溶離剤:ヘキサン/酢酸エチル=2/1)により精製し、(+)−trans −2−(4−クロロ−2−ピリジル)シクロヘキサン−1−オールを16mg(70%,79%ee)得た。
【0050】
水層より得られた他方のジアステレオマー(54%de,46mg,0.08mmol)も上記と同様の操作で処理することにより(−)−trans −2−(4−クロロ−2−ピリジル)シクロヘキサン−1−オールを16mg(89%,50%ee)得た。
【0051】
(+)−trans −2−(4−クロロ−2−ピリジル)シクロヘキサン−1−オール白色結晶;
m.p.:84.5−86.0℃;
[α] 28:+30.6(c0.92,CHCl );
光学純度:79%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:8.4分)により測定した。]
【0052】
(−)−trans −2−(4−クロロ−2−ピリジル)シクロヘキサン−1−オール白色結晶;
m.p.:82.5−85.0℃;
[α] 28:−20.5(c0.72,CHCl );
光学純度:50%ee[HPLC分析(ダイセル社製、「Chiralcel OD」;ヘキサン/イソプロパノール=95/5;流量:1.0mL/分;25℃;保持時間:9.7分)により測定した。][0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing optically active trans-2- (2-pyridyl) cycloalkane-1-ols (hereinafter sometimes abbreviated as pyridyl alcohols), and more specifically, a specific optically active carboxylic acid. It relates to a method for optically resolving (±) -trans-2- (2-pyridyl) cycloalkane-1-ols using According to the present invention, optically active pyridyl alcohols having high optical purity useful as pharmaceuticals, agricultural chemicals, and synthetic intermediates thereof can be obtained. The present invention also relates to an ester of a novel pyridyl alcohol containing a diastereomer of a condensate obtained during the optical resolution step, and a method for producing the same.
[0002]
[Prior art]
In general, techniques such as recrystallization, column chromatography, and high performance liquid chromatography have been used to isolate and purify two kinds of diastereomers derived from a racemate as a separation target.
[0003]
[Problems to be solved by the invention]
However, when two diastereomers are to be isolated and purified by recrystallization, the compound of interest is required to be a crystalline substance. Therefore, it is difficult to isolate and purify diastereomers that do not exhibit crystallinity. On the other hand, in the case of column chromatography or high-performance liquid chromatography, it is necessary to search for conditions for isolating two kinds of diastereomers, and if these conditions are not found, it is difficult to adopt these methods. Become.
[0004]
[Means for Solving the Problems]
The present invention relates to an optical resolution method that can be performed using extraction that is easier to operate than conventional methods as a method for isolating two diastereomers. The principle is that in the diastereomeric pair represented by the general formula [III], the intramolecular carbon CH / π interaction between the methyl group at the 2-position of the condensed ring and the pyridine ring in the same formula was derived from one enantiomer. This is thought to be due to expression only in diastereomers. This intramolecular CH / π interaction affects the basicity of the pyridine ring, thereby creating a difference between the solubilities of the two diastereomers, which makes it possible to isolate each diastereomer. It is thought that there is.
[0005]
That is, the method for producing optically active pyridyl alcohols according to the present invention includes:
Formula [I]
[Chemical Formula 10]
Figure 0004085601
[0006]
(In the formula, R 1 represents a lower alkyl group which may have a substituent or a halogen atom, and n represents an integer of 3 to 5.)
(±) -trans-2- (2-pyridyl) cycloalkane-1-ols represented by general formula [II]
Embedded image
Figure 0004085601
[0007]
(In the formula, the configuration of the carboxyl group at position 1 or a derivative thereof and the methyl group at position 2 adjacent thereto is cis, X represents a hydroxyl group, an alkoxy group or a halogen atom, and R 2 and R 3 are R 2 and R 3 are the same or different and each represents an optionally substituted alkyl group, and R 2 and R 3 are bonded to each other to form a single ring or condensed ring optionally having a carbon-carbon double bond. And an optically active carboxylic acid having a known absolute configuration or a derivative thereof represented by the general formula [III].
Embedded image
Figure 0004085601
[0008]
(Wherein R 1 , R 2 , R 3 and n have the same meaning as in the above formula), a diastereomeric pair of the condensate is obtained, and then dissolved in a water-insoluble organic solvent. The obtained organic solution is washed with an acidic aqueous solution to partition one diastereomer into the organic layer and the other diastereomer into the aqueous layer, and reduce the ester bond of each diastereomer obtained. Or hydrolysis to obtain the corresponding optically active trans-2- (2-pyridyl) cycloalkane-1-ol.
[0009]
The present invention also relates to a general formula [VII]
Embedded image
Figure 0004085601
[0010]
(In the formula, R 1 represents a lower alkyl group which may have a substituent or a halogen atom. R 2 and R 3 are the same or different and represent an alkyl group which may have a substituent. R 2 and R 3 may be bonded to each other to form a hydrocarbon group that forms a monocyclic ring or a condensed ring which may have a carbon-carbon double bond, and n is an integer of 3 to 5. Represents.)
The novel pyridyl alcohol ester shown by these is provided.
[0011]
The ester [VII] of the pyridyl alcohol is represented by the general formula [I]
Embedded image
Figure 0004085601
[0012]
(In the formula, R 1 represents a lower alkyl group which may have a substituent or a halogen atom, and n represents an integer of 3 to 5.)
2- (2-pyridyl) cycloalkane-1-ols represented by:
Formula [VI]
Embedded image
Figure 0004085601
[0013]
(In the formula, X represents a hydroxyl group, an alkoxy group or a halogen atom, and R 2 and R 3 are the same or different and each represents an alkyl group which may have a substituent. R 2 and R 3 are It may be a hydrocarbon group that is bonded to form a monocyclic ring or condensed ring optionally having a carbon-carbon double bond.
It can obtain by condensing with the carboxylic acid or its derivative shown by esterification reaction.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Racemates to be resolved by the method of the present invention are (±) -trans-2- (2-pyridyl) cycloalkane-1-ols represented by the general formula [I]. Here, n represents an integer of 3 to 5, and 4 is particularly preferable. R 1 represents a lower alkyl group which may have a substituent or a halogen atom, and the lower alkyl group is preferably an alkyl group having 1 to 3 carbon atoms such as a methyl group or an ethyl group. Is preferably chlorine or bromine. R 1 is preferably a hydrogen atom, a methyl group or a chlorine atom. The position of R 1 on the pyridine ring is preferably the 4-position.
[0015]
On the other hand, the optically active substance used for forming a diastereomer is an optically active carboxylic acid having a known absolute configuration represented by the above general formula [II] or a derivative thereof, preferably the general formula [IV]
Embedded image
Figure 0004085601
[0016]
(In the formula, the configuration of the methyl group at the 13-position and the carboxyl group at the 17-position or its derivative group is cis, and the ring-forming carbon atoms other than the 13- and 17-positions may have a substituent and adjacent carbon atoms. (It may have a double bond between them. X represents a hydroxyl group, an alkoxy group or a halogen atom.)
An optically active carboxylic acid having a steroid skeleton represented by the above known absolute configuration or a derivative thereof, and more preferably a general formula [V]
Embedded image
Figure 0004085601
[0017]
(In the formula, X represents a hydroxyl group, an alkoxy group or a halogen atom.)
3β-acetoxy-Δ5-etiocholenic acid or a derivative thereof.
[0018]
A method of condensing (±) -trans-2- (2-pyridyl) cycloalkane-1-ols represented by the general formula [I] with the optically active carboxylic acid represented by the general formula [II] or a derivative thereof No particular limitation, for example, a method of condensing the former compound [I] with an acid chloride of a carboxylic acid by conducting an esterification reaction under basic conditions or in the presence of a dehydration condensing agent such as carbodiimides, etc. There is.
[0019]
The organic solvent for dissolving the diastereomer of the condensate [III] obtained by the condensation is not particularly limited as long as it is not mixed with water, and aliphatic hydrocarbons such as hexane and heptane, diethyl ether, diesters, and the like. Ethers such as butyl ether, diisopropyl ether, tert-butyl methyl ether and dibutyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as chloroform, methylene chloride and 1,2-dichloroethane, n -Alcohols, such as butyl alcohol, n-hexanol, cyclohexanol, or these mixed solvents are mentioned, Ethers are preferable and diethyl ether is especially preferable.
[0020]
The acidic aqueous solution used for washing the organic solution is preferably an aqueous solution of a mineral acid such as hydrochloric acid, sulfuric acid or nitric acid, and particularly preferably an aqueous hydrochloric acid solution.
[0021]
Examples of the method for converting each diastereomer distributed in the organic layer and the aqueous layer into optically active trans-2- (2-pyridyl) cycloalkane-1-ol include lithium aluminum hydride and diisobutylaluminum hydride, Examples thereof include a method of reducing an ester bond using a reducing agent such as lithium borohydride and a method of hydrolyzing an ester bond in the presence of an acid or a base. The former method is preferable, and a method using lithium aluminum hydride or diisobutylaluminum hydride as the reducing agent is particularly preferable.
[0022]
Further, R 1 , R 2 , R 3 , X and n in the carboxylic acid or its derivative [VI] and the pyridyl alcohol ester [VII] may be the same as those described above. As described above, the esterification reaction of 2- (2-pyridyl) cycloalkane-1-ols [I] and a carboxylic acid or a derivative thereof [VI] is performed by, for example, acidification of the former compound [I] and a carboxylic acid. It may be a method of condensing a product with an esterification reaction under basic conditions or in the presence of a dehydrating condensing agent such as carbodiimides.
[0023]
Pyridyl alcohol esters [VII] are novel compounds. Of these, the hydroxyl group and pyridyl group of the pyridyl alcohol moiety are located at trans, and the configuration of the carboxyl group at the 1-position of the carboxylic acid (or its derivative) moiety or its derivative group and the methyl group at the 2-position adjacent thereto is The compound which is cis is useful as a diastereomer of a condensate obtained during the optical resolution step of (±) -trans-2- (2-pyridyl) cycloalkane-1-ols as described above. In particular, (±) -trans-2- (2-pyridyl) cycloalkane-1-ols [I] and an ester of a compound [IV] having a steroid skeleton are preferable, and (±) -trans-2- ( 2-pyridyl) cycloalkane-1-ols [I] and esters of 3β-acetoxy-Δ5-ethiocholenoic acid or its derivatives [V] are most preferred.
[0024]
【Example】
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
[0025]
Example 1
3β-Acetoxy-Δ5-ethiocholenic acid chloride (2.19 g, 5.77 mmol) was dissolved in methylene chloride (10 mL), and triethylamine (0.64 mL, 4.62 mmol) was added to (±) -trans -2- A solution of (2-pyridyl) cyclohexane-1-ol (682 mg, 3.85 mmol) in methylene chloride (2 mL) was added under ice cooling, and further methylene chloride (8 mL) was added, and the whole was stirred at room temperature for 68 hours. . After washing the reaction solution with water, methylene chloride was distilled off, and the resulting residue was purified by column chromatography (eluent: hexane / ethyl acetate = 5/1) to give a condensate represented by the chemical formula [VIII]. 1.84 g (90%) of (trans-2-[(2-pyridyl) cyclohexyl] -Δ5-3β-acetoxyethiocholenate) was obtained as a mixture of diastereomers.
[0026]
Embedded image
Figure 0004085601
[0027]
This diastereomer mixture was isolated and purified to obtain (1S, 2R) and (1R, 2S) isomers having the following characteristics.
[0028]
(1S, 2R) body white crystals;
m. p. : 126.0-129.0 ° C (diethyl ether-hexane);
[α] D 28 : +22.3 (c 0.63, CHCl 3 );
1 H NMR (300 MHz, CDCl 3 ) δ: 8.52 (d, J = 4.5 Hz, 1H), 7.57 (td, J = 7.7 and 1.8 Hz, 1H), 7.18 (d , J = 7.7 Hz, 1H), 7.09 (ddd, J = 7.7, 4.5 and 0.8 Hz, 1H), 5.33 (d, J = 4.2 Hz, 1H), 5. 24 (td, J = 10.8 and 4.3 Hz, 1H), 4.58 (m, 1H), 2.91 (td, J = 11.5 and 3.5 Hz, 1H), 2.31-0 .84 (m, 28H), 2.03 (s, 3H), 0.95 (s, 3H), 0.11 (s, 3H);
IR (KBr): 1732 cm −1 ;
MS EI (+) m / z: 520 [(M + H) + , 3], 519 (M + , 3), 460 (22), 459 (59), 300 (9), 176 (56), 175 (32 ), 161 (19), 160 (100), 159 (20), 93 (18), 81 (26);
HRMS: Calculated as C 33 H 45 NO 4 (M + ): 519.3348, found: 519.3367;
Elemental analysis: calculated for C 33 H 45 NO 4: C , 76.26; H, 8.73; N, 2.70, Found: C, 76.06; H, 8.72 ; N, 2 .62;
[0029]
(1R, 2S) body white crystals;
m. p. 149.5-150.0 ° C. (diethyl ether-hexane);
[α] D 28 : -70.7 (c 0.59, CHCl 3 );
1 H NMR (300 MHz, CDCl 3 ) δ: 8.51 (d, J = 4.4 Hz, 1H), 7.56 (td, J = 7.7 and 1.8 Hz, 1H), 7.13 (d , J = 7.7 Hz, 1H), 7.09 (ddd, J = 7.7, 4.4 and 0.9 Hz, 1H), 5.34 (d, J = 4.4 Hz, 1H), 5. 13 (td, J = 11.0 and 4.2 Hz, 1H), 4.59 (m, 1H), 2.88 (td, J = 11.0 and 3.6 Hz, 1H), 2.32-0 .88 (m, 28H), 2.03 (s, 3H), 0.99 (s, 3H), 0.46 (s, 3H);
IR (KBr): 1732 cm −1 ;
MS EI (+) m / z: 520 [(M + H) + , 1], 519 (M + , 1), 460 (35), 459 (100), 300 (6), 176 (40), 161 (16 ), 160 (97), 159 (15), 93 (11), 81 (8);
HRMS: Calculated as C 33 H 45 NO 4 (M + ): 519.3348, found: 519.3358;
Elemental analysis: calculated for C 33 H 45 NO 4: C , 76.26; H, 8.73; N, 2.70, Found: C, 75.96; H, 8.62 ; N, 2 .70;
[0030]
This diastereomer mixture (300 mg) was dissolved in diethyl ether (50 mL), and the resulting organic solution was washed with 3% aqueous hydrochloric acid (20 mL). The organic layer and the aqueous layer were separated, the organic layer was dried over sodium carbonate, diethyl ether was distilled off, the residue was dissolved again in diethyl ether (37 mL), and the resulting organic solution was diluted with 7% hydrochloric acid (15 mL). Washed. Thereafter, the organic layer was treated in the same manner as above to obtain 57 mg (44%, 81% de) of one diastereomer. The aqueous layer was adjusted to pH 8 with sodium hydrogen carbonate, and 75 mg (23%, 93% de) of the other diastereomer was recovered by suction filtration.
[0031]
A THF solution (1 mL) of one diastereomer (81% de, 57 mg, 0.11 mmol) obtained from the organic layer was added to a THF suspension (1 mL) of lithium aluminum hydride (42 mg, 1.10 mmol) on ice. The solution was slowly added dropwise under cooling, and further THF (3 mL) was added, and the whole was stirred at room temperature for 2 hours. The reaction solution was ice-cooled, saturated aqueous sodium sulfate solution was added dropwise and stirred for a while, and then the reaction solution was dried over potassium carbonate. After removing the desiccant and washing with methylene chloride, the washing solution was concentrated, the residue was again dissolved in methylene chloride, and the resulting organic solution was washed with 5% aqueous hydrochloric acid. The aqueous hydrochloric acid layer was made alkaline (pH 12) with potassium carbonate, extracted with methylene chloride, the organic layer was dried over sodium carbonate, the desiccant was removed, and methylene chloride was distilled off. The resulting residue was purified by column chromatography (eluent: hexane / ethyl acetate = 1/1), and 13 mg (68%, 68%, +)-trans-2- (2-pyridyl) cyclohexane-1-ol was obtained. 77% ee).
[0032]
The other diastereomer (93% de, 60 mg, 0.12 mmol) obtained from the aqueous layer was treated in the same manner as above to give (−)-trans-2- (2-pyridyl) cyclohexane-1- 18 mg (90%, 93% ee) of oals were obtained.
[0033]
(+)-Trans-2- (2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 62.5-65.0 ° C;
[α] D 28 : +20.4 (c0.49, CHCl 3 );
Optical purity: 77% ee [Measured by HPLC analysis (manufactured by Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 9.9 min). ]
[0034]
(−)-Trans-2- (2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 81.0-82.5 ° C;
[α] D 27 : -23.5 (c 0.53, CHCl 3 );
Optical purity: 93% ee [Measured by HPLC analysis (manufactured by Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 14.2 min). ]
[0035]
Example 2
3β-acetoxy-Δ5-ethiocholenic acid chloride (1.16 g, 3.05 mmol) was dissolved in methylene chloride (8 mL), and triethylamine (0.34 mL, 2.44 mmol) was added to (±) -trans -2- A solution of (4-methyl-2-pyridyl) cyclohexane-1-ol (389 mg, 2.03 mmol) in methylene chloride (2 mL) was added under ice cooling, and further methylene chloride (6 mL) was added. Stir for 19 hours. After the reaction solution was washed with water, methylene chloride was distilled off, and the resulting residue was purified by column chromatography (eluent: hexane / ethyl acetate = 5/1) to give a condensate represented by the chemical formula [IX] (trans 934 mg (86%) of 2-[(4-methyl-2-pyridyl) cyclohexyl] -Δ5-3β-acetoxyethiocholenate) as a diastereomeric mixture was obtained.
[0036]
Embedded image
Figure 0004085601
[0037]
This diastereomer mixture was isolated and purified to obtain (1S, 2R) and (1R, 2S) isomers having the following characteristics.
[0038]
(1S, 2R) body colorless crystals;
m. p. 199.0-202.0 ° C. (ethyl acetate-hexane);
[α] D 29 = + 19.2 (c0.51, CHCl 3 );
1 H NMR (300 MHz, CDCl 3 ) δ: 8.37 (d, J = 5.0 Hz, 1H), 6.99 (s, 1H), 6.91 (d, J = 5.0 Hz, 1H), 5.33 (d, J = 4.4 Hz, 1H), 5.22 (td, J = 10.7 and 4.3 Hz, 1H), 4.58 (m, 1H), 2.86 (td, J = 11.4 and 3.4 Hz, 1H), 2.30-0.84 (m, 28H), 2.30 (s, 3H), 2.03 (s, 3H), 0.95 (s, 3H) , 0.10 (s, 3H);
IR (KBr): 1732, 1721 cm −1 ;
MS EI (+) m / z: 534 [(M + H) + , 4], 533 (M + , 10), 474 (36), 473 (100), 300 (9), 190 (34), 175 (12 ), 174 (71), 173 (14);
HRMS: Calculated as C 34 H 47 NO 4 (M + ): 533.3505, found: 533.3499;
Elemental analysis: calculated for C 34 H 47 NO 4: C , 76.51; H, 8.88; N, 2.62, Found: C, 76.33; H, 8.74 ; N, 2 .62;
[0039]
(1R, 2S) body white crystals;
m. p. 149.0-151.0 ° C. (ethyl acetate-hexane);
1 H NMR (300 MHz, CDCl 3 ) δ: 8.36 (d, J = 4.7 Hz, 1H), 6.94 (s, 1H), 6.90 (d, J = 4.7 Hz, 1H), 5.35 (d, J = 4.8 Hz, 1H), 5.11 (td, J = 10.3 and 4.3 Hz, 1H), 4.59 (m, 1H), 2.86 (td, J = 11.4 and 3.3 Hz, 1H), 2.30 (s, 3H), 2.21-0.88 (m, 28H), 2.03 (s, 3H), 1.00 (s, 3H) , 0.46 (s, 3H);
IR (KBr): 1732 cm −1 ;
Elemental analysis: calculated for C 34 H 47 NO 4: C , 76.51; H, 8.88; N, 2.62, Found: C, 76.33; H, 8.87 ; N, 2 .58;
[0040]
This diastereomeric mixture (307 mg) was dissolved in diethyl ether (51 mL), and the resulting organic solution was washed with 2% aqueous hydrochloric acid (21 mL). After the organic layer and the aqueous layer were separated, the organic layer was dried over sodium carbonate, and diethyl ether was distilled off to obtain 172 mg (56%, 67% de) of one diastereomer. The aqueous layer was adjusted to pH 8 with sodium bicarbonate, and then 136 mg (44%, 82% de) of the other diastereomer was recovered by suction filtration.
[0041]
A THF solution (1 mL) of one diastereomer (67% de, 85 mg, 0.16 mmol) obtained from the organic layer was added to a THF suspension (1 mL) of lithium aluminum hydride (60 mg, 1.60 mmol) on ice. The solution was slowly added dropwise under cooling, THF (3 mL) was added, and the whole was stirred at room temperature for 2 hours. The reaction solution was ice-cooled, saturated aqueous sodium sulfate solution was added dropwise and stirred for a while, and then the reaction solution was dried over potassium carbonate. The desiccant was removed, the solution was concentrated after washing with methylene chloride, the residue was dissolved again in methylene chloride, and the resulting organic solution was washed with 5% aqueous hydrochloric acid. The aqueous hydrochloric acid layer was made alkaline (pH 12) with potassium carbonate, extracted with methylene chloride, the organic layer was dried over sodium carbonate, the desiccant was removed, and methylene chloride was distilled off. The obtained residue was purified by column chromatography (eluent: hexane / ethyl acetate = 1/1) and (+)-(1S, 2R) -2- (4-methyl-2-pyridyl) cyclohexane-1- 25 mg (83%, 64% ee) of oals were obtained.
[0042]
The other diastereomer (82% de, 80 mg, 0.15 mmol) obtained from the aqueous layer was treated in the same manner as above to obtain (−)-(1R, 2S) -2- (4-methyl- 26 mg (90%, 79% ee) of 2-pyridyl) cyclohexane-1-ol were obtained.
[0043]
(+)-(1S, 2R) -2- (4-methyl-2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 100.0-102.0 ° C;
[α] D 27 : +17.0 (c0.53, CHCl 3 );
Optical purity: 64% ee [Measured by HPLC analysis (manufactured by Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 8.9 min). ]
[0044]
(−)-(1R, 2S) -2- (4-methyl-2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 93.5-95.0 ° C;
[α] D 29 : -24.8 (c 0.56, CHCl 3 );
Optical purity: 80% ee [Measured by HPLC analysis (Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 11.0 min). ]
[0045]
Example 3
3β-acetoxy-Δ5-ethiocholenic acid chloride (1.37 g, 3.61 mmol) was dissolved in methylene chloride (8 mL), and triethylamine (0.40 ml, 2.88 mmol) was added to (±) -trans -2- A solution of (4-chloro-2-pyridyl) cyclohexane-1-ol (509 mg, 2.40 mmol) in methylene chloride (2 ml) was added under ice-cooling, and further methylene chloride (5 mL) was added. Stir for 18.5 hours. After the reaction solution was washed with water, methylene chloride was distilled off, and the resulting residue was purified by column chromatography (eluent: hexane / ethyl acetate = 7/1) to give a condensate represented by the chemical formula [X] (trans -2-[(4-Chloro-2-pyridyl) cyclohexyl] -Δ5-3β-acetoxyethiocholenate) was obtained as a diastereomeric mixture to give 1.22 g (96%).
[0046]
Embedded image
Figure 0004085601
[0047]
A mixture of (1S, 2R) and (1R, 2S) isomers, white crystals;
m. p. : 61.0-63.0 ° C;
1 H NMR (300 MHz, CDCl 3 ) δ: 8.43 (d, J = 5.3 Hz, 1H), 8.42 (d, J = 5.1 Hz, 1H), 7.20 (d, J = 2) 0.0 Hz, 1H), 7.15 (d, J = 2.1 Hz, 1H), 7.12 (dd, J = 5.3 and 2.0 Hz, 1H), 7.12 (dd, J = 5. 1 and 2.1 Hz, 1H), 5.34 (m, 1H), 5.19 (td, J = 10.6 and 4.2 Hz, 1H), 5.08 (td, J = 10.4 and 4) .2 Hz, 1 H), 4.58 (m, 1 H), 2.86 (m, 1 H), 2.31-0.84 (m, 28 H), 2.03 (s, 3 H), 1.00 ( s, 3H), 0.96 (s, 3H), 0.48 (s, 3H), 0.13 (s, 3H);
IR (KBr): 1732 cm −1 ;
[0048]
This diastereomeric mixture (319 mg) was dissolved in diethyl ether (53 mL), and the resulting organic solution was washed with 15% aqueous hydrochloric acid (21 mL). After the organic layer and the aqueous layer were separated, the organic layer was dried over sodium carbonate, and diethyl ether was distilled off to obtain 134 mg (42%, 82% de) of one diastereomer. The aqueous layer was adjusted to pH 8 with sodium bicarbonate, and then 179 mg (56%, 54% de) of the other diastereomer was recovered by suction filtration.
[0049]
One diastereomer obtained from the organic layer (82% de, 60 mg, 0.11 mmol) in methylene chloride solution (1.5 mL) and hexane solution of diisobutylaluminum hydride (0.95 M, 0.57 mL,. 54 mmol) was slowly added dropwise at −20 ° C., methylene chloride (1 mL) was added, the temperature was gradually raised, and the whole was stirred for 2 hours. The reaction mixture was ice-cooled, purified water was added dropwise and stirred for a while, white precipitate was removed by celite filtration, and the filtrate was concentrated. The residue was dissolved again in methylene chloride, and the resulting organic solution was washed with 5% aqueous hydrochloric acid. The aqueous hydrochloric acid layer was made alkaline (pH 12) with potassium carbonate, extracted with methylene chloride, the organic layer was dried over sodium carbonate, the desiccant was removed, and methylene chloride was distilled off. The obtained residue was purified by column chromatography (eluent: hexane / ethyl acetate = 2/1), and 16 mg (+)-trans-2- (4-chloro-2-pyridyl) cyclohexane-1-ol was obtained. 70%, 79% ee).
[0050]
The other diastereomer (54% de, 46 mg, 0.08 mmol) obtained from the aqueous layer was treated in the same manner as above to obtain (−)-trans-2- (4-chloro-2-pyridyl). 16 mg (89%, 50% ee) of cyclohexane-1-ol was obtained.
[0051]
(+)-Trans-2- (4-chloro-2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 84.5-86.0 ° C;
[α] D 28 : +30.6 (c0.92, CHCl 3 );
Optical purity: 79% ee [Measured by HPLC analysis (manufactured by Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 8.4 min). ]
[0052]
(−)-Trans-2- (4-chloro-2-pyridyl) cyclohexane-1-ol white crystals;
m. p. : 82.5-85.0 ° C;
[α] D 28 : -20.5 (c0.72, CHCl 3 );
Optical purity: 50% ee [Measured by HPLC analysis (manufactured by Daicel, “Chiralcel OD”; hexane / isopropanol = 95/5; flow rate: 1.0 mL / min; 25 ° C .; retention time: 9.7 min). ]

Claims (10)

一般式[I]
Figure 0004085601
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表し、nは3〜5の整数を表す。)
で示される(±)−trans −2−(2−ピリジル)シクロアルカン−1−オール類と、一般式[II]
Figure 0004085601
(式中、1位のカルボキシル基またはその誘導基と2位のメチル基の立体配置はcis であり、Xは水酸基、アルコキシ基またはハロゲン原子を表し、R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。)
で示される絶対配置既知の光学活性カルボン酸またはその誘導体とをエステル化反応により縮合し、一般式[III]
Figure 0004085601
(式中、R 、R 、R およびnは上記式のものと同じ意味を表す。)で示される縮合体のジアステレオマー対を得た後、これを水不溶性の有機溶媒に溶解し、得られた有機溶液を酸性水溶液で洗浄することによって一方のジアステレオマーを有機層に他方のジアステレオマーを水層にそれぞれ分配し、得られた各ジアステレオマーのエステル結合を還元するかまたは加水分解して、対応する光学活性trans −2−(2−ピリジル)シクロアルカン−1−オールを得ることを特徴とする光学活性ピリジルアルコール類の製造方法。
Formula [I]
Figure 0004085601
(In the formula, R 1 represents a lower alkyl group which may have a substituent or a halogen atom, and n represents an integer of 3 to 5.)
(±) -trans-2- (2-pyridyl) cycloalkane-1-ols represented by general formula [II]
Figure 0004085601
(In the formula, the configuration of the carboxyl group at the 1-position or the derivative group thereof and the methyl group at the 2-position is cis, X represents a hydroxyl group, an alkoxy group or a halogen atom, and R 2 and R 3 are the same or different. Represents an optionally substituted alkyl group, and R 2 and R 3 are bonded to each other to form a hydrocarbon ring that may have a carbon-carbon double bond or a single ring or a condensed ring. It may be a group.)
Is condensed with an optically active carboxylic acid of known absolute configuration or a derivative thereof by an esterification reaction, to form a compound represented by the general formula [III]
Figure 0004085601
(Wherein R 1 , R 2 , R 3 and n have the same meaning as in the above formula), a diastereomer pair of the condensate is obtained, and then dissolved in a water-insoluble organic solvent. The obtained organic solution is washed with an acidic aqueous solution to partition one diastereomer into the organic layer and the other diastereomer into the aqueous layer, and reduce the ester bond of each diastereomer obtained. Or producing the corresponding optically active trans-2- (2-pyridyl) cycloalkane-1-ol by hydrolysis.
一般式[II]で示される絶対配置既知の光学活性カルボン酸またはその誘導体が一般式[IV]
Figure 0004085601
(式中、13位のメチル基と17位のカルボキシル基またはその誘導基の立体配置はcis であり、13位および17位以外の環形成炭素原子は置換基を有していてもよく隣接炭素間に二重結合を有していてもよい。Xは水酸基、アルコキシ基またはハロゲン原子を表す。)
で示されるステロイド骨格を有する化合物である請求項1に記載の光学活性ピリジルアルコール類の製造方法。
An optically active carboxylic acid having a known absolute configuration represented by the general formula [II] or a derivative thereof is represented by the general formula [IV]
Figure 0004085601
(In the formula, the configuration of the methyl group at the 13-position and the carboxyl group at the 17-position or its derivative group is cis, and the ring-forming carbon atoms other than the 13- and 17-positions may have a substituent and adjacent carbon atoms. (It may have a double bond between them. X represents a hydroxyl group, an alkoxy group or a halogen atom.)
The method for producing an optically active pyridyl alcohol according to claim 1, wherein the compound has a steroid skeleton represented by formula (1).
一般式[II]で示される絶対配置既知の光学活性カルボン酸またはその誘導体が一般式[V]
Figure 0004085601
(式中、Xは水酸基、アルコキシ基またはハロゲン原子を表す。)
で示される3β−アセトキシ−Δ5−エチオコレン酸またはその誘導体である請求項1に記載の光学活性ピリジルアルコール類の製造方法。
An optically active carboxylic acid having a known absolute configuration represented by the general formula [II] or a derivative thereof is represented by the general formula [V].
Figure 0004085601
(In the formula, X represents a hydroxyl group, an alkoxy group or a halogen atom.)
The method for producing an optically active pyridyl alcohol according to claim 1, which is 3β-acetoxy-Δ5-ethiocholenoic acid or a derivative thereof represented by the formula:
一般式[I]中のnが4である請求項1〜3のいずれかに記載の光学活性ピリジルアルコール類の製造方法。The method for producing optically active pyridyl alcohols according to any one of claims 1 to 3, wherein n in the general formula [I] is 4. 一般式[I]中のR が水素原子、メチル基または塩素原子である請求項1〜4のいずれかに記載の光学活性ピリジルアルコール類の製造方法。R < 1 > in general formula [I] is a hydrogen atom, a methyl group, or a chlorine atom, The manufacturing method of optically active pyridyl alcohol in any one of Claims 1-4. 一般式[I]中のR が2−ピリジル基の4位に位置する請求項1〜5のいずれかに記載の光学活性ピリジルアルコール類の製造方法。The method for producing an optically active pyridyl alcohol according to any one of claims 1 to 5, wherein R 1 in the general formula [I] is located at the 4-position of the 2-pyridyl group. 有機溶媒がエーテル類である請求項項1〜6のいずれかに記載の光学活性ピリジルアルコール類の製造方法。The method for producing an optically active pyridyl alcohol according to any one of claims 1 to 6, wherein the organic solvent is an ether. 酸性水溶液が塩酸水溶液である請求項項1〜7のいずれかに記載の光学活性ピリジルアルコール類の製造方法。The method for producing optically active pyridyl alcohols according to any one of claims 1 to 7, wherein the acidic aqueous solution is an aqueous hydrochloric acid solution. 一般式[VII]
Figure 0004085601
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表す。R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。nは3〜5の整数を表す。)
で示されることを特徴とするピリジルアルコール類のエステル。
Formula [VII]
Figure 0004085601
(In the formula, R 1 represents a lower alkyl group which may have a substituent or a halogen atom. R 2 and R 3 are the same or different and represent an alkyl group which may have a substituent. R 2 and R 3 may be bonded to each other to form a hydrocarbon group that forms a monocyclic ring or a condensed ring which may have a carbon-carbon double bond, and n is an integer of 3 to 5. Represents.)
Ester of pyridyl alcohol characterized by being shown by these.
一般式[I]
Figure 0004085601
(式中、R は置換基を有していてもよい低級アルキル基またはハロゲン原子を表し、nは3〜5の整数を表す。)
で示される2−(2−ピリジル)シクロアルカン−1−オール類と、
一般式[VI]
Figure 0004085601
(式中、Xは水酸基、アルコキシ基またはハロゲン原子を表し、R およびR は、同一または異なって、置換基を有していてもよいアルキル基を表す。R およびR は、互いに結合して、炭素−炭素二重結合を有していてもよい単環または縮合環を形成する炭化水素基であってもよい。)
で示されるカルボン酸またはその誘導体とをエステル化反応により縮合し、一般式[VII]
Figure 0004085601
(式中、R 、R 、R およびnは上記式のものと同じ意味を表す。)で示される縮合体を得ることを特徴とするピリジルアルコール類のエステルの製造方法。
Formula [I]
Figure 0004085601
(In the formula, R 1 represents an optionally substituted lower alkyl group or a halogen atom, and n represents an integer of 3 to 5.)
2- (2-pyridyl) cycloalkane-1-ols represented by:
Formula [VI]
Figure 0004085601
(In the formula, X represents a hydroxyl group, an alkoxy group or a halogen atom, and R 2 and R 3 are the same or different and each represents an alkyl group which may have a substituent. R 2 and R 3 are It may be a hydrocarbon group that is bonded to form a monocyclic ring or a condensed ring which may have a carbon-carbon double bond.
Is condensed with an esterification reaction to produce a compound of the general formula [VII]
Figure 0004085601
(Wherein R 1 , R 2 , R 3 and n represent the same meaning as in the above formula). A method for producing an ester of pyridyl alcohol, characterized in that a condensate is obtained.
JP2001233119A 2001-08-01 2001-08-01 Process for producing optically active pyridyl alcohols Expired - Fee Related JP4085601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233119A JP4085601B2 (en) 2001-08-01 2001-08-01 Process for producing optically active pyridyl alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233119A JP4085601B2 (en) 2001-08-01 2001-08-01 Process for producing optically active pyridyl alcohols

Publications (2)

Publication Number Publication Date
JP2003048896A JP2003048896A (en) 2003-02-21
JP4085601B2 true JP4085601B2 (en) 2008-05-14

Family

ID=19064932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233119A Expired - Fee Related JP4085601B2 (en) 2001-08-01 2001-08-01 Process for producing optically active pyridyl alcohols

Country Status (1)

Country Link
JP (1) JP4085601B2 (en)

Also Published As

Publication number Publication date
JP2003048896A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP2011042690A (en) Naproxen nitroxyalkyl ester
JP2018131390A (en) Method for producing optically active astaxanthin
KR20020035867A (en) Process for the preparation of benzoxazine derivatives and intermediates therefor
KR20090037445A (en) Process for the purification of montelukast
JP4085601B2 (en) Process for producing optically active pyridyl alcohols
JP2003335756A (en) Method for producing aromatic aldehyde and chiral diol
JPWO2018220888A1 (en) PGE1 core block derivative and method for producing the same
JP2958834B2 (en) Azetidin-2-one derivatives
US5900492A (en) Method of producing optically active cyclopropane derivatives
JP2769058B2 (en) Preparation of cyclopropane derivatives
JPH0797353A (en) Method for selectively removing halogen
JP2958835B2 (en) Method for producing 4- (1-carboxyalkyl) azetidin-2-one derivative
US5128489A (en) Process for production of optically active 2-(tetrahydropyran-2-yloxy)-1-propanol
EP0627419B1 (en) Optically active 1-phenylpyrrolidone derivative and preparation thereof
EP0023454B1 (en) Process for the preparation of 6,6-dimethyl-4-hydroxy-3-oxabicyclo(3.1.0)hexan-2-one and its ethers of all possible stereoisomeric forms
JP4503596B2 (en) Method for producing cyclopentenenitrile derivative
JP4330783B2 (en) Method for producing formylcyclopropanecarboxylic acid ester
JP2022185576A (en) Processes and intermediates for preparing benzoprostacyclin analogues, and benzoprostacyclin analogues prepared by them
JP3243979B2 (en) Optically active 3-oxy-5-oxo-6-heptenoic acid derivative and method for producing the same
JP2000007609A (en) Production of carboxylic acid derivative
JPH10218840A (en) Production of optically active cyclopropane derivative
JP2946423B2 (en) Process for producing aphanorphin and intermediates thereof
JP3770678B2 (en) Optically active alcohol and its carboxylic acid ester
JP2003335728A (en) Method for producing 4-methylcyclopentenone derivative
JP2001089449A (en) Production of 4,7-dioxo-5-azaspiro[2,4]heptane derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

TRDD Decision of grant or rejection written
A977 Report on retrieval

Effective date: 20080124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080129

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080211

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees