JP4082229B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4082229B2
JP4082229B2 JP2003031210A JP2003031210A JP4082229B2 JP 4082229 B2 JP4082229 B2 JP 4082229B2 JP 2003031210 A JP2003031210 A JP 2003031210A JP 2003031210 A JP2003031210 A JP 2003031210A JP 4082229 B2 JP4082229 B2 JP 4082229B2
Authority
JP
Japan
Prior art keywords
fluid
heat exchanger
flow path
side heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003031210A
Other languages
Japanese (ja)
Other versions
JP2004239550A (en
Inventor
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003031210A priority Critical patent/JP4082229B2/en
Publication of JP2004239550A publication Critical patent/JP2004239550A/en
Application granted granted Critical
Publication of JP4082229B2 publication Critical patent/JP4082229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクル装置および冷凍サイクル装置に用いられる熱交換器に関し、特に、給湯装置および給湯装置において給湯用熱交換器として用いられる熱交換器に関する。
【0002】
【従来の技術】
例えば、図7に示すように、圧縮機1、給湯用熱交換器としての利用側熱交換器2、減圧器3および外気を熱源とする熱源側熱交換器4からなる第二流体回路Aと、給水ポンプ5、利用側熱交換器2および給湯タンク6からなる第一流体回路Bとを備え、利用側熱交換器2において圧縮機1から吐出された第二流体(例えば、冷媒)により給水ポンプ5からの第一流体(例えば、水)を加熱して、給湯タンク6に貯めておくようにした冷凍サイクル装置(例えば、給湯装置)が知られている。
【0003】
上記構成の冷凍サイクル装置における利用側熱交換器2として、例えば、図8に示すように、外管11、および漏洩検知溝12を設けた管13(以下、漏洩検知管13とよぶ)からなり、外管11と漏洩検知管13との間の空間15を第一流体(例えば、水)の流路とする一方、漏洩検知管13の内部14を第二流体(例えば、冷媒)の流路とした二重管式熱交換器が用いられていた。漏洩検知溝12は、腐食等が生じて漏洩検知管13の内部14と、外管11と漏洩検知管13との間の空間15とが連通し、漏洩検知管13の内部14を流れる第一流体(例えば、水)に異物が混入するのを防止するために、漏洩検知溝12にまで腐食等が進行し、漏洩検知溝12に第一流体(例えば、水)や第二流体(例えば、冷媒)がしみだした時点でこれを検知する目的(漏洩検知機能)で備えられている(例えば、特許文献1参照)。
【0004】
あるいは、別の構成の利用側熱交換器2として、図9に示すように、第一円管21、および、第一円管21の外周に螺旋状に巻かれた第二円管22からなり、第一円管21の内部を第一流体(例えば、水)の流路とする一方、第二円管22の内部を第二流体(例えば、冷媒)の流路とした熱交換器が用いられていた(例えば、特許文献2参照)
【0005】
【特許文献1】
特開昭58−120087号公報(第3頁、第2図)
【0006】
【特許文献2】
特開2001−280862号公報(第6−7頁、第5図)
【0007】
【発明が解決しようとする課題】
ところで、例えば第二流体である冷媒として炭酸ガス(二酸化炭素)を用いることにより、利用側熱交換器2で第一流体(例えば、水)を約60℃以上の高温に加熱する冷凍サイクル装置(例えば、給湯装置)において、以下のような課題が生じることが明らかになってきた。
【0008】
図10は、水(水道水)の温度とランゲリア飽和指数の関係を示した一例である。ランゲリア飽和指数は、水道水に含まれる炭酸カルシウムが析出し、熱交換器の流路内にスケールが付着する障害が発生す危険性を判断するのに用いられる指数であり、この数値が0以上となるほど、スケール付着の障害が発生する危険性が高いことを示す。図10より、約60℃以上の高温において、ランゲリア飽和指数が0に近い値となることがわかる。すなわち、第一流体(例えば、水)を約60℃以上の高温に加熱する冷凍サイクル装置の利用側熱交換器2において、第一流体の流路は、スケール付着により経年的に流路が閉塞し、給水ポンプ5の動力が増加したり、第一流体(例えば、水)が流れなくなる恐れがあるといった課題が生じていた。
【0009】
そこで、本発明は、上記課題を解決した熱交換器を構成することを目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の本発明の熱交換器は、第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、高温の第一流体と高温の第二流体とが熱交換する第三熱交換部とを備え、前記第三熱交換部は、第一円管の内部を第一流体流路とし、前記第一円管の外周に螺旋状に巻いた第二円管の内部を第二流体流路としたことを特徴とする熱交換器である。
【0011】
請求項2記載の本発明の熱交換器は、第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、高温の第一流体と高温の第二流体とが熱交換する第四熱交換部とを備え、前記第四熱交換部では、前記第一熱交換部より巻き径を大きくしたことを特徴とする熱交換器である。
【0012】
【発明の実施の形態】
本発明による第1の実施の形態は、第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、高温の第一流体と高温の第二流体とが熱交換する第三熱交換部とを備え、前記第三熱交換部は、第一円管の内部を第一流体流路とし、前記第一円管の外周に螺旋状に巻いた第二円管の内部を第二流体流路としたものである。本実施の形態によれば、第一流路が閉塞することを遅らせることで、メンテナンス上のコストを低減しつつ、熱交換器の小型化を図ることができる。
【0013】
本発明による第2の実施の形態は、第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、高温の第一流体と高温の第二流体とが熱交換する第四熱交換部とを備え、前記第四熱交換部では、前記第一熱交換部より巻き径を大きくしたものである。本実施の形態によれば、第一流路が閉塞するのを遅らせることで、メンテナンス上のコストを低減しつつ、熱交換器の小型化を図ることができる。
【0014】
【実施例】
まず、本発明の冷凍サイクル装置について説明する。
【0015】
図1は、本発明の冷凍サイクル装置である給湯装置を示す概略構成図である。
【0016】
図1に示すように、本実施例による給湯装置は、圧縮機31、給湯用熱交換器としての利用側熱交換器32の第二流体流路32b、減圧器33、および外気を熱源とする熱源側熱交換器34からなる第二流体回路Aと、給水ポンプ35、利用側熱交換器32の第一流体流路32a、および給湯タンク36からなる第一流体回路Bとを備えている。また、第二流体回路Aにおいて、利用側熱交換器32の第二流体流路32bの入口、出口にはそれぞれ、第一バルブ37、第二バルブ38が備えられている。
【0017】
まず、上述のように構成された給湯装置の通常運転時の動作について説明する。通常の運転時においては、第一バルブ37、第二バルブ38は全開とする。第二流体回路Aは、第二流体である冷媒としての炭酸ガス(二酸化炭素)を、圧縮機31で臨界圧力を越える圧力まで圧縮する。その圧縮された冷媒は、高温高圧状態となり、利用側熱交換器32の第二流体流路32bを通過する際に、第一流体流路32aを流れる第一流体(例えば、水)に放熱し冷却される。すなわち、給湯タンク36の底部から給水ポンプ35により利用側熱交換器32の第一流体流路32aへ送り込まれた水は、第二流体流路32bを流れる冷媒により加熱される。冷媒は、その後、減圧器33により減圧されて、低温低圧の気液二相状態となる。そして、熱源側熱交換器34では、冷媒は空気によって冷却されて、気液二相またはガス状態となり、気液二相またはガス状態となった冷媒は、再び圧縮機31に吸入される。このようなサイクルを繰り返すことにより、利用側熱交換器32の第一流体流路32aを流れる第一流体である水はお湯となり、そのお湯を給湯タンク36の頂部から貯めることで給湯器として利用できる。
【0018】
次に、上述のように構成された給湯装置の利用側熱交換器32にメンテナンスが必要となった場合について説明する。利用側熱交換器32の第一流体流路32aを流れる第一流体(例えば、水)は、約60℃以上の高温に加熱されるため、第一流体流路32aは、炭酸カルシウムの析出によるスケールが付着し、経年的に流路が閉塞する恐れがある。しかし、本実施例による給湯装置では、利用側熱交換器32の第一流体流路32aが閉塞した場合には、利用側熱交換器32の第二流体流路32bの入口、出口に備えられた第一バルブ37、第二バルブ38を閉じ、第二流体回路Aから、利用側熱交換器32を分離することで、第二流体回路A内の第二流体である炭酸ガス(二酸化炭素)の放出を最小限にとどめ、利用側熱交換器32の交換ができる。
【0019】
したがって、上記のように構成された給湯装置においては、次のような効果が得られる。利用側熱交換器32の第一流体流路32aが閉塞し、利用側熱交換器32の交換が必要となった場合において、圧力が高いために、現地での放出、再充填が困難な炭酸ガスを第二流体に用いていても、給湯装置を工場に持ち帰えらず、現地で炭酸ガスをほぼ放出することなく、利用側熱交換器32を交換するといったメンテナンスが可能であり、メンテナンス上のコストが低減できる。
【0020】
なお、利用側熱交換器32の第一流体流路32aの入口、出口にも、第二流体流路32bの入口、出口と同様にバルブを設けて、第一流体回路Bから容易に分離できるようにしても良いが、第一流体は、例えば水など、現地で、比較的容易に放出、再充填可能な流体であるため、給湯装置の製造コスト低減の点から、第一流体流路32aの入口、出口にバルブを設ける必要性は比較的低い。
【0021】
次に、別の実施例による冷凍サイクル装置について、図2を用いて説明する。図2は、本発明の冷凍サイクル装置である給湯装置を示す概略構成図である。図2において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。
【0022】
図2の給湯装置では、第二流体回路Aにおいて、利用側熱交換器32の第二流体流路32bの入口に備えられた第一バルブ37と圧縮機31の間に第二流体貯蔵タンク39が備えられている。
【0023】
上述のように構成された給湯装置の通常運転時の動作については、図1の給湯装置の場合と同様であるので説明を省略し、利用側熱交換器32にメンテナンスが必要となった場合について説明する。利用側熱交換器32の第一流体流路32aが閉塞した場合には、まず、利用側熱交換器32の第二流体流路32bの入口に備えられた第一バルブ37を閉じ、圧縮機31を運転することで、第二流体回路A内の第二流体である炭酸ガス(二酸化炭素)を第二流体貯蔵タンク39に圧縮、貯蔵する。利用側熱交換器32の第二流体流路32b内の炭酸ガスがほぼ無くなったと判断した時点で、第二バルブ38を閉じ、第二流体回路Aから、利用側熱交換器32を分離する。以上の操作により、第二流体回路A内の第二流体である炭酸ガス(二酸化炭素)をほぼ放出することなく、利用側熱交換器32を交換ができる。
【0024】
したがって、上記のように構成された給湯装置においては、次のような効果が得られる。利用側熱交換器32の第一流体流路32aが閉塞し、利用側熱交換器32の交換が必要となった場合において、圧力が高いために、現地での放出、再充填が困難な炭酸ガスを第二流体に用いていても、給湯装置を工場に持ち帰えらず、現地で炭酸ガスをほぼ放出することなく、利用側熱交換器32を交換するといったメンテナンスが可能であり、メンテナンス上のコストが低減できる。
【0025】
なお、第二流体貯蔵タンク39の入口、出口にも、別のバルブを設け、かつ、第二流体貯蔵タンク39をバイパスする回路を設けることで、通常運転時には第二流体貯蔵タンク39をバイパスするように構成してもよい。
【0026】
また、図1、図2に示した給湯装置とも、第二バルブ38を省略し、減圧器33を全閉にすることで第二バルブ38の機能を代用させてもよい。さらに、第一バルブ37、第二バルブ38の少なくとも一方を三方バルブしてもよい。この場合には、第一バルブ37、第二バルブ38を閉じ、第二流体回路Aから分離された利用側熱交換器32の第二流体流路32b内に残った若干の炭酸ガスを放出することができ、より容易に利用側熱交換器32を交換ができる。
【0027】
次に、別の実施例による冷凍サイクル装置について、図3を用いて説明する。図3は、本発明の冷凍サイクル装置である給湯装置を示す概略構成図である。図3において、図1と同様の構成要素は図1と同じ番号を与え、説明を省略する。
【0028】
図3の給湯装置では、第二流体回路Aにおいて、利用側熱交換器32の第二流体流路32bの出口に備えられた第二バルブ38の代わりに利用側熱交換器32の第二流体流路32bの中間に第三バルブ40が備えられている。
【0029】
図3の給湯装置の利用側熱交換器32として用いられる熱交換器の実施例を図4の概略構成図を用いて説明する。図4において、41は漏洩検知管を用いた二重管を螺旋状に巻いた第一熱交換部であり、42は漏洩検知管を用いた二重管を螺旋状に巻いた第二熱交換部である。43a、44aはそれぞれ、第一熱交換部41の第一流体(例えば、水)の流路の入口部、出口部である。45a、46aはそれぞれ、第二熱交換部42の第一流体(例えば、水)の流路の入口部、出口部である。また、43b、44bはそれぞれ、第二熱交換部42の第二流体(例えば、炭酸ガス)の流路の入口部、出口部であり、45b、46bはそれぞれ、第一熱交換部41の第二流体(例えば、炭酸ガス)の流路の入口部、出口部である。第三バルブ40は、第二熱交換部42の第二流体流路出口部44bと、第一熱交換部41の第二流体流路入口部45bとの間に設けられている。また、第一バルブ37は、第二熱交換部42の第二流体流路入口部43bの第二流体流れ方向上流側に設けられている。なお、図中の白抜き矢印は第一流体の流れ方向を、実線矢印は第二流体の流れ方向を示しており、第一熱交換部41では比較的低温の第一流体と比較的低温の第二流体が対向流で熱交換し、第二熱交換部42では比較的高温の第一流体と比較的高温の第二流体が対向流で熱交換するように構成されている。なお、第一熱交換部41の伝熱面積は、第二熱交換部42の伝熱面積の略3倍となるように構成するのが望ましい。
【0030】
上述のように構成された給湯装置の通常運転時の動作については、図1の給湯装置の場合と同様であるので説明を省略し、図4に示した熱交換器である利用側熱交換器32にメンテナンスが必要となった場合について説明する。利用側熱交換器32の第一流体流路32aを流れる第一流体(例えば、水)は、第二熱交換部42で、約60℃以上の高温に加熱されるため、第二熱交換部42の第一流体流路で、炭酸カルシウムの析出によるスケールが付着し、経年的に流路が閉塞する可能性が高い。したがって、本実施例による給湯装置および熱交換器では、利用側熱交換器32の第一流体の流路が閉塞した場合には、第二熱交換部42の入口、出口に備えられた第一バルブ37、第三バルブ38を閉じ、第二流体回路Aから、第二熱交換部42を分離することで、第二流体回路A内の第二流体である炭酸ガス(二酸化炭素)の放出を最小限にとどめ、第二熱交換部42を交換ができる。
【0031】
したがって、上記のように構成された給湯装置においては、次のような効果が得られる。利用側熱交換器32の第一流体流路32aが閉塞し、利用側熱交換器32の交換が必要となった場合において、利用側熱交換器32の第二熱交換部42のみを交換することが可能であり、メンテナンス上のコストが低減できる。また、圧力が高いために、現地での放出、再充填が困難な炭酸ガスを第二流体に用いていても、給湯装置を工場に持ち帰えらず、炭酸ガスの放出を第二熱交換部42内のみの炭酸ガス量にとどめることができ、メンテナンス上のコストが低減できる。
【0032】
次に、別の実施例による利用側熱交換器として用いられる熱交換器について、図5の概略構成図を用いて説明する。図5において、図4と同様の構成要素は図4と同じ番号を与え、説明を省略する。図5において、47は円管47a、および、円管47aの外周に螺旋状に巻かれた円管47bからなり、円管47aの内部を第一流体(例えば、水)の流路とする一方、円管47bの内部を第二流体(例えば、炭酸ガス)の流路とした第三熱交換部である。なお、第一熱交換部41の伝熱面積は、第三熱交換部47の伝熱面積の略2〜3倍となるように構成するのが望ましい。
【0033】
上述のように構成された熱交換器を利用側熱交換器とした給湯装置の通常運転時の動作については、従来の給湯装置の場合と同様であるので説明を省略する。上述のように構成された熱交換器を流れる第一流体(例えば、水)は、約60℃以上の高温に加熱されるため、第三熱交換部42の第一流体流路47aでは、炭酸カルシウムの析出によるスケールが付着し、経年的に流路が閉塞する恐れがある。しかし、本実施例による熱交換器において、第三熱交換部42では、第一流体の温度としては、スケールが付着しやすい約60℃以上の高温となるが、構成としては第一流体流路47aの外周に第二流体流路47bを螺旋状に巻いており、第一流体流路47aの断面は円形で、スケールが比較的付着しにくい形状となるように構成されている。一方、第一熱交換部41では、第一流体の温度としては、スケールが付着しにくい低温であるが、構成としては第一流体流路内に第二流体流路である漏洩検知管を挿入しているため、第一流体流路47aの断面は環状で、スケールが比較的付着しやすいが、熱交換しやすい形状となるように構成されている。
【0034】
したがって、上記のように構成された熱交換器においては、次のような効果が得られる。従来の熱交換器では、利用側熱交換器の第一流体流路の高温部が閉塞しやすいが、本実施例による熱交換器では、閉塞しやすい高温部の第一流体流路を円形とすることで、構成的に閉塞しにくくし、第一流路が閉塞するのを遅らせることが可能であり、メンテナンス上のコストが低減できる。かつ、閉塞しにくい低温部では、第一流体流路を環状とすることで熱交換しやすい形状とし、熱交換器の小型化を両立している。
【0035】
次に、別の実施例による利用側熱交換器として用いられる熱交換器について、図6の概略構成図を用いて説明する。図6において、図4と同様の構成要素は図4と同じ番号を与え、説明を省略する。図6において、48は漏洩検知管を用いた二重管を螺旋状に巻いた第四熱交換部であるが、第四熱交換部48の巻き径は、第一熱交換部41の巻き径に比較して大きくなるように構成されている。また、第一熱交換部41の伝熱面積は、第四熱交換部48の伝熱面積の略3倍となるように構成するのが望ましい。
【0036】
上述のように構成された熱交換器を利用側熱交換器として利用した給湯装置の通常運転時の動作については、従来の給湯装置の場合と同様であるので説明を省略する。上述のように構成された熱交換器を流れる第一流体(例えば、水)は、約60℃以上の高温に加熱されるため、第四熱交換部48の第一流体流路では、炭酸カルシウムの析出によるスケールが付着し、経年的に流路が閉塞する恐れがある。しかし、本実施例による熱交換器においては、第四熱交換部48では、第一流体の温度としては、スケールが付着しやすい約60℃以上の高温となるが、構成としては螺旋状に巻いた巻き径が比較的大きいために、第一流体流路の第一流体の流速分布は小さく、スケールが比較的付着しにくい形状となるように構成されている。一方、第一熱交換部41では、第一流体の温度としては、スケールが付着しにくい低温であるが、構成としては螺旋状に巻いた巻き径が比較的小さいために、スケールが比較的付着しやすいが、小型化を実現する形状となるように構成されている。
【0037】
したがって、上記のように構成された熱交換器においては、次のような効果が得られる。従来の熱交換器では、利用側熱交換器の第一流体流路の高温部が閉塞しやすいが、本実施例による熱交換器では、閉塞しやすい高温部の第一流体流路の巻き径を大きくすることで、構成的に閉塞しにくくし、第一流路が閉塞するのを遅らせることが可能であり、メンテナンス上のコストが低減できる。また、閉塞しにくい低温部では、巻き径を小さくすることで、熱交換器の小型化を両立している。
【0038】
【発明の効果】
本発明によれば、スケールが付着しやすい約60℃以上の高温となる第三熱交換部では、第一流体流路の外周に第二流体流路を螺旋状に巻いた構成とする一方、スケールが付着しにくい低温である第一熱交換部では、第一流体流路内に第二流体流路である漏洩検知管を挿入し、スケールが比較的付着しやすいが、熱交換しやすい形状となるように構成することで、第一流路が閉塞するのを遅らせ、メンテナンス上のコストが低減しつつ、熱交換器の小型化を図ることができる。
【0039】
また、本発明によれば、スケールが付着しやすい約60℃以上の高温となる第四熱交換部では、二重管の巻き径を大きくし、スケールが付着しにくい低温である第一熱交換部では、二重管の巻き径を小さくすることで、第一流路が閉塞するのを遅らせ、メンテナンス上のコストが低減しつつ、熱交換器の小型化を図ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例による冷凍サイクル装置を示す構成図
【図2】 他の実施例による冷凍サイクル装置を示す構成図
【図3】 他の実施例による冷凍サイクル装置を示す構成図
【図4】 同実施例による利用側熱交換器を示す構成図
【図5】 他の実施例による利用側熱交換器を示す構成図
【図6】 他の実施例による利用側熱交換器を示す構成図
【図7】 従来の冷凍サイクル装置を示す構成図
【図8】 従来の冷凍サイクル装置における利用側熱交換器の断面構成図
【図9】 他の従来の冷凍サイクル装置における利用側熱交換器の構成図
【図10】 水温とランゲリア飽和指数の関係図
【符号の説明】
1、31 圧縮機
2、32 利用側熱交換器(給湯用熱交換器)
3、33 減圧器
4、34 熱源側熱交換器(室外熱交換器)
5、35 給水ポンプ
6、36 給湯タンク
11 外管
12 漏洩検知溝
13 漏洩検知管
21 第一円管
22 第二円管
32a 第一流体流路
32b 第二流体流路
37 第一バルブ
38 第二バルブ
39 第二流体貯蔵タンク
40 第三バルブ
41 第一熱交換部
42 第二熱交換部
47 第三熱交換部
48 第四熱交換部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus and a heat exchanger used in the refrigeration cycle apparatus, and more particularly to a hot water supply apparatus and a heat exchanger used as a hot water supply heat exchanger in the hot water supply apparatus.
[0002]
[Prior art]
For example, as shown in FIG. 7, a second fluid circuit A including a compressor 1, a use side heat exchanger 2 as a heat exchanger for hot water supply, a decompressor 3, and a heat source side heat exchanger 4 using outside air as a heat source; , A water supply pump 5, a use side heat exchanger 2, and a first fluid circuit B including a hot water supply tank 6, and water is supplied by a second fluid (for example, refrigerant) discharged from the compressor 1 in the use side heat exchanger 2. A refrigeration cycle apparatus (for example, a hot water supply apparatus) in which a first fluid (for example, water) from the pump 5 is heated and stored in a hot water supply tank 6 is known.
[0003]
As the use side heat exchanger 2 in the refrigeration cycle apparatus having the above-described configuration, for example, as shown in FIG. 8, the use side heat exchanger 2 includes an outer tube 11 and a tube 13 provided with a leakage detection groove 12 (hereinafter referred to as a leakage detection tube 13). The space 15 between the outer tube 11 and the leak detection tube 13 serves as a flow path for the first fluid (for example, water), while the interior 14 of the leak detection tube 13 serves as the flow path for the second fluid (for example, refrigerant). A double-tube heat exchanger was used. In the leak detection groove 12, corrosion or the like occurs, the interior 14 of the leak detection tube 13 communicates with the space 15 between the outer tube 11 and the leak detection tube 13, and the first flows through the interior 14 of the leak detection tube 13. In order to prevent foreign matter from entering the fluid (for example, water), corrosion or the like proceeds to the leakage detection groove 12, and the first fluid (for example, water) or the second fluid (for example, water) It is provided for the purpose (leakage detection function) of detecting the refrigerant when it has oozed out (see, for example, Patent Document 1).
[0004]
Alternatively, as shown in FIG. 9, the utilization-side heat exchanger 2 having another configuration includes a first circular tube 21 and a second circular tube 22 spirally wound around the outer periphery of the first circular tube 21. A heat exchanger in which the inside of the first circular pipe 21 is a flow path for a first fluid (for example, water) while the inside of the second circular pipe 22 is a flow path for a second fluid (for example, a refrigerant) is used. (For example, see Patent Document 2)
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 58-120087 (page 3, FIG. 2)
[0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 2001-280862 (page 6-7, FIG. 5)
[0007]
[Problems to be solved by the invention]
By the way, for example, by using carbon dioxide (carbon dioxide) as a refrigerant that is the second fluid, a refrigeration cycle apparatus (for example, water) is heated to a high temperature of about 60 ° C. or higher by the use-side heat exchanger 2 ( For example, it has become clear that the following problems occur in a hot water supply device).
[0008]
FIG. 10 is an example showing the relationship between the temperature of water (tap water) and the Langeria saturation index. The Langeria saturation index is an index that is used to judge the risk that calcium carbonate contained in tap water will precipitate and the scale will adhere to the flow path of the heat exchanger. The higher the risk, the higher the risk of scale failure. FIG. 10 shows that the Langeria saturation index is close to 0 at a high temperature of about 60 ° C. or higher. That is, in the use-side heat exchanger 2 of the refrigeration cycle apparatus that heats the first fluid (for example, water) to a high temperature of about 60 ° C. or higher, the flow path of the first fluid is blocked over time due to scale adhesion. However, there has been a problem that the power of the feed water pump 5 may increase or the first fluid (for example, water) may not flow .
[0009]
Then, an object of this invention is to comprise the heat exchanger which solved the said subject.
[0010]
[Means for Solving the Problems]
The heat exchanger of the present invention according to claim 1 uses water as a first fluid, a first fluid circuit in which a water supply pump and a use side heat exchanger are connected, and carbon dioxide gas as a second fluid, a compressor, The utilization side heat exchanger of the refrigeration cycle apparatus comprising the utilization side heat exchanger, a decompressor, and a second fluid circuit connected to the heat source side heat exchanger, wherein the second fluid is in the first fluid flow path. was formed by inserting the leak detection tube is a passage double tube wound spirally, a first heat exchanger where the first fluid and the low temperature of the second stream of low temperature heat exchange, the Atsushi Ko and a third heat exchange unit and the second flow of the first fluid and the high temperature heat exchanger, the third heat exchanging unit, the interior of the first circle tube as the first fluid flow path, said first circle The heat exchanger is characterized in that the inside of a second circular tube spirally wound around the outer periphery of the tube is a second fluid flow path.
[0011]
The heat exchanger of the present invention according to claim 2 uses water as a first fluid, a first fluid circuit connected to a water supply pump and a use side heat exchanger, and carbon dioxide as a second fluid, a compressor, The utilization side heat exchanger of the refrigeration cycle apparatus comprising the utilization side heat exchanger, a decompressor, and a second fluid circuit connected to the heat source side heat exchanger, wherein the second fluid is in the first fluid flow path. was formed by inserting the leak detection tube is a passage double tube wound spirally, a first heat exchange unit and the first fluid of the cold and cold second flow body is heat exchange, the first fluid fourth heat was formed by inserting the leak detection tube is a second fluid flow path within the flow path double tube wound helically, and a second stream of the first fluid and the high temperature of the high temperature heat exchanger an interchangeable unit, and in the fourth heat exchanger is a heat exchanger, characterized in that a larger winding diameter than the first heat exchanger.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment of the present invention , water is used as the first fluid, the first fluid circuit is connected to the feed water pump and the use side heat exchanger, and the carbon dioxide gas is used as the second fluid. The utilization side heat exchanger of the refrigeration cycle apparatus comprising a side heat exchanger, a decompressor, and a second fluid circuit connected to the heat source side heat exchanger, wherein the second fluid flow path is in the first fluid flow path. was formed by inserting the leak detection tube double pipe spirally wound at a first heat exchanger for a first fluid cold and cold second flow body is heat exchange, the Atsushi Ko first and a third heat exchanger in which the fluid and the high temperature of the second flow body to the heat exchanger, the third heat exchanging unit, the interior of the first circle tube as the first fluid flow path, said first circle tube The inside of the 2nd circular tube wound spirally on the outer periphery is made into the 2nd fluid flow path. According to the present embodiment, it is possible to reduce the size of the heat exchanger while reducing maintenance costs by delaying the closing of the first flow path.
[0013]
In the second embodiment of the present invention , water is used as the first fluid, the first fluid circuit is connected to the water supply pump and the use side heat exchanger, and the carbon dioxide gas is used as the second fluid. The utilization side heat exchanger of the refrigeration cycle apparatus comprising a side heat exchanger, a decompressor, and a second fluid circuit connected to the heat source side heat exchanger, wherein the second fluid flow path is in the first fluid flow path. was formed by inserting the leak detection tube double pipe spirally wound at a first heat exchanger for a first fluid cold and cold second flow body is heat exchange, the first fluid flow path a second fluid flow path in which the leakage detection tube is formed by inserting the double pipe spirally wound within the fourth heat exchanging unit and a second flow of the first fluid and the high temperature of the hot heat exchanger with the door, in the fourth heat exchanger, in which a larger winding diameter than the first heat exchanger. According to the present embodiment, it is possible to reduce the size of the heat exchanger while reducing the maintenance cost by delaying the closing of the first flow path.
[0014]
【Example】
First, the refrigeration cycle apparatus of the present invention will be described.
[0015]
FIG. 1 is a schematic configuration diagram showing a hot water supply apparatus which is a refrigeration cycle apparatus of the present invention.
[0016]
As shown in FIG. 1, the hot water supply apparatus according to the present embodiment uses a compressor 31, a second fluid flow path 32b of a use side heat exchanger 32 as a hot water supply heat exchanger, a decompressor 33, and outside air as heat sources. A second fluid circuit A including a heat source side heat exchanger 34, a water supply pump 35, a first fluid flow path 32 a of the use side heat exchanger 32, and a first fluid circuit B including a hot water supply tank 36 are provided. In the second fluid circuit A, a first valve 37 and a second valve 38 are provided at the inlet and the outlet of the second fluid flow path 32b of the use side heat exchanger 32, respectively.
[0017]
First, the operation during normal operation of the hot water supply apparatus configured as described above will be described. During normal operation, the first valve 37 and the second valve 38 are fully opened. The second fluid circuit A compresses carbon dioxide (carbon dioxide) as a refrigerant, which is the second fluid, to a pressure exceeding the critical pressure by the compressor 31. The compressed refrigerant enters a high-temperature and high-pressure state and dissipates heat to the first fluid (for example, water) flowing through the first fluid channel 32a when passing through the second fluid channel 32b of the use side heat exchanger 32. To be cooled. That is, the water sent from the bottom of the hot water supply tank 36 to the first fluid flow path 32a of the use side heat exchanger 32 by the water supply pump 35 is heated by the refrigerant flowing through the second fluid flow path 32b. Thereafter, the refrigerant is decompressed by the decompressor 33 and enters a low-temperature and low-pressure gas-liquid two-phase state. In the heat source side heat exchanger 34, the refrigerant is cooled by air to be in a gas-liquid two-phase or gas state, and the refrigerant in the gas-liquid two-phase or gas state is again sucked into the compressor 31. By repeating such a cycle, the water which is the first fluid flowing through the first fluid flow path 32a of the use side heat exchanger 32 becomes hot water, and the hot water is stored from the top of the hot water supply tank 36 and used as a hot water heater. it can.
[0018]
Next, the case where maintenance is required for the use side heat exchanger 32 of the hot water supply apparatus configured as described above will be described. Since the first fluid (for example, water) flowing through the first fluid flow path 32a of the use side heat exchanger 32 is heated to a high temperature of about 60 ° C. or higher, the first fluid flow path 32a is formed by precipitation of calcium carbonate. There is a risk that the scale adheres and the channel is blocked over time. However, in the hot water supply apparatus according to the present embodiment, when the first fluid flow path 32a of the use side heat exchanger 32 is blocked, it is provided at the inlet and outlet of the second fluid flow path 32b of the use side heat exchanger 32. The first valve 37 and the second valve 38 are closed, and the use side heat exchanger 32 is separated from the second fluid circuit A, so that carbon dioxide (carbon dioxide) which is the second fluid in the second fluid circuit A is obtained. The use-side heat exchanger 32 can be replaced with a minimum amount of release.
[0019]
Therefore, in the hot water supply apparatus configured as described above, the following effects can be obtained. When the first fluid flow path 32a of the use side heat exchanger 32 is blocked and the use side heat exchanger 32 needs to be replaced, the carbon dioxide, which is difficult to discharge and refill on site due to high pressure, is used. Even if gas is used for the second fluid, it is possible to perform maintenance such as replacing the use side heat exchanger 32 without bringing back the hot water supply device to the factory, almost without releasing carbon dioxide locally. Cost can be reduced.
[0020]
The inlet and outlet of the first fluid channel 32a of the use-side heat exchanger 32 can be easily separated from the first fluid circuit B by providing valves in the same manner as the inlet and outlet of the second fluid channel 32b. However, since the first fluid is a fluid that can be discharged and refilled relatively easily at the site, such as water, the first fluid flow path 32a can be used from the viewpoint of reducing the manufacturing cost of the water heater. The need to provide valves at the inlet and outlet is relatively low.
[0021]
Next, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 2 is a schematic configuration diagram showing a hot water supply apparatus which is a refrigeration cycle apparatus of the present invention. 2, the same components as those in FIG. 1 are given the same numbers as in FIG.
[0022]
In the hot water supply apparatus of FIG. 2, in the second fluid circuit A, the second fluid storage tank 39 is provided between the first valve 37 and the compressor 31 provided at the inlet of the second fluid flow path 32 b of the use side heat exchanger 32. Is provided.
[0023]
About the operation | movement at the time of normal operation of the hot water supply apparatus comprised as mentioned above, since it is the same as that of the case of the hot water supply apparatus of FIG. 1, description is abbreviate | omitted and about the case where a maintenance is needed for the use side heat exchanger 32. explain. When the first fluid flow path 32a of the use side heat exchanger 32 is closed, first, the first valve 37 provided at the inlet of the second fluid flow path 32b of the use side heat exchanger 32 is closed, and the compressor By operating 31, carbon dioxide gas (carbon dioxide), which is the second fluid in the second fluid circuit A, is compressed and stored in the second fluid storage tank 39. When it is determined that the carbon dioxide gas in the second fluid flow path 32b of the use side heat exchanger 32 has almost disappeared, the second valve 38 is closed, and the use side heat exchanger 32 is separated from the second fluid circuit A. By the above operation, the use-side heat exchanger 32 can be replaced without substantially releasing carbon dioxide (carbon dioxide) that is the second fluid in the second fluid circuit A.
[0024]
Therefore, in the hot water supply apparatus configured as described above, the following effects can be obtained. When the first fluid flow path 32a of the use side heat exchanger 32 is blocked and the use side heat exchanger 32 needs to be replaced, the carbon dioxide, which is difficult to discharge and refill on site due to high pressure, is used. Even if gas is used for the second fluid, it is possible to perform maintenance such as replacing the use side heat exchanger 32 without bringing back the hot water supply device to the factory, almost without releasing carbon dioxide locally. Cost can be reduced.
[0025]
In addition, by providing another valve at the inlet and outlet of the second fluid storage tank 39 and providing a circuit that bypasses the second fluid storage tank 39, the second fluid storage tank 39 is bypassed during normal operation. You may comprise as follows.
[0026]
In the hot water supply apparatus shown in FIGS. 1 and 2, the function of the second valve 38 may be substituted by omitting the second valve 38 and fully closing the decompressor 33. Furthermore, at least one of the first valve 37 and the second valve 38 may be a three-way valve. In this case, the first valve 37 and the second valve 38 are closed, and some carbon dioxide remaining in the second fluid flow path 32b of the use side heat exchanger 32 separated from the second fluid circuit A is released. Therefore, the use side heat exchanger 32 can be replaced more easily.
[0027]
Next, a refrigeration cycle apparatus according to another embodiment will be described with reference to FIG. FIG. 3 is a schematic configuration diagram showing a hot water supply apparatus which is a refrigeration cycle apparatus of the present invention. 3, the same components as those in FIG. 1 are given the same numbers as in FIG. 1, and descriptions thereof are omitted.
[0028]
3, in the second fluid circuit A, the second fluid of the usage side heat exchanger 32 is used instead of the second valve 38 provided at the outlet of the second fluid flow path 32b of the usage side heat exchanger 32. A third valve 40 is provided in the middle of the flow path 32b.
[0029]
An embodiment of a heat exchanger used as the use side heat exchanger 32 of the hot water supply apparatus of FIG. 3 will be described with reference to the schematic configuration diagram of FIG. In FIG. 4, 41 is a first heat exchange section in which a double pipe using a leak detection pipe is spirally wound, and 42 is a second heat exchange section in which a double pipe using a leak detection pipe is spirally wound. Part. 43a and 44a are an inlet part and an outlet part of the flow path of the first fluid (for example, water) of the first heat exchange part 41, respectively. 45a and 46a are an inlet part and an outlet part of the flow path of the first fluid (for example, water) of the second heat exchange part 42, respectively. Further, 43b and 44b are an inlet portion and an outlet portion of a flow path of the second fluid (for example, carbon dioxide gas) of the second heat exchanging portion 42, respectively, and 45b and 46b are respectively the first heat exchanging portion 41 of the first heat exchanging portion 41. They are the inlet part and outlet part of the flow path of two fluids (for example, carbon dioxide gas). The third valve 40 is provided between the second fluid flow path outlet 44 b of the second heat exchange part 42 and the second fluid flow path inlet 45 b of the first heat exchange part 41. The first valve 37 is provided on the upstream side in the second fluid flow direction of the second fluid flow path inlet 43 b of the second heat exchange unit 42. In addition, the white arrow in the figure indicates the flow direction of the first fluid, and the solid line arrow indicates the flow direction of the second fluid. The second fluid exchanges heat in the counterflow, and the second heat exchange unit 42 is configured to exchange heat in the counterflow between the relatively high temperature first fluid and the relatively high temperature second fluid. Note that the heat transfer area of the first heat exchange unit 41 is preferably configured to be approximately three times the heat transfer area of the second heat exchange unit 42.
[0030]
The operation during normal operation of the hot water supply apparatus configured as described above is the same as that in the case of the hot water supply apparatus of FIG. 1, and thus the description thereof is omitted, and the use side heat exchanger that is the heat exchanger shown in FIG. A case where maintenance is required is described in FIG. Since the first fluid (for example, water) flowing through the first fluid flow path 32a of the use side heat exchanger 32 is heated to a high temperature of about 60 ° C. or more in the second heat exchange unit 42, the second heat exchange unit There is a high possibility that the scale is deposited due to the deposition of calcium carbonate in the first fluid flow path 42 and the flow path is blocked over time. Therefore, in the hot water supply apparatus and heat exchanger according to the present embodiment, when the flow path of the first fluid of the use side heat exchanger 32 is blocked, the first provided in the inlet and outlet of the second heat exchange unit 42. By closing the valve 37 and the third valve 38 and separating the second heat exchange part 42 from the second fluid circuit A, the carbon dioxide gas (carbon dioxide), which is the second fluid in the second fluid circuit A, is released. The second heat exchanging portion 42 can be replaced with a minimum.
[0031]
Therefore, in the hot water supply apparatus configured as described above, the following effects can be obtained. When the first fluid flow path 32a of the use side heat exchanger 32 is blocked and the use side heat exchanger 32 needs to be replaced, only the second heat exchange part 42 of the use side heat exchanger 32 is replaced. The maintenance cost can be reduced. Further, even if carbon dioxide gas, which is difficult to release and refill on-site due to high pressure, is used as the second fluid, the hot water supply device cannot be brought back to the factory, and the second heat exchange section 42 releases carbon dioxide gas. The amount of carbon dioxide gas can be limited to the inside, and maintenance costs can be reduced.
[0032]
Next, a heat exchanger used as a use side heat exchanger according to another embodiment will be described with reference to a schematic configuration diagram of FIG. In FIG. 5, the same components as those in FIG. 4 are given the same numbers as in FIG. In FIG. 5, 47 is composed of a circular tube 47a and a circular tube 47b spirally wound around the outer periphery of the circular tube 47a, and the inside of the circular tube 47a serves as a flow path for a first fluid (for example, water). A third heat exchanging portion in which the inside of the circular pipe 47b is used as a flow path for a second fluid (for example, carbon dioxide gas). The heat transfer area of the first heat exchange unit 41 is preferably configured to be approximately 2 to 3 times the heat transfer area of the third heat exchange unit 47.
[0033]
Since the operation during normal operation of the hot water supply apparatus using the heat exchanger configured as described above as the use side heat exchanger is the same as that of the conventional hot water supply apparatus, the description thereof is omitted. Since the first fluid (for example, water) flowing through the heat exchanger configured as described above is heated to a high temperature of about 60 ° C. or higher, the first fluid flow path 47a of the third heat exchange unit 42 is carbonated. There is a risk that scales due to the deposition of calcium adhere and the channel is blocked over time. However, in the heat exchanger according to the present embodiment, the temperature of the first fluid in the third heat exchanging section 42 is a high temperature of about 60 ° C. or more at which the scale easily adheres. A second fluid channel 47b is spirally wound around the outer periphery of 47a, and the first fluid channel 47a has a circular cross section and is configured to have a shape that is relatively difficult to adhere to the scale. On the other hand, in the first heat exchanging part 41, the temperature of the first fluid is a low temperature at which the scale is difficult to adhere, but as a configuration, a leak detection tube as a second fluid channel is inserted into the first fluid channel. Therefore, the cross section of the first fluid flow path 47a is annular, and the scale is relatively easy to adhere, but is configured to have a shape that facilitates heat exchange.
[0034]
Therefore, the following effects are obtained in the heat exchanger configured as described above. In the conventional heat exchanger, the high temperature part of the first fluid flow path of the use side heat exchanger is likely to be blocked, but in the heat exchanger according to the present embodiment, the high temperature part first fluid flow path that is likely to be blocked is circular. By doing so, it is difficult to block structurally, it is possible to delay the blocking of the first flow path, and the maintenance cost can be reduced. And in the low-temperature part which is hard to block | close, it is set as the shape which is easy to heat-exchange by making the 1st fluid flow path cyclic | annular, and it has achieved size reduction of the heat exchanger.
[0035]
Next, a heat exchanger used as a use side heat exchanger according to another embodiment will be described with reference to a schematic configuration diagram of FIG. In FIG. 6, the same components as in FIG. 4 are given the same numbers as in FIG. In FIG. 6, reference numeral 48 denotes a fourth heat exchange section in which a double pipe using a leak detection pipe is spirally wound. The winding diameter of the fourth heat exchange section 48 is the winding diameter of the first heat exchange section 41. It is comprised so that it may become large compared with. In addition, the heat transfer area of the first heat exchange unit 41 is preferably configured to be approximately three times the heat transfer area of the fourth heat exchange unit 48.
[0036]
The operation during normal operation of the hot water supply apparatus using the heat exchanger configured as described above as the use-side heat exchanger is the same as that of the conventional hot water supply apparatus, and thus the description thereof is omitted. Since the first fluid (for example, water) flowing through the heat exchanger configured as described above is heated to a high temperature of about 60 ° C. or higher, calcium carbonate is used in the first fluid flow path of the fourth heat exchange unit 48. There is a risk that the scale will be deposited due to the deposition of clogged and the channel will be blocked over time. However, in the heat exchanger according to the present embodiment, the temperature of the first fluid in the fourth heat exchanging section 48 is a high temperature of about 60 ° C. or more at which the scale easily adheres, but the structure is spirally wound. Since the wound diameter is relatively large, the flow velocity distribution of the first fluid in the first fluid channel is small, and the scale is configured to be relatively difficult to adhere. On the other hand, in the first heat exchanging part 41, the temperature of the first fluid is a low temperature at which the scale is difficult to adhere, but the scale is relatively attached because the winding diameter of the spiral wound is relatively small. Although it is easy to do, it is comprised so that it may become a shape which implement | achieves size reduction.
[0037]
Therefore, the following effects are obtained in the heat exchanger configured as described above. In the conventional heat exchanger, the high temperature portion of the first fluid flow path of the use side heat exchanger is likely to be blocked, but in the heat exchanger according to the present embodiment, the winding diameter of the first fluid flow path of the high temperature portion that is likely to be blocked. By enlarging, it is possible to make it difficult to block structurally, delay the blocking of the first flow path, and reduce maintenance costs. Moreover, in the low temperature part which is hard to block | close, the size reduction of a heat exchanger is compatible by making a winding diameter small.
[0038]
【The invention's effect】
According to the present invention , in the third heat exchange section that is at a high temperature of about 60 ° C. or more where the scale easily adheres, while the second fluid flow path is spirally wound around the outer periphery of the first fluid flow path, In the first heat exchange section, where the scale does not adhere easily, at a low temperature, a leak detection tube, which is the second fluid flow path, is inserted into the first fluid flow path, but the scale is relatively easy to adhere, but the shape is easy to exchange heat. Thus, the heat exchanger can be downsized while delaying the blockage of the first flow path and reducing the maintenance cost.
[0039]
In addition, according to the present invention, in the fourth heat exchange section where the scale is liable to adhere to a high temperature of about 60 ° C. or higher, the double pipe has a large winding diameter, and the first heat exchange is a low temperature at which the scale is difficult to adhere. In the section, by reducing the winding diameter of the double pipe, it is possible to delay the closing of the first flow path, and to reduce the size of the heat exchanger while reducing the maintenance cost.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a refrigeration cycle apparatus according to an embodiment of the present invention. FIG. 2 is a block diagram showing a refrigeration cycle apparatus according to another embodiment. FIG. 3 is a block diagram showing a refrigeration cycle apparatus according to another embodiment. FIG. 4 is a block diagram showing a user side heat exchanger according to the same embodiment. FIG. 5 is a block diagram showing a user side heat exchanger according to another embodiment. FIG. 6 is a block diagram showing a user side heat exchanger according to another embodiment. FIG. 7 is a configuration diagram showing a conventional refrigeration cycle apparatus. FIG. 8 is a cross-sectional configuration diagram of a usage side heat exchanger in a conventional refrigeration cycle apparatus. FIG. 9 is a usage side heat in another conventional refrigeration cycle apparatus. Diagram of exchanger [Fig. 10] Relationship between water temperature and Langeria saturation index [Explanation of symbols]
1,31 Compressor 2,32 Use side heat exchanger (heat exchanger for hot water supply)
3, 33 Pressure reducer 4, 34 Heat source side heat exchanger (outdoor heat exchanger)
5, 35 Water supply pump 6, 36 Hot water supply tank 11 Outer pipe 12 Leakage detection groove 13 Leakage detection pipe 21 First circular pipe 22 Second circular pipe 32a First fluid flow path 32b Second fluid flow path 37 First valve 38 Second Valve 39 Second fluid storage tank 40 Third valve 41 First heat exchange part 42 Second heat exchange part 47 Third heat exchange part 48 Fourth heat exchange part

Claims (2)

第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、高温の第一流体と高温の第二流体とが熱交換する第三熱交換部とを備え、前記第三熱交換部は、第一円管の内部を第一流体流路とし、前記第一円管の外周に螺旋状に巻いた第二円管の内部を第二流体流路としたことを特徴とする熱交換器。 Water is used as the first fluid, the first fluid circuit is connected to the feed water pump and the use side heat exchanger, and carbon dioxide is used as the second fluid. The compressor, the use side heat exchanger, the decompressor, the heat source side heat The utilization side heat exchanger of the refrigeration cycle apparatus comprising a second fluid circuit connected with an exchanger, wherein a leakage detection tube which is a second fluid channel is inserted into the first fluid channel. the double tube wound spirally, a first heat exchange unit and the first fluid of the cold and cold second flow body is heat exchange, and a second flow of the first fluid and the high temperature Atsushi Ko heat A third heat exchange part to be exchanged , and the third heat exchange part has a first fluid flow path inside the first circular pipe, and a second circular pipe wound spirally around the outer circumference of the first circular pipe A heat exchanger characterized in that the inside is a second fluid flow path. 第一流体として水を用い、給水ポンプ、利用側熱交換器を接続した第一流体回路と、第二流体として炭酸ガスを用い、圧縮機、前記利用側熱交換器、減圧器、熱源側熱交換器を接続した第二流体回路とを備えた冷凍サイクル装置の前記利用側熱交換器であって、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、低温の第一流体と低温の第二流体とが熱交換する第一熱交換部と、第一流体流路内に第二流体流路である漏洩検知管を挿入して形成し二重管を螺旋状に巻いた、高温の第一流体と高温の第二流体とが熱交換する第四熱交換部とを備え、前記第四熱交換部では、前記第一熱交換部より巻き径を大きくしたことを特徴とする熱交換器。 Water is used as the first fluid, the first fluid circuit is connected to the feed water pump and the use side heat exchanger, and carbon dioxide is used as the second fluid. The compressor, the use side heat exchanger, the decompressor, the heat source side heat The utilization side heat exchanger of the refrigeration cycle apparatus comprising a second fluid circuit connected with an exchanger, wherein a leakage detection tube which is a second fluid channel is inserted into the first fluid channel. the double tube wound spirally, a first heat exchange unit and the first fluid of the cold and cold second flow body is heat exchange, leak detection in the first fluid flow path is a second fluid flow path the formed double pipe by inserting a tube wound helically, and a fourth heat exchanger in which a second flow of the first fluid and the high temperature of the hot heat exchange, with said fourth heat exchange section A heat exchanger having a winding diameter larger than that of the first heat exchange part.
JP2003031210A 2003-02-07 2003-02-07 Heat exchanger Expired - Fee Related JP4082229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031210A JP4082229B2 (en) 2003-02-07 2003-02-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031210A JP4082229B2 (en) 2003-02-07 2003-02-07 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004239550A JP2004239550A (en) 2004-08-26
JP4082229B2 true JP4082229B2 (en) 2008-04-30

Family

ID=32957874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031210A Expired - Fee Related JP4082229B2 (en) 2003-02-07 2003-02-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4082229B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727481B (en) * 2017-09-25 2020-09-22 清华大学 Long-distance cold quantity transmission device based on small-sized low-temperature refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170837A (en) * 1995-12-20 1997-06-30 Toshiba Corp Hot water feeder serving also as cooler heater
JP2000104940A (en) * 1998-09-28 2000-04-11 Kyushu Electric Power Co Inc Heat pump type hot water supply system
JP4301708B2 (en) * 2000-08-07 2009-07-22 三洋電機株式会社 Operation method of heat pump type hot water supply apparatus and heat pump type hot water supply apparatus
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2003021428A (en) * 2001-07-10 2003-01-24 Harman Kikaku:Kk Heat pump type water heater

Also Published As

Publication number Publication date
JP2004239550A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US8020405B2 (en) Air conditioning apparatus
CN101907366B (en) Refrigerating apparatus
CN103201566B (en) Air conditioner
JP2008232548A (en) Heat exchanger
JP2008008523A (en) Refrigerating cycle and water heater
WO2015056334A1 (en) Refrigeration cycle device
WO2016009516A1 (en) Refrigerating and air conditioning device
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP5969270B2 (en) Heat pump equipment
JP2015508150A (en) Beverage cooling device and beverage supply system using this cooling device
JP4082229B2 (en) Heat exchanger
JP5999273B2 (en) Refrigeration cycle equipment
JP2985882B1 (en) Double tube heat exchanger
JP3919699B2 (en) Heat exchange device and heat pump water heater
JP2011052854A (en) Heat pump type hot water supply device
JP2008057860A (en) Heat exchanger
KR100583404B1 (en) water-cleaner using induction heat
KR101039290B1 (en) A heatexchanger for a pattern of double pipe
WO2023223373A1 (en) Heat pump device
CN109477690B (en) Heat exchanger and refrigeration cycle device with same
JP3920540B2 (en) Air conditioner
JP2007285545A (en) Refrigerating cycle device
KR101749964B1 (en) a quick cooling device using freezing cycle
JP4045351B2 (en) Water heater
JP2001147057A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees