JP4082202B2 - Reverse osmosis membrane feed water evaluation method and water treatment device operation management method - Google Patents

Reverse osmosis membrane feed water evaluation method and water treatment device operation management method Download PDF

Info

Publication number
JP4082202B2
JP4082202B2 JP2002362543A JP2002362543A JP4082202B2 JP 4082202 B2 JP4082202 B2 JP 4082202B2 JP 2002362543 A JP2002362543 A JP 2002362543A JP 2002362543 A JP2002362543 A JP 2002362543A JP 4082202 B2 JP4082202 B2 JP 4082202B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
membrane
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002362543A
Other languages
Japanese (ja)
Other versions
JP2004188387A (en
Inventor
伸説 新井
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002362543A priority Critical patent/JP4082202B2/en
Publication of JP2004188387A publication Critical patent/JP2004188387A/en
Application granted granted Critical
Publication of JP4082202B2 publication Critical patent/JP4082202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、逆浸透膜供給水の評価方法及び逆浸透膜装置を含む水処理装置の運転管理方法に関する。詳しくは、本発明は、逆浸透膜の透過流束の低下を招くことなく、長期間にわたって逆浸透膜装置を安定して運転するための逆浸透膜供給水の評価方法と、この評価結果に基づいて水処理装置の運転を適正に管理する方法に関する。
【0002】
【従来の技術】
逆浸透膜は溶質の阻止率が高いため、逆浸透膜処理により清澄な透過水を得ることができるという優れた利点を有する。しかし、その一方で、処理の継続に伴い膜の透過流束が低下し、操作圧力が上昇するため、この場合には、膜性能を回復させるために、運転を停止して逆浸透膜を洗浄する処理が必要となる。
【0003】
従来においては、逆浸透膜を用いて水処理を行う場合、このような膜洗浄頻度を低減して、処理効率を高めるために、逆浸透膜装置への供給水を、JIS K3802に定義されているファウリングインデックス(FI)、又はASTM D4189に定義されているシルトデンシティインデックス(SDI)や、より簡便な評価方法として谷口により提案されたMF値(Desalination,vol.20,p.353−364,1977)で評価し、この値が規定値以下となるように必要に応じて前処理を実施し、逆浸透膜供給水をある程度清澄にすることにより、逆浸透膜装置における透過流束の低下や操作圧力の上昇などの障害を避け、安定運転を継続する方法が実施されている。
【0004】
FI値、SDI値、MF値はいずれも逆浸透膜供給水を0.45μmの精密濾過膜(通常、日本ミリポア株式会社の「ミリポアフィルター」を用いることが多い。)で濾過したときの所定の濾過時間を測定し、この測定値に基いて算出されるものである。従来、これらの評価に用いられているミリポアフィルターは、セルロース系(ニトロセルロースとセルロースアセテートとの混合エステル)メンブレンフィルターである。
【0005】
【非特許文献1】
Desalination,vol.20,p.353−364,
1977
【0006】
【発明が解決しようとする課題】
しかしながら、FI値又はSDI値やMF値が規定値以下の逆浸透膜供給水であっても、逆浸透膜において透過流束の低下や操作圧力の上昇が早期に発生する場合があった。
【0007】
即ち、従来のFI値、SDI値又はMF値の評価は、原水中のSSを捕捉することにより、これを濾過時間に反映することができるため、SSに基く逆浸透膜供給水としての良否の判定には有効であるが、原水中の溶解性の汚れ成分を濾過時間に反映しない。このため、溶存物質の化学的相互作用に基く逆浸透膜供給水としての良否を的確には判定できない。
【0008】
このため、逆浸透膜における透過流束の低下、操作圧力の上昇を防ぎ、長期間にわたって安定に運転を継続し、水質の良好な透過水を得ることのできる逆浸透膜供給水の評価方法、及び運転管理方法が求められていた。
【0009】
本発明は、逆浸透膜の透過流束の低下、操作圧力の上昇を招くことなく、長期間にわたって逆浸透膜装置を安定して運転するための、逆浸透膜供給水の評価方法と、逆浸透膜装置を含む水処理装置の運転管理方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の逆浸透膜供給水の評価方法は、逆浸透膜装置に供給される水の逆浸透膜供給水としての良否を評価する方法において、ポリアミド系メンブレンフィルターを用いて逆浸透膜供給水の濾過を継続し、所定量毎の濾過時間を測定し、濾過開始時の濾過時間に対する濾過時間の増加割合を調べ、濾過水量の増加と共に、この所定量毎の濾過時間が増加する水を逆浸透膜供給水としては好ましくないと評価することを特徴とする。
【0011】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、逆浸透膜の透過流束が低下する原因は、原水(逆浸透膜供給水)に含まれる懸濁固形物(SS)による物理的閉塞作用だけでなく、原水に含まれる溶存物質による化学的相互作用(吸着、イオン結合など)も影響を及ぼすことを知見した。特に、近年、酢酸セルロース系逆浸透膜に代って、主流となってきたポリアミド系逆浸透膜は、脱塩率が高い上に有機物質の除去性にも優れ、界面活性剤等の有機系溶存物質を化学的相互作用により捕捉することもあるため、これらの溶存物質による影響によっても透過流束が低下する。
【0012】
本発明は、ポリアミド系メンブレンフィルターの特徴を利用して、原水中の溶存物質の化学的相互作用による影響を評価するものである。
【0013】
本発明の逆浸透膜供給水の評価方法によれば、逆浸透膜供給水をポリアミド系メンブレンフィルターに通水することにより、逆浸透膜供給水中のSSによる物理的閉塞作用と溶存物質による化学的相互作用の影響とを十分に評価して逆浸透膜供給水としての良否を的確に判定することができる。
【0014】
本発明の水処理装置の運転管理方法は、このような本発明の逆浸透膜供給水の評価方法により逆浸透膜供給水の良否を評価し、その結果に基いて、前処理装置の運転条件を変更する、新たな前処理を追加する、又は逆浸透膜装置の洗浄頻度を変更するものであり、的確な評価結果に基いて逆浸透膜装置における透過流束の低下や操作圧力の上昇などの障害を引き起こすことなく、長期にわたり安定な運転を継続することができる。
【0015】
【発明の実施の形態】
以下に本発明の逆浸透膜供給水の評価方法及び水処理装置の運転管理方法の実施の形態を詳細に説明する。
【0016】
本発明で用いるポリアミド系メンブレンフィルターの材質や細孔径には特に制限はなく、例えばポリアミド、6ナイロン、66ナイロンなどよりなり、0.45μm、0.2μmなどの公称孔径を有するメンブレンフィルターを用いることができる。これらの中でも、ポリアミド系逆浸透膜に近い材質であること、また従来法との比較という観点より、公称孔径0.45μmのポリアミド系メンブレンフィルターが好適である。
【0017】
本発明の評価方法においては、評価に用いるポリアミド系メンブレンフィルターの細孔径よりも小さな細孔径を有する膜を用いて逆浸透膜供給水を前濾過し、逆浸透膜供給水中のSSを十分に除去した後、ポリアミド系メンブレンフィルターに通水しても良く、このようにすることにより、逆浸透膜供給水に含まれる溶存物質の化学的相互作用の影響をより一層確実に評価することができる。
【0018】
この場合、前濾過用の膜の種類や材質に特に制限はなく、例えば種類としては精密濾過膜、限外濾過膜など、材質としてはセルロースアセテート(CA)、ポリスルホン(PS)、ポリアクリルニトリル(PAN)などを挙げることができる。
【0020】
本発明においては、後述の実施例のようにポリアミド系メンブレンフィルターを用いて逆浸透膜供給水の濾過を継続し、所定量毎の濾過時間を測定し、濾過開始時の濾過時間に対する濾過時間の増加割合を調べる。
【0021】
本発明の逆浸透膜供給水の評価方法においては、逆浸透膜供給水をポリアミド系メンブレンフィルターに通水して求めた濾過抵抗(濾過時間)に、従来のMF値と同様に換算係数を乗じ、水温による換算を行うようにしても良い。また、このようにして、逆浸透膜供給水をポリアミド系メンブレンフィルターに通水した際の濾過抵抗を求めると共に、従来法のFI値、SDI値、MF値を求め、これらの結果を併用して評価を行うようにしても良い。
【0022】
このような本発明の逆浸透膜供給水の評価方法が適用される逆浸透膜の材質に特に制限はなく、例えば、ポリアミド系逆浸透膜、セルロースエステル系逆浸透膜、ポリスルホン系逆浸透膜、ポリイミド系逆浸透膜などを挙げることができる。逆浸透膜の形態にも特に制限はなく。相転換膜、複合膜のいずれにも用いることができる。これらの中で、膜支持体となる限外濾過膜にポリスルホンを用い、緻密層に架橋ポリアミド、線状ポリアミド、ポリピペラジンアミドなどを用いたポリアミド系逆浸透膜を好適に用いることができる。
【0023】
本発明の逆浸透膜供給水の評価方法が適用される逆浸透膜装置の膜モジュールの種類にも特に制限はなく、例えばスパイラルモジュール、中空糸モジュール、平面膜モジュール、管型モジュールなども挙げることができる。
【0024】
本発明の水処理装置の運転管理方法においては、このような本発明の逆浸透膜供給水の評価方法により、逆浸透膜供給水をポリアミド系メンブレンフィルターに通水して逆浸透膜供給水の良否を評価し、その結果に基いて逆浸透膜装置を含む水処理装置の運転を管理する。この運転管理方法に特に制限はなく、例えば、前処理装置の運転条件を変更する、新たな前処理を追加する、逆浸透膜装置の洗浄頻度を変更するなどが挙げられる。
【0025】
【実施例】
以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。
【0026】
[評価例1]
実施例1
機械工場の排水処理設備出口水を用いて、試験を実施した。まず、この排水処理設備出口水を、細孔径0.2μmのカートリッジフィルタ(アドバンテック東洋(株)製「TCR020」)で精密濾過した。濾過水3Lを、直径47mm、細孔径0.45μmのポリアミド系メンブレンフィルター(SartoriusCo.製「SARTOLON POLYAMID」)を用い、500mmHgで減圧濾過し、濾過に要する時間を500mL毎に、6回に分けて計測した。
【0027】
0〜0.5L,0.5〜1L,1〜1.5L,1.5〜2L,2〜2.5L,2.5〜3Lの濾過に要した時間を、それぞれT1,T2,T3,T4,T5,T6とし、T1に対するT1〜T6の比をそれぞれMFF1(=T1/T1),MFF2(=T2/T1),MFF3(=T3/T1),MFF4(=T4/T1),MFF5(=T5/T1),MFF6(=T6/T1)として評価した。
【0028】
MFF1〜6の値は表1に示す通りであった。
【0029】
比較例1
実施例1と同じ機械工場の排水処理設備出口水を、実施例1と同様に精密濾過し、濾過水3Lを、直径47mm、細孔径0.45μmのセルロース系メンブレンフィルター(Millipore Co.製「ミリポアフィルタHAWP」)を用いて濾過したこと以外は実施例1と同様にしてMFF1〜6の値を求めた。
【0030】
MFF1〜6の値は表1に示す通りであった。
【0031】
【表1】

Figure 0004082202
【0032】
表1に見られるように、ポリアミド系メンブレンフィルターを用いた場合(実施例1)には、MFFの値は濾過水量の増加と共に増加したが、従来法であるMF法やFI法で用いられるセルロース系メンブレンフィルターを用いた場合(比較例1)には、MFF値は、3Lの濾過水量の範囲で、濾過水量が増加してもほぼ一定であった。
【0033】
実施例1及び比較例1と同じ機械工場の排水処理設備出口水を、実施例1及び比較例1と同様に精密濾過した後、ポリアミド系逆浸透膜(日東電工(株)製「NTR759HR」)に25℃、圧力1.5MPaで通水した。このときの透過流束は図1に示す通りであり、通水開始直後0.74m/d、24時間後0.51m/d、60時間後0.46m/dであった。
【0034】
表1及び図1の結果から、次のことが明らかである。
【0035】
即ち、図1に示す如く、試験に用いた排水処理設備出口水の精密濾過水は、透過流束の経時上昇を引き起こすものであり、逆浸透膜供給水としては好ましくない。しかし、比較例1の従来法ではMFF値は濾過水量が増加してもほぼ一定であり、この評価方法であれば、この排水処理設備出口水は逆浸透膜供給水としては良好であると評価される。これに対して、ポリアミド系メンブレンフィルターを用いた実施例1の評価方法では、MFF値が濾過水量の増加と共に増加するため、この排水処理設備出口水は逆浸透膜供給水として好適ではなく、逆浸透膜装置における透過流束の経時低下が予想される。
【0036】
[評価例2]
実施例2
実施例1と同じ機械工場の排水処理設備出口水を、粒状活性炭(栗田工業(株)製「WG160 20/42」)を充填したカラムに通水して吸着処理し、その吸着処理水を細孔径0.2μmのカートリッジフィルタ(アドバンテック東洋(株)製「TCR020」)で精密濾過した。濾過水3Lを、直径47mm、細孔径0.45μmのポリアミド系メンブレンフィルター(Sartorius Co.製「SARTOLON POLYAMID」)を用いて濾過することにより、実施例1と同様にしてMFF1〜6の値を求めた。
【0037】
MFF1〜6の値は表2に示す通りであった。
【0038】
比較例2
実施例1と同じ機械工場の排水処理設備出口水を、実施例2と同様に吸着処理及び精密濾過し、濾過水3Lを、直径47mm、細孔径0.45μmのセルロース系メンブレンフィルター(Millipore Co.製「ミリポアフィルタHAWP」)を用いて濾過したこと以外は実施例1と同様にしてMFF1〜6の値を求めた。
【0039】
MFF1〜6の値は表2に示す通りであった。
【0040】
【表2】
Figure 0004082202
【0041】
表2に見られるように、ポリアミド系メンブレンフィルターを用いた場合(実施例2)も、従来法であるMF法やFI法で用いられるセルロース系メンブレンフィルターを用いた場合(比較例2)も、MFFの値はいずれも3Lの濾過水量の範囲で、濾過水量が増加してもほぼ一定であった。ただし、ポリアミド系メンブレンフィルターを用いた実施例2では、MFF値のわずかな増加が認められる。
【0042】
実施例2及び比較例2と同じ機械工場の排水処理設備出口水を実施例2及び比較例2と同様に吸着処理及び精密濾過した後、ポリアミド系逆浸透膜(日東電工(株)製「NTR759HR」)に25℃、圧力1.5MPaで通水した。このときの透過流束は図1に示す通りであり、通水開始直後1.07m/d、24時間後0.94m/d、60時間後0.92m/dであった。
【0043】
表2及び図1の結果から、次のことが明らかである。
【0044】
即ち、図1に示す如く、試験に用いた排水処理設備出口水の活性炭吸着及び精密濾過水は、透過流束の経時上昇の小さいものであり、逆浸透膜供給水としては比較的好ましいものである。これに対して、実施例2でも比較例2でもMFF値は濾過水量が増加してもほぼ一定であり、いずれも逆浸透膜供給水として好適であるとの評価結果となる。ただし、実施例2においては、濾過水量の増加と共にMFF値がわずかに増加しており、この結果から、図1における透過水量の若干の経時低下を予測することができる。
【0045】
【発明の効果】
以上詳述した通り、本発明の逆浸透膜供給水の評価方法によれば、逆浸透膜供給水をポリアミド系メンブレンフィルターを用いて評価することにより、逆浸透膜供給水としての良否を的確に評価することができる。そして、このようなポリアミド系メンブレンフィルターを用いた評価結果に基いて運転管理を行う本発明の水処理装置の運転管理方法によれば、逆浸透膜装置において高透過流束を維持することができ、長期にわたり安定した運転を継続することができる。
【図面の簡単な説明】
【図1】実施例1,2及び比較例1,2における逆浸透膜装置の透過流束の経時変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reverse osmosis membrane feed water evaluation method and a water treatment device operation management method including a reverse osmosis membrane device. Specifically, the present invention relates to an evaluation method of reverse osmosis membrane feed water for stably operating a reverse osmosis membrane device over a long period of time without causing a decrease in the permeation flux of the reverse osmosis membrane, and to this evaluation result. The present invention relates to a method for appropriately managing the operation of a water treatment apparatus based on the above.
[0002]
[Prior art]
Since the reverse osmosis membrane has a high solute rejection rate, it has an excellent advantage that a clear permeate can be obtained by the reverse osmosis membrane treatment. However, on the other hand, the permeation flux of the membrane decreases with the continuation of the process and the operating pressure increases. In this case, the operation is stopped and the reverse osmosis membrane is washed to restore the membrane performance. It is necessary to perform processing.
[0003]
Conventionally, when water treatment is performed using a reverse osmosis membrane, the supply water to the reverse osmosis membrane device is defined in JIS K3802 in order to reduce the frequency of membrane washing and increase the treatment efficiency. Fouling index (FI), silt density index (SDI) defined in ASTM D4189, or MF value proposed by Taniguchi as a simpler evaluation method (Desalination, vol. 20, p.353-364) 1977), pretreatment is carried out as necessary so that this value is not more than the specified value, and the osmosis flux in the reverse osmosis membrane device is reduced by clarifying the reverse osmosis membrane feed water to some extent. A method has been implemented in which stable operation is avoided while avoiding obstacles such as an increase in operating pressure.
[0004]
The FI value, SDI value, and MF value are all determined when the reverse osmosis membrane feed water is filtered through a 0.45 μm microfiltration membrane (usually, a “Millipore filter” manufactured by Nihon Millipore Corporation is often used). The filtration time is measured and calculated based on this measured value. Conventionally, the Millipore filter used for these evaluations is a cellulosic (mixed ester of nitrocellulose and cellulose acetate) membrane filter.
[0005]
[Non-Patent Document 1]
Desalination, vol. 20, p. 353-364
1977
[0006]
[Problems to be solved by the invention]
However, even if the reverse osmosis membrane supply water has an FI value, an SDI value, or an MF value equal to or less than a specified value, a decrease in permeation flux or an increase in operating pressure may occur at an early stage in the reverse osmosis membrane.
[0007]
That is, since the conventional evaluation of FI value, SDI value or MF value can be reflected in the filtration time by capturing SS in raw water, the quality of reverse osmosis membrane supply water based on SS Although effective for determination, it does not reflect soluble soil components in raw water in the filtration time. For this reason, the quality as reverse osmosis membrane supply water based on the chemical interaction of dissolved substances cannot be accurately determined.
[0008]
For this reason, a decrease in the permeation flux in the reverse osmosis membrane, an increase in operating pressure, a stable operation over a long period of time, and a reverse osmosis membrane feed water evaluation method that can obtain a permeated water with good water quality, In addition, an operation management method has been demanded.
[0009]
The present invention relates to a method for evaluating reverse osmosis membrane feed water for stable operation of a reverse osmosis membrane device over a long period of time without causing a decrease in the permeation flux of the reverse osmosis membrane and an increase in operating pressure. It aims at providing the operation management method of the water treatment equipment containing an osmosis membrane device.
[0010]
[Means for Solving the Problems]
Evaluation method of reverse osmosis membrane supply water of the present invention is a method of evaluating the quality of the reverse osmosis membrane supply water of the water supplied to the reverse osmosis unit, a reverse osmosis membrane supply water using the polyamides based membrane filter The filtration time for each predetermined amount is measured, the increase rate of the filtration time with respect to the filtration time at the start of filtration is examined, and the water whose filtration time increases for each predetermined amount is reversed as the amount of filtered water increases. It is characterized by evaluating that it is not preferable as osmosis membrane supply water .
[0011]
As a result of intensive studies to solve the above-mentioned problems, the present inventor is responsible for the decrease in the permeation flux of the reverse osmosis membrane due to the suspended solids (SS) contained in the raw water (reverse osmosis membrane feed water). It was found that not only physical clogging but also chemical interaction (adsorption, ionic bonding, etc.) caused by dissolved substances contained in raw water. In particular, in recent years, polyamide-based reverse osmosis membranes, which have become the mainstream in place of cellulose acetate-based reverse osmosis membranes, have a high desalting rate and excellent organic substance removability. Since dissolved substances may be trapped by chemical interaction, the permeation flux decreases due to the influence of these dissolved substances.
[0012]
This invention evaluates the influence by the chemical interaction of the dissolved substance in raw | natural water using the characteristic of a polyamide-type membrane filter.
[0013]
According to the reverse osmosis membrane feed water evaluation method of the present invention, by passing the reverse osmosis membrane feed water through the polyamide membrane filter, the physical blockage action by the SS in the reverse osmosis membrane feed water and the chemical by the dissolved substance The quality of the reverse osmosis membrane supply water can be accurately determined by sufficiently evaluating the influence of the interaction.
[0014]
The operation management method of the water treatment apparatus of the present invention evaluates the quality of the reverse osmosis membrane supply water by the reverse osmosis membrane supply water evaluation method of the present invention, and based on the result, the operating conditions of the pretreatment apparatus , Change the cleaning frequency of the reverse osmosis membrane device, decrease the permeation flux in the reverse osmosis membrane device, increase the operating pressure, etc. It is possible to continue stable operation for a long time without causing any trouble.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an evaluation method for reverse osmosis membrane feed water and an operation management method for a water treatment apparatus according to the present invention will be described in detail below.
[0016]
The material and pore diameter of the polyamide membrane filter used in the present invention are not particularly limited. For example, a membrane filter made of polyamide, 6 nylon, 66 nylon or the like and having a nominal pore diameter of 0.45 μm, 0.2 μm or the like is used. Can do. Among these, a polyamide membrane filter having a nominal pore diameter of 0.45 μm is preferable from the viewpoint of being a material close to a polyamide-based reverse osmosis membrane and comparing with a conventional method.
[0017]
In the evaluation method of the present invention, the reverse osmosis membrane feed water is prefiltered using a membrane having a pore size smaller than the pore size of the polyamide membrane filter used for the evaluation, and SS in the reverse osmosis membrane feed water is sufficiently removed. After that, water may be passed through the polyamide membrane filter. By doing so, the influence of chemical interaction of dissolved substances contained in the reverse osmosis membrane feed water can be more reliably evaluated.
[0018]
In this case, there are no particular limitations on the type and material of the prefiltration membrane. For example, the type is a microfiltration membrane, an ultrafiltration membrane, etc., and the materials are cellulose acetate (CA), polysulfone (PS), polyacrylonitrile ( PAN).
[0020]
In the present invention, the filtration of the reverse osmosis membrane feed water is continued using a polyamide membrane filter as in the examples described later, the filtration time for each predetermined amount is measured, and the filtration time relative to the filtration time at the start of filtration is Ru examine the rate of increase.
[0021]
In the reverse osmosis membrane feed water evaluation method of the present invention, the filtration resistance (filtration time) obtained by passing the reverse osmosis membrane feed water through a polyamide membrane filter is multiplied by a conversion factor as in the conventional MF value. The conversion by the water temperature may be performed. In addition, in this way, the filtration resistance when the reverse osmosis membrane feed water is passed through the polyamide membrane filter is obtained, and the FI value, SDI value, and MF value of the conventional method are obtained, and these results are used in combination. An evaluation may be performed.
[0022]
There is no particular limitation on the material of the reverse osmosis membrane to which the evaluation method of the reverse osmosis membrane supply water of the present invention is applied, for example, polyamide-based reverse osmosis membrane, cellulose ester-based reverse osmosis membrane, polysulfone-based reverse osmosis membrane, Examples thereof include a polyimide-based reverse osmosis membrane. There is no particular limitation on the form of the reverse osmosis membrane. It can be used for both phase change membranes and composite membranes. Among these, a polyamide-based reverse osmosis membrane using polysulfone as an ultrafiltration membrane serving as a membrane support and using a crosslinked polyamide, linear polyamide, polypiperazine amide or the like as a dense layer can be suitably used.
[0023]
The type of membrane module of the reverse osmosis membrane device to which the method for evaluating the reverse osmosis membrane supply water of the present invention is applied is not particularly limited, and examples include a spiral module, a hollow fiber module, a planar membrane module, and a tubular module. Can do.
[0024]
In the operation management method of the water treatment apparatus of the present invention, the reverse osmosis membrane feed water is passed through the polyamide membrane filter by the reverse osmosis membrane feed water evaluation method of the present invention. The quality is evaluated and the operation of the water treatment apparatus including the reverse osmosis membrane apparatus is managed based on the result. The operation management method is not particularly limited, and examples thereof include changing the operating conditions of the pretreatment device, adding a new pretreatment, and changing the cleaning frequency of the reverse osmosis membrane device.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0026]
[Evaluation Example 1]
Example 1
The test was carried out using the water discharged from the waste water treatment facility of the machine factory. First, the water discharged from the wastewater treatment facility was microfiltered with a cartridge filter having a pore diameter of 0.2 μm (“TCR020” manufactured by Advantech Toyo Co., Ltd.). 3 L of filtered water was filtered under reduced pressure at 500 mmHg using a polyamide membrane filter (Sartorius Co. “SARTOLON POLYAMID”) having a diameter of 47 mm and a pore diameter of 0.45 μm, and the time required for filtration was divided into 6 times every 500 mL. Measured.
[0027]
The time required for the filtration of 0 to 0.5 L, 0.5 to 1 L, 1 to 1.5 L, 1.5 to 2 L, 2 to 2.5 L, and 2.5 to 3 L is expressed as T1, T2, T3, respectively. T4, T5, and T6, and the ratios of T1 to T6 with respect to T1 are MFF1 (= T1 / T1), MFF2 (= T2 / T1), MFF3 (= T3 / T1), MFF4 (= T4 / T1), and MFF5 ( = T5 / T1) and MFF6 (= T6 / T1).
[0028]
The values of MFF1 to 6 were as shown in Table 1.
[0029]
Comparative Example 1
The outlet water of the wastewater treatment facility in the same machine factory as in Example 1 was subjected to microfiltration in the same manner as in Example 1, and 3 L of filtered water was obtained from a cellulose membrane filter (Millipore Co. “Millipore Co., Ltd.” having a diameter of 47 mm and a pore diameter of 0.45 μm). The values of MFF 1 to 6 were obtained in the same manner as in Example 1 except that the filtration was performed using the filter HAWP ”).
[0030]
The values of MFF1 to 6 were as shown in Table 1.
[0031]
[Table 1]
Figure 0004082202
[0032]
As can be seen from Table 1, when a polyamide membrane filter was used (Example 1), the MFF value increased with the increase in the amount of filtered water, but cellulose used in the conventional MF method and FI method. When the system membrane filter was used (Comparative Example 1), the MFF value was in the range of 3 L of filtered water volume, and was almost constant even when the filtered water volume increased.
[0033]
After draining the waste water treatment facility outlet water of the same machine factory as in Example 1 and Comparative Example 1 in the same manner as in Example 1 and Comparative Example 1, polyamide-based reverse osmosis membrane (“NTR759HR” manufactured by Nitto Denko Corporation) The water was passed through at 25 ° C. and a pressure of 1.5 MPa. The permeation flux at this time was as shown in FIG. 1 and was 0.74 m / d immediately after the start of water flow, 0.51 m / d after 24 hours, and 0.46 m / d after 60 hours.
[0034]
From the results shown in Table 1 and FIG.
[0035]
That is, as shown in FIG. 1, the precision filtered water of the wastewater treatment facility outlet water used in the test causes an increase in permeation flux over time, and is not preferable as reverse osmosis membrane supply water. However, in the conventional method of Comparative Example 1, the MFF value is substantially constant even when the amount of filtered water increases, and with this evaluation method, it is evaluated that the wastewater treatment facility outlet water is good as reverse osmosis membrane supply water. Is done. On the other hand, in the evaluation method of Example 1 using a polyamide-based membrane filter, the MFF value increases with an increase in the amount of filtered water, so this wastewater treatment facility outlet water is not suitable as reverse osmosis membrane supply water. It is expected that the permeation flux in the osmotic membrane device will decrease with time.
[0036]
[Evaluation Example 2]
Example 2
Waste water treatment facility outlet water of the same machine factory as in Example 1 is subjected to adsorption treatment by passing it through a column packed with granular activated carbon (“WG160 20/42” manufactured by Kurita Kogyo Co., Ltd.). Microfiltration was performed with a cartridge filter having a pore diameter of 0.2 μm (“TCR020” manufactured by Advantech Toyo Co., Ltd.). By filtering 3 L of filtered water using a polyamide membrane filter (SARTOLON POLYAMID made by Sartorius Co.) having a diameter of 47 mm and a pore diameter of 0.45 μm, the values of MFF 1 to 6 were obtained in the same manner as in Example 1. It was.
[0037]
The values of MFF1 to 6 were as shown in Table 2.
[0038]
Comparative Example 2
The waste water treatment facility outlet water of the same machine factory as in Example 1 was subjected to adsorption treatment and microfiltration in the same manner as in Example 2, and 3 L of filtered water was a cellulose membrane filter (Millipore Co., Ltd.) having a diameter of 47 mm and a pore diameter of 0.45 μm. The value of MFF1-6 was calculated | required like Example 1 except having filtered using "Millipore filter HAWP" made from a product.
[0039]
The values of MFF1 to 6 were as shown in Table 2.
[0040]
[Table 2]
Figure 0004082202
[0041]
As can be seen in Table 2, both when using a polyamide membrane filter (Example 2) and when using a cellulose membrane filter used in the conventional MF method and FI method (Comparative Example 2), The values of MFF were all in the range of 3 L of filtered water, and were almost constant even when the amount of filtered water increased. However, in Example 2 using a polyamide membrane filter, a slight increase in the MFF value is observed.
[0042]
The wastewater treatment facility outlet water of the same machine factory as in Example 2 and Comparative Example 2 was subjected to adsorption treatment and microfiltration in the same manner as in Example 2 and Comparative Example 2, and then a polyamide-based reverse osmosis membrane (“NTR759HR manufactured by Nitto Denko Corporation”). )) At 25 ° C. and a pressure of 1.5 MPa. The permeation flux at this time was as shown in FIG. 1 and was 1.07 m / d immediately after the start of water flow, 0.94 m / d after 24 hours, and 0.92 m / d after 60 hours.
[0043]
From the results of Table 2 and FIG. 1, the following is clear.
[0044]
That is, as shown in FIG. 1, the activated carbon adsorption and microfiltration water of the wastewater treatment facility outlet water used in the test has a small increase in permeation flux over time, and is relatively preferable as reverse osmosis membrane supply water. is there. On the other hand, in both Example 2 and Comparative Example 2, the MFF value is substantially constant even when the amount of filtered water increases, and both are evaluation results that are suitable as reverse osmosis membrane supply water. However, in Example 2, the MFF value slightly increased with the increase in the amount of filtered water, and from this result, a slight decrease in the amount of permeated water in FIG. 1 with time can be predicted.
[0045]
【The invention's effect】
As described above in detail, according to the evaluation method of reverse osmosis membrane supply water of the present invention, the quality of reverse osmosis membrane supply water is accurately determined by evaluating reverse osmosis membrane supply water using a polyamide membrane filter. Can be evaluated. And according to the operation management method of the water treatment apparatus of the present invention that performs operation management based on the evaluation result using such a polyamide-based membrane filter, a high permeation flux can be maintained in the reverse osmosis membrane apparatus. , Stable operation can be continued for a long time.
[Brief description of the drawings]
FIG. 1 is a graph showing changes with time in permeation fluxes of reverse osmosis membrane devices in Examples 1 and 2 and Comparative Examples 1 and 2. FIG.

Claims (3)

逆浸透膜装置に供給される水の逆浸透膜供給水としての良否を評価する方法において、ポリアミド系メンブレンフィルターを用いて逆浸透膜供給水の濾過を継続し、所定量毎の濾過時間を測定し、濾過開始時の濾過時間に対する濾過時間の増加割合を調べ、濾過水量の増加と共に、この所定量毎の濾過時間が増加する水を逆浸透膜供給水としては好ましくないと評価することを特徴とする逆浸透膜供給水の評価方法。A method of evaluating the quality of the reverse osmosis membrane supply water of the water supplied to the reverse osmosis unit to continue the filtration of reverse osmosis membrane supply water using the polyamides based membrane filter, the filtration time for each predetermined amount Measure and examine the rate of increase in filtration time relative to the filtration time at the start of filtration, and evaluate that water with increased filtration time for each predetermined amount is not preferable as reverse osmosis membrane feed water as the amount of filtered water increases. A method of evaluating reverse osmosis membrane feed water as a feature. 請求項1において、該逆浸透膜供給水を、該ポリアミド系メンブレンフィルターの細孔径よりも小さな細孔径を有する膜を用いて前濾過した後、該ポリアミド系メンブレンフィルターに通水することを特徴とする逆浸透膜供給水の評価方法。  2. The reverse osmosis membrane feed water according to claim 1, wherein the reverse osmosis membrane feed water is pre-filtered using a membrane having a pore size smaller than the pore size of the polyamide membrane filter and then passed through the polyamide membrane filter. To evaluate reverse osmosis membrane feed water. 逆浸透膜装置を含む水処理装置の運転を管理する方法において、請求項1又は2に記載の逆浸透膜供給水の評価方法により、該逆浸透膜装置に供給される水の良否を評価し、この評価結果に基づいて、前処理装置の運転条件を変更する、新たな前処理を追加する、又は逆浸透膜装置の洗浄頻度を変更することを特徴とする水処理装置の運転管理方法。In the method for managing the operation of the water treatment apparatus including the reverse osmosis membrane device, the quality of the water supplied to the reverse osmosis membrane device is evaluated by the evaluation method of the reverse osmosis membrane supply water according to claim 1 or 2. An operation management method for a water treatment apparatus, characterized in that, based on the evaluation result, the operation condition of the pretreatment apparatus is changed, a new pretreatment is added, or the cleaning frequency of the reverse osmosis membrane apparatus is changed .
JP2002362543A 2002-12-13 2002-12-13 Reverse osmosis membrane feed water evaluation method and water treatment device operation management method Expired - Fee Related JP4082202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362543A JP4082202B2 (en) 2002-12-13 2002-12-13 Reverse osmosis membrane feed water evaluation method and water treatment device operation management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362543A JP4082202B2 (en) 2002-12-13 2002-12-13 Reverse osmosis membrane feed water evaluation method and water treatment device operation management method

Publications (2)

Publication Number Publication Date
JP2004188387A JP2004188387A (en) 2004-07-08
JP4082202B2 true JP4082202B2 (en) 2008-04-30

Family

ID=32760960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362543A Expired - Fee Related JP4082202B2 (en) 2002-12-13 2002-12-13 Reverse osmosis membrane feed water evaluation method and water treatment device operation management method

Country Status (1)

Country Link
JP (1) JP4082202B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917792B2 (en) * 2005-11-01 2012-04-18 三菱レイヨン株式会社 Method for estimating the degree of contamination of separation membranes used in membrane separation activated sludge equipment.
JP4931039B2 (en) * 2005-12-02 2012-05-16 国立大学法人横浜国立大学 Water quality monitoring equipment and water treatment equipment
JP5079372B2 (en) 2007-04-09 2012-11-21 日東電工株式会社 Membrane separation method and membrane separation apparatus

Also Published As

Publication number Publication date
JP2004188387A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Boerlage et al. Development of the MFI-UF in constant flux filtration
Zhang et al. Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment
EP1329425A1 (en) Desalination method and desalination apparatus
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
JP4082202B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method
JP2003170165A (en) Method for making water
JPWO2014010628A1 (en) Fresh water generation method and fresh water generation apparatus
CN101861200B (en) Method and device for reducing biofouling on the membranes of pressure-driven membrane separation processes
Wenten et al. Ultrafiltration in water treatment and its evaluation as pre-treatment for reverse osmosis system
Clark et al. Ultrafiltration of lake water for potable water production
JPWO2017159303A1 (en) Treatment method for high hardness wastewater
Gray et al. Effect of fractionated NOM on low-pressure membrane flux declines
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
Zheng et al. Ceramic microfiltration–influence of pretreatment on operational performance
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP3838689B2 (en) Water treatment system
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP3395846B2 (en) Water membrane purification method and method of operating the same
CA2999115A1 (en) System and method for chemical rinsing of a filtration system
JP2006218341A (en) Method and apparatus for treating water
JP2001252538A (en) Reverse osmosis composite membrane
JP2006130496A (en) Water treatment device and its operating method
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
JP2005254192A (en) Membrane separator and membrane separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4082202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees