JP4081914B2 - Modified fluororesin, modified fluororesin composition, and modified fluororesin molding - Google Patents

Modified fluororesin, modified fluororesin composition, and modified fluororesin molding Download PDF

Info

Publication number
JP4081914B2
JP4081914B2 JP10141199A JP10141199A JP4081914B2 JP 4081914 B2 JP4081914 B2 JP 4081914B2 JP 10141199 A JP10141199 A JP 10141199A JP 10141199 A JP10141199 A JP 10141199A JP 4081914 B2 JP4081914 B2 JP 4081914B2
Authority
JP
Japan
Prior art keywords
modified
modified fluororesin
fluororesin
powder
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10141199A
Other languages
Japanese (ja)
Other versions
JP2000290409A (en
Inventor
秀樹 柳生
康彰 山本
広男 草野
甫 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10141199A priority Critical patent/JP4081914B2/en
Publication of JP2000290409A publication Critical patent/JP2000290409A/en
Application granted granted Critical
Publication of JP4081914B2 publication Critical patent/JP4081914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、摺動部品、シール部品、パッキン、ガスケット、半導体製造用容器・配管、厨房関連製品等に適用できる改質ふっ素樹脂、改質ふっ素樹脂組成物及び改質ふっ素樹脂成形体に関するものである。
【0002】
【従来の技術】
ポリテトラフルオロエチレン(以下「PTFE」という)を代表とするふっ素樹脂は、低摩擦性、耐熱性、非粘着性、電気特性、耐薬品性、クリーン性等に優れており、産業用、民生用の各種用途に広く利用されているが、ふっ素樹脂は機械的耐性、特に耐摩耗性や耐クリープ性に劣ることが指摘されている。
【0003】
高分子材料の機械的耐性を改善する方法として、電離性放射線の照射により架橋する方法が一般に知られているが、PTFEやテトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)系共重合体(以下「PFA」という)、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体(以下「PFEP」という)のようなパーフロロポリマーは、電離性放射線の照射により分子鎖が切断して低分子量化する易崩壊型ふっ素樹脂であり、照射架橋により機械的耐性を改善することはできない。このため、ふっ素樹脂にガラス繊維や炭素繊維等を補強材として充填することにより機械的耐性を改善することがなされてきているが、ふっ素樹脂は元来化学的に不活性であり、充填材との結合性はないため、ふっ素樹脂と充填材の界面に空隙が形成され易く、ガスや液体を浸透させるという新たな問題の発生を招くことになる。更に、ガラス繊維はふっ酸、高濃度アルカリに溶出し、炭素繊維は電気特性を著しく損ない、ふっ素樹脂本来の特性を著しく低下させることになる。
【0004】
一方、ふっ素樹脂の中でもエチレン−テトラフルオロエチレン共重合体(以下「ETFE」という)、エチレン−クロロトリフルオロエチレン共重合体(以下「ECTFE」という)、ポリふっ化ビニリデン(以下「PVDF」という)のようなふっ素樹脂は、トリアリルイソシアヌレート(TAIC)等の架橋助剤の存在下で電離性放射線を照射することにより架橋できることが知られており、電線の絶縁被覆、発泡製品等の一部で実用に供されている。しかし、熱溶融時に架橋助剤が揮散した添加量が相当減量し、電離性放射線の照射後の製品の物性にバラツキが発生し品質が安定しない、揮散した架橋助剤により作業現場が汚染され安全性に欠ける、成形温度下で架橋助剤とふっ素樹脂が反応して熱架橋現象が生じ成形性が低下する、といった問題がある。
【0005】
【発明が解決しようとする課題】
かかる状況下において、近年、PTFEに酸素不存在の不活性ガス雰囲気下で、且つPTFEの融点以上に加熱された状態で電離性放射線を照射すると、ゴム弾性の付与等の改質がなされることが提案され(特開平6−116423号公報)、また、摺動部材への適用が提案されており(特開平9−278907号公報)、ふっ素樹脂の機械的耐性を向上させる試みがなされてきているが、ふっ素樹脂のより広範囲な用途への適用に対しては更なる改善の余地があることが本発明者等の検討により明らかになった。
【0006】
従って、本発明の目的は、優れた機械的耐性を有し、しかも、広い分野において利用できる改質ふっ素樹脂、改質ふっ素樹脂組成物及び改質ふっ素樹脂成形体を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決すべく、本発明によれば、結晶融点が比較的近いふっ素樹脂を2種類以上共存させ、酸素濃度100torr以下の不活性ガス雰囲気下で、且つ2種類以上のふっ素樹脂のうち結晶融点が最も高いふっ素樹脂の結晶融点以上の温度下で、電離性放射線を照射線量10kGy〜10MGyの範囲で照射してなる改質ふっ素樹脂が提供される。
【0008】
本発明において使用される改質用のふっ素樹脂としては、PTFE、PFA、PFEP、ETFE、ECTFE、PVDF等をあげることができる。PTFEの中には、パーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレン、あるいはクロロトリフルオロエチレン等の共重合性モノマーに基づく重合単位を1モル%以下含有するものも含まれる。また、PFA、PFEP、ETFE、ECTFEの場合、その分子構造の中に少量の第3成分を含むことは有り得る。
【0009】
本発明においては、上記のふっ素樹脂のうち2種類以上を共存させ、最も結晶融点の高いふっ素樹脂の結晶融点以上の温度下で電離性放射線を照射することにより共架橋的化学結合現象が発現され、機械的耐性が付与されることになる。いずれか1種のふっ素樹脂の結晶融点に達しない温度下での照射では、照射温度を上回る結晶融点のふっ素樹脂は選択的に電離性放射線による崩壊が進行して他のふっ素樹脂との共架橋的化学結合は生じない。ここで、重要なのは照射温度がふっ素樹脂の結晶融点を大きく上回ると、当該ふっ素樹脂は共架橋的化学結合現象よりもむしろ熱劣化挙動が主体的となることであり、結晶融点が大きく異なるふっ素樹脂を共存させると、結晶融点が低い方のふっ素樹脂は熱劣化により特性が大きく低下してしまうことである。このため、本発明においては、結晶融点が比較的近いふっ素樹脂を複数種共存させることにしている。
【0010】
結晶融点が比較的近いふっ素樹脂の好適な組合せとしては、PTFEとPFA、PFAとPFEP、及びPFEPとETFE、ECTFE、PVDFから選ばれる少なくとも1種との組合せといったものをあげることができる。例えば、PTFEとPFAを共存させる場合は、PTFEの通常の結晶融点は327℃、PFAの通常の結晶融点は310℃であり、PTFEの結晶融点である327℃以上に加熱して、PTFEとPFAが共に溶融状態にあるところで電離性放射線を照射することにより、従来放射線崩壊型とされていたPTFEとPFAが共存下で共架橋的化学結合現象が発現され、機械的耐性が付与されることになる。PFAの結晶融点以上であってもPTFEの結晶融点に達しない温度下では、PTFEは選択的に電離性放射線による崩壊が進行してPFAとの共架橋的化学結合は生じない。PTFEとPFAを使用する場合、本発明の課題達成のための温度条件は330〜380℃、好適には335〜350℃であり、380℃を越えると共架橋的化学結合現象よりもむしろ熱劣化挙動が主体的となり好ましくない。
【0011】
PFAとPFEPを共存させる場合は、PFAの通常の結晶融点は前述した通り310℃、PFEPの結晶融点は275℃であり、310℃〜360℃、好ましくは315℃〜330℃の温度で電離性放射線を照射することが望ましい。
【0012】
PFEPとETFE、ECTFE、PVDFから選ばれる少なくとも1種を共存させる場合は、PFEPの通常の結晶融点は前述した通り275℃、ETFEの通常の結晶融点は270℃、ECTFEの通常の結晶融点は245℃、PVDFの通常の結晶融点は180℃であり、280℃〜330℃、好ましくは285℃〜310℃の温度下で電離性放射線を照射することが望ましい。
【0013】
本発明において、例えば、PTFEとPFAの2種のふっ素樹脂を前者/後者の重量比で99/1〜1/99の範囲で共存させる手段としては、平均粒径が2mm以下の粉体同士を混合した混合粉体として、このような混合粉体をPFAの結晶融点以上で加熱処理した混合溶融体として、水性ディスパージョン同士で混合後凝集して乾燥した混合粒体として、このような水性ディスパージョン同士の混合後凝集して乾燥した混合粒体に石油ナフサを約20重量%添加し、40〜80℃で塑性加工した複合体として、このような複合体をPFAの結晶融点以上に加熱処理した複合成形体として、それぞれ共存させることができる。
【0014】
更に、本発明においては、PTFE燒結粉体をコアにして外殻にPFA粉体で覆ったコア−シェル型粉体、あるいは、PFA溶融粉体をコアにして外殻をPTFEで覆った粉体構造体といった形でPTFEとPFAを共存させることも可能である。
【0015】
本発明の改質ふっ素樹脂を得るためには、上記の温度下で且つ酸素濃度100torr以下、好ましくは10-6torr〜100torr、更に好ましくは10-6torr〜40torrの不活性ガス雰囲気下で、電離性放射線を照射線量1kGy〜10MGyの範囲で照射する必要がある。酸素濃度が100torrを越えると、分解が先行して架橋反応が大幅に阻害されるため各種特性の低下を招く。本発明において、電離性放射線としては、γ線、電子線、X線、中性子線、あるいは高エネルギーイオン等が使用され、照射線量が1kGy未満では十分な改質効果は達成されず、10MGyを越えると機械的耐性の低下を招くことになる。
【0016】
本発明においては、上記のようにして得た改質ふっ素樹脂と未改質高分子材料を前者/後者重量比で99/1から1/99の割合で混合して使用することも可能である。改質ふっ素樹脂を粉砕等の手段で2mm以下の微粒子状に加工後、未改質高分子材料に配合し、成形することにより改質ふっ素樹脂複合成形品を得ることができる。具体的には、粉末焼成法、焼成品の機械加工品(フィルム、シート、異形品等)、ラム押出成形品、PTFEペースト品(含む焼成品)、PTFE水性デスパージョン含浸製品(硝子繊維、炭素繊維、有機耐熱繊維、金属多孔体、Niメッキ複合製品等)があげられる。未改質高分子材料としては、改質ふっ素樹脂の成形温度に耐えられるもの、すなわち、短時間的には400℃〜500℃の成形温度に耐えられる耐熱高分子材料であればよく、具体的には、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体、ふっ化ビニリデン、エチレン−テトラフルオロエチレン共重合体、ポリふっ化ビニリデン、エチレン−クロロトリフルオロエチレン共重合体、ポリクロロフルオロエチレン、テトラフルオロエチレン−パーフルオロジイオキサソール共重合体、ポリふっ化ビニル、ふっ化ビニリデン−ヘキサフルオロプロペン系共重合体、プロピレン−テトラフルオロエチレン系共重合体、ふっ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系共重合体、フルオロホスファゼン系ゴム、ポリイミド、芳香族ポリアミド、ポリアリーレンスルフィド及び芳香族ポリエステルといったものをあげることができ、これらは単独で使用しても2種以上併用してもよい。
【0017】
また、本発明の参考として、ふっ素樹脂とふっ素ゴムとを共存させ、酸素濃度100torr以下の不活性ガス雰囲気下で、且つふっ素樹脂の結晶融点以上の温度下で、電離性放射線を照射線量10kGy〜10MGyの範囲で照射することにより、改質ふっ素樹脂とふっ素ゴムとのブレンド系を得ることも可能である。ふっ素ゴムとしては、ふっ化ビニリデン−ヘキサフルオロプロペン系共重合体(以下「VDF/HFP」という)、プロピレン−テトラフルオロエチレン系共重合体(以下「P−TFE」という)、ふっ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系共重合体(以下「VDF−PFMVE−TFE」という)、フルオロホスファゼン系ゴム等をあげることができる。
【0018】
更に、本発明の参考として、ふっ素樹脂と当該ふっ素樹脂を改質するときの電離性放射線照射条件下で機械的耐性を保持可能な耐熱高分子材料を共存させ、酸素濃度100torr以下の不活性ガス雰囲気下で、ふっ素樹脂の結晶融点以上の温度下で、電離性放射線を照射線量10kGy〜10MGyの範囲で照射することにより、改質ふっ素樹脂と高分子材料とのブレンド系を得ることができる。耐熱高分子材料としては、ポリイミド、芳香族ポリアミド、ポリアリレンスルフィド、ポリエーテルエーテルケロン及び芳香族ポリエステル等をあげることができる。
【0019】
本発明において、改質ふっ素樹脂からなる成形品を得る方法としては、結晶融点が比較的近いふっ素樹脂が2種類以上共存する混合物を所定形状に成形してから電離性放射線を照射する方法、結晶融点が比較的近いふっ素樹脂が2種類以上共存する混合物に、電離性放射線を照射し、照射後の混合物を粉砕した粉体を所定形状に成形する方法、結晶融点が比較的近いふっ素樹脂が2種類以上共存する混合物に、電離性放射線を照射し、照射後の混合物を粉砕した粉体と未改質の高分子材料を含有する改質ふっ素樹脂組成物を所定形状に成形する方法、ふっ素樹脂とふっ素ゴムが共存する混合物を所定形状に成形し、当該成形体に電離性放射線を照射する方法、ふっ素樹脂と当該ふっ素樹脂を改質するときの電離性放射線照射条件下で機械的特性を保持可能な耐熱高分子材料が共存する混合物を所定形状に成形し、当該成形体に電離性放射線を照射する方法等があげられる。
【0020】
本発明により得られる改質ふっ素樹脂、例えばPFAとPTFEを共存させて本発明の条件下で電離性放射線を照射することにより得られる改質ふっ素樹脂は、その粉砕微粒子をポリエチレン、ポリカーボネート、アクリル樹脂、EPDM、POM、CTFEふっ素樹脂塗料等に添加してフィルム、シート、塗装品、成形品等の製品形態で撥水、着氷防止、潤滑性、非粘着性等の機能を活かした用途に提供される。また、Niメッキに配合して潤滑性、非粘着性の金属被膜を形成でき、各種機械器具に応用できる。特殊な例では、リチウム−イオン二次電池集電極結着剤に配合して環境劣化対策に効果的である。ポリエチレン/ポリプロピレン母材に配合してセパレート材の制御安定性に寄与できる。P−TFE系ゴムに配合して燐酸系燃料電池のパッキンの機械的熱的安定性を改善できる。
【0021】
改質ふっ素樹脂成形品の表面改質、例えば、改質ふっ素樹脂の耐放射線性を活かしたプラズマ利用、あるいは反応活性を活かしてのUV光線利用により、アクリル酸、スチレンスルホン酸ナトリウム、N,N−ジメチルアクリル酸アミド、メタクリル酸グリシジツエステル等による表面処理によって、改質ふっ素樹脂来の特性を保持したままで親水性、親油性、非帯電性、接着性、水中下耐摩耗性等を付与できる。PTFEとPFAのブレンド系の改質ふっ素樹脂にパーフルオロカルボン酸あるいはフルオロサルホン酸基等のイオン交換性機能を有するモノマーをグラフトさせることで、イオン交換性改質ふっ素樹脂を得ることができる。
【0022】
PTFEとポリイミドを共存させて本発明の条件下で電離性放射線を照射することにより得られる改質ふっ素樹脂を高濃度ポリイミドに配合した組成物は、フィルムの形態で低誘電率、耐熱水性絶縁材料として先端機器分野で利用され得る。
【0023】
ふっ素樹脂と特殊ふっ素樹脂(含ふっ素アクリル樹脂、含ふっ素エポキシ樹脂、含ふっ素ポリイミド樹脂)とを共存させて本発明の条件下で電離性放射線を照射することにより、グラフト反応によるポリマーアロイを得ることが可能である。このポリマーアロイは、潤滑性、撥水性等の機能を付与できる。勿論、特殊ふっ素樹脂に改質ふっ素樹脂粉末を配合してもよい。
【0024】
芳香族ポリエステル(PEEK)、PTFE及びPFAの3種を共存させて本発明の条件下で電離性放射線を照射した改質ポリマを高濃度PEEKに溶融配合して得られる改質ふっ素樹脂組成物からなる成形品は、PEEKの高温剛性特性を保持したままでふっ素樹脂の耐薬品性、耐熱水性が活かされ、12インチウェハー次世代LSI半導体製造装置部品への適用が可能である。
【0025】
PTFEとP−TFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂組成物の微粉砕品を、ポリオレフィン樹脂中に1重量%以下含まれるように添加すると、PTFEの潤滑機能とP−TFEゴムのチクソトロピックな特性との相乗効果により加工性の向上を図ることができる。
【0026】
PTFEとP−TFEの共凝集系ロール混練品(ひも状)をPFAチューブ内に充填し、Oリング状に末端溶接加工後に本発明の条件下で電離性放射線を照射し、照射後再加熱してOリング真空サイジング型で脱ガス処理を行うことにより、高寸法精度のOリング製品を得ることができる。このOリング製品は、半導体、高真空、耐熱、耐薬化学機器等で使用され得る。
【0027】
PFAとPTFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉体をPFA粉体と混合した混合粉体は、ライニング製品として使用できる。基材と混合粉体との接着は、PTFE系プライマーと改質ふっ素樹脂の一成分であるPTFEとの作用により改善され、また、PFAと改質ふっ素樹脂の一成分であるPFAとが密着して耐液浸透、耐ガス浸透に効果的である。このライニング製品の適用により、顕著な潤滑性付与と1000倍以上の耐摩耗性付与が可能となる。
【0028】
PFAとPTFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉体をポリエチレン粉体に配合した混合粉体は、非粘着性が要求される産業廃棄物等の回収用の大型容器(ポリエチレン回転成形製品)等へ適用できる。ポリエチレン回転成形製品は、製品外側、つまり初期肉厚部は従来通りポリエチレン単体とし、加工の最後の段階で改質ふっ素樹脂を投入して製品内側を成形することにより製造できる。
【0029】
PTFEディスパージョンに、PFAとPTFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉体を配合した製品は、食品工業や化学プラントで多用されている非粘着搬送ベルトに適用できる。ガラス繊維不織布にPTFEディスパージョンを含浸させ、改質ふっ素樹脂粉体を配合したPTFEディスパージョンを塗布して表層を形成することにより、耐摩耗性及び非粘着性に優れた搬送ベルトを実現でき、メンテナンスコストを大幅に低減できる。また、改質ふっ素樹脂粉体を配合したPTFEディスパージョン(必要に応じTiO2 光活性触媒を添加)をドーム球場の屋根等に使用されているシートに塗装することにより、耐摩耗性、非粘着性A種膜製品を実現でき、耐久性を大幅に向上できる。
【0030】
PFAとPTFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉体をふっ素ゴムに配合して得られる製品は、柔軟性のある動的シール部品として産業機械器具全般に適用可能である。特に、鉄からアルミニウム系軽合金への移行が加速化されている自動車分野においては、当該軽合金の摩耗を少なくするために柔らかい摺動部材が要求されており、本発明による製品はこの傾向に合致したものである。本発明の改質ふっ素樹脂は、動的粘弾性特性の常温付近のtanδ吸収値がPTFEに比べて著しく小さくなり、結晶転移吸収が大幅に低下する。この事実は、常温領域でのバネ特性の発現を意味しており、動的シール性(密封性)機能に効果的であり、油圧シリンダーシール、ショックアブソバー等において大きな効果を発揮する。
【0031】
真鍮系金属の表面を多孔構造にし、孔内にPTFEとPb系化合物の混合物を埋め込んだ摺動部材が自動車用部品で多用されているが、Pb系化合物が摺動時に摩損して大気中に放出され、環境汚染の一要因となっている。PTFEとPFAを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂はPb化合物に代替可能である。当該改質ふっ素樹脂の粉砕微粒子を、PTFEデスパージョンに配合し、真鍮系多孔質構造体に埋め込み処理を行なうことによりPb化合物を使用しない摺動部材を実現できる。また、PTFEとPFAを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉砕微粒子をPFAに配合して溶融押出成形フィルムを得、このフィルムと真鍮系多孔質構造体フィルムとを圧延ロールで一体複合化し、その後筒状に丸め加工して摺動部材を得ることができる。
【0032】
本発明によれば、従来はPTFEでしか実現できなかった大型ブロック(成形品)を、PFAとPTFEの双方を使用して実現可能である。例えば、PTFEとPFAを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂の粉砕粉体90重量部とPFA粉体10重量部の混合粉体を、PTFE成型用金型で予備成形し、PTFE用焼成炉で焼成することにより、PTFE(未改質)を用いた従来の大型ブロックの製造法と同様にして、大型ブロックを得ることができる。ここで、改質ふっ素樹脂成分90重量部は、PTFE(未改質)以上に高溶融粘度を示すので、流動する溶融成分(PFA)10重量部が界面に滲み込んで空隙を無くし、しかも界面の融着力を向上させ、機械的、化学的に安定した成形品を得ることができる。最終製品の機能は、改質ふっ素樹脂のPTFEとPFAの含有比に依存するが、高温時の弾性率を従来のPTFE成形品より大きく改善でき、半導体、液晶製造プロセスにおいて、利点が広範囲に発揮される。
【0033】
複写機、特にカラーコピー機においてはウレタンブレードの低摩擦化と定着ロールのトナー非粘着性の向上が要求されている。PTFEとPFAを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂を液状ポリウレタンに配合した組成物を成形して得たウレタンブレードは低摩擦化を図ることができる。PTFEとPFAを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂、またはPFAとP−TFEを共存させて本発明の条件下で電離性放射線を照射して得られる改質ふっ素樹脂をPFAに配合した組成物をチューブ成形し、複写機ロールに適用することにより、トナー非粘着性のロールを実現できる。PFAの非粘着性に加えて改質ふっ素樹脂のスナッピー性(ゴム弾性)により、一段と優れたトナー非粘着性が発揮される。トナー非粘着性の向上により、トナーの融解温度を低下させてコピーすることが可能となり、コピー温度の低下による省エネルギー化を図ることができる。
【0034】
本発明の改質ふっ素樹脂は、分子生物工学的な分野への応用が可能である。本発明の改質ふっ素樹脂の成形加工性、耐放射線性、非化学的汚染性は、医療機械器具の多種多用な形態、放射線性による滅菌処理、各種菌の培養等に効果的に対応できるものであり、滅菌処理やX線撮影が行われる生体内の人口骨を含め潤滑性機能を必要とする機能性人口部位への適用、DNA等の培養によるウイルス種の簡易な判定官能部品への適用が期待される。
【0035】
本発明によれば、耐摩耗性に優れた改質ふっ素樹脂繊維を得ることができ、網組加工品等への適用が可能である。PTFEに改質ふっ素樹脂を配合した成形原料を用い、従来の加工方法を採用することにより、また、PTFEとPFAを配合した成形原料を用い、従来方法で繊維を形成した後、本発明の条件下で電離性放射線を照射する方法を採用することにより、更には、PTFEファインパウダーにPFAを配合し、ペースト押出成形した紐に本発明の条件下で電離性放射線を照射し、高温(約370℃付近)加熱後延伸する方法を採用すること、更には、PTFEファインパウダーにPFA粉体を配合して得たペースト押出品を約340℃に加熱し、酸素の希薄な条件下で延伸しながら電離性放射線を照射する方法を採用することにより、改質ふっ素樹脂繊維を得ることができる。
【0036】
PTFE固体潤滑剤(ルブリカント)は、PTFEの切削屑、工場規格外製品(原料、加工品)エンドユーザ使用済み廃材等を回収して洗浄後、電離性放射線を照射して分解させ(照射前の1/100程度に低分子量化)、ジェットミルで粉砕して平均粒径10μm程度の微粉末を得、これをエンジニアリングプラスチック、ゴム、塗料、インク、グリース、潤滑油、RTVシリコーンガスケット、液状シーラント等に添加している。本発明の改質ふっ素樹脂粉末は、従来のPTFEを大幅に越える固体潤滑剤機能を発揮する。回収したPTFE廃材及びPFA廃材を粉砕した微粉末を混合し、本発明の条件下で電離性放射線を照射し、ジェットミル粉砕で再度微粉末化することにより固体潤滑剤を得ることができる。また、一旦、酸素存在下で電離性放射線を照射して低分子量化した後で本発明の条件下で電離性放射線を照射する方法も採用できる。
【0037】
【発明の実施の形態】
[実施例1]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gをジューサー型ミキサーで混合し、混合物をPTFE予備成形金型で圧力30MPaで加圧成形して厚さ2mm、50mm角シートとし、これを360℃の温度で1時間焼成した。この焼成シートを340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.4torrになった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質シートを得、供試試料とした。
【0038】
[実施例2]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gをジューサー型ミキサーで混合し、混合物をSUSトレーに2mm厚さに入れ、340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.4torrになった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質した。この改質試料を冷却後卓上型ジェットミルで粉砕して平均粒径が60μmの改質粉体を得、この改質粉体20gとPTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gをジューサーミキサーで混合し、次いで厚さ2mm、外径50mmの円板シートを予備成形した後、350℃で1時間焼成し、供試試料とした。
【0039】
[実施例3]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)20gとPFA粉末(商品名:P−63P、旭硝子社製)80gをブラベンダーブラストミルで360℃で混練し、溶融物を厚み2mm、50mm角シート金型に移し、加圧冷却して厚さ2mmのシートを得た。このシートに対し、実施例1と同様の条件で電子線を照射して改質し、改質シートを340℃に再加熱し、2mmシート型でサイジング冷却して寸法精度を向上させ、供試試料とした。
【0040】
[実施例4]
PFA粉末(商品名:P−63P、旭硝子社製)80gと実施例2と同様にして得た平均粒径が60μmの改質粉体20gをブラベンダーブラストミルで混練し、厚み2mm、50mm角型を用い350℃の温度で圧縮成形してシートを得、供試試料とした。
【0041】
[実施例5]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gの割合でジューサー型ミキサーで混合し、この混合物80gと実施例2で得た平均粒径が60μmの架橋粉体20gをジューサー型ミキサーで混合後、厚さ2mm、外径50mmの円板シートを予備成形した後、350℃で1時間焼成して供試試料とした。
【0042】
[比較例1]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)を360℃、圧力30MPaで1時間圧縮成形して厚さ2mm、50mm角シートを得、これを供試試料とした。
【0043】
[比較例2]
PFA粉末(商品名:P−63P、旭硝子社製)を360℃の温度で溶融し、この溶融物を厚み2mm、50mm角シート金型に移し、加圧冷却して厚さ2mmのシートとし、これを供試試料とした。
【0044】
[比較例3]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gをジューサー型ミキサーで混合し、混合物を予備成形金型で圧力30MPaで加圧成形して2mm厚、50mm角シートを得、これを360℃で1時間焼成し、供試試料とした。
【0045】
実施例1〜5及び比較例1〜3の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表1に示す。測定はスラスト型摩擦摩耗試験装置を使用し、SUS304製の円筒状リング(外径25.6mmφ、内径20.6mmφ、表面粗さ0.20μm)により供試試料に0.25MPaの圧力を加え、速度0.5m/sec の条件のもとに行った。
【0046】
摩耗係数K(m・sec /MPa/m/hr×10-6)は、W=KPVTの摩耗の関係式により求めた。なお、式中Wは摩耗深さ(m)、Pは荷重(MPa)、Vは速度(m/sec )、Tは時間(hr)であり、圧力と速度の乗数値PV値は、1.25kg・m/cm2 ・sec とし、摩耗深さは、測定時間2時間後の供試試料の重量減少を測定した後、この被試験シートの減少重量を減少容量に換算し、これを円筒状リングの接触面積で除して算出した。
【0047】
【表1】

Figure 0004081914
【0048】
[実施例6]
パーフロロビニルエーテル(PPVE)0.1モル変性したPTFE(商品名:70−J)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gを使用し、実施例1と同様な操作で供試試料を得た。
【0049】
[比較例4]
パーフロロビニルエーテル(PPVE)0.1モル変性したPTFE(商品名:70−J)を使用し、比較例1と同様な操作で供試試料を得た。
【0050】
実施例6及び比較例4の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表2に示す。
【0051】
【表2】
Figure 0004081914
【0052】
[実施例7〜15]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80重量部とPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20重量部の割合でジューサー型ミキサーで混合し、混合物をSUSトレーに2mm厚さに入れ、340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.4torrになった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質した。この改質試料を冷却後卓上型ジェットミルで粉砕して平均粒径が60μmの改質粉体を得、この改質粉体20gと表3に示す各種ポリマー80gをブラベンダーブラストミルでそれぞれのポリマーに適した加工温度条件で混練し、溶融物を厚み2mm、50mm角シート金型に移し、加圧冷却して厚さ2mmのシートを得、供試試料とした。
【0053】
[比較例5〜14]
実施例7〜15で使用した各種ポリマー単独を用いたシートを得、供試試料とした。
【0054】
実施例7〜16及び比較例5〜14の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表3に示す。
【0055】
【表3】
Figure 0004081914
【0056】
[実施例17]
水添加NBR(商品名:Zetpol2020)100g、メタクリル酸亜鉛30g、有機過酸化物系加硫剤5g、実施例7〜16と同様にして得た平均粒径が60μmの改質粉体100gをロール混練後、160℃で圧縮成形して厚さ2mm、10cm角の加硫シートを得、供試試料とした。
【0057】
[実施例18]
P−TFE(ふっ素ゴム、商品名:アフラス200、旭硝子社製)100g、ステアリン酸ナトリウム1g、酸化マグネシウム5g、水酸化カルシウム6g、ビスフェノールAF2g、実施例7〜16と同様にして得た平均粒径が60μmの改質粉体100gを実施例17と同様に加硫成形して厚さ2mm、10cm角の加硫シートを得、供試試料とした。
【0058】
[比較例15]
改質粉体100重量部に代えてPTFEルブリカント(商品名:L169J)100重量部を配合した以外は実施例17と同様にして加硫シートを得、供試試料とした。
【0059】
[比較例16]
改質粉体100重量部に代えてPTFEルブリカント(商品名:L169J)100重量部を配合した以外は実施例18と同様にして加硫シートを得、供試試料とした。
【0060】
実施例17、18及び比較例15、16の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表4に示す。
【0061】
【表4】
Figure 0004081914
【0062】
[実施例19]
PFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)80gとPFEP(商品名:NC1500)20gをジューサー型ミキサーで混合し、混合物をブラベンダープラストミルを使用して360℃で混練し、溶融物を厚み2mmのシート金型に取出し、速やかに加圧(3MPa)冷却して厚さ2mm、50mm角のシートを得た。このシートを315℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が1torr以下になった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質シートを得、供試試料とした。
【0063】
[実施例20〜25]
実施例19で得た改質シートをハンマーミルで粉砕後、卓上型ジェットミルで粉砕して平均粒径が100μmの改質粉体を得、この改質粉体20gと表5に示す各種ポリマー80gをブラベンダーブラストミルで360℃の温度条件で混練し、溶融物を厚み2mmのシート金型に取出し、速やかに加圧(3MPa)冷却して厚さ2mm、50mm角のシートを得、供試試料とした。ブラベンダーブラストミル混合温度は、PFEP:340℃、ETFE:300℃、PVDF:200℃、ECTFE:300℃、PCTFE:200℃とした。
【0064】
[比較例17]
PFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)80g、PFEP(商品名:NC1500)20g及びPTFEルブリカント(商品名:L169J)20gをジューサー型ミキサーで混合し、混合物をブラベンダープラストミルを使用して360℃で混練し、溶融物を厚み2mmのシート金型に取出し、速やかに加圧(3MPa)冷却して厚さ2mm、50mm角のシートを得、供試試料とした。
【0065】
[比較例18〜23]
表5に示す各種ポリマー80gとPTFEルブリカント(商品名:L169J)20gの割合で使用し、比較例17と同様にしてシートを得、供試試料とした。
【0066】
実施例19〜25及び比較例17〜23の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表5に示す。
【0067】
【表5】
Figure 0004081914
【0068】
[実施例26]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPEEK(商品名:150XF)20gをジューサー型ミキサーで混合し、混合物を予備成形金型で圧力30MPaで加圧成形して2mm厚さ、50mm角シートを得、これを360℃で1時間焼成した。このシートを340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.5torrになった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質シートを得、供試試料とした。
【0069】
[実施例27〜30]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPEEK(商品名:150XF)20gをジューサー型ミキサーで混合し、混合物をSUSトレーに2mm厚に入れ、これを340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.5torrになった段階で吸引を停止して窒素ガスを封入し、電子線を20kGy/回の照射線量で5回照射して(合計照射線量100kGy)改質した。この改質試料を冷却後卓上型ジェットミルで粉砕して平均粒径が100μmの改質粉体を得、この改質粉体20gと表6に示す各種ポリマー80gをブラベンダーブラストミルでそれぞれのポリマーに適した加工温度条件で混合し、厚み2mm、50mmの角シートを得、供試試料とした。シートの作製は、実施例27は焼成、実施例28〜30は溶融混練後圧縮成形による。
【0070】
[実施例31]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)60g、PFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20g及びPEEK(商品名:150XF)20gの割合で使用し、実施例26と同様にして改質シートを得、供試試料とした。
【0071】
[実施例32〜39]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)60g、PFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20g及びPEEK(商品名:150XF)20gを使用し、実施例27〜30と同様にして改質粉体を得、この改質粉体20gと表6に示す各種ポリマー80gをブラベンダーブラストミルでそれぞれのポリマーに適した加工温度条件で混合し、厚み2mm、50mmの角シートを得、供試試料とした。ブラベンダーブラストミル混合温度は、PFA:380℃、PFEP:350℃、ETFE:320℃、PPS:300℃、PES:320℃、PA:300℃とした。
【0072】
[実施例40]
水添加NBR(商品名:Zetpol2020)100g、メタクリル酸亜鉛30g、有機過酸化物系加硫剤5g、実施例32〜39と同様にして得た平均粒径が100μmの改質粉体100gをロール混練後、160℃で圧縮成形して厚さ2mm、10cm角の加硫シートを得、供試試料とした。
【0073】
[実施例41]
P−TFE(ふっ素ゴム、商品名:アフラス200、旭硝子社製)100g、ステアリン酸ナトリウム1g、酸化マグネシウム5g、水酸化カルシウム6g、ビスフェノールAF2g、実施例32〜39と同様にして得た平均粒径が100μmの改質粉体100gを実施例40と同様に加硫成形して厚さ2mm、10cm角の加硫シートを得、供試試料とした。
【0074】
[比較例24]
PFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)にγ線を空気中で100kGy照射して低分子量に分解した粉末20gとPFA(340J、未改質)80gをブラストミルで380℃で混練して成形してシートを得、供試試料とした。
【0075】
実施例26〜41、比較例24の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表6に示す。
【0076】
【表6】
Figure 0004081914
【0077】
[実施例42]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)80gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)20gをジューサー型ミキサーで混合し、混合物を340℃の加熱炉に入れて1時間経過後に真空ポンプで吸引し、酸素濃度が0.5torrになった段階で吸引を停止して窒素ガスを封入し、電子線を10kGy照射して改質した。この改質試料を冷却後卓上型ジェットミルで粉砕して平均粒径が40μmの改質粉体を得、この改質粉体30gとPTFEモールディングパウダー(商品名:G−163、旭硝子社製)100gをジューサーミキサーで混合し、予備成形金型を使用して圧力15MPaで厚さ2mm、外径50mmの円板シートを予備成形し、360℃で1時間焼成し、供試試料とした。
【0078】
[実施例43]
実施例42で得た改質粉体30gとPFA(商品名:340J)70gをブラベンダープラストミルを使用して380℃で混練し、溶融物を速やかに厚み2mmのシート圧縮型に移行し、加圧(0.2MPa)冷却して厚さ2mm、50mm角のシートを得、供試試料とした。
【0079】
実施例42、43の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表7に示す。
【0080】
【表7】
Figure 0004081914
【0081】
[実施例44〜46]
電子線の照射線量を1000kGy(50kGy/回電子線照射線量で20回照射)、2000kGy(50kGy/回電子線照射線量で40回照射)、3000kGy(50kGy/回電子線照射線量で60回照射)として実施例42と同様にしてシートを得、供試試料とした。なお、各例ではビーム加熱による照射温度が380℃以下になるように照射と冷却時間(非照射時間)を制御した。
【0082】
実施例44〜46の各供試試料について、摩擦係数及び摩耗係数を測定し、その結果を表8に示す。
【0083】
【表8】
Figure 0004081914
【0084】
[実施例47]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)20gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)80gをジューサー型ミキサーで混合し、混合物をブラベンダープラストミルを使用して360℃で混練し、溶融物を厚み2mmのシート金型に取出し、速やかに加圧(3MPa)冷却して厚さ2mm、50mm角のシートを得た。このシートを酸素濃度0.5torrの窒素ガスの雰囲気下、330℃の加熱温度のもとで電子線を照射線量1000kGy照射して(50kGy/回の電子線照射線量で20回照射)改質した。ビーム加熱による照射温度が360℃以下になるように照射と冷却時間(非照射時間)を制御した。この改質シートをハンマーミルで粉砕後、卓上型ジェットミルで粉砕して平均粒径が100μmの改質粉体を得、この改質粉体80gとPFA(商品名:340J)20gをブラベンダーブラストミルで380℃の温度条件で混練し、溶融物を厚み2mmのシート金型に取出し、速やかに加圧(0.2MPa)冷却して厚さ2mm、50mm角のシートを得、供試試料とした。このシートは、透明性に優れ、ゴム弾性特性を示した。
【0085】
[実施例48]
PTFEモールディングパウダー(商品名:G−163、旭硝子社製)2kgとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)8kgをヘンシェル型ミキサーで混合し、混合粉体を平均厚み5mm、無加圧で340℃に加熱後、酸素濃度0.5torrの窒素ガスの雰囲気下で電子線を照射線量300kGy照射して(20kGy/回の電子線照射線量で15回照射)改質した。ビーム加熱による照射温度が360℃以下になるように照射と冷却時間(非照射時間)を制御した。この改質処理品をエアージェットミルで粉砕して平均粒径が5μmの改質粉体を得た。この改質粉体60gとPFA粉末(商品名:テフロンMP10、三井・デュポンフロロケミカル社製)40gをジューサー型ミキサーで混合して静電塗装用粉体原料を得、これを静電塗装した食品工業向け炊飯用容器を得た。この炊飯用容器は、従来のPFA塗装製品に比べて優れた耐久性を有していた。
【0086】
[実施例49]
実施例48で得た平均粒径が5μmの改質粉体400gとPFA(商品名:340J)600gを2軸スクリュウ押出機で溶融混練してペレットを得、このペレットを原料にして10mmTダイ押出機により厚み60μm、幅20cmのフィルムを押出し、同時にフィルム表面をPAI(ポリアミドイミド)プライマー処理したアルミ合金シートとのラミネート板を得、このラミネート板を圧延加工して内面がPFA面になる縦10cm、横6cm、深さ2cmの容器形状製品を得た。この容器の非粘着性は従来のPFAラミネート板使用製品と同等であったが、耐摩耗性は1000倍であった。また、フィルム自体は透明性が高く、非球晶体であって、表面平滑性に優れており、異物付着対策に効果的であった。
【0087】
[実施例50]
実施例48で得た平均粒径が5μmの改質粉体200gとPFA(商品名:AP201)800gを混合し、混合物を原料にして10mm2軸スクリュー押出機を用いて100μm口径マルチダイから繊維状モノフィラメントを押出し、10〜30倍引落しをかけ、平均径10μmの繊維を得た。この繊維を用い、1mm厚の不織布軸受け及び1μm開孔径の濾布を得た。不織布軸受けのジャーナル型軸受けに採用したところ、従来のPTFE充填剤入り品と遜色ない耐摩耗性を示し、且つ非充填系であることから、半導体、医薬プラント、食品工業においてはクリーン性が評価されている。
【0088】
[実施例51]
実施例48で得た平均粒径が5μmの改質粉体4kgとPTFEモールディングパウダー(商品名:G−163、旭硝子社製)1kgを高速混合型ヘンシェルにより均一に混合し、混合物を用いて高さ20cm、径20cmのビレットを予備成形金型で加圧成形した(成形圧0.5MPa)。予備成形品を無負荷で340〜360℃で2時間加熱して焼成し、その後圧力0.5MPaで加圧し状態で冷却し、PTFE切削用旋盤を用いて100μmから5mm厚さの製品を得た。
【0089】
[実施例52]
PTFE産業廃棄物(切削屑、工場廃材等ロス品、使用済み製品はモールディングパウダー、ファインパウダー、ディスパージョン等を原料としたもの、形状はバルク、テープ、ヤーン、繊維等のいずれでもよく、異物混入を除けば100%PTFE)とPFA産業廃棄物(半導体容器、チューブ等で、異物を除き100%PFA)を、必要に応じ洗浄等で異物を除去し、エアージェットミルで粉砕して平均粒径約100μmの粉体を得た。この粉体PTFE800gと粉体PFA200gをヘンシェルミキサーで混合し、この混合物を340℃に加熱後、酸素濃度0.5torrの窒素ガスの雰囲気下で電子線を照射線量2000kGy照射して(50kGy/回の電子線照射線量で40回照射)改質した。この改質処理品をエアージェットミルで粉砕して平均粒径が10μmの改質粉体を得た。平均粒径が10μmの改質粉体が得られるので、従来のPTFEルブリカントの代品としての広範囲の用途(プラスチック、ゴム、塗料、インク、グリース、オイル、メッキ等)に適用できることが確認された。なお、10μm以下サブミクロン粒子系については塗料液状体、オイル等の湿式粉砕で実現できることが確認できた。
【0090】
[実施例53]
実施例52と同様にして得た平均粒径約100μmのPTFE粉体800gとPFA粉体200gの混合物を、340℃に加熱し、酸素が存在する雰囲気で電子線を10kGy照射し、続いて、340℃に加熱した状態で酸素濃度0.5torrの窒素ガスの雰囲気下で電子線を照射線量100kGy照射して(50kGy/回の電子線照射線量で2回照射)改質した。この改質処理品をエアージェットミルで粉砕して平均粒径が10μmの改質粉体を得た。予め低分子量にしておいて比較的低線量、短時間の電子線照射による改質ふっ素樹脂製品を低コストで得られることが確認できた。
【0091】
[実施例54]
実施例52と同様にして得た平均粒径約100μmのPTFE粉体800gとPFA粉体200gの混合物を、340℃に加熱し、酸素が存在する雰囲気で電子線を10kGy照射し、続いて、340℃に加熱加熱後、酸素濃度0.5torrの窒素ガスの雰囲気下で電子線を照射線量2000kGy照射し(50kGy/回の電子線照射線量で40回照射)、続いて1000kGy照射し(50kGy/回の電子線照射線量で20回照射)、合計3000kGy照射した。なお、第一回目の照射では、部分的には材料温度が380℃を越えるときがあり、第二回目の照射では材料温度が360℃以下になるように、冷却期間を制御した。これによって、高線量照射を経済的に行えることが確認された。得られた改質ふっ素樹脂はDSCの観察では観察では結晶融点の存在が確認できなかった。また、この改質品はエアージェットミルの超微粉化を試みた結果、特定条件では1μmレベルに迫る超微粒子化が確認でき、更に液体(含むオイル)中の超微細化はナノミクロン粒子も得られることがわかった。この事実はインク、オイルへの添加はもとより、ナノテクノロジー分野に応用され得ることが確認できた。
【0092】
【発明の効果】
以上説明してきた本発明によれば、優れた機械的耐性を有し、しかも、広い分野において利用できる改質ふっ素樹脂、改質ふっ素樹脂組成物及び改質ふっ素樹脂成形体を実現することが可能となり、ふっ素樹脂の応用範囲を広げる上で大きく貢献するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modified fluororesin, a modified fluororesin composition, and a modified fluororesin molded product that can be applied to sliding parts, seal parts, packing, gaskets, semiconductor manufacturing containers and piping, kitchen-related products, and the like. is there.
[0002]
[Prior art]
Fluororesin represented by polytetrafluoroethylene (hereinafter referred to as “PTFE”) is excellent in low friction, heat resistance, non-adhesiveness, electrical properties, chemical resistance, cleanliness, etc., industrial and consumer use However, it has been pointed out that fluorine resins are inferior in mechanical resistance, in particular, wear resistance and creep resistance.
[0003]
As a method for improving the mechanical resistance of a polymer material, a method of crosslinking by irradiation with ionizing radiation is generally known, but PTFE or tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as “PFA”). "), Tetrafluoroethylene-hexafluoro propylene Perfluoropolymers such as copolymer (hereinafter referred to as “PFEP”) are easily disintegrating fluororesins whose molecular chains are cut by irradiation with ionizing radiation to reduce their molecular weight. It cannot be improved. For this reason, it has been attempted to improve mechanical resistance by filling glass fiber or carbon fiber as a reinforcing material into fluorine resin, but fluorine resin is originally chemically inert, Therefore, a void is easily formed at the interface between the fluororesin and the filler, which causes a new problem of permeating gas or liquid. Furthermore, glass fibers are eluted in hydrofluoric acid and high-concentration alkali, and carbon fibers significantly deteriorate the electrical characteristics and significantly deteriorate the original characteristics of the fluororesin.
[0004]
On the other hand, among fluororesins, ethylene-tetrafluoroethylene copolymer (hereinafter referred to as “ETFE”), ethylene-chlorotrifluoroethylene copolymer (hereinafter referred to as “ECTFE”), and polyvinylidene fluoride (hereinafter referred to as “PVDF”). Is known to be able to crosslink by irradiating with ionizing radiation in the presence of a crosslinking aid such as triallyl isocyanurate (TAIC). In practical use. However, the amount of addition of the crosslinking aid volatilized during heat melting is considerably reduced, resulting in variations in the physical properties of the product after irradiation with ionizing radiation, and the quality is not stable. There is a problem that the cross-linking aid and the fluororesin react at a molding temperature to cause a thermal cross-linking phenomenon to deteriorate the moldability.
[0005]
[Problems to be solved by the invention]
Under such circumstances, in recent years, irradiation with ionizing radiation in an inert gas atmosphere in the absence of oxygen in PTFE and in a state of being heated to the melting point of PTFE or higher will result in modifications such as imparting rubber elasticity. Have been proposed (Japanese Patent Laid-Open No. 6-116423), and application to sliding members has been proposed (Japanese Patent Laid-Open No. 9-278907), and attempts have been made to improve the mechanical resistance of fluororesins. However, the present inventors have found that there is room for further improvement with respect to the application of fluorine resin to a wider range of uses.
[0006]
Accordingly, an object of the present invention is to provide a modified fluororesin, a modified fluororesin composition, and a modified fluororesin molded article that have excellent mechanical resistance and can be used in a wide range of fields.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, according to the present invention, two or more types of fluorine resins having relatively close crystal melting points coexist, an inert gas atmosphere having an oxygen concentration of 100 torr or less, and a crystal of two or more types of fluorine resins. There is provided a modified fluororesin obtained by irradiating ionizing radiation within an irradiation dose range of 10 kGy to 10 MGy at a temperature equal to or higher than the crystal melting point of the fluororesin having the highest melting point.
[0008]
Examples of the fluorine resin for modification used in the present invention include PTFE, PFA, PFEP, ETFE, ECTFE, PVDF and the like. PTFE includes those containing 1 mol% or less of a polymerization unit based on a copolymerizable monomer such as perfluoro (alkyl vinyl ether), hexafluoropropylene, (perfluoroalkyl) ethylene, or chlorotrifluoroethylene. . In the case of PFA, PFEP, ETFE, and ECTFE, it is possible that a small amount of the third component is included in the molecular structure.
[0009]
In the present invention, two or more kinds of the above-mentioned fluororesins are allowed to coexist, and ionizing radiation is irradiated at a temperature equal to or higher than the crystal melting point of the fluororesin having the highest crystal melting point, whereby a co-crosslinking chemical bonding phenomenon is expressed. Mechanical resistance will be imparted. When irradiation is performed at a temperature that does not reach the crystalline melting point of any one of the fluororesins, the fluororesin having a crystalline melting point that exceeds the irradiation temperature selectively undergoes decay due to ionizing radiation and co-crosslinks with other fluororesins. Chemical bonds do not occur. Here, what is important is that when the irradiation temperature is much higher than the crystalline melting point of the fluororesin, the fluororesin is mainly subject to thermal degradation rather than a co-crosslinking chemical bonding phenomenon. Coexistence of fluorine resin with a lower crystal melting point results in a significant decrease in properties due to thermal degradation. For this reason, in the present invention, a plurality of fluorine resins having relatively close crystal melting points are allowed to coexist.
[0010]
Examples of suitable combinations of fluorine resins having relatively close crystal melting points include combinations of PTFE and PFA, PFA and PFEP, and combinations of PFEP and ETFE, ECTFE, and PVDF. For example, when PTFE and PFA coexist, the normal crystal melting point of PTFE is 327 ° C., the normal crystal melting point of PFA is 310 ° C., and is heated to 327 ° C. or higher, which is the crystal melting point of PTFE. By irradiating with ionizing radiation when both of them are in a molten state, co-crosslinking chemical bonding phenomenon is manifested in the presence of PTFE and PFA, which has been considered to be radiation decay type, and mechanical resistance is imparted. Become. Even at a temperature not lower than the crystalline melting point of PTFE even if it is higher than the crystalline melting point of PFA, PTFE selectively undergoes decay due to ionizing radiation, and no co-crosslinking chemical bond with PFA occurs. When PTFE and PFA are used, the temperature condition for achieving the object of the present invention is 330 to 380 ° C., preferably 335 to 350 ° C. When the temperature exceeds 380 ° C., thermal degradation rather than co-crosslinking chemical bonding phenomenon. The behavior becomes dominant and is not preferable.
[0011]
When PFA and PFEP coexist, the normal crystal melting point of PFA is 310 ° C. as described above, and the crystal melting point of PFEP is 275 ° C., which is ionizable at a temperature of 310 ° C. to 360 ° C., preferably 315 ° C. to 330 ° C. It is desirable to irradiate with radiation.
[0012]
When PFEP and at least one selected from ETFE, ECTFE, and PVDF coexist, the normal crystal melting point of PFEP is 275 ° C. as described above, the normal crystal melting point of ETFE is 270 ° C., and the normal crystal melting point of ECTFE is 245. The normal crystal melting point of PVDF is 180 ° C, and it is desirable to irradiate ionizing radiation at a temperature of 280 ° C to 330 ° C, preferably 285 ° C to 310 ° C.
[0013]
In the present invention, for example, as means for allowing two kinds of fluororesins, PTFE and PFA, to coexist in the range of 99/1 to 1/99 by weight ratio of the former / the latter, powders having an average particle diameter of 2 mm or less are used. As such a mixed powder, such a mixed powder is obtained as a mixed melt obtained by heat-treating such a mixed powder at a temperature higher than the crystal melting point of PFA. About 20% by weight of petroleum naphtha is added to the agglomerated and dried mixed granules after mixing with each other, and such a composite is heated to a crystal melting point of PFA or higher as a composite processed plastically at 40-80 ° C. Each composite molded body can coexist.
[0014]
Furthermore, in the present invention, a core-shell type powder in which PTFE sintered powder is used as a core and the outer shell is covered with PFA powder, or a powder in which PFA molten powder is used as a core and the outer shell is covered with PTFE. PTFE and PFA can coexist in the form of a structure.
[0015]
In order to obtain the modified fluororesin of the present invention, the oxygen concentration is 100 torr or less, preferably 10 at the above temperature. -6 torr to 100 torr, more preferably 10 -6 It is necessary to irradiate ionizing radiation within an irradiation dose range of 1 kGy to 10 MGy in an inert gas atmosphere of torr to 40 torr. When the oxygen concentration exceeds 100 torr, the decomposition is preceded and the crosslinking reaction is largely inhibited, leading to deterioration of various characteristics. In the present invention, γ-rays, electron beams, X-rays, neutron beams, high-energy ions, or the like are used as the ionizing radiation. When the irradiation dose is less than 1 kGy, a sufficient modification effect is not achieved, and exceeds 10 MGy. This leads to a decrease in mechanical resistance.
[0016]
In the present invention, the modified fluororesin and the unmodified polymer material obtained as described above can be mixed and used at a ratio of 99/1 to 1/99 in the former / latter weight ratio. . A modified fluororesin composite molded product can be obtained by processing the modified fluororesin into fine particles of 2 mm or less by means of pulverization or the like, and then blending and molding the unmodified polymer material. Specifically, powder firing method, machined product of fired product (film, sheet, deformed product, etc.), ram extrusion product, PTFE paste product (including fired product), PTFE aqueous dispersion impregnated product (glass fiber, carbon) Fiber, organic heat-resistant fiber, metal porous body, Ni-plated composite product, etc.). The unmodified polymer material may be any material that can withstand the molding temperature of the modified fluororesin, that is, any heat-resistant polymer material that can withstand the molding temperature of 400 ° C. to 500 ° C. in a short time. For polytetrafluoroethylene, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoro propylene Copolymer, vinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, ethylene-chlorotrifluoroethylene copolymer, polychlorofluoroethylene, tetrafluoroethylene-perfluorodioxasol copolymer , Polyvinyl fluoride, vinylidene fluoride-hexafluoropropene copolymer, propylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, fluorophosphazene rubber, Examples thereof include polyimide, aromatic polyamide, polyarylene sulfide, and aromatic polyester, and these may be used alone or in combination of two or more.
[0017]
In addition, the present invention As a reference Irradiating with ionizing radiation in an irradiation dose range of 10 kGy to 10 MGy in an inert gas atmosphere having an oxygen concentration of 100 torr or less and at a temperature not lower than the crystal melting point of the fluorine resin in the presence of fluorine resin and fluorine rubber. Thus, it is possible to obtain a blend system of a modified fluororesin and fluororubber. Fluoro rubber includes vinylidene fluoride-hexafluoropropene copolymer (hereinafter referred to as “VDF / HFP”), propylene-tetrafluoroethylene copolymer (hereinafter referred to as “P-TFE”), vinylidene fluoride-par. Examples thereof include a fluoromethyl vinyl ether-tetrafluoroethylene copolymer (hereinafter referred to as “VDF-PFMVE-TFE”), a fluorophosphazene rubber, and the like.
[0018]
Furthermore, the present invention As a reference Fluorine resin and a heat-resistant polymer material capable of maintaining mechanical resistance under the ionizing radiation irradiation conditions when modifying the fluororesin are coexistent, and in an inert gas atmosphere with an oxygen concentration of 100 torr or less, By irradiating ionizing radiation within the irradiation dose range of 10 kGy to 10 MGy at a temperature equal to or higher than the crystal melting point, a blend system of the modified fluororesin and the polymer material can be obtained. Examples of the heat resistant polymer material include polyimide, aromatic polyamide, polyarylene sulfide, polyether ether keron, and aromatic polyester.
[0019]
In the present invention, as a method for obtaining a molded product made of a modified fluororesin, a method in which a mixture of two or more types of fluororesins having relatively close crystal melting points is formed into a predetermined shape and then irradiated with ionizing radiation, a crystal A method of irradiating a mixture in which two or more types of fluorine resins having relatively close melting points coexist with ionizing radiation, and pulverizing the mixture after irradiation to form a powder into a predetermined shape. A method of forming a modified fluororesin composition containing a powder obtained by irradiating ionizing radiation to a mixture of two or more types and pulverizing the mixture after irradiation and an unmodified polymer material into a predetermined shape, a fluororesin A mixture of coexisting fluorinated rubber and rubber is formed into a predetermined shape, and the molded product is irradiated with ionizing radiation, and mechanical properties are measured under ionizing radiation irradiation conditions when modifying the fluororesin and the fluororesin. Molding a mixture capable of holding heat polymeric material co-exist in a predetermined shape, and a method of irradiating ionizing radiation to the shaped bodies and the like.
[0020]
A modified fluororesin obtained by the present invention, for example, a modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and PTFE, is obtained by pulverizing fine particles of polyethylene, polycarbonate, acrylic resin. In addition to EPDM, POM, CTFE fluororesin paint, etc., it is provided for applications that utilize functions such as water repellency, anti-icing, lubricity, and non-adhesiveness in product forms such as films, sheets, coated products, and molded products Is done. Moreover, it can mix | blend with Ni plating and can form a lubricous and non-adhesive metal film, and can apply it to various machine tools. In a special example, the lithium-ion secondary battery collector electrode binder is effective for environmental degradation countermeasures. It can be added to the polyethylene / polypropylene base material to contribute to the control stability of the separate material. The mechanical and thermal stability of the packing of a phosphoric acid fuel cell can be improved by compounding with P-TFE rubber.
[0021]
Surface modification of a modified fluororesin molded product, for example, using plasma utilizing the radiation resistance of the modified fluororesin, or utilizing UV light utilizing reaction activity, acrylic acid, sodium styrenesulfonate, N, N -Surface treatment with dimethylacrylic acid amide, glycidic acid methacrylate ester, etc., imparts hydrophilicity, lipophilicity, non-charging property, adhesiveness, underwater wear resistance, etc. while maintaining the characteristics of modified fluororesin. it can. By grafting a monomer having an ion exchange function such as perfluorocarboxylic acid or fluorosulfonic acid group to a modified fluorine resin of a blend system of PTFE and PFA, an ion exchange modified fluorine resin can be obtained.
[0022]
A composition comprising a high concentration polyimide blended with a modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and polyimide is a low dielectric constant, heat resistant water insulating material in the form of a film. Can be used in the field of advanced equipment.
[0023]
To obtain a polymer alloy by graft reaction by irradiating ionizing radiation under the conditions of the present invention in the presence of fluorine resin and special fluorine resin (fluorine-containing acrylic resin, fluorine-containing epoxy resin, fluorine-containing polyimide resin). Is possible. This polymer alloy can impart functions such as lubricity and water repellency. Of course, the modified fluororesin powder may be blended with the special fluororesin.
[0024]
From a modified fluororesin composition obtained by melt-blending a modified polymer irradiated with ionizing radiation under the conditions of the present invention in the presence of three kinds of aromatic polyester (PEEK), PTFE and PFA into high concentration PEEK The resulting molded product can be applied to 12-inch wafer next-generation LSI semiconductor manufacturing equipment parts by utilizing the chemical resistance and hot water resistance of fluororesin while retaining the high-temperature rigidity characteristics of PEEK.
[0025]
When a finely pulverized product of a modified fluororesin composition obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and P-TFE is added so that it is contained in a polyolefin resin at 1% by weight or less. The workability can be improved by the synergistic effect of the lubricating function of PTFE and the thixotropic properties of P-TFE rubber.
[0026]
PTFE and P-TFE co-agglomerated roll kneaded product (string shape) is filled into a PFA tube, irradiated with ionizing radiation under the conditions of the present invention after end welding into an O-ring, and reheated after irradiation. By performing degassing with an O-ring vacuum sizing type, an O-ring product with high dimensional accuracy can be obtained. This O-ring product can be used in semiconductors, high vacuum, heat-resistant, chemical-resistant chemical equipment and the like.
[0027]
A mixed powder obtained by mixing a modified fluororesin powder obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and PTFE and PFA powder can be used as a lining product. Adhesion between the substrate and the mixed powder is improved by the action of the PTFE primer and PTFE which is one component of the modified fluororesin, and PFA and PFA which is one component of the modified fluororesin are in close contact with each other. It is effective for liquid penetration resistance and gas penetration resistance. By applying this lining product, it is possible to impart significant lubricity and wear resistance of 1000 times or more.
[0028]
Mixed powder in which modified fluororesin powder obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and PTFE is mixed with polyethylene powder is an industrial waste that requires non-stickiness It can be applied to large containers (polyethylene rotational molding products) for collecting items. The polyethylene rotational molded product can be manufactured by molding the inside of the product by introducing the modified fluororesin into the outer side of the product, that is, the initial thickness portion of polyethylene as usual, and injecting the modified fluororesin at the final stage of processing.
[0029]
Products obtained by blending PTFE dispersion with powder of modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and PTFE are widely used in the food industry and chemical plants. Applicable to non-adhesive transport belt. By impregnating a PTFE dispersion into a glass fiber nonwoven fabric and applying a PTFE dispersion blended with a modified fluororesin powder to form a surface layer, it is possible to realize a conveyor belt with excellent wear resistance and non-adhesiveness. Maintenance costs can be greatly reduced. Also, PTFE dispersion containing modified fluororesin powder (if necessary, TiO 2 By applying a photoactive catalyst to a sheet used on the roof of a dome stadium, etc., it is possible to realize a wear-resistant, non-adhesive type A film product and to greatly improve durability.
[0030]
A product obtained by blending powder of modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and PTFE into fluororubber is a flexible dynamic sealing part. Applicable to all industrial machinery equipment. In particular, in the automotive field where the transition from iron to aluminum-based light alloys is accelerated, soft sliding members are required to reduce wear of the light alloys, and the products according to the present invention tend to have this tendency. It is a match. In the modified fluororesin of the present invention, the tan δ absorption value around room temperature of the dynamic viscoelastic property is remarkably smaller than that of PTFE, and the crystal transition absorption is greatly reduced. This fact means expression of spring characteristics in the normal temperature region, which is effective for a dynamic sealability (sealing performance) function, and exerts a great effect in a hydraulic cylinder seal, a shock absorber, and the like.
[0031]
A sliding member in which the surface of a brass-based metal has a porous structure and a mixture of PTFE and a Pb-based compound is embedded in a hole is widely used in automotive parts. Released and contributes to environmental pollution. A modified fluororesin obtained by irradiating with ionizing radiation under the conditions of the present invention in the presence of PTFE and PFA can be replaced with a Pb compound. The sliding member which does not use a Pb compound is realizable by mix | blending the grinding | pulverization microparticles | fine-particles of the said modified fluororesin with a PTFE dispersion, and embedding in a brass-type porous structure. In addition, pulverized fine particles of modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and PFA are blended with PFA to obtain a melt-extruded film. It is possible to obtain a sliding member by integrally combining the textured structure film with a rolling roll and then rounding it into a cylindrical shape.
[0032]
According to the present invention, it is possible to realize a large block (molded product) that can be realized only with PTFE by using both PFA and PTFE. For example, a mixed powder of 90 parts by weight of a modified fluororesin pulverized powder and 10 parts by weight of a PFA powder obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and PFA is molded into PTFE. A large block can be obtained in the same manner as a conventional large block manufacturing method using PTFE (unmodified) by preforming with a mold for use and firing in a PTFE firing furnace. Here, 90 parts by weight of the modified fluororesin component exhibits a higher melt viscosity than that of PTFE (unmodified), so that 10 parts by weight of the flowing molten component (PFA) permeates into the interface and eliminates voids. Thus, a mechanically and chemically stable molded product can be obtained. The function of the final product depends on the content ratio of PTFE and PFA in the modified fluororesin, but the elastic modulus at high temperature can be greatly improved compared to conventional PTFE molded products, and the advantages are widely exhibited in semiconductor and liquid crystal manufacturing processes. Is done.
[0033]
Copiers, particularly color copiers, are required to reduce the friction of the urethane blade and improve the toner non-stickiness of the fixing roll. Urethane blades obtained by molding a composition in which liquid polyurethane is blended with a modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and PFA can achieve low friction. it can. A modified fluororesin obtained by irradiating ionizing radiation under the conditions of the present invention in the presence of PTFE and PFA, or irradiating ionizing radiation under the conditions of the present invention in the presence of PFA and P-TFE. A toner non-adhesive roll can be realized by tube-molding a composition obtained by blending the resulting modified fluororesin with PFA and applying it to a copier roll. In addition to the non-adhesiveness of PFA, the snappy property (rubber elasticity) of the modified fluororesin exhibits even more excellent toner non-adhesiveness. By improving the toner non-adhesiveness, it is possible to perform copying by lowering the melting temperature of the toner, and energy saving can be achieved by lowering the copying temperature.
[0034]
The modified fluororesin of the present invention can be applied to the field of molecular biotechnology. The processability, radiation resistance, and non-chemical contamination of the modified fluororesin of the present invention can effectively cope with various forms of medical equipment, sterilization treatment by radiation, culture of various bacteria, etc. It is applied to functional population sites that require lubrication functions including in vivo artificial bones where sterilization and X-ray imaging are performed, and application to simple judgment sensory parts of virus species by culturing DNA and the like There is expected.
[0035]
According to the present invention, it is possible to obtain a modified fluororesin fiber excellent in wear resistance, and it can be applied to a braided product or the like. By using a molding raw material blended with PTFE and a modified fluororesin, adopting a conventional processing method, or using a molding raw material blended with PTFE and PFA, and forming fibers with the conventional method, the conditions of the present invention By adopting a method of irradiating with ionizing radiation under the condition, further, PFA is blended with PTFE fine powder, and the paste extruded mold is irradiated with ionizing radiation under the conditions of the present invention, so that the temperature is increased (about 370). Adopting a method of stretching after heating), and further heating a paste extrudate obtained by blending PTFE fine powder with PFA powder to about 340 ° C. while stretching under a dilute condition of oxygen By adopting a method of irradiating ionizing radiation, a modified fluororesin fiber can be obtained.
[0036]
PTFE solid lubricant (lubricant) is used to collect PTFE cutting waste, non-factory standard products (raw materials, processed products), end-user used waste, etc., and then disassemble them by irradiation with ionizing radiation (before irradiation) The molecular weight is reduced to about 1/100) and pulverized with a jet mill to obtain fine powder having an average particle size of about 10 μm. This is an engineering plastic, rubber, paint, ink, grease, lubricating oil, RTV silicone gasket, liquid sealant, etc. It has been added to. The modified fluororesin powder of the present invention exhibits a solid lubricant function that greatly exceeds conventional PTFE. A solid lubricant can be obtained by mixing fine powder obtained by pulverizing the recovered PTFE waste material and PFA waste material, irradiating with ionizing radiation under the conditions of the present invention, and pulverizing again by jet mill pulverization. Alternatively, a method of once irradiating ionizing radiation under the conditions of the present invention after irradiation with ionizing radiation in the presence of oxygen to lower the molecular weight can also be employed.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) are mixed with a juicer type mixer, and the mixture is molded into a PTFE preforming mold. And pressure-molded at a pressure of 30 MPa to form a 2 mm thick, 50 mm square sheet, which was fired at a temperature of 360 ° C. for 1 hour. The fired sheet was put into a heating furnace at 340 ° C. and sucked with a vacuum pump after 1 hour. When the oxygen concentration reached 0.4 torr, suction was stopped, nitrogen gas was sealed, and an electron beam was charged at 20 kGy / time. A modified sheet was obtained by irradiating 5 times with a total irradiation dose (total irradiation dose of 100 kGy) as a test sample.
[0038]
[Example 2]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) are mixed with a juicer-type mixer, and the mixture is 2 mm thick on a SUS tray. Then, it was put in a heating furnace at 340 ° C. and sucked with a vacuum pump after 1 hour, and when the oxygen concentration reached 0.4 torr, suction was stopped and nitrogen gas was sealed, and an electron beam was charged at 20 kGy / time. The irradiation was modified 5 times (total irradiation dose 100 kGy). This modified sample is cooled and pulverized with a desktop jet mill to obtain a modified powder having an average particle size of 60 μm. 20 g of this modified powder and PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) 80 g was mixed with a juicer mixer, and then a disk sheet having a thickness of 2 mm and an outer diameter of 50 mm was preformed, and then fired at 350 ° C. for 1 hour to prepare a test sample.
[0039]
[Example 3]
20 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 80 g of PFA powder (trade name: P-63P, manufactured by Asahi Glass Co., Ltd.) were mixed at 360 ° C. with a Brabender blast mill, and the melt was 2 mm thick. The sheet was transferred to a 50 mm square sheet mold and cooled under pressure to obtain a sheet having a thickness of 2 mm. This sheet was modified by irradiating with an electron beam under the same conditions as in Example 1, the modified sheet was reheated to 340 ° C., and sizing cooling was performed with a 2 mm sheet mold to improve dimensional accuracy. A sample was used.
[0040]
[Example 4]
80 g of PFA powder (trade name: P-63P, manufactured by Asahi Glass Co., Ltd.) and 20 g of modified powder having an average particle diameter of 60 μm obtained in the same manner as in Example 2 were kneaded with a Brabender blast mill, and the thickness was 2 mm and 50 mm square. A sheet was obtained by compression molding at a temperature of 350 ° C. using a mold and used as a test sample.
[0041]
[Example 5]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) at a ratio of 20 g were mixed with a juicer-type mixer, and the mixture was implemented with 80 g of this mixture. 20 g of the crosslinked powder having an average particle diameter of 60 μm obtained in Example 2 was mixed with a juicer mixer, a disk sheet having a thickness of 2 mm and an outer diameter of 50 mm was preformed, and then fired at 350 ° C. for 1 hour. A sample was used.
[0042]
[Comparative Example 1]
PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) was compression molded at 360 ° C. and a pressure of 30 MPa for 1 hour to obtain a 2 mm thick, 50 mm square sheet, which was used as a test sample.
[0043]
[Comparative Example 2]
PFA powder (trade name: P-63P, manufactured by Asahi Glass Co., Ltd.) was melted at a temperature of 360 ° C., this melt was transferred to a 2 mm thick, 50 mm square sheet mold, and cooled by pressure to form a 2 mm thick sheet. This was used as a test sample.
[0044]
[Comparative Example 3]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) are mixed with a juicer-type mixer, and the mixture is pre-molded. A 2 mm thick, 50 mm square sheet was obtained by pressure molding at a pressure of 30 MPa, and this was fired at 360 ° C. for 1 hour to obtain a test sample.
[0045]
About each test sample of Examples 1-5 and Comparative Examples 1-3, a friction coefficient and a wear coefficient were measured, and the result is shown in Table 1. For the measurement, a thrust type frictional wear test apparatus was used, and a pressure of 0.25 MPa was applied to the test sample with a cylindrical ring made of SUS304 (outer diameter 25.6 mmφ, inner diameter 20.6 mmφ, surface roughness 0.20 μm), The measurement was performed under the condition of a speed of 0.5 m / sec.
[0046]
Wear coefficient K (m · sec / MPa / m / hr × 10 -6 ) Was obtained from the relational expression of W = KPVT wear. In the formula, W is the wear depth (m), P is the load (MPa), V is the speed (m / sec), T is the time (hr), and the multiplier PV value of pressure and speed is 1. 25kg ・ m / cm 2 ・ Sec, and the wear depth is measured by measuring the weight decrease of the test sample after 2 hours of measurement, and then converting the decrease weight of the sheet under test into a reduced capacity, which is divided by the contact area of the cylindrical ring. And calculated.
[0047]
[Table 1]
Figure 0004081914
[0048]
[Example 6]
Example 1 Using 80 g of PTFE (trade name: 70-J) modified with 0.1 mol of perfluorovinyl ether (PPVE) and 20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui / DuPont Fluorochemicals) The test sample was obtained by simple operation.
[0049]
[Comparative Example 4]
A test sample was obtained in the same manner as in Comparative Example 1 using PTFE (trade name: 70-J) modified with 0.1 mol of perfluorovinyl ether (PPVE).
[0050]
The friction coefficient and the wear coefficient were measured for each test sample of Example 6 and Comparative Example 4, and the results are shown in Table 2.
[0051]
[Table 2]
Figure 0004081914
[0052]
[Examples 7 to 15]
Mixing with a juicer-type mixer at a ratio of 80 parts by weight of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 parts by weight of PFA powder (trade name: Teflon MP10, manufactured by Mitsui / Du Pont Fluoro Chemical Co., Ltd.) Was placed in a SUS tray to a thickness of 2 mm, placed in a heating furnace at 340 ° C. and sucked with a vacuum pump after 1 hour, and when the oxygen concentration reached 0.4 torr, suction was stopped and nitrogen gas was sealed. Modification was performed by irradiating an electron beam with an irradiation dose of 20 kGy / times 5 times (total irradiation dose 100 kGy). This modified sample was cooled and pulverized with a desktop jet mill to obtain a modified powder having an average particle size of 60 μm. 20 g of this modified powder and 80 g of various polymers shown in Table 3 were each obtained with a Brabender blast mill. The mixture was kneaded under processing temperature conditions suitable for the polymer, and the melt was transferred to a 2 mm-thick and 50-mm square sheet mold, and cooled under pressure to obtain a 2 mm-thick sheet as a test sample.
[0053]
[Comparative Examples 5 to 14]
Sheets using various polymers alone used in Examples 7 to 15 were obtained and used as test samples.
[0054]
About each test sample of Examples 7-16 and Comparative Examples 5-14, a friction coefficient and a wear coefficient were measured, and the result is shown in Table 3.
[0055]
[Table 3]
Figure 0004081914
[0056]
[Example 17]
100 g of water-added NBR (trade name: Zetpol 2020), 30 g of zinc methacrylate, 5 g of organic peroxide vulcanizing agent, and 100 g of modified powder having an average particle size of 60 μm obtained in the same manner as in Examples 7 to 16 were rolled. After kneading, compression molding was performed at 160 ° C. to obtain a vulcanized sheet having a thickness of 2 mm and a 10 cm square, which was used as a test sample.
[0057]
[Example 18]
P-TFE (fluoro rubber, trade name: Afras 200, manufactured by Asahi Glass Co., Ltd.) 100 g, sodium stearate 1 g, magnesium oxide 5 g, calcium hydroxide 6 g, bisphenol AF 2 g, average particle diameter obtained in the same manner as in Examples 7-16 Was vulcanized and molded in the same manner as in Example 17 to obtain a vulcanized sheet having a thickness of 2 mm and a 10 cm square.
[0058]
[Comparative Example 15]
A vulcanized sheet was obtained in the same manner as in Example 17 except that 100 parts by weight of PTFE lubricant (trade name: L169J) was blended instead of 100 parts by weight of the modified powder, and used as a test sample.
[0059]
[Comparative Example 16]
A vulcanized sheet was obtained in the same manner as in Example 18 except that 100 parts by weight of PTFE lubricant (trade name: L169J) was blended instead of 100 parts by weight of the modified powder, and used as a test sample.
[0060]
The friction coefficient and the wear coefficient were measured for each sample of Examples 17 and 18 and Comparative Examples 15 and 16, and the results are shown in Table 4.
[0061]
[Table 4]
Figure 0004081914
[0062]
[Example 19]
80 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) and 20 g of PFEP (trade name: NC 1500) are mixed with a juicer-type mixer, and the mixture is kneaded at 360 ° C. using a Brabender plast mill. The melt was taken out into a sheet metal mold having a thickness of 2 mm, and immediately pressed (3 MPa) and cooled to obtain a sheet having a thickness of 2 mm and a 50 mm square. The sheet was placed in a heating furnace at 315 ° C. and sucked with a vacuum pump after 1 hour. When the oxygen concentration became 1 torr or less, the suction was stopped, nitrogen gas was sealed, and an electron beam was irradiated at 20 kGy / time. Irradiated 5 times with a dose (total irradiation dose of 100 kGy), a modified sheet was obtained and used as a test sample.
[0063]
[Examples 20 to 25]
The modified sheet obtained in Example 19 was pulverized with a hammer mill and then pulverized with a desktop jet mill to obtain a modified powder having an average particle size of 100 μm. 20 g of this modified powder and various polymers shown in Table 5 80 g is kneaded with a Brabender blast mill at a temperature of 360 ° C., the melt is taken out into a sheet metal mold having a thickness of 2 mm, and immediately pressed (3 MPa) and cooled to obtain a sheet having a thickness of 2 mm and a 50 mm square. A test sample was used. Brabender blast mill mixing temperatures were PFEP: 340 ° C, ETFE: 300 ° C, PVDF: 200 ° C, ECTFE: 300 ° C, and PCTFE: 200 ° C.
[0064]
[Comparative Example 17]
80 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), 20 g of PFEP (trade name: NC1500) and 20 g of PTFE lubricant (trade name: L169J) are mixed with a juicer-type mixer, and the mixture is Brabender Plast. Using a mill, the mixture was kneaded at 360 ° C., and the melt was taken out into a sheet metal mold having a thickness of 2 mm and rapidly cooled (3 MPa) to obtain a sheet having a thickness of 2 mm and a square of 50 mm, which was used as a test sample.
[0065]
[Comparative Examples 18-23]
Using 80 g of various polymers shown in Table 5 and 20 g of PTFE lubricant (trade name: L169J), a sheet was obtained in the same manner as in Comparative Example 17, and used as a test sample.
[0066]
About each test sample of Examples 19-25 and Comparative Examples 17-23, a friction coefficient and a wear coefficient were measured, and the result is shown in Table 5.
[0067]
[Table 5]
Figure 0004081914
[0068]
[Example 26]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PEEK (trade name: 150XF) are mixed with a juicer-type mixer, and the mixture is press-molded with a preforming mold at a pressure of 30 MPa to be 2 mm thick A 50 mm square sheet was obtained and fired at 360 ° C. for 1 hour. The sheet was put into a heating furnace at 340 ° C. and sucked with a vacuum pump after 1 hour. When the oxygen concentration reached 0.5 torr, suction was stopped and nitrogen gas was sealed, and an electron beam was applied at 20 kGy / times. A modified sheet was obtained by irradiating five times with the irradiation dose (total irradiation dose 100 kGy), and used as a test sample.
[0069]
[Examples 27 to 30]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PEEK (trade name: 150XF) are mixed with a juicer-type mixer, and the mixture is placed in a SUS tray to a thickness of 2 mm. 1 hour later, it is sucked with a vacuum pump, and when the oxygen concentration reaches 0.5 torr, suction is stopped, nitrogen gas is sealed, and an electron beam is irradiated five times at an irradiation dose of 20 kGy / time. (Total irradiation dose 100 kGy) The modified sample was cooled and pulverized with a desktop jet mill to obtain a modified powder having an average particle size of 100 μm, and 20 g of the modified powder and 80 g of various polymers shown in Table 6 were obtained with a Brabender blast mill. A square sheet having a thickness of 2 mm and 50 mm was obtained by mixing under processing temperature conditions suitable for the polymer, and used as a test sample. Production of the sheet is performed by firing in Example 27 and by compression molding after melt-kneading in Examples 28-30.
[0070]
[Example 31]
PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) 60 g, PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) 20 g and PEEK (trade name: 150XF) 20 g, A modified sheet was obtained in the same manner as in Example 26 and used as a test sample.
[0071]
[Examples 32-39]
Example: PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) 60 g, PFA powder (trade name: Teflon MP10, manufactured by Mitsui / Du Pont Fluoro Chemical Co., Ltd.) 20 g and PEEK (trade name: 150XF) 20 g The modified powder was obtained in the same manner as in 27 to 30, and 20 g of the modified powder and 80 g of various polymers shown in Table 6 were mixed with a Brabender blast mill under processing temperature conditions suitable for each polymer, and the thickness was 2 mm. A 50 mm square sheet was obtained and used as a test sample. Brabender blast mill mixing temperatures were PFA: 380 ° C, PFEP: 350 ° C, ETFE: 320 ° C, PPS: 300 ° C, PES: 320 ° C, PA: 300 ° C.
[0072]
[Example 40]
100 g of water-added NBR (trade name: Zetpol 2020), 30 g of zinc methacrylate, 5 g of organic peroxide vulcanizing agent, and 100 g of modified powder having an average particle size of 100 μm obtained in the same manner as in Examples 32-39 are rolled. After kneading, compression molding was performed at 160 ° C. to obtain a vulcanized sheet having a thickness of 2 mm and a 10 cm square, which was used as a test sample.
[0073]
[Example 41]
P-TFE (fluoro rubber, trade name: Afras 200, manufactured by Asahi Glass Co., Ltd.) 100 g, sodium stearate 1 g, magnesium oxide 5 g, calcium hydroxide 6 g, bisphenol AF 2 g, average particle diameter obtained in the same manner as in Examples 32-39 100 g of the modified powder having a thickness of 100 μm was vulcanized and molded in the same manner as in Example 40 to obtain a vulcanized sheet having a thickness of 2 mm and a 10 cm square.
[0074]
[Comparative Example 24]
20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was irradiated with 100 kGy in air and decomposed to a low molecular weight, and 80 g of PFA (340 J, unmodified) was 380 with a blast mill. A sheet was obtained by kneading and molding at 0 ° C. and used as a test sample.
[0075]
About each test sample of Examples 26-41 and the comparative example 24, a friction coefficient and a wear coefficient were measured, and the result is shown in Table 6.
[0076]
[Table 6]
Figure 0004081914
[0077]
[Example 42]
80 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 20 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) were mixed with a juicer-type mixer, and the mixture was heated at 340 ° C. 1 hour later, suction was performed with a vacuum pump, and when the oxygen concentration reached 0.5 torr, the suction was stopped, nitrogen gas was sealed, and the electron beam was irradiated with 10 kGy for modification. The modified sample is cooled and pulverized with a desktop jet mill to obtain a modified powder having an average particle size of 40 μm. 30 g of this modified powder and PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) 100 g was mixed with a juicer mixer, a disk sheet having a thickness of 2 mm and an outer diameter of 50 mm was preformed at a pressure of 15 MPa using a preforming mold, and fired at 360 ° C. for 1 hour to prepare a test sample.
[0078]
[Example 43]
30 g of the modified powder obtained in Example 42 and 70 g of PFA (trade name: 340J) were kneaded at 380 ° C. using a Brabender plast mill, and the melt was immediately transferred to a sheet compression mold having a thickness of 2 mm. A sheet with a thickness of 2 mm and a 50 mm square was obtained by cooling under pressure (0.2 MPa), and used as a test sample.
[0079]
The friction coefficient and the wear coefficient were measured for each test sample of Examples 42 and 43, and the results are shown in Table 7.
[0080]
[Table 7]
Figure 0004081914
[0081]
[Examples 44 to 46]
Electron beam irradiation dose of 1000 kGy (50 kGy / 20 times of electron beam irradiation dose), 2000 kGy (50 kGy / 40 times of electron beam irradiation dose), 3000 kGy (50 kGy / 60 times of electron beam irradiation dose) As in Example 42, a sheet was obtained and used as a test sample. In each example, irradiation and cooling time (non-irradiation time) were controlled so that the irradiation temperature by beam heating was 380 ° C. or lower.
[0082]
About each test sample of Examples 44-46, a friction coefficient and a wear coefficient were measured, and the result is shown in Table 8.
[0083]
[Table 8]
Figure 0004081914
[0084]
[Example 47]
20 g of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 80 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) are mixed with a juicer-type mixer, and the mixture is mixed with a Brabender Plast Mill. It was used and kneaded at 360 ° C., and the melt was taken out into a sheet metal mold having a thickness of 2 mm and rapidly cooled (3 MPa) to obtain a sheet having a thickness of 2 mm and a 50 mm square. This sheet was modified by irradiating an electron beam with an irradiation dose of 1000 kGy at a heating temperature of 330 ° C. in an atmosphere of nitrogen gas having an oxygen concentration of 0.5 torr (20 irradiation with an electron beam irradiation dose of 50 kGy / time). . Irradiation and cooling time (non-irradiation time) were controlled so that the irradiation temperature by beam heating was 360 ° C. or lower. This modified sheet is pulverized by a hammer mill and then pulverized by a desktop jet mill to obtain a modified powder having an average particle size of 100 μm. 80 g of this modified powder and 20 g of PFA (trade name: 340J) are brabender. Kneading with a blast mill under a temperature condition of 380 ° C., taking out the melt into a sheet metal mold having a thickness of 2 mm, quickly pressing (0.2 MPa) and cooling to obtain a sheet having a thickness of 2 mm and a square of 50 mm. It was. This sheet was excellent in transparency and exhibited rubber elastic properties.
[0085]
[Example 48]
2 kg of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) and 8 kg of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) were mixed with a Henschel mixer, and the mixed powder had an average thickness of 5 mm. After heating to 340 ° C. without pressure, modification was performed by irradiating an electron beam with an irradiation dose of 300 kGy (irradiating with an electron beam irradiation dose of 20 kGy / times 15 times) in an atmosphere of nitrogen gas having an oxygen concentration of 0.5 torr. Irradiation and cooling time (non-irradiation time) were controlled so that the irradiation temperature by beam heating was 360 ° C. or lower. This modified product was pulverized with an air jet mill to obtain a modified powder having an average particle size of 5 μm. 60 g of this modified powder and 40 g of PFA powder (trade name: Teflon MP10, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) are mixed with a juicer-type mixer to obtain a powder raw material for electrostatic coating. An industrial cooking container was obtained. This rice cooking container had excellent durability compared to conventional PFA-coated products.
[0086]
[Example 49]
400 g of the modified powder having an average particle size of 5 μm obtained in Example 48 and 600 g of PFA (trade name: 340J) were melt-kneaded with a twin screw extruder to obtain a pellet. A 60 μm thick, 20 cm wide film was extruded by a machine, and at the same time, a laminate plate with an aluminum alloy sheet treated with a PAI (polyamideimide) primer was obtained on the film surface, and the laminate plate was rolled to have a PFA surface of 10 cm in length. A container-shaped product having a width of 6 cm and a depth of 2 cm was obtained. The non-adhesiveness of this container was equivalent to that of a conventional product using a PFA laminate, but the wear resistance was 1000 times. Further, the film itself was highly transparent, non-spherical, excellent in surface smoothness, and was effective in preventing foreign matter adhesion.
[0087]
[Example 50]
200 g of the modified powder having an average particle size of 5 μm obtained in Example 48 and 800 g of PFA (trade name: AP201) were mixed, and the mixture was used as a raw material from a 100 μm aperture multi-die to a fibrous monofilament using a 10 mm twin screw extruder. Was extruded and pulled down 10 to 30 times to obtain a fiber having an average diameter of 10 μm. Using this fiber, a 1 mm thick nonwoven fabric bearing and a filter cloth having a 1 μm pore size were obtained. When used for non-woven bearing journal type bearings, it exhibits wear resistance comparable to that of conventional PTFE-filled products, and is a non-filling system, so its cleanliness has been evaluated in the semiconductor, pharmaceutical plant, and food industries. ing.
[0088]
[Example 51]
4 kg of the modified powder having an average particle diameter of 5 μm obtained in Example 48 and 1 kg of PTFE molding powder (trade name: G-163, manufactured by Asahi Glass Co., Ltd.) are uniformly mixed with a high-speed mixing type Henschel, and the mixture is used for high mixing. A billet having a thickness of 20 cm and a diameter of 20 cm was pressure-molded with a preforming mold (molding pressure 0.5 MPa). The preform was heated and calcined at 340 to 360 ° C. for 2 hours with no load, then cooled at a pressure of 0.5 MPa, and a product having a thickness of 100 μm to 5 mm was obtained using a PTFE cutting lathe. .
[0089]
[Example 52]
PTFE industrial waste (cutting scraps, loss materials such as factory waste, used products are made of molding powder, fine powder, dispersion, etc., and the shape can be bulk, tape, yarn, fiber, etc. Except 100% PTFE) and PFA industrial waste (semiconductor containers, tubes, etc., excluding foreign matter, 100% PFA), if necessary, remove foreign matter by washing, etc., and pulverize with an air jet mill A powder of about 100 μm was obtained. 800 g of this powder PTFE and 200 g of powder PFA were mixed with a Henschel mixer, and this mixture was heated to 340 ° C. and then irradiated with an electron beam of 2000 kGy in an atmosphere of nitrogen gas having an oxygen concentration of 0.5 torr (50 kGy / time). 40 times irradiation with electron beam irradiation dose). This modified product was pulverized with an air jet mill to obtain a modified powder having an average particle size of 10 μm. Since a modified powder with an average particle size of 10 μm can be obtained, it was confirmed that it can be applied to a wide range of applications (plastic, rubber, paint, ink, grease, oil, plating, etc.) as a substitute for conventional PTFE lubricants. . It was confirmed that a submicron particle system of 10 μm or less can be realized by wet pulverization of a coating liquid, oil, or the like.
[0090]
[Example 53]
A mixture of 800 g of PTFE powder having an average particle diameter of about 100 μm and 200 g of PFA powder obtained in the same manner as in Example 52 was heated to 340 ° C., irradiated with 10 kGy in an atmosphere containing oxygen, In a state heated to 340 ° C., an electron beam was irradiated with an irradiation dose of 100 kGy in an atmosphere of nitrogen gas having an oxygen concentration of 0.5 torr (twice irradiation with an electron beam irradiation dose of 50 kGy / time) for modification. This modified product was pulverized with an air jet mill to obtain a modified powder having an average particle size of 10 μm. It was confirmed that a modified fluororesin product by electron beam irradiation with a relatively low dose and a short time with a low molecular weight was obtained at low cost.
[0091]
[Example 54]
A mixture of 800 g of PTFE powder having an average particle diameter of about 100 μm and 200 g of PFA powder obtained in the same manner as in Example 52 was heated to 340 ° C., irradiated with 10 kGy of electron beam in an atmosphere containing oxygen, After heating to 340 ° C., an electron beam was irradiated with an irradiation dose of 2000 kGy in an atmosphere of nitrogen gas having an oxygen concentration of 0.5 torr (40 irradiation with an electron beam irradiation dose of 50 kGy / time), followed by 1000 kGy irradiation (50 kGy / 20 times of irradiation with a single electron beam irradiation dose), a total of 3000 kGy was irradiated. In the first irradiation, the material temperature sometimes partially exceeded 380 ° C., and the cooling period was controlled so that the material temperature was 360 ° C. or less in the second irradiation. This confirmed that high-dose irradiation can be performed economically. The obtained modified fluororesin could not be confirmed to have a crystalline melting point by DSC observation. In addition, as a result of attempting to make the air jet mill ultrafine powder, this modified product can be confirmed to have ultrafine particles approaching the 1 μm level under specific conditions. Furthermore, ultrafine particles in liquid (including oil) can also obtain nanomicron particles. I found out that This fact has been confirmed to be applicable not only to inks and oils but also to the nanotechnology field.
[0092]
【The invention's effect】
According to the present invention described above, it is possible to realize a modified fluororesin, a modified fluororesin composition, and a modified fluororesin molded article that have excellent mechanical resistance and can be used in a wide range of fields. This greatly contributes to expanding the application range of fluororesin.

Claims (9)

テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)系共重合体とテトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体の2種類のふっ素樹脂を共存させ、酸素濃度100torr以下の不活性ガス雰囲気下で、且つ310℃〜360℃の温度下で、電離性放射線を照射線量10kGy〜10MGyの範囲で照射してなることを特徴とする改質ふっ素樹脂。Tetrafluoroethylene - perfluoro (alkyl vinyl ether) copolymer and tetrafluoroethylene - coexist two kinds of fluororesin hexafluoropropylene copolymer, oxygen concentration 100torr under following inactive gas atmosphere, and 310 A modified fluororesin obtained by irradiating ionizing radiation within a range of irradiation doses of 10 kGy to 10 MGy at a temperature of from ℃ to 360 ℃. 315℃〜330℃の温度下で電離性放射線を照射してなる請求項1記載の改質ふっ素樹脂。  The modified fluororesin according to claim 1, which is formed by irradiating ionizing radiation at a temperature of 315 ° C to 330 ° C. テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体とエチレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、ポリふっ化ビニリデンから選ばれる少なくとも1種を共存させ、酸素濃度100torr以下の不活性ガス雰囲気下で、且つ280℃〜330℃の温度下で、電離性放射線を照射線量10kGy〜10MGyの範囲で照射してなることを特徴とする改質ふっ素樹脂。Tetrafluoroethylene - hexafluoropropylene copolymer and ethylene - tetrafluoroethylene copolymer, ethylene - chlorotrifluoroethylene copolymer, coexist at least one selected from polyvinylidene fluoride, following the oxygen concentration 100torr A modified fluororesin obtained by irradiating ionizing radiation within an irradiation gas dose range of 10 kGy to 10 MGy in an inert gas atmosphere and at a temperature of 280 ° C to 330 ° C. 285℃〜310℃の温度下で電離性放射線を照射してなる請求項3記載の改質ふっ素樹脂。  The modified fluororesin according to claim 3, which is formed by irradiating ionizing radiation at a temperature of 285 ° C to 310 ° C. 請求項1または3に記載の改質ふっ素樹脂と未改質高分子材料を含有する改質ふっ素樹脂組成物。  A modified fluororesin composition comprising the modified fluororesin according to claim 1 or 3 and an unmodified polymer material. 未改質高分子材料は、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体、エチレン−テトラフルオロエチレン共重合体、ポリふっ化ビニリデン、エチレン−クロロトリフルオロエチレン共重合体、ポリクロロフルオロエチレン、テトラフルオロエチレン−パーフルオロジイオキサソール共重合体、ポリふっ化ビニル、ふっ化ビニリデン−ヘキサフルオロプロペン系共重合体、プロピレン−テトラフルオロエチレン系共重合体、ふっ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系共重合体、フルオロホスファゼン系ゴム、ポリイミド、芳香族ポリアミド、ポリアリーレンスルフィド及び芳香族ポリエステルから選ばれる少なくとも1種である請求項5記載の改質ふっ素樹脂組成物。Unmodified polymeric material is polytetrafluoroethylene, tetrafluoroethylene - perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene - hexafluoropropylene copolymer, ethylene - tetrafluoroethylene copolymer, poly Vinylidene fluoride, ethylene-chlorotrifluoroethylene copolymer, polychlorofluoroethylene, tetrafluoroethylene-perfluorodioxasol copolymer, polyvinyl fluoride, vinylidene fluoride-hexafluoropropene copolymer, propylene -Tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, fluorophosphazene rubber, polyimide, aromatic polyamide, polyarylene sulfide Modified fluoropolymer composition according to claim 5, wherein at least one selected from fine aromatic polyester. 請求項1または3に記載の改質ふっ素樹脂を成形した改質ふっ素樹脂成形体であって、前記ふっ素樹脂の混合物を所定形状に成形し、当該成形体に電離性放射線を照射してなることを特徴とする改質ふっ素樹脂成形体。  A modified fluororesin molded product obtained by molding the modified fluororesin according to claim 1 or 3, wherein the mixture of the fluororesin is molded into a predetermined shape, and the molded product is irradiated with ionizing radiation. Modified fluororesin molded product characterized by 請求項1または3に記載の改質ふっ素樹脂を成形した改質ふっ素樹脂成形体であって、前記ふっ素樹脂の混合物に電離性放射線を照射し、照射後の混合物を粉砕した粉体を所定形状に成形してなることを特徴とする改質ふっ素樹脂成形体。  A modified fluororesin molded body obtained by molding the modified fluororesin according to claim 1 or 3, wherein the mixture of the fluororesin is irradiated with ionizing radiation, and the powder obtained by pulverizing the irradiated mixture has a predetermined shape. A modified fluororesin molded product characterized by being molded into a molded product. 請求項1または3に記載の改質ふっ素樹脂を成形した改質ふっ素樹脂成形体であって、前記ふっ素樹脂の混合物に電離性放射線を照射し、照射後の混合物を粉砕した粉体と未改質の高分子材料を含有する改質ふっ素樹脂組成物を所定形状に成形してなることを特徴とする改質ふっ素樹脂成形体。  A modified fluororesin molded product obtained by molding the modified fluororesin according to claim 1 or 3, wherein the mixture of the fluororesin is irradiated with ionizing radiation, and the mixture after irradiation is crushed with powder and unmodified. A modified fluororesin molded article obtained by molding a modified fluororesin composition containing a high-quality polymer material into a predetermined shape.
JP10141199A 1999-04-08 1999-04-08 Modified fluororesin, modified fluororesin composition, and modified fluororesin molding Expired - Fee Related JP4081914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141199A JP4081914B2 (en) 1999-04-08 1999-04-08 Modified fluororesin, modified fluororesin composition, and modified fluororesin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141199A JP4081914B2 (en) 1999-04-08 1999-04-08 Modified fluororesin, modified fluororesin composition, and modified fluororesin molding

Publications (2)

Publication Number Publication Date
JP2000290409A JP2000290409A (en) 2000-10-17
JP4081914B2 true JP4081914B2 (en) 2008-04-30

Family

ID=14299978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141199A Expired - Fee Related JP4081914B2 (en) 1999-04-08 1999-04-08 Modified fluororesin, modified fluororesin composition, and modified fluororesin molding

Country Status (1)

Country Link
JP (1) JP4081914B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351814A1 (en) * 2003-10-30 2005-06-16 Institut Für Polymerforschung Dresden E.V. Free-radically coupled PTFE polymer compounds and process for their preparation
JP4629998B2 (en) * 2004-04-22 2011-02-09 パナソニック株式会社 Sealed secondary battery
JP4501660B2 (en) * 2004-12-03 2010-07-14 日立電線株式会社 Fluororesin sheet manufacturing method and manufacturing apparatus
JP4978081B2 (en) * 2006-06-30 2012-07-18 日立電線株式会社 Modified fluororesin composition and molded body using the same
JP5224315B2 (en) * 2007-03-23 2013-07-03 独立行政法人日本原子力研究開発機構 Radiation-crosslinked fluorine-containing copolymer
CN101687401A (en) 2007-06-20 2010-03-31 住友电工超效能高分子股份有限公司 Fluororesin composite material, cooking utensil, cooker, roller for oa apparatus, belt for oa apparatus, and processes for producing these
DE102007038929B4 (en) * 2007-08-13 2010-01-14 Leibniz-Institut Für Polymerforschung Dresden E.V. Polyphenylene sulfide (per) fluoropolymer materials and processes for their preparation and use
JP4956505B2 (en) * 2008-08-01 2012-06-20 日立電線株式会社 MODIFIED FLUORINE RESIN COMPOSITION AND MODIFIED FLUORINE RESIN MOLDED BODY
JP4812826B2 (en) * 2008-11-26 2011-11-09 住友電工ファインポリマー株式会社 Polytetrafluoroethylene resin fine powder or its extrusion
JP5472689B2 (en) * 2009-06-18 2014-04-16 日立金属株式会社 Modified fluororesin composition and molded body
JP2015067645A (en) * 2013-09-26 2015-04-13 住友電工ファインポリマー株式会社 Mixed resin composition, mixed resin molding, and mixed resin coated material
JP6547014B1 (en) * 2018-01-23 2019-07-17 ダイキン工業株式会社 Powder for shaping
JP6860093B2 (en) * 2018-02-07 2021-04-14 ダイキン工業株式会社 Method for producing low molecular weight polytetrafluoroethylene
JP7261422B2 (en) * 2019-07-12 2023-04-20 ダイキン工業株式会社 Method for producing low-molecular-weight polytetrafluoroethylene and powder
EP4065657A4 (en) 2019-11-27 2023-12-06 Saint-Gobain Performance Plastics Corporation Seal and method of forming
CN113444330B (en) * 2021-06-28 2023-01-24 浙江巨化技术中心有限公司 Polychlorotrifluoroethylene resin composition

Also Published As

Publication number Publication date
JP2000290409A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP4081914B2 (en) Modified fluororesin, modified fluororesin composition, and modified fluororesin molding
JP3566805B2 (en) Sliding member
US20070044906A1 (en) Multilayer polymeric composites having a layer of dispersed fluoroelastomer in thermoplastic
US20070048476A1 (en) Assemblies sealed with multilayer composite compression seals having a layer of dispersed fluoroelastomer in thermoplastic
US20070045967A1 (en) Assemblies sealed with multilayer composite torsion seals having a layer of dispersed fluoroelastomer in thermoplastic
JP5702385B2 (en) Resin composition and molded product
US8603411B2 (en) Polymer material and seals formed thereof for high pressure pump applications
US20070190284A1 (en) Melt-processable adhesives for bonding pervious fluoropolymeric layers in multilayer composites
EP3246583B1 (en) Water-lubricated bearing material
EP2664827A1 (en) Seal ring
JP2000129019A (en) Sliding member
JP3948313B2 (en) Sliding member
JP4044725B2 (en) Method for producing modified engineering plastics
JP2007186676A (en) Modified fluororesin composition and its molded article
JPH08231165A (en) Guide shoe
JP5193083B2 (en) Engineering plastic composition and molded article thereof
JPH10316761A (en) Modified fluoro resin powder and molded product thereof
JP2004331814A (en) Modified fluororesin composition and modified fluororesin molded product
JP2002265630A (en) Method for producing crosslinked body of enginnering plastic and method for producing cocrosslinked body of enginnering plastic and fluororesin
JP2007314641A (en) Fluororesin composition
JP3059465B2 (en) Lubricating rubber composition
JPS6153349A (en) Tetrafluoroethylene resin composition
JP2003026883A (en) Abrasion-resistant fluororesin composition and member for sliding
JPH10316762A (en) Modified fluoro resin powder, molded product thereof and their production
JP2002080672A (en) Modified fluororesin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4081914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees