JP4080588B2 - Insulating operation rod and method of manufacturing the same - Google Patents

Insulating operation rod and method of manufacturing the same Download PDF

Info

Publication number
JP4080588B2
JP4080588B2 JP07973098A JP7973098A JP4080588B2 JP 4080588 B2 JP4080588 B2 JP 4080588B2 JP 07973098 A JP07973098 A JP 07973098A JP 7973098 A JP7973098 A JP 7973098A JP 4080588 B2 JP4080588 B2 JP 4080588B2
Authority
JP
Japan
Prior art keywords
ceramic
metal member
insulating
mass
operation rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07973098A
Other languages
Japanese (ja)
Other versions
JPH11282561A (en
Inventor
武文 伊藤
巌 河又
健一 小山
俊則 木村
伸治 佐藤
卓 関谷
洋一 久森
聖一 宮本
孝行 糸谷
光政 寄田
稔正 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07973098A priority Critical patent/JP4080588B2/en
Priority to TW88111902A priority patent/TW419623B/en
Publication of JPH11282561A publication Critical patent/JPH11282561A/en
Application granted granted Critical
Publication of JP4080588B2 publication Critical patent/JP4080588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Mechanical Control Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、真空中の容器内で絶縁と操作力伝達を必要とする開閉装置の絶縁操作ロッドおよびその製造方法に関するものである。
【0002】
【従来の技術】
図6は例えば(株)産業技術サービスセンター発行のセラミックス接合とハイテクろう付けに示された、従来の絶縁継ぎ手の断面図を示す。において、2はメタライズ層、11は筒状セラミックス、12は継手、13はAgろう材である。
【0003】
次に作用について説明する。アルミナ製の筒状セラミックス11の両端の沿面部分にメタライズ層2を形成し、水素中で820℃に加熱して筒状セラミックス11とコバール製の継手10をAgろう材13で接合し絶縁継手を得ていた。
【0004】
【発明が解決しようとする課題】
真空中の容器内で絶縁および操作力伝達を行う絶縁操作ロッドは、絶縁を担うセラミックスに高導電性の金属部材や操作機構に連結される金属部材が接合されたものである。このロッドが真空容器に組み込まれる際、真空中で加熱処理が行われるので、熱が加わった後でも健全な接合性が必要とされる。また、操作力に耐える接合性も必要とされる。に示した従来の接合方法は、大気中やガス中での絶縁および操作力伝達を行うためになされたもので、コバール製の継手12をAgろう材13でアルミナ製の筒状セラミックス11と接合している。しかし、真空容器組立時の加熱温度でろう材が再溶融して初期の接合状態を維持できず接合性が低下したり、接合面が軸方向と平行なので、引張の力に対しては接合面に剪断応力が負荷されて破壊が起こりやすい。また、高価なコバールを継手としているため、高価である等の問題点があった。
【0005】
この発明は上記のような問題点を解消するためになされたもので、真空中の容器内で絶縁および操作力伝達を行う、セラミックスと金属部材とが接合された絶縁操作ロッドにおいて、セラミックスおよび金属部材間が良好に接合されている絶縁操作ロッドおよびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明は、真空中の容器内で絶縁および操作力伝達を行う、セラミックスと金属部材とが接合された絶縁操作ロッドにおいて、前記セラミックスと前記金属部材との間に、中間材として、Moをサンドイッチした三層構造のクラッド材を設け、前記クラッド材が、二層のCu間に20〜80質量%となるようにMoをサンドイッチした三層構造のクラッド材であることを特徴とする絶縁操作ロッドである。
この発明は、真空中の容器内で絶縁および操作力伝達を行う、セラミックスと金属部材とが接合された絶縁操作ロッドにおいて、前記セラミックスと前記金属部材との間に、中間材として、銅の合金を設け、前記銅の合金は、降伏応力が8〜9kgf/mm2であってAgを0.03〜0.15質量%含有するCu合金;Crを0.8質量%含有するCu合金;あるいはZrを0.15質量%含有するCu合金であることを特徴とする絶縁操作ロッドである。
この発明は、前記中間材に貫通孔を設け、かつ前記貫通孔にセラミックスを嵌合させたものを、前記セラミックスと前記金属部材との間に設けたことを特徴とする、請求項1または2に記載の絶縁操作ロッドである。
この発明は、上記請求項1ないし請求項3の何れか1項に記載の絶縁操作ロッドの製造方法であって、前記セラミックスと前記金属部材との間に、中間材として、Moをサンドイッチした三層構造のクラッド材;あるいは銅の合金;のいずれか1つを設け、前記セラミックスと前記金属部材とを接合することを特徴とする絶縁操作ロッドの製造方法である。
【0007】
この発明における絶縁操作ロッドは、セラミックスと金属部材との間に、銅系複合材料、あるいは銅の合金の中間材を配置し接合したものであって、セラミックスと金属部材の熱膨張差で発生する接合部の応力を緩和あるいは緩衝し、安価に接合性を向上できる。
【0008】
ここで、Fe−Ni系合金の好適な組成範囲について説明する。本発明で好適に使用されるFe−Ni系合金は、Niを20〜50質量%含有するFe−Ni合金;Niを20〜50質量%およびCoを3〜25質量%含有するFe−Ni系合金;Niを20〜50質量%およびCrを1〜12質量%含有するFe−Ni系合金;あるいはNiを20〜50質量%およびCoを3〜25質量%含有する前記のFe−Ni系合金に、0.5〜5質量%のCと0.1〜3質量%のSiおよびMnのいずれか1種または2種を含有するFe−Ni系合金である。これらFe−Ni系合金は、インバー、エリンバー、フェルニコ、42アロイ、コバール等と呼ばれる低膨張金属も含むことができる。酸化物、窒化物、炭化物の各セラミックスの熱膨張係数の範囲は4〜12×10-6/Kで、絶縁セラミックと金属部材の熱膨張差に起因する応力を軽減するためにはセラミックスと中間材の熱膨張係数と整合させることが必要である。FeにNi、Co、Cr、C、Si、Mnを上記範囲で添加したものは、4〜12×10-6/Kの熱膨張係数を得られ、セラミックスと金属部材の中間の熱膨張特性を示すFe−Ni系合金を選択することで、発生する応力を緩和でき、接合性が向上する。
【0009】
次に、銅系複合材料の好適な組成範囲について説明する。本発明に好適に使用される銅系複合材料は、CuにMoまたはWの粒子を40〜90質量%の範囲で複合化したもの;あるいは二層のCu間に20〜80質量%となるようにMoをサンドイッチした三層構造のクラッド材である。これもセラミックスの熱膨張係数に近い4〜12×10-6/Kを得るために定めたもので、セラミックスと金属部材の中間の熱膨張特性を示す銅系複合材を選択することで、発生する応力を緩和でき、接合性が向上する。さらにCuでMoをサンドイッチしたクラッド材は、Cuがセラミックスと金属部材の間に発生する熱応力を緩衝する役割も果たす。
【0010】
銅の合金は、セラミックスと金属部材の熱膨張差により発生する応力を緩衝する役割をして、健全な接合を得る。銅の合金の降伏応力は、4〜10kgf/mm2が好適である。その理由は、4kgf/mm2は純銅の降伏応力から定まる値であり、上限の10kgf/mm2を超えた場合は接合部に発生する応力を緩衝する効果が得られにくいためである。また、上記範囲の降伏応力を示す銅の合金は、Cu−0.03〜0.15重量%Ag合金(焼鈍材、8kgf/mm2)、Cu−0.8重量%Cr合金(焼鈍材、9kgf/mm2)、Cu−0.15重量%Zr合金(焼鈍材、9kgf/mm2)等が上げられる。上記銅の合金を選択した理由を以下に述べる。真空容器内に絶縁操作ロッドが組み込まれる際、真空中で通常800〜1000℃に加熱して真空容器の組立が行われる。Al、Pb、In、Bi、Zn、Sn、Mg等の金属、およびそれらを含有する銅系合金も、10kgf/mm2以下の降伏応力を示すが、真空中で800〜1000℃に加熱されると、これらの低融点金属は金属蒸気となり、真空容器内やセラミックスの表面を汚染し、絶縁特性等を低下させる問題があるからである。なお、ここで言う降伏応力とは、もとの長さの0.2%の永久伸びを生ずる応力値である。
【0011】
【発明の実施の形態】
実施の形態1.
以下、この実施の形態について説明する。図1は実施の形態に係る絶縁操作ロッドの断面図を示す。図1において1は絶縁セラミックス、2はメタライズ層、3はめっき層、4は中間材、5はろう材a、6金属部材、7はろう材bである。
【0012】
この実施の形態では、中間材にFe−Ni系合金を用いてMo−Mn法で接合した場合について説明する。直径15mm、長さ25mmのアルミナ製の絶縁セラミックス1の接合面に、厚さ30μmのMo−Mnのメタライズ層2を作り、その上に電解法で厚さ5μmのNiのめっき層3を形成させた。そして、厚さ1mmのFe−42質量%Ni、Fe−29質量%Ni−17質量%Coおよび、Fe−32質量%Ni−5質量%Co−2質量%Si−0.2質量%Mnの3種を中間材4として用いた。中間材4とめっきを施した絶縁セラミックス1との間に厚さ50μmのBNi−7(Ni−13%Cr−10%P)のろう材a5の箔を配置し、1kgの荷重を加えながら真空中950℃×20分で加熱し接合した。続いて、絶縁セラミックス1に接合した中間材4の上に直径15mm、長さ25mmのステンレス鋼(SUS304)の金属部材6を接合するため、BAg−18(Ag−30%Cu−10%Sn−0.025%P)のろう材b7を中間材4と金属部材6との間に置き、1kgの荷重を加えながら真空中820℃×20分で加熱し接合体を得た。比較材は中間材4を設けずに、アルミナ製絶縁セラミック1とSUS304製金属部材6をMo−Mn法でBNi−7を用いて真空中950℃×20分で加熱し接合した。この絶縁操作ロッドの接合性を調べるために、外観検査と引張試験による接合強度を測定した。その結果を表1の実施の形態1(No1〜3)に示す。参考例であるNo1、No2、No3はセラミックスの亀裂や接合部の剥離、変形は見られなかった。比較例のNo12はセラミックスに亀裂が発生した。引張試験を行った結果、参考例での引張強度はNo1が15kgf/mm2、No2、No3が23kgf/mm2以上で、比較材の3kgf/mm2に対して著しく接合強度が向上した。また、引張試験後の破断部は接合部近辺のセラミックス内部で破断したことからセラミックスの強度より強固な接合が得られていた。なお、本実施の形態ではNiろう材を用いて絶縁セラミックスと中間材を接合していたが、Cu、Au、Ag等のろう材を用いてもよい。
【0013】
実施の形態2.
この実施の形態では、中間材に銅系複合材料を用いてMo−Mn法で接合した場合について説明する。直径15mm、長さ25mmのアルミナ製の絶縁セラミックス1の接合面に、厚さ30μmのMo−Mnのメタライズ層2を作り、その上に電解法で厚さ5μmのNiのめっき層3を形成させた。そして、厚さ1mmのCu−20質量%W、Cu−50質量%Moおよび、Cu/Mo/Cu(1:2:1、47質量%Cu)の3種の中間材4とめっきを施した絶縁セラミックス1の間に厚さ50μmのBNi−7(Ni−13%Cr−10%P)のろう材a5の箔を配置し、1kgの荷重を加えながら真空中950℃×20分で加熱し接合した。続いて、絶縁セラミックス1に接合した中間材4の上に直径15mm、長さ25mmのステンレス鋼(SUS304)の金属部材6を接合するため、BAg−18(Ag−30%Cu−10%Sn−0.025%P)のろう材b7を中間材4と金属部材6の間に置き、1kgの荷重を加えながら真空中820℃×20分で加熱し接合体を得た。比較材は中間材4を設けずに、アルミナ製絶縁セラミックス1とSUS304製金属部材6をMo−Mn法でBNi−7を用いて真空中950℃×20分で加熱し接合した。この絶縁操作ロッドの接合性を調べるために、外観検査と引張試験による接合強度を測定した。その結果を表1の実施の形態2(No4〜6)に示す。参考例であるNo4および5、本発明であるNo6では、セラミックスの亀裂や接合部の剥離、変形は見られなかった。引張試験を行った結果、参考例および本発明では引張強度が23kgf/mm2以上で、比較材No12と比べて接合強度が高く、破断部は接合部近辺のセラミックス内部で破断したことから良好な接合が得られた。また、本実施の形態では絶縁セラミックス1と中間材4との接合をMo−Mn法で実施したが、Ti−Ag−Cuろう材、Zr−Ag−Cuろう材、Ti−Cuろう材等を用いた活性金属法で接合してもよい。また、銅系複合材料はCr、WC、C、Al23、SiC等の粒子をCuと複合化したものであってもよい。
【0014】
実施の形態3.
上記実施の形態2では銅系複合材料が、CuにMoまたはWの粒子を複合化したもの、およびCu/Mo/Cuのクラッド材を用いた場合ついて説明したが、図2の横断面図に示すような銅またはその合金8に貫通孔を設けその貫通孔にセラミックス9を加熱嵌合した銅系複合材を中間材4として接合してもよい。以下この例について述べる。
加熱嵌合した銅系複合材は直径30mm、長さ10mmの無酸素銅8に、直径5.000mmの貫通孔を7ヶ所設け、その貫通孔に直径5.002mm、長さ10mmのアルミナのセラミックス9を1000℃で加熱嵌合を行い、セラミックスの体積率が20%にしたものを得た。そして、直径30mm、長さ25mmのアルミナ製の絶縁セラミックス1と直径30mm、長さ25mmのステンレス鋼(SUS304)の金属部材6との間に銅系複合材の中間材4を配置し、アルミナ製絶縁セラミックス1と中間材4の間および金属部材6と中間材4の間にはCu−28wt%Tiの活性金属ろう材10の箔を置き、1kgの荷重を加えながら真空中950℃×20分間加熱し接合体を得た。図3に絶縁操作ロッドの縦断面図を示す。絶縁操作ロッドの接合性を調べるために、外観検査と引張試験による接合強度を測定した。その結果を表1の実施の形態3の本発明であるNo7に示す。この例も接合性が良好で、引張強度が23kgf/mm2以上であった。
【0015】
実施の形態4.
この実施の形態では、炭素鋼の冷却速度を制御した時の低熱膨張特性を利用して、セラミックスと炭素鋼を直接接合した例について説明する。直径15mm、長さ25mmのジルコニア製絶縁セラミックス1と直径15mm、厚さ1mmの炭素鋼(S45C)の中間材4との間に、Cu−28wt%Tiの活性金属ろう材8の箔を配置し、1kgの荷重を加えながら真空中950℃×20分間加熱し、50sec以上の冷却速度を得るために、冷却槽の中に移動させて接合した。続いて、ジルコニア製絶縁セラミックス1に接合した炭素鋼の中間材4の上に直径15mm、長さ25mmのステンレス鋼(SUS304)の金属部材6を接合するため、BAg−18(Ag−30%Cu−10%Sn−0.025%P)のろう材b7を中間材4と金属部材6の間に置き、1kgの荷重を加えながら真空中820℃×20分で加熱し接合体を得た。図4に活性金属法を適用したこの実施の形態 に係る絶縁操作ロッドの断面図を示す。比較材は50sec以下で冷却してジルコニア製絶縁セラミックス1と中間材4を接合したものである。
上記絶縁操作ロッドの接合性を調べるために、外観検査と接合強度を測定した結果を表1の実施の形態4(No8)に示す。参考例であるNo8では、セラミックスの亀裂や接合部の剥離、変形は見られず良好な接合が得られた。引張試験を行った結果、この参考例では引張強度が23kgf/mm2以上で、破断部は接合部近辺のセラミックス内部で破断したことから良好な接合が得られた。比較例No13は冷却速度を50℃/sec以下にしたものであるが、接合部が剥離した。これにより、中間材として炭素鋼の接合が可能となり、金属部材との接合が容易となった。なお、本実施の形態では中間材として炭素鋼を用いたが、金属部材を炭素鋼として絶縁セラミックスと直接接合しても同様の効果がある。また、接合法は活性金属法の他にMo−Mn法でもよい。
【0016】
実施の形態5.
この実施の形態では、絶縁セラミックス1と金属部材6との間に降伏応力が4〜10kgf/mm2の銅またはその合金を中間材として設け、Mo−Mn法で接合した場合について説明する。直径15mm、長さ25mmのアルミナ製の絶縁セラミックス1の接合面に、厚さ30μmのMo−Mnのメタライズ層2を作り、その上に電解法で厚さ5μmのNiめっき層3を形成させた。そして、厚さが0.5mmの無酸素銅板(C1020)とCu−0.8重量%Crの2種類を中間材4とし、めっきを施したセラミックスの間に厚さ50μmのBNi−7のろう材a5の箔を配置し、1kgの荷重を加えながら真空中950℃×20分加熱して接合した。続いて、絶縁セラミックス1に接合した中間材4の上に直径15mm、長さ25mmのステンレス鋼(SUS304)の金属部材6を接合するため、BAg−18(Ag−30%Cu−10%Sn−0.025%P)のろう材b7を中間材4と金属部材6の間に置き、1kgの荷重を加えながら真空中820℃×20分で加熱し接合体を得た。比較材は中間材4を設けずにSUS304製金属部材6を接合し、真空中950℃×20分でMo−Mn法でBNi−7で接合したものと、中間材4として降伏応力が17.5kgf/mm2のCu−30重量%Niを使用したものを作製した。以上の絶縁操作ロッドの接合性を調べるために、外観検査と引張試験による接合強度を測定した結果を表1の実施の形態5(No9、No10)に示す。参考例であるNo9および本発明であるNo10は、セラミックスの亀裂や接合部の剥離、変形は見られなかった。引張試験を行った結果、参考例および本発明では引張強度が23kgf/mm2以上で、比較例No12やNo14と比べて接合強度が高く、破断部は接合部近辺のセラミック内部で破断し良好な接合が得られた。本実施の形態では絶縁セラミックス1と中間材4との接合をMo−Mn法で実施したが、Ti−Ag−Cuろう材やZr−Ag−Cuろう材、Ti−Cuろう材等を用いる活性金属法で接合してもよい。
【0017】
実施の形態6.
この実施の形態では、セラミックスと金属の熱膨張差を利用して接合する焼きばめ法と、ろう材を用いて接合する面接合法を併用した実施の形態について説明する。図5にこの実施の形態に係る絶縁操作ロッドの縦断面図を示す。1は接合部が凸形状の絶縁セラミックス、6は接合部が凹形状の金属部材、8は活性金属ろう材である。
外径20mm、長さ60mmで、接合部の凸部寸法が径14.001mm、高さ5mmのアルミナ製絶縁セラミックス1と、外径20mm、長さ30mmで、接合部の凹部寸法が径14.000mm、深さ5mmのSUS304製の金属部材6を準備した。この絶縁セラミックス1と金属部材6の接合部を突き合わせ、軸方向に対して直角な面の間にCu−28wt%Tiの活性金属ろう材10を配置して、1kgの荷重をかけながら真空中950℃×20分間加熱し、嵌合とろう付けを同時に行い接合体を得た。また、比較材として、この実施の形態と同様の外寸の円柱状の絶縁セラミックス1と金属部材6を準備し、同様の接合法で面接合した。
この実施の形態に係る絶縁操作ロッドについて引張試験を実施した結果を表1の実施の 形態6のNo11に示す。参考例であるNo11は23kgf/mm2以上の引張強度が得られたが、比較例のNo15の引張強度は7.5kgf/mm2であった。破壊した接合体を観察すると、本発明材はセラミックス内部で破断し、接合が強固なものであった。比較材のNo15はセラミックスとろう材の界面で破壊が発生した。この結果より、比較材はこの参考例より引張強度が劣っており、焼きばめ法による嵌合とろう付けの面接合を併用したこの参考例は良好な接合が得られた。本実施の形態では、セラミックスに凸部と金属部材に凹部を1つ設けたものについて説明したが、二つ以上設けることで、接合面積の大きなものも接合できる。
【0018】
【表1】

Figure 0004080588
【0019】
の発明によれば、中間材として、Moをサンドイッチした三層構造のクラッド材を設け、このクラッド材が二層のCu間に20〜80質量%となるようにMoをサンドイッチした三層構造のクラッド材であるので、接合性に一層優れた絶縁操作ロッドが得られる。
【0020】
この発明によれば、中間材の銅の合金は、降伏応力が8〜9kgf/mm2であってAgを0.03〜0.15質量%含有するCu合金;Crを0.8質量%含有するCu合金;あるいはZrを0.15質量%含有するCu合金であるので、接合性に一層優れた絶縁操作ロッドが得られる。
【0021】
この発明によれば、中間材に貫通孔を設け、かつ前記貫通孔にセラミックスを嵌合させたものを、前記セラミックスと前記金属部材との間に設けたので、接合性に一層優れた絶縁操作ロッドが得られる。
【0022】
この発明によれば、請求項1ないし請求項3の何れか1項に記載の絶縁操作ロッドの製造方法であって、前記セラミックスと前記金属部材との間に、中間材として、Moをサンドイッチした三層構造のクラッド材;あるいは銅の合金;を設け、前記セラミックスと前記金属部材とを接合するので、熱膨張差による応力を軽減、緩衝し、接合性に優れた絶縁操作ロッドが得られる。
【0023】
【図面の簡単な説明】
【図1】実施の形態1に係る絶縁操作ロッドの一実施態様の断面図である。
【図2】銅系複合材料の一実施態様の横断面図である。
【図3】実施の形態3に係る絶縁操作ロッドの一実施態様の縦断面図である。
【図4】活性金属法を適用した実施の形態4に係る絶縁操作ロッドの一実施態様の断面図である。
【図5】焼きばめと面接合を併用した実施の形態6に係る絶縁操作ロッドの一実施態様の断面図である。
【図6】従来の絶縁継手の断面図である。
【符号の説明】
1 絶縁セラミックス、2 メタライズ層、3 めっき層、4 中間材、5 ろう材a、6 金属部材、7 ろう材b、8 銅またはその合金、9 セラミックス、10 活性金属ろう材、11 筒状セラミックス、12 継手、13 Agろう材。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating operating rod for a switchgear that requires insulation and transmission of operating force in a vacuum vessel and a method for manufacturing the same.
[0002]
[Prior art]
FIG. 6 shows a cross-sectional view of a conventional insulating joint shown in, for example, ceramic bonding and high-tech brazing issued by Industrial Technology Service Center Co., Ltd. 2 is a metallized layer, 11 is a cylindrical ceramic, 12 is a joint, and 13 is an Ag brazing material.
[0003]
Next, the operation will be described. The metallized layer 2 is formed on the creeping portions at both ends of the alumina cylindrical ceramic 11, heated to 820 ° C. in hydrogen, and the cylindrical ceramic 11 and the Kovar joint 10 are joined with the Ag brazing material 13 to form an insulating joint. I was getting.
[0004]
[Problems to be solved by the invention]
Insulating operation rods that perform insulation and transmission of operating force in a vacuum vessel are made by joining a ceramic member responsible for insulation with a highly conductive metal member or a metal member connected to an operation mechanism. When this rod is incorporated into a vacuum vessel, heat treatment is performed in a vacuum, so that sound bondability is required even after heat is applied. Moreover, the joining property which can endure operation force is also required. The conventional joining method shown in FIG. 1 is used to perform insulation and transmission of operating force in the atmosphere or gas. The joint 12 made of Kovar is joined to the cylindrical ceramic ceramic 11 made of alumina with the Ag brazing material 13. is doing. However, the brazing material is remelted at the heating temperature at the time of assembling the vacuum vessel and the initial joining state cannot be maintained, so that the joining property is deteriorated or the joining surface is parallel to the axial direction. Shear stress is applied to the material, and breakage easily occurs. In addition, since expensive Kovar is used as a joint, there is a problem that it is expensive.
[0005]
The present invention has been made to solve the above-described problems. In an insulating operation rod in which a ceramic and a metal member are joined to perform insulation and operation force transmission in a container in a vacuum. An object of the present invention is to provide an insulating operation rod in which members are well bonded and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
The present invention relates to an insulating operation rod in which ceramics and a metal member are joined, which insulates and transmits operating force in a vacuum container, and sandwiches Mo as an intermediate material between the ceramics and the metal member. An insulating operation rod characterized in that the clad material having a three-layer structure is provided, and the clad material is a clad material having a three-layer structure in which Mo is sandwiched between two layers of Cu so as to be 20 to 80% by mass. It is.
The present invention relates to an insulating operation rod in which a ceramic and a metal member are joined to perform insulation and operation force transmission in a vacuum vessel, and an alloy of copper as an intermediate material between the ceramic and the metal member. The copper alloy has a yield stress of 8-9 kgf / mm 2 and contains 0.03-0.15 mass% of Ag; Cu alloy containing 0.8 mass% of Cr; Alternatively, the insulating operation rod is a Cu alloy containing 0.15% by mass of Zr.
The present invention is characterized in that a through hole is provided in the intermediate material and a ceramic is fitted in the through hole is provided between the ceramic and the metal member. It is an insulated operation rod as described in (4).
The present invention is the method for manufacturing an insulating operating rod according to any one of claims 1 to 3, wherein Mo is sandwiched between the ceramics and the metal member as an intermediate material. Any one of a clad material having a layer structure; or an alloy of copper is provided, and the ceramic and the metal member are joined together.
[0007]
The insulating operation rod according to the present invention is formed by arranging and joining a copper-based composite material or an intermediate material of a copper alloy between a ceramic and a metal member, and is generated due to a difference in thermal expansion between the ceramic and the metal member. The stress at the joint can be relaxed or buffered, and the bondability can be improved at a low cost.
[0008]
Here, a suitable composition range of the Fe—Ni-based alloy will be described. The Fe—Ni alloy suitably used in the present invention is an Fe—Ni alloy containing 20 to 50% by mass of Ni; an Fe—Ni system containing 20 to 50% by mass of Ni and 3 to 25% by mass of Co. Alloy: Fe-Ni alloy containing 20 to 50% by mass of Ni and 1 to 12% by mass of Cr; or the above Fe-Ni alloy containing 20 to 50% by mass of Ni and 3 to 25% by mass of Co And Fe—Ni-based alloys containing one or two of 0.5 to 5 mass% of C and 0.1 to 3 mass% of Si and Mn. These Fe—Ni-based alloys can also contain a low expansion metal called Invar, Elinvar, Fernico, 42 alloy, Kovar or the like. The range of the thermal expansion coefficient of each oxide, nitride, and carbide ceramic is 4 to 12 × 10 −6 / K. In order to reduce the stress caused by the difference in thermal expansion between the insulating ceramic and the metal member, the ceramic and intermediate It is necessary to match the thermal expansion coefficient of the material. When Fe, Ni, Co, Cr, C, Si, and Mn are added in the above range, a thermal expansion coefficient of 4 to 12 × 10 −6 / K is obtained, and an intermediate thermal expansion characteristic between the ceramic and the metal member is obtained. By selecting the Fe—Ni-based alloy to be shown, the generated stress can be relaxed and the bondability is improved.
[0009]
Next, the suitable composition range of a copper-type composite material is demonstrated. The copper-based composite material suitably used in the present invention is a composite of Mo or W particles in Cu in the range of 40 to 90% by mass; or 20 to 80% by mass between two layers of Cu. It is a clad material having a three-layer structure in which Mo is sandwiched between the two. This is also determined to obtain 4 to 12 × 10 -6 / K, which is close to the thermal expansion coefficient of ceramics, and is generated by selecting a copper-based composite material that exhibits intermediate thermal expansion characteristics between ceramics and metal members. Stress can be relieved and bondability is improved. Furthermore, the clad material in which Mo is sandwiched with Cu also plays a role of buffering thermal stress generated between the ceramic and the metal member.
[0010]
The copper alloy plays a role in buffering the stress generated by the difference in thermal expansion between the ceramic and the metal member, thereby obtaining a sound joint. The yield stress of the copper alloy is preferably 4 to 10 kgf / mm 2 . The reason is that 4 kgf / mm 2 is a value determined from the yield stress of pure copper, and when the upper limit of 10 kgf / mm 2 is exceeded, it is difficult to obtain an effect of buffering the stress generated in the joint. Moreover, the copper alloy which shows the yield stress of the said range is Cu-0.03-0.15 weight% Ag alloy (annealing material, 8 kgf / mm < 2 >), Cu-0.8 weight% Cr alloy (annealing material, 9 kgf / mm 2 ), Cu-0.15 wt% Zr alloy (annealed material, 9 kgf / mm 2 ) and the like. The reason for selecting the copper alloy will be described below. When the insulating operation rod is incorporated in the vacuum vessel, the vacuum vessel is assembled by heating to 800 to 1000 ° C. in a vacuum. Metals such as Al, Pb, In, Bi, Zn, Sn, Mg, and copper-based alloys containing them also show a yield stress of 10 kgf / mm 2 or less, but are heated to 800 to 1000 ° C. in a vacuum. This is because these low-melting-point metals become metal vapor, which contaminates the inside of the vacuum vessel and the surface of the ceramics, resulting in a problem of lowering the insulation characteristics and the like. The yield stress referred to here is a stress value that causes a permanent elongation of 0.2% of the original length.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, this embodiment will be described. Figure 1 shows a cross-sectional view of the insulated operating rod according to the embodiment. In FIG. 1, 1 is an insulating ceramic, 2 is a metallized layer, 3 is a plating layer, 4 is an intermediate material, 5 is a brazing material a, 6 metal members, and 7 is a brazing material b.
[0012]
In this embodiment, a case where an Fe—Ni-based alloy is used as an intermediate material and bonded by the Mo—Mn method will be described. A Mo-Mn metallized layer 2 having a thickness of 30 μm is formed on a bonding surface of an alumina insulating ceramic 1 having a diameter of 15 mm and a length of 25 mm, and a Ni plating layer 3 having a thickness of 5 μm is formed thereon by an electrolytic method. It was. And 1-mm thick Fe-42 mass% Ni, Fe-29 mass% Ni-17 mass% Co, and Fe-32 mass% Ni-5 mass% Co-2 mass% Si-0.2 mass% Mn Three kinds were used as the intermediate material 4. A 50 μm thick BNi-7 (Ni-13% Cr-10% P) brazing foil a5 foil is placed between the intermediate material 4 and the plated insulating ceramic 1, and a vacuum is applied while applying a load of 1 kg. It was heated and joined at 950 ° C. for 20 minutes. Subsequently, in order to join a metal member 6 of stainless steel (SUS304) having a diameter of 15 mm and a length of 25 mm on the intermediate material 4 joined to the insulating ceramic 1, BAg-18 (Ag-30% Cu-10% Sn- 0.025% P) brazing material b7 was placed between the intermediate material 4 and the metal member 6 and heated in vacuum at 820 ° C. for 20 minutes while applying a load of 1 kg to obtain a joined body. As a comparative material, the alumina insulating ceramic 1 and the SUS304 metal member 6 were heated and bonded in a vacuum at 950 ° C. for 20 minutes using BNi-7 by the Mo—Mn method without providing the intermediate material 4. In order to investigate the bondability of this insulating operation rod, the bonding strength was measured by appearance inspection and tensile test. The results are shown in Embodiment 1 (Nos. 1 to 3) in Table 1. In the reference examples No1, No2, and No3, no cracks in the ceramics and no peeling or deformation of the joints were observed. In Comparative Example No. 12, cracks occurred in the ceramics. Result of the tensile test, the tensile strength in Reference example No1 is 15kgf / mm 2, No2, No3 is at 23kgf / mm 2 or more were significantly improved bonding strength with respect to 3 kgf / mm 2 in comparison material. Further, since the fractured portion after the tensile test was fractured inside the ceramic near the bonded portion, a stronger bond than the strength of the ceramic was obtained. In this embodiment, Ni brazing material is used to join the insulating ceramic and the intermediate material, but brazing material such as Cu, Au, or Ag may be used.
[0013]
Embodiment 2. FIG.
In this embodiment, a case where a copper-based composite material is used as an intermediate material and bonded by the Mo-Mn method will be described. A Mo-Mn metallized layer 2 having a thickness of 30 μm is formed on a bonding surface of an alumina insulating ceramic 1 having a diameter of 15 mm and a length of 25 mm, and a Ni plating layer 3 having a thickness of 5 μm is formed thereon by an electrolytic method. It was. And it plated with three types of intermediate materials 4 of Cu-20 mass% W of thickness 1mm, Cu-50 mass% Mo, and Cu / Mo / Cu (1: 2: 1, 47 mass% Cu). A 50 μm thick BNi-7 (Ni-13% Cr-10% P) brazing foil a5 foil is placed between the insulating ceramics 1 and heated in a vacuum at 950 ° C. for 20 minutes while applying a 1 kg load. Joined. Subsequently, in order to join a metal member 6 of stainless steel (SUS304) having a diameter of 15 mm and a length of 25 mm on the intermediate material 4 joined to the insulating ceramic 1, BAg-18 (Ag-30% Cu-10% Sn- 0.025% P) brazing material b7 was placed between the intermediate material 4 and the metal member 6 and heated in vacuum at 820 ° C. for 20 minutes while applying a load of 1 kg to obtain a joined body. As a comparative material, the alumina insulating ceramics 1 and the SUS304 metal member 6 were heated and bonded in a vacuum at 950 ° C. for 20 minutes using BNi-7 by the Mo—Mn method without providing the intermediate material 4. In order to investigate the bondability of this insulating operation rod, the bonding strength was measured by appearance inspection and tensile test. The results are shown in Embodiment 2 (Nos. 4 to 6) in Table 1. In No. 4 and No. 5 which are reference examples and No. 6 which is the present invention, no cracks in the ceramics and no peeling or deformation of the joints were observed. As a result of the tensile test, in the reference example and the present invention , the tensile strength is 23 kgf / mm 2 or more, the joint strength is higher than that of the comparative material No12, and the fractured portion is good because it broke inside the ceramic near the jointed portion. Bonding was obtained. In this embodiment, the insulating ceramic 1 and the intermediate material 4 are joined by the Mo-Mn method. However, a Ti-Ag-Cu brazing material, a Zr-Ag-Cu brazing material, a Ti-Cu brazing material, or the like is used. You may join by the used active metal method. Further, the copper-based composite material may be a composite of particles such as Cr, WC, C, Al 2 O 3 , and SiC with Cu.
[0014]
Embodiment 3 FIG.
In the second embodiment, the case where the copper composite material is a composite of Mo or W particles in Cu and a clad material of Cu / Mo / Cu is described. A copper-based composite material in which through holes are provided in copper or its alloy 8 as shown and ceramics 9 is heat-fitted in the through holes may be joined as the intermediate material 4. This example will be described below.
The heat-fitted copper-based composite material is provided with seven through holes with a diameter of 5.000 mm in oxygen-free copper 8 with a diameter of 30 mm and a length of 10 mm, and alumina ceramics with a diameter of 5.002 mm and a length of 10 mm in the through holes. 9 was heat-fitted at 1000 ° C. to obtain a ceramic having a volume ratio of 20%. Then, an intermediate material 4 of a copper-based composite material is disposed between an insulating ceramic 1 made of alumina having a diameter of 30 mm and a length of 25 mm and a metal member 6 of stainless steel (SUS304) having a diameter of 30 mm and a length of 25 mm, and made of alumina. A foil of Cu-28 wt% Ti active metal brazing material 10 is placed between the insulating ceramic 1 and the intermediate material 4 and between the metal member 6 and the intermediate material 4 while applying a 1 kg load at 950 ° C. for 20 minutes in a vacuum. Heated to obtain a joined body. FIG. 3 shows a longitudinal sectional view of the insulating operation rod. In order to examine the bondability of the insulating operation rod, the bonding strength was measured by appearance inspection and tensile test. The result is shown in No. 7 which is the present invention of Embodiment 3 in Table 1. This example also had good bondability and a tensile strength of 23 kgf / mm 2 or more.
[0015]
Embodiment 4 FIG.
In this embodiment, an example in which ceramics and carbon steel are directly joined using low thermal expansion characteristics when the cooling rate of carbon steel is controlled will be described. A foil of an active metal brazing material 8 of Cu-28 wt% Ti is arranged between an insulating ceramic 1 made of zirconia having a diameter of 15 mm and a length of 25 mm and an intermediate material 4 of carbon steel (S45C) having a diameter of 15 mm and a thickness of 1 mm. Heating was performed in a vacuum at 950 ° C. for 20 minutes while applying a load of 1 kg, and in order to obtain a cooling rate of 50 seconds or more, they were moved into a cooling bath and joined. Subsequently, BAg-18 (Ag-30% Cu) is used to join a stainless steel (SUS304) metal member 6 having a diameter of 15 mm and a length of 25 mm on the carbon steel intermediate material 4 joined to the insulating ceramic 1 made of zirconia. A brazing material b7 of −10% Sn−0.025% P) was placed between the intermediate material 4 and the metal member 6 and heated in vacuum at 820 ° C. for 20 minutes while applying a load of 1 kg to obtain a joined body. FIG. 4 shows a cross-sectional view of the insulating operation rod according to this embodiment to which the active metal method is applied. The comparative material is cooled at 50 sec or less and joined with the insulating ceramic 1 made of zirconia and the intermediate material 4.
In order to investigate the bondability of the insulating operation rod, the results of visual inspection and bonding strength measurement are shown in Embodiment 4 (No. 8) of Table 1. In No. 8 , which is a reference example, good bonding was obtained without any cracks in the ceramics, peeling or deformation of the bonded parts. As a result of performing a tensile test, in this reference example , the tensile strength was 23 kgf / mm 2 or more, and the fractured portion was fractured inside the ceramic near the junction, and thus good bonding was obtained. In Comparative Example No. 13, the cooling rate was set to 50 ° C./sec or less, but the joint part was peeled off. Thereby, joining of carbon steel as an intermediate material became possible, and joining with a metal member became easy. In this embodiment, carbon steel is used as an intermediate material, but the same effect can be obtained by directly joining a metal member to insulating ceramics as carbon steel. In addition to the active metal method, the Mo—Mn method may be used as the bonding method.
[0016]
Embodiment 5. FIG.
In this embodiment, a case where copper having an yield stress of 4 to 10 kgf / mm 2 or an alloy thereof is provided as an intermediate material between the insulating ceramic 1 and the metal member 6 and bonded by the Mo—Mn method will be described. A 30 μm thick Mo—Mn metallized layer 2 was formed on the bonding surface of alumina insulating ceramics 1 having a diameter of 15 mm and a length of 25 mm, and a 5 μm thick Ni plating layer 3 was formed thereon by electrolytic method. . Then, an oxygen-free copper plate (C1020) having a thickness of 0.5 mm and Cu-0.8 wt% Cr are used as an intermediate material 4 and a 50 μm-thick BNi-7 braze between the plated ceramics. The foil of the material a5 was placed and joined by heating at 950 ° C. for 20 minutes in a vacuum while applying a 1 kg load. Subsequently, in order to join a metal member 6 of stainless steel (SUS304) having a diameter of 15 mm and a length of 25 mm on the intermediate material 4 joined to the insulating ceramic 1, BAg-18 (Ag-30% Cu-10% Sn- 0.025% P) brazing material b7 was placed between the intermediate material 4 and the metal member 6 and heated in vacuum at 820 ° C. for 20 minutes while applying a load of 1 kg to obtain a joined body. The comparative material was obtained by joining the metal member 6 made of SUS304 without providing the intermediate material 4 and joining with BNi-7 by the Mo-Mn method at 950 ° C. for 20 minutes in vacuum, and the intermediate material 4 having a yield stress of 17. the 5 kgf / mm 2 of Cu-30 wt% Ni was prepared that used. In order to examine the bondability of the above-described insulating operation rod, the results of measuring the bonding strength by the appearance inspection and the tensile test are shown in Embodiment 5 (No. 9, No. 10) of Table 1. No No. 9 as a reference example and No. 10 according to the present invention did not show cracks in the ceramics, peeling of the joints, or deformation. As a result of the tensile test, in the reference example and the present invention, the tensile strength is 23 kgf / mm 2 or more, the joint strength is higher than that of Comparative Examples No12 and No14, and the fractured portion is fractured inside the ceramic in the vicinity of the jointed portion. Bonding was obtained. In this embodiment, the insulating ceramic 1 and the intermediate material 4 are joined by the Mo-Mn method. However, the activity using a Ti-Ag-Cu brazing material, a Zr-Ag-Cu brazing material, a Ti-Cu brazing material, or the like. You may join by a metal method.
[0017]
Embodiment 6 FIG.
In this embodiment, a description will be given of an embodiment in which a shrink-fitting method in which bonding is performed using a difference in thermal expansion between ceramics and metal and a surface bonding method in which bonding is performed using a brazing material are used in combination. FIG. 5 shows a longitudinal sectional view of the insulating operation rod according to this embodiment . Reference numeral 1 denotes insulating ceramics having a convex joint, 6 is a metal member having a concave joint, and 8 is an active metal brazing material.
Alumina insulating ceramic 1 having an outer diameter of 20 mm, a length of 60 mm, and a convex portion dimension of the joint portion of 14.001 mm and a height of 5 mm, and an outer diameter of 20 mm and a length of 30 mm, and a concave portion dimension of the joint portion of 14. A metal member 6 made of SUS304 having a thickness of 000 mm and a depth of 5 mm was prepared. The joint between the insulating ceramic 1 and the metal member 6 is abutted, and an active metal brazing filler metal 10 of Cu-28 wt% Ti is disposed between the surfaces perpendicular to the axial direction, and 950 in a vacuum while applying a load of 1 kg. Heating was performed at 20 ° C. for 20 minutes, and fitting and brazing were simultaneously performed to obtain a joined body. Further, as a comparative material, a cylindrical insulating ceramic 1 and a metal member 6 having the same outer dimensions as those of this embodiment were prepared, and surface bonding was performed by the same bonding method.
The result of conducting a tensile test on the insulating operating rod according to this embodiment is shown in No. 11 of Embodiment 6 in Table 1 . Although No11 which is a reference example had a tensile strength of 23 kgf / mm 2 or more, the tensile strength of No15 of the comparative example was 7.5 kgf / mm 2 . When the fractured bonded body was observed, the material of the present invention was broken inside the ceramic and the bonding was strong. In the comparative material No15, fracture occurred at the interface between the ceramic and the brazing material. From this result, the comparative material has poor tensile strength than this reference example, the reference example in combination interviewed case of fitting and brazing by fit method shrink is favorable bond was obtained. In the present embodiment, a description has been given of a ceramic provided with a convex portion and a metal member provided with a single concave portion. However, by providing two or more ceramics, a ceramic having a large bonding area can be bonded.
[0018]
[Table 1]
Figure 0004080588
[0019]
According to this invention, an intermediate material, Mo and provided clad material having a three-layer structure is sandwiched, three-layer structure is sandwiched a Mo as the cladding material is 20 to 80 mass% among Cu bilayer Therefore, an insulating operation rod having a further excellent bondability can be obtained.
[0020]
According to the present invention, the intermediate copper alloy is a Cu alloy having a yield stress of 8-9 kgf / mm 2 and containing 0.03-0.15 mass% of Ag; 0.8 mass% of Cr Since it is a Cu alloy containing; or a Cu alloy containing 0.15% by mass of Zr, it is possible to obtain an insulating operation rod with further excellent bondability.
[0021]
According to this invention, since the through-hole provided in the intermediate material and the ceramics fitted into the through-hole are provided between the ceramic and the metal member, the insulation operation with further improved bonding properties A rod is obtained.
[0022]
According to this invention, in the method for manufacturing an insulating operation rod according to any one of claims 1 to 3 , Mo is sandwiched as an intermediate material between the ceramic and the metal member. A clad material having a three-layer structure; or a copper alloy is provided, and the ceramic and the metal member are joined together. Therefore, an insulating operation rod excellent in joining property can be obtained by reducing and buffering stress due to a difference in thermal expansion.
[0023]
[Brief description of the drawings]
1 is a cross-sectional view of one embodiment of the insulated operating rod according to the first embodiment.
FIG. 2 is a cross-sectional view of one embodiment of a copper-based composite material.
FIG. 3 is a longitudinal sectional view of one embodiment of an insulating operation rod according to a third embodiment.
FIG. 4 is a cross-sectional view of one embodiment of an insulating operating rod according to a fourth embodiment to which the active metal method is applied.
FIG. 5 is a cross-sectional view of one embodiment of an insulating operating rod according to a sixth embodiment in which shrink fitting and surface bonding are used together.
FIG. 6 is a cross-sectional view of a conventional insulating joint.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating ceramics, 2 Metallized layer, 3 Plating layer, 4 Intermediate material, 5 Brazing material a, 6 Metal member, 7 Brazing material b, 8 Copper or its alloy, 9 Ceramics, 10 Active metal brazing material, 11 Cylindrical ceramics, 12 joint, 13 Ag brazing material.

Claims (4)

真空中の容器内で絶縁および操作力伝達を行う、セラミックスと金属部材とが接合された絶縁操作ロッドにおいて、前記セラミックスと前記金属部材との間に、中間材として、Moをサンドイッチした三層構造のクラッド材を設け、
前記クラッド材が、二層のCu間に20〜80質量%となるようにMoをサンドイッチした三層構造のクラッド材であることを特徴とする絶縁操作ロッド。
A three-layer structure in which Mo is sandwiched between the ceramics and the metal member as an intermediate material in an insulating operation rod in which the ceramic and the metal member are joined to perform insulation and operation force transmission in a vacuum vessel. Of clad material,
An insulating operating rod, wherein the clad material is a clad material having a three-layer structure in which Mo is sandwiched between two layers of Cu so as to be 20 to 80% by mass.
真空中の容器内で絶縁および操作力伝達を行う、セラミックスと金属部材とが接合された絶縁操作ロッドにおいて、前記セラミックスと前記金属部材との間に、中間材として、銅の合金を設け、
前記銅の合金は、降伏応力が8〜9kgf/mm2であってAgを0.03〜0.15質量%含有するCu合金;Crを0.8質量%含有するCu合金;あるいはZrを0.15質量%含有するCu合金であることを特徴とする絶縁操作ロッド。
Insulating and operating force transmission in a container in a vacuum, in an insulating operation rod in which a ceramic and a metal member are joined, a copper alloy is provided as an intermediate material between the ceramic and the metal member,
The copper alloy has a yield stress of 8-9 kgf / mm 2 and a Cu alloy containing 0.03 to 0.15% by mass of Ag; a Cu alloy containing 0.8% by mass of Cr; or Zr An insulating operation rod comprising a Cu alloy containing 0.15% by mass.
前記中間材に貫通孔を設け、かつ前記貫通孔にセラミックスを嵌合させたものを、前記セラミックスと前記金属部材との間に設けたことを特徴とする、請求項1または請求項2に記載の絶縁操作ロッド。  3. The intermediate material according to claim 1, wherein a through hole is provided in the intermediate material and a ceramic is fitted into the through hole is provided between the ceramic and the metal member. Insulation operation rod. 請求項1ないし請求項3の何れか1項に記載の絶縁操作ロッドの製造方法であって、前記セラミックスと前記金属部材との間に、中間材として、Moをサンドイッチした三層構造のクラッド材;あるいは銅の合金;のいずれか1つを設け、前記セラミックスと前記金属部材とを接合することを特徴とする絶縁操作ロッドの製造方法。  The method for manufacturing an insulating operation rod according to any one of claims 1 to 3, wherein the clad material has a three-layer structure in which Mo is sandwiched between the ceramics and the metal member as an intermediate material. Or an alloy of copper; and the ceramics and the metal member are joined to each other.
JP07973098A 1998-03-26 1998-03-26 Insulating operation rod and method of manufacturing the same Expired - Fee Related JP4080588B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07973098A JP4080588B2 (en) 1998-03-26 1998-03-26 Insulating operation rod and method of manufacturing the same
TW88111902A TW419623B (en) 1998-03-26 1999-07-14 Insulating operating rod and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07973098A JP4080588B2 (en) 1998-03-26 1998-03-26 Insulating operation rod and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11282561A JPH11282561A (en) 1999-10-15
JP4080588B2 true JP4080588B2 (en) 2008-04-23

Family

ID=13698336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07973098A Expired - Fee Related JP4080588B2 (en) 1998-03-26 1998-03-26 Insulating operation rod and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP4080588B2 (en)
TW (1) TW419623B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079505B2 (en) 2013-08-26 2017-02-15 三菱マテリアル株式会社 Bonded body and power module substrate
JP7112244B2 (en) * 2018-05-10 2022-08-03 日本特殊陶業株式会社 zygote

Also Published As

Publication number Publication date
JPH11282561A (en) 1999-10-15
TW419623B (en) 2001-01-21

Similar Documents

Publication Publication Date Title
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
JP5968651B2 (en) Components for semiconductor manufacturing equipment
JP5115318B2 (en) Semiconductor device
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JP2001010874A5 (en)
CN113478040B (en) Active brazing method for improving performance of graphite/copper dissimilar material joint
JPH0829990B2 (en) Bonded body of ceramics and metal
WO2017098863A1 (en) Thermoelectric conversion module and method for manufacturing same
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
US6131797A (en) Method for joining ceramic to metal
JP4080588B2 (en) Insulating operation rod and method of manufacturing the same
CN1258201C (en) Insulated operating rod and its manufacturing method
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
TW457163B (en) A method for bonding ceramic and metal and a ceramic-metal bonding article prepared by the method
JPS58120578A (en) Selective brazing method for inorganic base material
KR100355119B1 (en) Insulating operating rod and manufacturing method therefor
JPH0541566A (en) Ceramic-copper junction substrate having excellent thermal impact resistance
JP7400109B2 (en) Methods of producing metal-ceramic substrates and metal-ceramic substrates produced by such methods
JP2020131251A (en) Manufacturing method for joint body of aluminum member and member to be joined, and joint body obtained by joining aluminum member and member to be joined via intermediate layer
JP2000327442A (en) Ceramic-metal joined body, its production and high temperature type secondary battery
JP3365575B2 (en) Joint of ceramic and metal
JPH06329480A (en) Joined body of ceramics and metal and its production
JP2001089257A (en) Brazing filler metal for aluminum circuit sheet and ceramic circuit board using the same
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH0223501B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees