JP4080434B2 - Degassing method - Google Patents

Degassing method Download PDF

Info

Publication number
JP4080434B2
JP4080434B2 JP2004027191A JP2004027191A JP4080434B2 JP 4080434 B2 JP4080434 B2 JP 4080434B2 JP 2004027191 A JP2004027191 A JP 2004027191A JP 2004027191 A JP2004027191 A JP 2004027191A JP 4080434 B2 JP4080434 B2 JP 4080434B2
Authority
JP
Japan
Prior art keywords
ozone
gas
water
filler
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027191A
Other languages
Japanese (ja)
Other versions
JP2005218912A (en
Inventor
隆行 自在丸
由孝 八巻
孝 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2004027191A priority Critical patent/JP4080434B2/en
Publication of JP2005218912A publication Critical patent/JP2005218912A/en
Application granted granted Critical
Publication of JP4080434B2 publication Critical patent/JP4080434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、純水の製造等において液体中に溶存する気体成分の脱気に用いる脱気装置用充填材を用いた脱気方法に係り、オゾンを用いて改質処理した脱気装置用充填材を用いた脱気方法及びその改質処理により製造された脱気装置用充填材に関する。 The present invention relates to a degassing method using the deaerator filler used in the degassing of gas components dissolved in the liquid in the production or the like of pure water, filling deaerator treated reformed with ozone The present invention relates to a deaeration method using a material and a filler for a deaeration device manufactured by the reforming process .

半導体、液晶等の電子製品、医薬、食品分野における水処理には、不純物の少ない純水が極めて重要な働きをし、その純水を供給するために、純水製造装置が用いられている。   In water treatment in the fields of electronic products such as semiconductors and liquid crystals, pharmaceuticals, and foods, pure water with few impurities plays an extremely important role, and a pure water production apparatus is used to supply the pure water.

この純水製造装置の主装置である逆浸透膜装置に用いられる逆浸透膜(RO)やイオン交換装置に用いられるイオン交換樹脂等は、水中の溶存酸素により酸化されて劣化するため、純水製造装置には、これらの装置の前段に真空脱気装置等が組み込まれている。   Since the reverse osmosis membrane (RO) used in the reverse osmosis membrane device which is the main device of this pure water production device and the ion exchange resin used in the ion exchange device are oxidized and deteriorated by dissolved oxygen in the water, The manufacturing apparatus incorporates a vacuum degassing apparatus or the like in the preceding stage of these apparatuses.

この真空脱気装置には、通常、充填材が収容され、液体中の溶存酸素等の脱気効率を向上させている。これに加え、真空脱気装置内に充填された充填材の上部に気液接触増加材(デミスタ)を設けることにより脱気効率を向上させることも提案されている(例えば、特許文献1参照。)。   This vacuum deaerator usually contains a filler, and improves the deaeration efficiency of dissolved oxygen and the like in the liquid. In addition to this, it has also been proposed to improve the deaeration efficiency by providing a gas-liquid contact increasing material (demister) on the upper part of the filler filled in the vacuum deaerator (see, for example, Patent Document 1). ).

また、熱交換用充填材、脱臭用充填材等ではあるが気液接触充填剤において、処理性能を高めるために、充填材の比表面積が大きい充填材を用いたり、これを多段収納して接触効率を高めることが通常行われている(例えば、特許文献2参照。)。
特開平6−55164号公報 特開2002−153725号公報
In addition, in gas-liquid contact fillers such as heat exchange fillers and deodorizing fillers, a filler with a large specific surface area of the filler is used in order to improve processing performance, or this is stored in multiple stages and contacted. Increasing efficiency is usually performed (for example, refer to Patent Document 2).
JP-A-6-55164 JP 2002-153725 A

しかしながら、気液接触増加材を用いた場合においては、脱気装置の部品点数が増えてしまい、充填材の比表面積を大きくする場合には特定の材料を使用しなければならず、また、多段収納したものは、収納部を大きくする必要があるため装置の大型化が必要となり、部品点数も増えてしまうため好ましくない。   However, in the case of using the gas-liquid contact increasing material, the number of parts of the deaeration device increases, and when increasing the specific surface area of the filler, a specific material must be used. What is stored is not preferable because it is necessary to increase the size of the storage section because the storage section needs to be enlarged, and the number of parts increases.

そこで、本発明は、樹脂製充填材の特徴であるデッドフェイスを形成しないようにして有効面積を大きくし、線構造で圧損が小さく、軽量で、化学的、機械的性質を保持したまま気液接触効率を上げ、延いては処理水中の溶存気体の脱気処理効率を向上する脱気装置用充填材の改質処理方法及び脱気装置用充填材を提供することを目的とする。   Therefore, the present invention increases the effective area without forming the dead face, which is a feature of the resin filler, has a small pressure loss with a linear structure, is lightweight, and retains chemical and mechanical properties. An object of the present invention is to provide a method for modifying a filler for a degassing apparatus and a filler for a degassing apparatus that increase the contact efficiency and thereby improve the degassing efficiency of the dissolved gas in the treated water.

本発明の脱気方法は、脱気装置用充填材を用いた脱気方法において、脱気を行う前に予め脱気装置用充填材を構成する樹脂とオゾン水とを接触させ、前記接触で得られた脱気装置用充填剤を用いて脱気を行うことを特徴とするものである。 The deaeration method of the present invention is a deaeration method using a filler for a deaerator , wherein a resin constituting the filler for a deaerator is previously brought into contact with ozone water before deaeration. Degassing is performed using the obtained filler for a degassing apparatus .

また、本発明の脱気装置用充填材は、脱気を行う前に予め脱気装置用充填材を構成する樹脂とオゾン水とを接触させる改質処理方法により処理されたことを特徴とするものである。 In addition, the degassing device filler according to the present invention is characterized in that the degassing device filler is treated in advance by a reforming treatment method in which a resin constituting the degassing device filler and ozone water are brought into contact with each other. Is.

本発明の脱気方法は、脱気を行なう前に予め脱気装置用充填材を構成する樹脂とオゾン水とを接触させ、前記接触で得られた脱気装置用充填剤を用いて脱気を行うことを特徴とし、ここで用いる脱気装置用充填材を構成する樹脂としては、オゾンガスにより脱気性能を向上することができるものであれば、熱硬化性、熱可塑性のいずれの樹脂を用いることもできる。 In the degassing method of the present invention, before degassing, the resin constituting the filler for degassing device is brought into contact with ozone water in advance , and degassing is performed using the degassing device filler obtained by the contact. As the resin constituting the filler for the degassing device used here, any resin that is thermosetting or thermoplastic can be used as long as the degassing performance can be improved by ozone gas. It can also be used.

この中でも、経済性の面からも成型加工の容易さの観点から、熱可塑性樹脂であることが好ましく、この熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニール(PVC)等が挙げられ、これらの樹脂から選ばれた少なくとも1種を含む樹脂であることが好ましい。   Among these, from the viewpoint of economic efficiency, a thermoplastic resin is preferable from the viewpoint of easy molding. Examples of the thermoplastic resin include polyethylene (PE), polypropylene (PP), and polyvinyl chloride ( PVC) and the like, and is preferably a resin containing at least one selected from these resins.

また、オゾン処理を行う樹脂としては、脱気装置用充填材として従来用いられているもの、つまり、充填材として成形されたものであってもよく、充填材の成形前の材料となる樹脂であってもよい。   In addition, as the resin for performing the ozone treatment, a resin that has been conventionally used as a filler for a deaerator, that is, a resin that has been molded as a filler, is a resin that becomes a material before molding of the filler. There may be.

次に、本発明の改質処理方法は、このような樹脂をオゾン水と接触させることにより達成することができる。   Next, the modification treatment method of the present invention can be achieved by bringing such a resin into contact with ozone water.

このとき用いるオゾン水は、例えば、オゾンガスを発生させるオゾンガス発生装置やさらに発生したオゾンガスを純水に溶解させるオゾン水製造装置等の市販品を用いて製造することができる。このオゾン水の原料となる水は、イオン交換、蒸留、逆浸透等の方法で得られた純水が用いられるが、必要なオゾン濃度が得られる範囲で水道水等を混合しても良い。   The ozone water used at this time can be manufactured using commercially available products such as an ozone gas generator that generates ozone gas and an ozone water generator that dissolves the generated ozone gas in pure water. As the water used as the raw material for the ozone water, pure water obtained by a method such as ion exchange, distillation, reverse osmosis or the like is used, but tap water or the like may be mixed within a range where a necessary ozone concentration can be obtained.

また、オゾン水におけるオゾン濃度が不安定にならない程度の範囲で、塩酸、硫酸等の無機酸、酢酸等の有機酸、水酸化ナトリウム、水酸化カリウム等のアルカリ剤、アルコール等の有機溶媒等を添加することもできる。オゾン水のオゾン濃度は、本発明で得られる効果を有する範囲であれば、特に限定されないが、10〜70mg/Lの範囲であることが好ましい。   In addition, within the range where ozone concentration in ozone water does not become unstable, inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid, alkali agents such as sodium hydroxide and potassium hydroxide, organic solvents such as alcohol, etc. It can also be added. The ozone concentration of the ozone water is not particularly limited as long as it has the effect obtained in the present invention, but is preferably in the range of 10 to 70 mg / L.

オゾン水の処理温度に関しても特に限定されないが、オゾン水の温度が高くなるとオゾンの分解が早まり、濃度を維持しにくくなることを考慮すると、50℃以下であることが好ましく、30℃以下であることが特に好ましい。   Although it does not specifically limit regarding the processing temperature of ozone water, It is preferable that it is 50 degrees C or less, when it considers that decomposition | disassembly of ozone is accelerated and it becomes difficult to maintain a density | concentration when the temperature of ozone water becomes high. It is particularly preferred.

樹脂とオゾン水との接触時間は、基材の素材、オゾン水のオゾン濃度等の条件により左右され、特に限定されるものではないが、上記の好ましいオゾン濃度の範囲で用いた場合には、オゾンによる急激な酸化による樹脂劣化を防止しながら、樹脂表面の改質が必要で長時間、例えば1日以上6日以下位とゆっくり接触させることが好ましい。   The contact time between the resin and the ozone water depends on conditions such as the material of the base material and the ozone concentration of ozone water, and is not particularly limited, but when used in the above preferred ozone concentration range, While preventing resin deterioration due to rapid oxidation by ozone, it is necessary to modify the surface of the resin, and it is preferable to bring it into contact slowly for a long time, for example, about 1 day or more and 6 days or less.

また、本発明の脱気装置用充填材は、本発明の脱気方法に用いる充填材の改質処理を用いて製造されたものである。この脱気装置用充填材は、改質処理前に、樹脂を充填材形状に成形したものであれば、これをオゾン処理するだけで製造することができ、充填材形状に成形前の樹脂をオゾン処理した場合には、その後、改質処理済みの樹脂を充填材の形状に成形することで製造することができる。 Moreover, the filler for deaerators of this invention is manufactured using the modification process of the filler used for the deaeration method of this invention. This degassing device filler can be produced simply by ozone treatment if the resin is molded into a filler shape before the reforming treatment. When the ozone treatment is performed, the resin can be produced by molding the modified resin into the shape of the filler.

樹脂を充填材形状に成形したものをオゾン処理することとすれば、市販の充填材を原材料として用いることができるし、改質処理後、得られた充填材は、すぐに優れた脱気装置用充填材として用いることができる点で好ましい。   If the resin molded into a filler shape is to be treated with ozone, a commercially available filler can be used as a raw material, and after the modification treatment, the resulting filler is immediately an excellent degassing device. It is preferable at the point which can be used as a filler.

本発明の脱気方法を用いることにより、従来と同じ充填材形状であっても脱気効率が向上した脱気装置用充填材を用いているため効率的な脱気処理を行うことができる。したがって、この改質処理方法によれば、充填材量を減らして脱気装置の小型化が可能で、純水製造装置自体をコンパクトにすることができる。また、従来と同性能を発揮させるのに用いる充填材量が少なくて済むため、ランニングコストも抑えることができる。 By using the degassing method of the present invention, the degassing device filler having improved degassing efficiency can be used even if the filler material has the same shape as the conventional one, so that efficient degassing treatment can be performed . Therefore, according to this reforming treatment method, the amount of the filler can be reduced, the deaerator can be downsized, and the pure water production apparatus itself can be made compact. In addition, since the amount of filler used for exhibiting the same performance as the conventional one is small, the running cost can be suppressed.

また、従来と同じ充填材量を用いた場合には、処理水中の溶存酸素量をより軽減することができるため、純水製造装置において脱気装置の後段に配置される逆浸透膜(RO膜)、イオン交換樹脂等の酸化劣化の防止に有用である。   In addition, when the same amount of filler as in the prior art is used, the amount of dissolved oxygen in the treated water can be further reduced. Therefore, a reverse osmosis membrane (RO membrane) disposed downstream of the deaeration device in the pure water production device. ), Which is useful for preventing oxidative degradation of ion exchange resins and the like.

以下、本発明の脱気装置用充填材の改質処理方法について図面を参照しながら詳細に説明する。   Hereinafter, the reforming method for a filler for a deaerator according to the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図1は、本発明に係る脱気処理に用いる脱気装置用充填材の改質処理方法での第1の実施形態に用いる処理装置を示す概略図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a processing apparatus used in the first embodiment in the method for reforming a filler for a degassing apparatus used in the degassing process according to the present invention.

この処理装置は、電気分解によりオゾンガスを発生する電解ガス発生装置とオゾン処理槽とを備えているものである。   This processing apparatus includes an electrolytic gas generator that generates ozone gas by electrolysis and an ozone treatment tank.

電解ガス発生装置のオゾンガス、水素ガスの発生部1には、イオン交換膜1aが備えられ、このイオン交換膜1aの両端にそれぞれ多孔質の陽極物質1b、及び、陰極物質1cを密着配置させ、イオン交換膜1aを固体電解質として電解することにより、陽極側よりオゾンガスと酸素ガスを、又、陰極側より水素ガスを製造する。   The ozone gas and hydrogen gas generator 1 of the electrolytic gas generator is provided with an ion exchange membrane 1a, and a porous anode material 1b and a cathode material 1c are arranged in close contact with both ends of the ion exchange membrane 1a. By electrolyzing the ion exchange membrane 1a as a solid electrolyte, ozone gas and oxygen gas are produced from the anode side, and hydrogen gas is produced from the cathode side.

オゾンガス、水素ガスの発生部1には、純水3が供給される。また、発生部1には電源2が接続されており、電源2からの電流によってガスが生成する。   Pure water 3 is supplied to the ozone gas and hydrogen gas generator 1. A power source 2 is connected to the generator 1, and gas is generated by current from the power source 2.

発生したオゾン及び水素ガスは、各々ガス分離部4,5により分離されオゾンガス導管9と水素ガス導管10に各々導かれる。   The generated ozone and hydrogen gas are separated by the gas separation units 4 and 5, respectively, and led to the ozone gas conduit 9 and the hydrogen gas conduit 10.

オゾンガス導管9に導かれたオゾンガスは、オゾンガス配管15を通ってオゾン散気管12から放出され、充填材を浸漬処理するための処理槽11に収容されている純水中に溶解されオゾン水が生成する。また、処理槽11内のオゾン水は、オゾン水循環ポンプ13とオゾン水を処理槽内に均一に戻すためのオゾン水循環配管14により、オゾン濃度が均一に保たれる。   The ozone gas led to the ozone gas conduit 9 is released from the ozone diffuser 12 through the ozone gas pipe 15 and is dissolved in pure water stored in the treatment tank 11 for immersing the filler to generate ozone water. To do. The ozone water in the treatment tank 11 is kept at a uniform ozone concentration by the ozone water circulation pump 13 and the ozone water circulation pipe 14 for returning the ozone water to the treatment tank uniformly.

この電解ガス発生装置の他に、オゾンガス発生方法には、高周波高電圧をかけることによりオゾンガスを発生させる無声放電法、紫外線(UV)によるオゾン発生方法等が良く知られており、いずれも電気分解ガス発生装置同様にオゾンガスを処理槽11に供給することでオゾン水を生成することができる。   In addition to this electrolytic gas generator, there are well known ozone gas generation methods such as a silent discharge method that generates ozone gas by applying a high-frequency high voltage, and an ozone generation method that uses ultraviolet (UV). Like the gas generator, ozone water can be generated by supplying ozone gas to the treatment tank 11.

このように処理槽11がオゾン水で満たされた後、改質処理に用いる脱気装置用充填材を処理槽11内に浸漬し、所定の温度、時間によりオゾン水との接触処理を行うことで、本発明の脱気装置用充填材の改質処理方法を達成することができる。   After the treatment tank 11 is filled with ozone water in this way, the degassing filler used for the reforming process is immersed in the treatment tank 11 and contact treatment with ozone water is performed at a predetermined temperature and time. Thus, the method for reforming a filler for a deaerator according to the present invention can be achieved.

なお、本発明の脱気装置用充填材のオゾン水による改質処理方法により得られた脱気装置用充填剤の脱気効率が大幅に向上する作用機序の一つとして考えられるのは、樹脂表面が疎水性から親水性に改質されるためと考えられる。   In addition, it is considered as one of the mechanism of action that the degassing efficiency of the degassing device filler obtained by the reforming method using ozone water of the degassing device filler of the present invention is significantly improved. This is probably because the resin surface is modified from hydrophobic to hydrophilic.

また、オゾンガス配管15で送気されるオゾンガス濃度は直流電源2の安定した電圧制御で保持されている。なお、オゾンガス濃度は搬送距離により減衰するので、処理槽11へのオゾンガス配管15は可能な限り短い距離にすることが好ましい。   Further, the concentration of ozone gas sent through the ozone gas pipe 15 is maintained by stable voltage control of the DC power supply 2. Since the ozone gas concentration is attenuated by the transport distance, the ozone gas pipe 15 to the processing tank 11 is preferably as short as possible.

(第2の実施形態)
また、本発明に係る脱気処理に用いる脱気装置用充填材の改質処理方法での第2の実施形態は、電気分解ガス発生装置での高濃度オゾンガス発生のための手段が異なるだけで、その他の構成は第1の実施形態と同一の処理装置を用いて行なうものである
(Second Embodiment)
Further, the second embodiment of the method for reforming a filler for a deaerator used in the deaeration process according to the present invention is different only in the means for generating high-concentration ozone gas in the electrolysis gas generator. Other configurations are performed by using the same processing apparatus as in the first embodiment.

本実施形態における高濃度オゾンガスを発生する電気分解ガス発生装置は、図2に示したように、第1の実施形態で陽極側に供給した純水に代えて、炭酸水を供給するものであり、陽極側の純水送水管3に炭酸ガス接触機構8を取り付け、この炭酸ガス接触機構8が有する気液接触膜から純水中に炭酸ガスを浸透溶解させるものである。   As shown in FIG. 2, the electrolysis gas generator for generating high-concentration ozone gas in this embodiment supplies carbonated water in place of the pure water supplied to the anode side in the first embodiment. The carbon dioxide gas contact mechanism 8 is attached to the pure water water supply pipe 3 on the anode side, and carbon dioxide gas is permeated and dissolved in pure water from the gas-liquid contact film of the carbon dioxide gas contact mechanism 8.

本実施形態においては、純水が炭酸と接触して炭酸水となるために、純度の高い純水である場合には、炭酸水が供給され、陽極で生成したオゾンを、pHを下げることでオゾン分解を阻止しオゾン濃度の減少を抑えることができる。また、過酸化水素を含有した純水である場合には、純水中の過酸化水素が炭酸ガスによってストリッピングされ陽極側に供給されるため、陽極で生成したオゾンを純水中の過酸化水素で消費してしまうことがない。   In the present embodiment, pure water comes into contact with carbonic acid to become carbonated water. Therefore, in the case of pure water with high purity, carbonated water is supplied, and ozone generated at the anode is lowered by reducing the pH. Ozone decomposition can be prevented and decrease in ozone concentration can be suppressed. Also, in the case of pure water containing hydrogen peroxide, hydrogen peroxide in pure water is stripped by carbon dioxide gas and supplied to the anode side, so ozone generated at the anode is peroxidized in pure water. There is no consumption with hydrogen.

また、純水が炭酸ガスと接触して炭酸水となる前に、純水を一度オゾンガスと接触しオゾン水とした上で再度炭酸ガスと接触して炭酸水として供給することもできる。そうした場合、過酸化水素を含有した純水の場合には、純水中の過酸化水素が一度オゾンガスによって酸化分解された上で、炭酸ガスによってpHの低い安定な水として陽極側に供給されるため、陽極で生成するオゾンは純水の影響を受けない高濃度オゾンガスとして生成される。   Further, before pure water comes into contact with carbon dioxide gas to form carbonated water, pure water can be once brought into contact with ozone gas to form ozone water, and then contacted with carbon dioxide gas again to be supplied as carbonated water. In such a case, in the case of pure water containing hydrogen peroxide, hydrogen peroxide in the pure water is once oxidized and decomposed by ozone gas, and then supplied to the anode side as stable water having a low pH by carbon dioxide gas. Therefore, ozone generated at the anode is generated as a high-concentration ozone gas that is not affected by pure water.

このとき、陽極側に供給される純水と供給前に接触する炭酸ガス量は、オゾン及び酸素の発生ガスに対して0.5〜15%の範囲に制御すべきである。少ないときはpHが低下せずオゾン発生が安定せず、また、15%を超えると陽極室内のオゾン水が炭酸ガスによってストリッピングされてオゾンガス濃度が上昇しない。さらに、オゾンガス濃度を安定に高濃度に維持するためには、前記炭酸ガス量はオゾン及び酸素の発生ガスに対して、2.5〜10%の範囲に制御することが望ましい。   At this time, the amount of carbon dioxide gas in contact with pure water supplied to the anode side before supply should be controlled in a range of 0.5 to 15% with respect to ozone and oxygen generation gas. When the amount is small, the pH is not lowered and the generation of ozone is not stable, and when it exceeds 15%, the ozone water in the anode chamber is stripped by carbon dioxide gas and the ozone gas concentration does not rise. Furthermore, in order to stably maintain the ozone gas concentration at a high concentration, it is desirable that the amount of carbon dioxide gas is controlled within a range of 2.5 to 10% with respect to the generated gas of ozone and oxygen.

陽極側に供給される純水と供給前に接触する炭酸ガスとの接触方法にはいろいろな方法があるが、一般的には、エジェクターやスタティックミキサーで純水流水中に炭酸ガスを混合する方法、散気板から炭酸ガスを散気して純水中に炭酸ガスを溶け込ませる方法、膜により一方に純水を、他方に炭酸ガスを導入して膜を介して炭酸ガスを純水に溶け込ませる方法等が考えられる。   There are various methods for contacting the pure water supplied to the anode and the carbon dioxide gas that comes into contact before the supply. Generally, carbon dioxide gas is mixed with pure water using an ejector or static mixer. , A method in which carbon dioxide gas is diffused from a diffuser plate and carbon dioxide gas is dissolved in pure water. Carbon dioxide gas is dissolved in pure water through a membrane by introducing pure water into one side through a membrane and carbon dioxide gas into the other. A method of making it possible is conceivable.

電解ガス発生装置において、純水供給の場合、オゾンガス発生部1におけるオゾン水のオゾン濃度は平均して10ppmであるのに対して、炭酸水供給の場合、オゾンガス発生部1におけるオゾン水のオゾン濃度は平均して70ppmという高濃度のものが得られる。したがって、このオゾン水から一旦取り出して得られた高濃度オゾンガスを供給することによって、処理槽11では高濃度オゾン水が得られ、充填材の改質を容易に行うことができる。この場合、改質処理を効率良く行うことができ、純水供給に比べ経済的にも有利である。   In the electrolytic gas generator, the ozone concentration of ozone water in the ozone gas generator 1 is 10 ppm on average in the case of pure water supply, whereas the ozone concentration of ozone water in the ozone gas generator 1 in the case of carbonated water supply. Can be obtained at a high concentration of 70 ppm on average. Therefore, by supplying the high-concentration ozone gas once taken out from the ozone water, the high-concentration ozone water is obtained in the treatment tank 11 and the filler can be easily modified. In this case, the reforming treatment can be performed efficiently, which is economically advantageous as compared with the supply of pure water.

以下、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

(実施例1)
実施例1では、図1に示した構成の装置を用いて測定を行った。
まず、脱気装置用充填材の処理槽11(水槽寸法:奥行850mm×幅5900mm×高さ650mm(有効水深500mm))内に、脱気装置用充填材(日鉄化工機株式会社製、商品名:テラレット)を1.5m(100L/袋×15袋)投入して、有効水深500mmまで純水を注入した。SUS−316製オゾン水循環ポンプ13(1kW)で3m/分づつ循環しながら、電気分解ガス発生装置で陽極側に純水を供給して得られたオゾン濃度10%の発生ガスを1.8L/分でオゾンガス散気管12(口径:25A、長さ:2m、2本)から処理槽11内に散気、溶解した。処理槽11内のオゾン水のオゾン濃度は平均で10ppmであることを確認して、このまま4日間(136時間)処理した後、処理槽11から取り出し自然乾燥した。なお、テラレットの材質としては、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ塩化ビニール(PVC)の3種類について同様に処理を行った。
Example 1
In Example 1, the measurement was performed using the apparatus having the configuration shown in FIG.
First, in the processing tank 11 (water tank dimensions: depth 850 mm × width 5900 mm × height 650 mm (effective water depth 500 mm)) of the degassing device filler, the product for degassing device (manufactured by Nippon Steel Chemical Co., Ltd., product) Name: Terralet) was added to 1.5 m 3 (100 L / bag × 15 bags), and pure water was injected to an effective water depth of 500 mm. While circulating at a rate of 3 m 3 / min with an SUS-316 ozone water circulation pump 13 (1 kW), 1.8 L of generated gas with an ozone concentration of 10% obtained by supplying pure water to the anode side with an electrolysis gas generator The gas was diffused and dissolved in the treatment tank 11 from the ozone gas diffusing tube 12 (caliber: 25A, length: 2 m, 2 tubes) at / min. After confirming that the ozone concentration of the ozone water in the treatment tank 11 was 10 ppm on average, it was treated for 4 days (136 hours) as it was, and then taken out from the treatment tank 11 and naturally dried. In addition, as the material of terralet, the same treatment was performed for three types of polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC).

オゾン処理により得られた脱気装置用充填材の性能を、図3に示した純水中の溶存酸素脱気処理実験装置を用いて測定し、その結果を表1に示した。   The performance of the filler for the degassing device obtained by the ozone treatment was measured using the dissolved oxygen degassing treatment experimental device in pure water shown in FIG. 3, and the results are shown in Table 1.

なお、このとき用いた溶存酸素脱気処理実験装置は、塔径:150mmφ、全長:4500mm、塔内水高:30〜50mm、充填層高:2200mm(充填量:35L)、上部層高:1000mm、下部層高:1000mm、よりなる脱気塔16とそれに付帯するマノメーター17、水道水封入型真空ポンプ18及び窒素ガス吹き込み用圧力計ポンプ19、脱気処理水の出口に備えられた溶存酸素計(DO計)20及び比抵抗計(DO計)21で構成されたものであり、入口から、比抵抗が17MΩ/cmの純水を、水量:0.5m/hrで注入して測定を行ったものである。 In addition, the dissolved oxygen deaeration treatment experimental apparatus used at this time has a tower diameter: 150 mmφ, a total length: 4500 mm, a water height in the tower: 30 to 50 mm, a packed bed height: 2200 mm (filled quantity: 35 L), and an upper layer height: 1000 mm. , Lower layer height: 1000 mm, a deaeration tower 16 and an accompanying manometer 17, a tap water-sealed vacuum pump 18 and a pressure gauge pump 19 for blowing nitrogen gas, and a dissolved oxygen meter provided at the outlet of the degassed water (DO meter) 20 and a specific resistance meter (DO meter) 21, and measured by injecting pure water having a specific resistance of 17 MΩ / cm from the inlet at a water amount of 0.5 m 3 / hr. It is what I did.

Figure 0004080434
Figure 0004080434

表1に示したように、オゾン水で処理した脱気装置用充填材をオゾン処理しないものに比べると、窒素ガスを封入しない通常の状態で倍近い脱気効率を示し、窒素ガスを封入した場合には3倍近い脱気効率を示した。  As shown in Table 1, the degassing filler that was treated with ozone water had a degassing efficiency nearly double that in a normal state in which nitrogen gas was not encapsulated, compared with those that were not ozonized, and nitrogen gas was encapsulated. In some cases, the deaeration efficiency was nearly three times.

(実施例2)
実施例2では、図2に示した構成の装置を用いて測定を行った。
本実施例においては、電気分解ガス発生装置において高濃度オゾンガス発生のための手段が異なるだけで、その他の構成は実施例1と同じ装置を用いた。
(Example 2)
In Example 2, the measurement was performed using the apparatus having the configuration shown in FIG.
In the present embodiment, the same apparatus as that of the first embodiment is used except for the means for generating high-concentration ozone gas in the electrolysis gas generator.

高濃度オゾンガスを発生させるために、陽極側には超純水ではなく炭酸水を添加する。炭酸水は、炭酸ガス接触機構8から炭酸ガスを超純水に溶解することで製造するが、本実施例において、炭酸ガス接触機構8への炭酸ガス注入量は、オゾン及び酸素の発生ガス量1.8L/分に対し7%の126mL/分とした。炭酸ガスを吹き込み、生成した炭酸水を送水管3より陽極側に供給、添加したところオゾン濃度20%の高濃度オゾンガスが生成した。このガスを実施例1と同法でオゾンガス散気管12に送気した所、処理槽11内にはオゾン濃度が平均で25ppmのオゾン水が確認できた。この場合、実施例1と同様の脱気効率を有する充填材を、1.5日(約35時間)という短時間のオゾン処理で得ることができた。   In order to generate high-concentration ozone gas, carbonated water is added to the anode side instead of ultrapure water. Carbonated water is produced by dissolving carbon dioxide in the ultrapure water from the carbon dioxide contact mechanism 8. In this embodiment, the amount of carbon dioxide injected into the carbon dioxide contact mechanism 8 is the amount of ozone and oxygen generated. It was set to 126% / min, 7% for 1.8 L / min. Carbon dioxide gas was blown in, and the generated carbonated water was supplied to the anode side from the water pipe 3 and added, whereby high-concentration ozone gas with an ozone concentration of 20% was generated. When this gas was supplied to the ozone gas diffusing tube 12 in the same manner as in Example 1, ozone water having an average ozone concentration of 25 ppm could be confirmed in the treatment tank 11. In this case, a filler having the same degassing efficiency as in Example 1 could be obtained by ozone treatment in a short time of 1.5 days (about 35 hours).

本発明の脱気方法に用いる脱気用樹脂充填材の改質処理方法により改質された充填材は、排ガス洗浄用充填材としても充填材として、用いることもでき、この場合、大気汚染の軽減へ大いに寄与することができる。 The filler modified by the degassing resin filler modification treatment method used in the degassing method of the present invention can be used as an exhaust gas cleaning filler or as a filler. Can greatly contribute to mitigation.

本発明に係る脱気装置用充填材の改質処理方法での第1の実施形態に用いる処理装置の概念図である。It is a conceptual diagram of the processing apparatus used for 1st Embodiment by the modification | reformation processing method of the filler for deaerators which concerns on this invention. 本発明に係る脱気装置用充填材の改質処理方法での第2の実施形態に用いる処理装置の概念図である。It is a conceptual diagram of the processing apparatus used for 2nd Embodiment by the modification | reformation processing method of the filler for deaerators which concerns on this invention. 実施例において脱気用充填材の脱気効率測定に用いた純水中の溶存酸素脱気処理実験装置の概念図である。It is a conceptual diagram of the dissolved oxygen deaeration processing experiment apparatus in the pure water used for the deaeration efficiency measurement of the deaeration filler in an Example.

符号の説明Explanation of symbols

1…オゾンガス、水素ガスの発生部、1a…イオン交換膜、1b…多孔質の陽極物質、1c…多孔質の陰極物質、2…直流電源、3…純水送水管、4…オゾンガス分離部、5…水素ガス分離部、6…炭酸水送水管、7a…炭酸ガス排気管、7b…炭酸ガス注入管、8…炭酸ガス接触機構、9…オゾンガス導管、10…水素ガス導管、11…処理槽、12…オゾンガス散気管、13…オゾン水循環ポンプ、14…オゾン水循環配管、15…オゾンガス配管、16…充填塔、17…マノメーター、18…水道水封入型真空ポンプ、19…窒素ガス吹き込み用圧力計ポンプ、20…溶存酸素計(DO計)、21…比抵抗計(DO計)   DESCRIPTION OF SYMBOLS 1 ... Generation | occurrence | production part of ozone gas, hydrogen gas, 1a ... Ion exchange membrane, 1b ... Porous anode material, 1c ... Porous cathode material, 2 ... DC power supply, 3 ... Pure water water pipe, 4 ... Ozone gas separation part, DESCRIPTION OF SYMBOLS 5 ... Hydrogen gas separation part, 6 ... Carbonated water feed pipe, 7a ... Carbon dioxide gas exhaust pipe, 7b ... Carbon dioxide gas injection pipe, 8 ... Carbon dioxide gas contact mechanism, 9 ... Ozone gas conduit, 10 ... Hydrogen gas conduit, 11 ... Treatment tank DESCRIPTION OF SYMBOLS 12 ... Ozone gas diffusion pipe, 13 ... Ozone water circulation pump, 14 ... Ozone water circulation pipe, 15 ... Ozone gas pipe, 16 ... Packing tower, 17 ... Manometer, 18 ... Tap water enclosed vacuum pump, 19 ... Nitrogen gas blowing pressure gauge Pump, 20 ... dissolved oxygen meter (DO meter), 21 ... specific resistance meter (DO meter)

Claims (3)

脱気装置用充填材を用いた脱気方法において、脱気を行う前に予め脱気装置用充填材を構成する樹脂とオゾン水とを接触させ、前記接触で得られた脱気装置用充填剤を用いて脱気を行うことを特徴とする脱気方法。   In the degassing method using the degassing device filler, before degassing, the resin constituting the degassing device filler is previously brought into contact with ozone water, and the degassing device filling obtained by the contact is made. A degassing method comprising degassing using an agent. 前記オゾン水中のオゾン濃度が、10〜70mg/Lであることを特徴とする請求項1記載の脱気方法。   The degassing method according to claim 1, wherein the ozone concentration in the ozone water is 10 to 70 mg / L. 前記樹脂が、ポリエチレン、ポリプロピレン及びポリ塩化ビニールから選ばれた少なくとも1種を含む樹脂であることを特徴とする請求項1又は2記載の脱気方法。   The degassing method according to claim 1 or 2, wherein the resin is a resin containing at least one selected from polyethylene, polypropylene, and polyvinyl chloride.
JP2004027191A 2004-02-03 2004-02-03 Degassing method Expired - Lifetime JP4080434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027191A JP4080434B2 (en) 2004-02-03 2004-02-03 Degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027191A JP4080434B2 (en) 2004-02-03 2004-02-03 Degassing method

Publications (2)

Publication Number Publication Date
JP2005218912A JP2005218912A (en) 2005-08-18
JP4080434B2 true JP4080434B2 (en) 2008-04-23

Family

ID=34994978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027191A Expired - Lifetime JP4080434B2 (en) 2004-02-03 2004-02-03 Degassing method

Country Status (1)

Country Link
JP (1) JP4080434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536511A (en) * 2015-12-25 2016-05-04 广东省微生物研究所 Modified filling for waste gas bio-trickling filter and preparation method of modified filling

Also Published As

Publication number Publication date
JP2005218912A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US20130140232A1 (en) Method and system for ozone vent gas reuse in wastewater treatment
US5205994A (en) Electrolytic ozone generator
JP5020784B2 (en) Ozone water production apparatus and production method
US5203972A (en) Method for electrolytic ozone generation and apparatus therefor
US10442708B2 (en) Method and appliance for treating water
JP2012000578A (en) Method and device for producing high-concentration ozonized water
JPH0290995A (en) Water treatment process and device using electrolytic ozone
JP2009297588A (en) Method of preparing heated ozone water
JP2007307561A (en) High-purity water producing apparatus and method
JP4080434B2 (en) Degassing method
KR101612099B1 (en) An electrolysis apparatus
US10239772B2 (en) Recycling loop method for preparation of high concentration ozone
US7491302B2 (en) Electrolytic gas generation method and electrolytic gas generation device
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
JP5975397B2 (en) Ozone water generator
JP3814719B2 (en) Production method and production apparatus for ozone-dissolved water
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JP3506475B2 (en) Method and apparatus for producing hydrogen peroxide
JP2006145141A (en) Method and device for manufacturing ozone ice
JP2002166279A (en) Method and device for generating gas by electrolysis
JP4565364B2 (en) Antibacterial method and antibacterial device for ultrapure water production and supply device
KR102206521B1 (en) Apparatus for manufacturing of chlorine dioxide gsa using un-divided electrochemical cell with air diffuser
JPH09174048A (en) Method for removing organic substance in water
JP6277012B2 (en) Hydrogen generator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4080434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term